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Phase diagrams of theS51
2 quantum antiferromagnetic XY model

on the triangular lattice in magnetic fields

N. Suzuki and F. Matsubara
Department of Applied Physics, Faculty of Engineering, Tohoku University, Sendai 980-77, Japan

~Received 10 December 1996; revised manuscript received 29 January 1997!

We study theS5
1
2 quantum antiferromagneticXY model on finite triangular lattices withN sites in both

longitudinal and transverse magnetic fields. We calculate physical quantities in the ground state using a
diagonalization for spinsN<27, and those at finite temperatures using a quantum transfer Monte Carlo method
for N<24. In the longitudinal magnetic field, the long-range chiral order parameter seems to have a finite,
nonzero value at low temperatures suggesting the occurrence of a classical umbrella-type phase. In the trans-
verse magnetic field, the 1/3 plateau of the magnetization curve appears even at low temperatures, in contrast
with the classical model. The magnetic-field dependences of the order parameters suggest that the chiral-
ordered, the ferrimagnetic, and the spin-flop phases appear successively as the magnetic field is increased. The
transition temperatures are estimated from the peak position of the specific heat, and the phase diagrams are
predicted in both longitudinal and transverse magnetic fields.@S0163-1829~97!02118-8#
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I. INTRODUCTION

The antiferromagneticXY model on the triangular lattice
has attracted much interest. The Hamiltonian is

H52J(
^ i , j &

~Si
xSj

x1Si
ySj

y!2Ha(
i
Si

a , ~1!

whereJ (.0) is the exchange integral,Ha is an external
magnetic field along thea direction, and̂ i , j & takes all the
nearest-neighbor pairs. In the classical model, Miyashita
Shiba1 found using the Monte Carlo method that a lon
range chiral-ordered phase exists at low temperatures
though the long-range order of the spins disappears at fi
temperatures. They also suggested that the transition bel
to the universality class of the Ising model. The model
magnetic fields was also studied. In a longitudinal field,
the spins lean to thez direction but the chiral-ordered phas
still exists ~Fig. 1, the umbrella-type phase!. On the other
hand, in a transverse magnetic field, Leeet al. showed that
the chiral-ordered, the ferrimagnetic, and the spin-fl
phases appear successively as the magnetic field increas@in
Figs. 2~a!–2~c!#.2 In the ferrimagnetic phase, the magnetiz
tion has a value of13 of the saturated value, and the magn
tization curve exhibits a plateau, which is often called a1

3

plateau. However, the ferrimagnetic region of the fie
shrinks as the temperature cools down, and vanishe
T50.

In the S51/2 quantum model, it has been discuss
whether the classical ordered phases are broken down b
quantum fluctuation or not.3–10 The ground-state propertie
of the model on finite lattices have been studied usin
diagonalization method.3–6 The largest lattice treated up t
now is that withN536,5 and the results suggest that th
chiral order parameter remains finite forN→`. The proper-
ties at finite temperatures were also studied by several
thors using a quantum transfer Monte Carlo~QTMC!,7,11 a
high-temperature series expansion,8 and a super-effective
field theory.9 Recently, the authors carefully studied an a
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isotropic Heisenberg model using the QTMC method a
showed that, whenXY anisotropy is large, the peak height o
the specific heat increases withN.12 Thus they predicted tha
the quantum fluctuation does not destroy the classical ch
ordered phase in finite temperatures. In the presence of m
netic fields, on the contrary, it was speculated that the qu
tum fluctuation brings a different ground state from t
classical one. Chubukov and Golosov studied the gro
state of theXY model in the transverse field using the spi
wave theory, and suggested that the 1/3 plateau appea
T50.13 However, the spin-wave theory does not always g
a correct result in the frustrated model.14 Moreover, when
S51/2, the critical field at which the plateau appears b
comes negative because of the 1/S expansion.13

In this paper, we study theS51/2 quantumXY model in
magnetic fields. We consider the magnetic structures bot
T50 and atTÞ0. We calculate quantities in the groun
state of finite lattices withN<27 by the diagonalization
method. On the other hand, those in finite temperatures
calculated on the lattice withN<24 using the QTMC
method. From the result, we suggest the following things.~1!
In the longitudinal field, the umbrella-type phase occurs
to Hz53.0. ~2! In the transverse field, the 1/3 plateau rea
appears even in the ground state. The chiral-ordered, the

FIG. 1. A spin structure of the classical model in the longitu
nal magnetic field, which is called the umbrella-type phase.
12 331 © 1997 The American Physical Society
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rimagnetic, and the spin-flop phases occur as the magn
field is increased. The phase diagrams in both longitud
and transverse fields are predicted.

We consider the models in the longitudinal and the tra
verse fields in Secs. II and III, respectively. The summary
given in Sec. IV. We explain the QTMC method in the A
pendix.

II. LONGITUDINAL MAGNETIC FIELD

In this section, we study the model in a longitudinal fie
Hz. First, we consider the magnetization and the chiral or
parameter in the ground state. The total magnetization a
the external fieldHz is given by

Mz5~1/N!(
i
Si
z . ~2!

Thez component of the chirality of the upright triangle atR
is defined as

xz~R!5
1

A3
~Si

xSj
y2Si

ySj
x1Sj

xSk
y2Sj

ySk
x1Sk

xSi
y2Sk

ySi
x!,

~3!

where the relation ofi→ j→k is taken counterclockwise, a
is shown in Fig. 2~a!. The eigenvalues ofxz(R) are61/2
and 0. The long-range chiral order parameter is defined

FIG. 2. Three spin structures of the classical model in the tra
verse magnetic field.~a! The chiral-ordered phase,~b! the ferrimag-
netic phase, and~c! the spin-flop phase.

FIG. 3. The field dependence of the magnetizationMz at
T50.
tic
al

-
s

r
ng

x25
1

NS~NS11! F (
RPD

xz~R!G2, ~4!

whereR runs over all the upright triangles on the lattice.
Figs. 3 and 4, we showMz andAx2, respectively. Since thei
size dependences are almost negligible, these values wi
similar to those forN→`. The magnetization increases a
most linearly withHz, and no anomaly is observed until th
saturated fieldHmax

z 53.0. The chiral order parameter de
creases monotonically with increasingHz, and vanishes a
Hmax
z 53.0. These results suggest that the chiral-orde

phase changes into an umbrella-type one, and it surv
up to Hmax

z 53.0. If it is true, the chiral order paramete
at HzÞ0 will be approximately given asAx̃ 25
Ax2

Hz50cos
2u5Ax2

Hz50@12(Mz)2#, whereu is the angle
between the spin andXY plane. We calculateAx̃ 2 and show
it in Fig. 5 together withAx2. The two results are in good
agreement with each other. Thus we may conclude that in
ground state the umbrella-type phase occurs atHzÞ0, and it
survives up toHmax

z 53.0.
Next we consider̂Mz& andA^x2& for a finite tempera-

ture, wherê •••& denotes the thermal average. All the resu

s-

FIG. 4. The field dependence of the chiral order parame
Ax2 at T50.

FIG. 5. Ax̃ 2 andAx2 at T50.
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presented below have been obtained by the QTMC met
~see the Appendix!. The number of the statesM used in the
QTMC calculation are as follows:M550 for N59218,
M510 for N521, andM52 for N524. For every lattice
except forN524, the set ofM states is divided into five
subsets, and quantities of interest are calculated in every
set. Error bars presented in figures given below o
mean deviations of the values obtained in different subs
In the QTMC calculation, since the operato
H052J((Si

xSj
x1Si

ySj
y) andH152Hz(Si

z are commutable,
exp@2(H01H1)/T# may be decomposed int
exp@2H0 /T#exp@2H1 /T#. Therefore, we can calculate th
quantities for a finite temperature combining theT transfer
and theHz transfer. That is, those quantities are transfer
from a high temperature,T0, to a temperature of interes
Tfin , by operating exp@2H0 /T0#. Then, the field is increase
by the operator exp@2H1 /Tfin#. In Figs. 6 and 7, we show
^Mz& andA^x2& at T50.2 for differentN, respectively. In
low fields, the results are very similar to those of the grou
state and their size dependences are small. AsHz is increased
beyondHz52.5, their size dependences become consid
able. Therefore, we suggest that atT50.2 the umbrella-type
phase survives at leastHz&2.5.

FIG. 6. The field dependence of^Mz& at T50.2.

FIG. 7. The field dependence ofA^x2& at T50.2.
d
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We also consider the temperature dependence of the
cific heatC, ^Mz&, andA^x2& at fixed fields. The specific
heat is calculated from

C5
1

T2
~^H2&2^H&2!. ~5!

We found considerable differences in those quantities
tween for oddN and for evenN, but they are reduced with
increasingN. In Fig. 8~a!, we plotC as a function ofT at
Hz51.0. AsN increases, the peak ofC becomes higher and
sharper atT;0.4. A similar size dependence can be seen
toHz;2.0. Results atHz52.0 are also shown in Fig. 8~b!, in
which the increase ofC is seen at low temperatures. In Fig
9 and 10, we plot̂Mz& andA^x2& as functions ofT. As the
temperature is lowered,^Mz& increases slowly and saturate
at T;0.4.A^x2& increases and its size dependence beco
smaller, which indicates thatA^x2& remains finite in the ther-
modynamic limit. Therefore all the results suggest that
phase transition occurs at leastHz<2.0.

The phase diagram of the model predicted from the ab
results is shown in Fig. 11. The transition line is estima
from the peak position ofC. The chiral-ordered phase wit
the longitudinal magnetization~the umbrella-type phase! sur-
vives in the longitudinal magnetic fieldHz.

FIG. 8. The temperature dependence of the specific heatC for
differentHz: ~a! Hz51.0 and~b! Hz52.0.
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III. TRANSVERSE MAGNETIC FIELD

Next we study the model in the transverse fieldHx. Since
the total magnetizationMz is not good quantum number, w
must treat all the 2N states in the diagonalization metho
The QTMC method prepares all the Ising states, and it d
not suffer from this difficulty. We calculate the magnetiz
tion, the order parameter defined below, and the spe

FIG. 9. The temperature dependence of^Mz&.

FIG. 10. The temperature dependence ofA^x2& for different
Hz: ~a! Hz51.0 and~b! Hz52.0.
es

c

heat. The number of the statesM are as follows:M550 for
N<18,M510 for N521, andM52 for N524.

We calculate the total magnetization given by

Mx5(
i
Si
x/N. ~6!

FIG. 12. The field dependence of the magnetization^Mx& for
differentT: ~a! T50.133 and~b! T50.333.

FIG. 11. Phase diagram in longitudinal fields. The symbol3 is
estimated from the peak position of the specific heat. The line
guide to the eye.
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This quantity becomes 1/6 if the ferrimagnetic phase app
and 1/2 if all the spins align along thex direction. In Figs.
12~a! and 12~b!, we show the magnetization as functions
Hx at T50.133 and 0.333, respectively. The data for diffe
entN lie almost on the same line, and the temperature
pendence is negligibly small. Note that we also calcul
^Mx& in the ground state forN512, and find the result is
quite similar to that atT50.133. There is the 1/3 plateau
the region of 2.0&Hx&4.0. We estimate two edges of th
plateauHc1 andHc2 at various temperatures, and plot the
in the phase diagram shown below. These edges depend
on the temperature. Note that even atT50.133, ^Mx&
slightly increases withHx betweenHc1 andHc2, in contrast
with that of the Heisenberg model,13,15 becausêMx& is not
good quantum number in theXY model.

Now we consider the spin structure. In Fig. 2, we sh
three possible spin structures~a!, ~b!, and~c! which appear in
the classical model at low, intermediate, and high fields,
spectively. These structures are called as the chiral-orde
the ferrimagnetic, and the spin-flop phases, respectively
order to see which structure is realized withHx, we calculate
the chiral order parameter andx and y components of the
sublattice order parameters which are defined as

Ma5F12 ^~MA
a2MB

a!21~MB
a2MC

a !21~MC
a2MA

a!2&G1/2,
~7!

whereM z
a@[( iPzSi

a/(N/3)# means thea component of the
magnetization of thez sublattice. In Table I we show th
relation between the order parameters and the spin struct
In Figs. 13–15, we plotA^x2&,Mx, andMy, respectively,

TABLE I. The relation between the order parameters and
classical spin structures.

Structure~a! Structure~b! Structure~c!

A^x2& Þ0 50 50
Mx Þ0 Þ0 Þ0
My Þ0 50 Þ0

FIG. 13. The chiral order parameterA^x2& vs Hx. The symbol
d denotes the extrapolated value.
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as functions ofHx at T50.133. WhenHx,Hc1, their size
dependences are not so large. Especially, forHx<1.0,
A^x2& depends very little onHx. As Hx reachesHc1,
A^x2& andMy decrease markedly and their size depe
dences become larger. On the contrary,Mx increases and its
size dependence becomes small. WhenHc1,Hx,Hc2,
A^x2& andMy remarkably depend on the system sizes.
the other hand, the size dependence ofMx is negligible.
When Hx.Hc2, Mx decreases and its size dependence
considerable.My increases again and its size dependenc
smaller, butA^x2& still decreases. We tentatively assum
that the data fit on the 1/AN function, and estimated the
values forN→` which are also shown in the figures. Whe
Hx,Hc1, A^x2&,Mx, andMy have a finite, nonzero value
WhenHc1,Hx,Hc2, A^x2&, andMy seem to vanish for
N→`, whereasMx remains finite. WhenHc2,Hx,Mx and
My have a finite, nonzero values, butA^x2& disappears.
From these results, we suggest that the structures~a!, ~b!, and
~c! in Fig. 2 occur whenHx,Hc1, Hc1,Hx,Hc2, and
Hc2,Hx, respectively. Of course, these picture of the sp
structure are compatible with the magnetization curve wh
are shown in Figs. 12.

FIG. 14. The order parameterMx vsHx. The symbold denotes
the extrapolated value.

FIG. 15. The order parameterMy vsHx. The symbold denotes
the extrapolated value.

e
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FIG. 16. The temperature dependence of the specific heatC for differentHx: ~a! Hx51.0, ~b! Hx53.0, ~c! Hx55.0, and~d! Hx57.0.
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In Figs. 16~a!–16~d!, we present the specific heatC at
Hx51.0, 3.0, 5.0, and 7.0. ForHx<5.0, the peak heigh
becomes higher with increasingN suggesting the occurrenc
of the phase transition. AtHx57.0, the peak height does no
increase withN, butC does at low temperatures. Therefo
we expect that the phase transition also takes place
Hx57.0. The transition temperatures are estimated from
size dependence of the peak temperatureTm .

12

In Fig. 17, we show the phase diagram of the model. T
phase diagram is analogous to that of the classical mo
However, it should be emphasized that the 1/3 plat
widely survives at the low temperatures.

IV. SUMMARY

In this paper, we have studied theS51/2 quantum anti-
ferromagneticXY model on finite triangular lattice in both
longitudinal and transverse magnetic fields using the dia
nalization and the QTMC methods. We have calculated
magnetization, the specific heat, and the order parameter
different sizes of the lattices, and examined their size dep
dences to see whether some long-range ordered phase o
or not. Our results are summarized as follows.

In the longitudinal magnetic field, the long-range chir
order parameter seems to have a finite, nonzero value at
temperatures. The peak height of the specific heat incre
with N suggesting the occurrence of the phase transit
at
e
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From the results, we suggest that the umbrella-type ph
survives at low temperatures, and predict the phase diag

In the transverse magnetic field, the 1/3 plateau is see
the magnetization curve at low temperatures, in contrast w
the classical model. The behavior of the order parame

FIG. 17. Phase diagram in transverse fields. The symbols3 and
n are estimated from the edges of the plateau of the magnetiza
curve and the peak height of the specific heat, respectively.
lines are guides to the eye.
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suggests that the chiral-ordered, the ferrimagnetic, and
spin-flop phases appear successively as the field is increa
The peak height of the specific heat increases withN sug-
gesting the occurrence of the long-range order. Thus we
gest that the three phases occur in the transverse mag
field at finite temperatures as in the classical model. T
quantum fluctuation destroys the order of they component of
the spin, and the ferrimagnetic phase appears at low temp
tures.
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Professor T. Tonegawa, Professor M. Kaburagi, and Dr
Nishino. The computation in this work has been done us
the facilities of the Supercomputer Center, Institute for So
State Physics, University of Tokyo. This work was suppor
by Grant-in-Aid for Scientific Research from the Ministry o
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APPENDIX: THE QTMC METHOD

In QTMC method,11,12 we calculate the following quan
tity:
a

he
ed.

g-
tic
e

ra-

the

.
g
d
d

^Ã&5(
k

M

^ckuAexp~2bH !uck&Y (
k

M

^cku

3exp~2bH !uck&, ~A1!

whereA is some physical operator and the sum runs o
M states each of which is given by

uck&5A 6

M(
i

2N

Ciku i &, ~A2!

here Cik is a random number of21<Cik<1. We can
readily show that ^Ã&→^A& for M→`, because
(6/M )(k

MCikCjk5d i j1O(1/AM ).12 A great advantage o
using formula~A1! is that we can obtain an approxima
value of the averagêA& by summing up onlyM terms in-
stead of all the 2N terms of the Ising states. Using this fo
mula, we can treat systems much larger than those treat
by the rigorous formula. Of course, statistical errors
O(1/AM ) arise, but we may reduce them asM is increased.
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