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Phase diagrams of theS=; quantum antiferromagnetic XY model
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We study theS=% guantum antiferromagnetXY model on finite triangular lattices witN sites in both
longitudinal and transverse magnetic fields. We calculate physical quantities in the ground state using a
diagonalization for spinBl=<27, and those at finite temperatures using a quantum transfer Monte Carlo method
for N=<24. In the longitudinal magnetic field, the long-range chiral order parameter seems to have a finite,
nonzero value at low temperatures suggesting the occurrence of a classical umbrella-type phase. In the trans-
verse magnetic field, the 1/3 plateau of the magnetization curve appears even at low temperatures, in contrast
with the classical model. The magnetic-field dependences of the order parameters suggest that the chiral-
ordered, the ferrimagnetic, and the spin-flop phases appear successively as the magnetic field is increased. The
transition temperatures are estimated from the peak position of the specific heat, and the phase diagrams are
predicted in both longitudinal and transverse magnetic fi¢88163-18297)02118-§

[. INTRODUCTION isotropic Heisenberg model using the QTMC method and
showed that, wheXY anisotropy is large, the peak height of
The antiferromagnetiXY model on the triangular lattice the specific heat increases with'? Thus they predicted that
has attracted much interest. The Hamiltonian is the quantum fluctuation does not destroy the classical chiral-
ordered phase in finite temperatures. In the presence of mag-
_ XX vy _ e " netic fields, on the contrary, it was speculated that the quan-
H 2‘]2 (SSIJFSYSJ) H 2,: S @ tum fluctuation brings a different ground state from the
{0 . :

_ _ _ classical one. Chubukov and Golosov studied the ground
whereJ (>0) is the exchange integra® is an external  state of theX'Y model in the transverse field using the spin-
magnetic field along ther direction, anci,j) takes all the \ave theory, and suggested that the 1/3 plateau appears at
nearest-neighbor pairs. In the classical model, Miyashita angt=0 13 However, the spin-wave theory does not always give
Shibd found using the Monte Carlo method that @ long-a correct result in the frustrated mod&iMoreover, when
range chiral-ordered phase exists at low temperatures, ag=1/2, the critical field at which the plateau appears be-
though the long-range order of the spins disappears at finittomes negative because of th& &xpansion
temperatures. They also suggested that the transition belongs | this paper, we study th&= 1/2 quantunX'Y model in
to the universality class of the Ising model. The model inmagnetic fields. We consider the magnetic structures both at
the spins lean to the direction but the chiral-ordered phase state of finite lattices withN<27 by the diagonalization
still exists (Fig. 1, the umbrella-type phaseOn the other  method. On the other hand, those in finite temperatures are
hand, in a transverse magnetic field, Leteal. showed that  cgjculated on the lattice wittN<24 using the QTMC
the chiral-ordered, the ferrimagnetic, and the spin-flopmethod. From the result, we suggest the following thirigs.
phases appearésuccesswel_y as the magnetic field inciféases |, the ongitudinal field, the umbrella-type phase occurs up
Figs. 28)-2(c)].” In the ferrimagnetic phase, the magnetiza-1o Hz=3,0. (2) In the transverse field, the 1/3 plateau really

tion has a value of of the saturated value, and the magne-appears even in the ground state. The chiral-ordered, the fer-
tization curve exhibits a plateau, which is often called a

plateau. However, the ferrimagnetic region of the field
shrinks as the temperature cools down, and vanishes at H
T=0.

In the S=1/2 quantum model, it has been discussed 4\'
whether the classical ordered phases are broken down by the
quantum fluctuation or ndt2° The ground-state properties
of the model on finite lattices have been studied using a Q;
diagonalization methot:® The largest lattice treated up to
now is that withN=36° and the results suggest that the
chiral order parameter remains finite fidr— . The proper-
ties at finite temperatures were also studied by several au-
thors using a quantum transfer Monte Caf@TMC),” ! a
high-temperature series expansfoand a super-effective- FIG. 1. A spin structure of the classical model in the longitudi-
field theory? Recently, the authors carefully studied an an-nal magnetic field, which is called the umbrella-type phase.
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FIG. 2. Three spin structures of the classical model in the trans- 0.2}
verse magnetic fielda) The chiral-ordered phasfy) the ferrimag- i
netic phase, antt) the spin-flop phase. ] P TR
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rimagnetic, and the spin-flop phases occur as the magnetic H

field is increased. The phase diagrams in both longitudinal
and transve_rse fields are prgdlcted. T FIG. 4. The field dependence of the chiral order parameter
We consider the models in the longitudinal and the transv—z _
. . . S Vx-atT=0.
verse fields in Secs. Il and lll, respectively. The summary is
given in Sec. IV. We explain the QTMC method in the Ap-
pendix.
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Il. LONGITUDINAL MAGNETIC FIELD whereR runs over all the upright triangles on the lattice. In

In this section, we study the model in a longitudinal field Figs. 3 and 4, we shoM? and Jx?2, respectively. Since their
HZ. First, we consider the magnetization and the chiral ordesize dependences are almost negligible, these values will be
parameter in the ground state. The total magnetization alongimilar to those folN—<«. The magnetization increases al-

the external fieldH? is given by most linearly withH?, and no anomaly is observed until the
saturated fieldHZ,,,=3.0. The chiral order parameter de-

r monotonically with increasi nd vanish
MZ=(1/N)2i . @) czeases onotonically with increasimtf, and vanishes at

max=3-0. These results suggest that the chiral-ordered
phase changes into an umbrella-type one, and it survives

The z component of the chirality of the upright triangle Rt up to HZ_=3.0. If it is true, the chiral order parameter

is defined as at H?#0 will be approximately given as\y?=
1 VX hz=0c0S0=x?yz_o[ 1— (M?)?], where 6 is the angle
X(R)= “=(SS - IS+ 'Y~ IS+ S - SIS, between the spin andY plane. We calculate’y 2 and show
V3 it in Fig. 5 together with\/y%. The two results are in good

agreement with each other. Thus we may conclude that in the
3 ag ith each other. Th y conclude that in th
where the relation of—j—k is taken counterclockwise, as 9round state the umbrella-type phase occuis’at0, and it

is shown in Fig. 22). The eigenvalues of%(R) are =1/2  SUrvives up toHp,,,=3.0.

and 0. The long-range chiral order parameter is defined as Next we conside{M?) and y(x“) for a finite tempera-
ture, wherd - - - ) denotes the thermal average. All the results
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FIG. 3. The field dependence of the magnetizatidd at
T=0. FIG. 5. V¥ 2 and )% at T=0.
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0.3+ bYH =20 1
presented below have been obtained by the QTMC method 8 5 ]
(see the Appendix The number of the statéd used in the [ TLLLE I ]
QTMC calculation are as followsM =50 for N=9-18, 02F i3 0 SRR § é 1
M=10 for N=21, andM =2 for N=24. For every lattice ‘ °%0 8, §
except forN=24, the set ofM states is divided into five o N=9 ]
subsets, and quantities of interest are calculated in every sub- E N=12
set. Error bars presented in figures given below only 0.1 [ 4 Ef {g ]
mean deviations of the values obtained in different subsets. L N =21 ]
In the QTMC calculation, since the operators s N=24 ]
Ho=2J2(SS{+9'S)) andH,=—H*X S are commutable, 00 ]
exqd —(Ho+H4.)/T] may be decomposed into 0.0 0.5 1.0 1.5 2.0
exd —Ho/Tlexg —H,/T]. Therefore, we can calculate the T

guantities for a finite temperature combining thetransfer

and theH? transfer. That is, those quantities are transferred FIG. 8. The temperature dependence of the specific Gelar
from a high temperatureT,, to a temperature of interest, differentH” (a) H*=1.0 and(b) H*=2.0.

Tsn, by Operating exp—-H,/T,]. Then, the field is increased

by the operator eXp-H,/Ts,]. In Figs. 6 and 7, we show We also consider the temperature dependence of the spe-
(M%) and {x?) at T=0.2 for differentN, respectively. In cific heatC, (M%), and \(x?) at fixed fields. The specific
low fields, the results are very similar to those of the grouncheat is calculated from

state and their size dependences are smalH?is increased

beyondH?*=2.5, their size dependences become consider- 1

able. Therefore, we suggest thatTat 0.2 the umbrella-type C= T—;((H2>—(H>2). (5)
phase survives at leabt’<2.5.

We found considerable differences in those quantities be-
1.0 e tween for oddN and for everN, but they are reduced with
I ] increasingN. In Fig. 8a), we plotC as a function ofT at
T=0.2 ] H?=1.0. AsN increases, the peak &f becomes higher and
] sharper al ~0.4. A similar size dependence can be seen up
I 4 ] to HZ~2.0. Results ati?=2.0 are also shown in Fig(i8), in
0.6 8 9 ] which the increase o€ is seen at low temperatures. In Figs.
. t g ] 9 and 10, we plotM?) and {x?) as functions ofT. As the
04l ; ] temperature is loweredM?) increases slowly and saturates
i ] atT~0.4. (x?) increases and its size dependence becomes
° smaller, which indicates thaf(x?) remains finite in the ther-
modynamic limit. Therefore all the results suggest that the
i phase transition occurs at lea$t<2.0.
0.0 bt 90 The phase diagram of the model predicted from the above
0 1 2 3 4 results is shown in Fig. 11. The transition line is estimated
H? from the peak position o€. The chiral-ordered phase with
the longitudinal magnetizatiofthe umbrella-type phassur-
FIG. 7. The field dependence gf x?) at T=0.2. vives in the longitudinal magnetic field?.
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FIG. 11. Phase diagram in longitudinal fields. The symkois
estimated from the peak position of the specific heat. The line is a
guide to the eye.

FIG. 9. The temperature dependence ).

Ill. TRANSVERSE MAGNETIC FIELD

Next we study the model in the transverse fielltl Since  heat. The number of the statbbs are as followsM =50 for

the total magnetizatioM? is not good quantum number, we N<18, M =10 for N=21, andM =2 for N=24.
must treat all the ¥ states in the diagonalization method. ~ We calculate the total magnetization given by
The QTMC method prepares all the Ising states, and it does

not suffer from this difficulty. We calculate the magnetiza- MX=2 SIN. (6)
tion, the order parameter defined below, and the specific !
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FIG. 10. The temperature dependence\ﬁfﬁ) for different

HZ% (@) H*=1.0 and(b) H*=2.0.

FIG. 12. The field dependence of the magnetizatibh‘) for
differentT: (a) T=0.133 and(b) T=0.333.
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FIG. 13. The chiral order paramete¥ x?) vs H*. The symbol FIG. 14. The order parameté* vs H*. The symbo® denotes
@ denotes the extrapolated value. the extrapolated value.

Thi itv b 1/6 if the feri ic oh as functions ofH* at T=0.133. WhenH*<H,, their size
IS quantity becomes 1/6 If the ferrimagnetic phase appeaigsnendences are not so large. Especially, #8r<1.0,

and 1/2 if all the spins align along thedirection. In Figs. 7o\ litt] HX As H* hesH
12(a) and 12b), we show the magnetization as functions of {x’) depends very little onH®. As reachesHes,

H* at T=0.133 and 0.333, respectively. The data for differ- v{x") and M” decrease markedly and their size depen-

s :
ent N lie almost on the same line, and the temperature de(-j.ences become larger. On the contraby; increases and its

X
pendence is negligibly small. Note that we also caIcuIateS'—z—Ze dependsnce becomes small. Whidg, <H <|._|°2’
(M*) in the ground state foN=12, and find the result is {x*) and M” remarkably depend on the system sizes. On

quite similar to that alf=0.133. There is the 1/3 plateau in the othexr hand, thf size dependenc_e/\eﬂ_‘ 's negligible.
the region of 2.&66H*<4.0. We estimate two edges of the Whe_n H >H°2’yM decreases_ and Its size dependence IS
plateauH ., andH,, at various temperatures, and plot them considerable M Increases again and its size erendence is
in the phase diagram shown below. These edges depend litfinaller, buty(x®) still decreases. We tentatively assume
on the temperature. Note that even Bt0.133, (M) that the data fit on the YN function, .and espmated the
slightly increases wittH* betweenH; andH,,, in contrast values forN—c which are also showq in the figures. When
with that of the Heisenberg mod&t® becausdM*) is not ~ H*<Hc1, V(x%), M*, and M" have a finite, nonzero value.
good quantum number in théY model. When H; <H*<Hg,, V(x“), and M” seem to vanish for
Now we consider the spin structure. In Fig. 2, we showN— %, whereas\* remains finite. Wheit ., <H*, M* and
three possible spin structuré, (b), and(c) which appearin M have a finite, nonzero values, by(x?) disappears.
the classical model at low, intermediate, and high fields, reFrom these results, we suggest that the struct@etb), and
spectively. These structures are called as the chiral-orderetf) in Fig. 2 occur whenH*<H., Hg;<H*<H,, and
the ferrimagnetic, and the spin-flop phases, respectively. Ihl,<<H*, respectively. Of course, these picture of the spin
order to see which structure is realized with, we calculate  Structure are compatible with the magnetization curve which
the chiral order parameter andandy components of the are shown in Figs. 12.
sublattice order parameters which are defined as

1.0 L | T 17 T T LI
1 , ) | o T=0133
M= §<(MX—M§) +(Mg—Mg)“+(Mg—Mp*| 0gl® ’ DZZD ] 1
(7 S TG TELP A
[ A A o [m )
whereM[=%,_S'/(N/3)] means thex component of the = 0.6 . . OoiAAA soo *t° . 4
magnetization of the/ sublattice. In Table | we show the S [ e o ° e . o 1
relation between the order parameters and the spin structures. o4l % 1
In Figs. 13—15, we plot/(x?), M*, and MY, respectively, T . R Moo :
r [m] =
TABLE I. The relation between the order parameters and the 0.2 r .. . & N=15 y
classical spin structures. I % o o N=21 o
00 I PR (USSR NN SR IS [T NN S (VAT NS R -'
Structure(a) Structure(b) Structure(c) 0 3 6 9
NE%) #0 =0 =0 H*
M #0 #0 #0
MY £0 =0 #0 FIG. 15. The order paramet@rt¥ vs H*. The symbol® denotes

the extrapolated value.
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FIG. 16. The temperature dependence of the specific @dat differentH*: () H*=1.0, (b) H*=3.0, (c) H*=5.0, and(d) H*=7.0.

In Figs. 16a)—16(d), we present the specific he@t at  From the results, we suggest that the umbrella-type phase
H*=1.0, 3.0, 5.0, and 7.0. Far*<5.0, the peak height survives at low temperatures, and predict the phase diagram.
becomes higher with increasimy suggesting the occurrence  In the transverse magnetic field, the 1/3 plateau is seen in
of the phase transition. A1*=7.0, the peak height does not the magnetization curve at low temperatures, in contrast with
increase withN, but C does at low temperatures. Therefore the classical model. The behavior of the order parameters
we expect that the phase transition also takes place at
H*=7.0. The transition temperatures are estimated from the

size dependence of the peak temperafyfe'? 10

In Fig. 17, we show the phase diagram of the model. This S
phase diagram is analogous to that of the classical model. Y ]
However, it should be emphasized that the 1/3 plateau I s Para
widely survives at the low temperatures. ’ I

IV. SUMMARY o p Seefe

In this paper, we have studied ti$e= 1/2 quantum anti- 4 4
ferromagneticXY model on finite triangular lattice in both [ Fersi
longitudinal and transverse magnetic fields using the diago- 2r ]
nalization and the QTMC methods. We have calculated the L Chiral
magnetization, the specific heat, and the order parameters for Y S T Y S T
different sizes of the lattices, and examined their size depen- 00 0.1 02 03 04 05 06
dences to see whether some long-range ordered phase occurs T

or not. Our results are summarized as follows.

In the longitudinal magnetic field, the long-range chiral  FiG. 17. Phase diagram in transverse fields. The symbaisd
order parameter seems to haVe a finite, nonzero Va|}Je at Iow are estimated from the edges of the plateau of the magnetization
temperatures. The peak height of the specific heat increasegrve and the peak height of the specific heat, respectively. The
with N suggesting the occurrence of the phase transitionines are guides to the eye.
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suggests that the chiral-ordered, the ferrimagnetic, and the M M

spin-flop phases appear successively as the field is increased. (Ay= > (| Aexp(— BH)| (//k>/ > (i

The peak height of the specific heat increases Witsug- K k

gesting the occurrence of the long-range order. Thus we sug- _

gest that the three phases occur in the transverse magnetic X exp( = BH) 1), (AL
field at finite temperatures as in the classical model. The

quantum fluctuation destroys the order of heomponent of  \here A is some physical operator and the sum runs over
the spin, and the ferrimagnetic phase appears at low tempergy states each of which is given by

tures.

We would like to thank Dr. T. Nakamura for valuable N
discussions. The diagonalization programs are based on the 62
subroutine packageTITPACK Ver. 2" coded and supported lth) = \/%E Cili),
by Professor H. Nishimori, andKOBEPACK/S Ver. 1.1” by '
Professor T. Tonegawa, Professor M. Kaburagi, and Dr. T.

Nishino. The computation in this work has been done Using,gre ¢, is a random number of-1<C,<1. We can
the facilities of the Supercomputer Center, Institute for Solid
State Physics, University of Tokyo. This work was supporte
by Grant-in-Aid for Scientific Research from the Ministry of
Education, Science, and Culture.

(A2)

eadily show that (A)—(A) for M—x, because
(6/M)=}'C; Cj=8;+O(1/YM).*? A great advantage of
using formula(Al) is that we can obtain an approximate
value of the averagéA) by summing up onlyM terms in-
stead of all the ® terms of the Ising states. Using this for-
mula, we can treat systems much larger than those treatable
In QTMC methodt**? we calculate the following quan- by the rigorous formula. Of course, statistical errors of

APPENDIX: THE QTMC METHOD

tity: O(1/\yM) arise, but we may reduce them Bisis increased.
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