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Critical behavior and the Néel temperature of quantum quasi-two-dimensional
Heisenberg antiferromagnets

V. Yu. Irkhin* and A. A. Katanin
Institute of Metal Physics, Ekaterinburg 620219, Russia

~Received 15 November 1996!

The nonlinear-s model and its generalization onN-component spins, theO(N) model, are considered to
describe thermodynamics of a quantum quasi-two-dimensional~quasi-2D! Heisenberg antiferromagnet. A
comparison with standard spin-wave approaches is performed. The sublattice magnetization, Ne´el temperature,
and spin-correlation function are calculated to first order of the 1/N expansion. A description of crossover from
a 2D-like to 3D regime of sublattice magnetization temperature dependence is obtained. The values of the
critical exponents derived areb50.36, h50.09. An account of the corrections to the standard logarithmic
term of the spin-wave theory modifies considerably the value of the Ne´el temperature. The thermodynamic
quantities calculated are universal functions of the renormalized interlayer coupling parameter. The renormal-
ization of the interlayer coupling parameter turns out to be considerably temperature dependent. A good
agreement with experimental data on La2CuO4 is obtained. The application of the approach used to the case of
a ferromagnet is discussed.@S0163-1829~97!02018-3#
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I. INTRODUCTION

Great interest has been paid to properties of quasi-t
dimensional~quasi-2D! antiferromagnets in connection wit
the investigations of layered perovskites1 and copper-oxide
systems, including high-Tc superconductors. In particula
La2CuO4 gives one of the best known examples of
quasi-2D system with small magnetic anisotropy. Unlike
systems, quasi-2D ones have finite values of magnetic or
ing temperature. At small interlayer couplingsJ8 the value of
magnetic transition temperature is small in comparison w
the intraplane exchange parameterJ. There are a number o
approximations which enable us to describe the thermo
namics of such systems. The standard spin-wave the
~SWT! takes into account only the spin-wave excitatio
which exist for quasi-2D systems in a wide temperat
range up to aboutJ ~Refs. 2,3!. SWT does not take into
account the dynamic and kinematic interaction between s
waves, which are important at temperatures near magn
phase transition point. By this reason, SWT gives too h
values of the magnetic transition temperature. Recently,
self-consistent spin-wave theory2–4 ~SSWT! has been pro-
posed which takes into account partially the interaction
tween spin waves. However, the value of the Ne´el tempera-
ture in SSWT is still too high in comparison wit
experiment, and the critical behavior is described quite
correctly.

To describe the magnetic phase transition we have to
into consideration fluctuation~non-spin-wave! corrections to
thermodynamic quantities. It is difficult to take into accou
such corrections in the standard technique of the Gre
functions because of essentially nonlinear character of e
tions of motion. There exists the interpolation approximat
by Tyablikov5 which is based on the random-phase dec
pling of equations of motion for the transverse spin Gree
function. This approach often yields results which a
roughly satisfactory from the experimental point of view.
550163-1829/97/55~18!/12318~13!/$10.00
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the same time, it is difficult to justify and improve suc
approximations.

To develop a perturbation theory which correctly d
scribes the critical behavior, we have to introduce a form
large parameter in the Heisenberg model. Thus the Heis
berg model can be treated as a model with a large deg
eracy within the 1/N expansion. This expansion may be i
troduced in two different ways. The first way6–9 treats the
Heisenberg model as a particular case (M52) of the
SU(M ) model ~i.e., of the model withM states per spin
degree of freedom at each site!. Since theM→` limit cor-
responds to SSWT~see, e.g., Ref. 4!, at finiteM thermody-
namics is described in terms of the spin-wave picture of
citation spectrum. The second way10,12 is to consider the
Heisenberg model as a particular case (N53) of theO(N)
model~i.e., of the model withN-component spins!. The limit
N→` gives the quantum spherical model and the largeN
case corresponds to the fluctuation~non-spin-wave! picture.
The advantage of the 1/N ~or 1/M ) expansions over, say, th
quasiclassical 1/S expansion is their applicability near th
phase transition temperature.

SinceN53 andM52 are in fact not large, the conver
gence of such expansions must be investigated separa
For low-dimensional magnets withd52 ~see Ref. 7! and
d521« ~Ref. 9! the results in the SU(M ) model coincide in
the zeroth order in 1/M with those of the one-loop
renormalization-group~RG! analysis, and in the first order in
1/M with the results of the two-loop RG analysis. In the
cases the 1/M corrections to thermodynamic quantities a
small. However, quasi-2D systems belong to 3D symmetry
group so that corresponding 1/M corrections are not smal
~see discussion in Ref. 9! and the series in 1/M is poorly
convergent. Unlike the 1/M expansion in the SU(M ) model,
the first-order 1/N corrections in theO(N) model, which
were considered in the quantum 2D case12 and in the classi-
cal case at an arbitrary dimensionality 2,d,4 ~see, e.g.,
Ref. 13!, lead to results which are close to those obtained
12 318 © 1997 The American Physical Society
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55 12 319CRITICAL BEHAVIOR AND THE NÉEL TEMPERATURE . . .
other methods. The applicability of the 1/N expansion at ar-
bitrary dimensionality 2<d<4 is important for the investi-
gation of quasi-2D systems since they demonstrate the
mensional crossover from 2D to 3D behavior~see, e.g., Ref.
1!. On the other hand, the renormalization-group« expan-
sion is not appliciable ford52 andd53 simultaneously: for
«5d22 it cannot describe satisfactorily the cased53 and
vice versa, for«542d the behavior atd→2 is poor.

Thus, instead of direct calculation of corrections
SSWT, we start in this paper from the quantum spher
model,O(`) and then find the 1/N corrections. Although the
results in theO(`) and SU(̀ ) models are different, it will
be shown that already in the first order in 1/N at low enough
temperatures the results in theO(N) model are identical to
those in SU(̀ ) ~i.e., in SSWT!. At higher temperatures th
results of SSWT are modified due to fluctuation correctio

The plan of the paper is as follows. In Sec. II we revie
various approximations in the theory of quasi-2D system
which are based on the spin-wave picture of excitation sp
trum, and analyze the corresponding expressions for the N´el
temperature. In Sec. III we formulate theO(N) model for the
quasi-2D case and the technique of the 1/N expansion, which
is a generalization of that by Chubukovet al.12 for the 2D
case. In Sec. IV we calculate the magnetization, Ne´el tem-
erature, and spin-correlation function to first order in 1/N. In
Sec. V we discuss our results and compare them with exp
mental data on La2CuO4.

II. SPIN-WAVE APPROXIMATIONS IN THE THEORY
OF QUASI-2D ANTIFERROMAGNETS

We start from the Heisenberg Hamiltonian of a quasi-
antiferromagnet

H5
1

2(i j Ji jSiSj ~1!

with the exchange interactionsJi ,i1d5J for d in a plane and
Ji ,i1d5J8 for d perpendicular to the planes.

At small values of interlayer couplingJ8 it is possible to
derive analytical results for the Ne´el temperature. First we
consider the standard spin-wave theory. The spectrum
spin waves has the form

Eq
SWT5S~J0

22Jq
2!1/2, ~2!

whereJq is the Fourier transforms of the exchange parame

Jq52J~cosqx1cosqy!12J8cosqz . ~3!

The sublattice magnetization is determined by

S̄5S1
1

2
2(

q

J0S

2Eq
coth

Eq

2T
. ~4!

For small values ofJ8/J SWT yields different analytical ex
pressions for the Ne´el temperature in the quantum regim
(TNéel!JS) and classical regime (TNéel@JS). We have

TNéel
SWT54pJS23H 1/ln~TNéel2 /8JJ8S2! ln~J/J8!@2pS

1/ln~Jq0
2/J8! 1! ln~J/J8!!2pS.

~5!
i-

l

.

s,
c-

ri-

of

r

Hereq0.p is a cutoff parameter determined by the boun
ary of the Brillouin zone. Note that for the quantum case
main contribution to integrals over the wave vector com
from the region withq<T, while in the classical case th
value ofTNéel is determined by the whole Brillouin zone.

The spin-wave spectrum in SSWT and the Tyablikov a
proach is renormalized in different ways. SSWT~Refs. 2–4!
takes into account the interaction between spin waves in
simplest self-consistent Born approximation. There exist s
eral generalizations of SSWT on quasi-2D systems.14–16We
will follow the approach of Refs. 14,16 which gives mo
satisfactory results at smallJ8/J. The spin-wave spectrum in
SSWT has the form

Eq
SSWT5S~g0

22gq
2!1/2, ~6!

gq52g~cosqx1cosqy!12g8cosqz ,

whereg and g8 are the renormalized exchange paramet
which are determined from the self-consistent equations

g/J5(
q

gqS

Eq
cosqxcoth

Eq

2T
12S̄~T!, ~7!

g8/J85(
q

gqS

Eq
cosqzcoth

Eq

2T
12S̄~T!. ~8!

The sublattice magnetization is given by

S̄5S1
1

2
2(

q

g0S

2Eq
coth

Eq

2T
. ~9!

At small values ofJ8/J we have

S̄5S̄02
T

4pgS
3H ln~T2/8gg8S2! S~JJ8!1/2!T!JS

ln~gq0
2/g8! JS!T!JS2,

~10!

whereS̄0 is the sublattice magnetization in the ground sta
The quantityg varies slowly with temperature in the whol
regionT,TNéel and may be replaced by its zero-temperatu
valueg(0). According to Refs. 2 and 3 we have

g~0!51.1571J, S̄050.3034 ~11!

for S51/2 andg(0)5J, S̄05S for S→`. The second case
in Eq. ~10! may be realized only in the classical limitS@1.
One can see from Eq.~10! that the value of the critical ex
ponent for the magnetization isbSW51. The same critical
behavior takes place at an arbitraryd.2. This result is cor-
rect only atd521« to leading order in« (b5122«, see,
e.g., Refs. 10,9!, and for higher dimensionalitiesb,1.

As follows from Eq.~10!, the Néel temperature is deter
mined by ~see Ref. 14; note that some coefficients in th
paper are incorrect!

TNéel
SSWT54pgcSS̄0

3H 1/ln~TNéel2 /8gcgc8S
2! ln~J/J8!@2pS

1/ln~q0
2gc /gc8! 1! ln~J/J8!!2pS.

~12!
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12 320 55V. YU. IRKHIN AND A. A. KATANIN
Here gc.g(0) andgc8 are the renormalized exchange p
rameters atT5TNéel , The value ofgc8 determined from Eq.
~8! is

gc85~TNéel/4pgcS
2!J8 ~13!

in both the quantum and classical regimes. Note that
renormalization of the interlayer coupling in Eq.~12! plays a
crucial role in lowering the Ne´el temperature in compariso
with its SWT value~5! sincegcgc8/JJ85TNéel/4pJS2!1.

In the Tyablikov theory5 ~TT! the excitation spectrum ha
the form

Eq
TT5S̄~J0

22Jq
2!1/2. ~14!

As well as in a ferromagnet, the proportionality of the spe
trum to S̄ is not quite correct at low temperatures: in t
antiferromagnet the spin-wave frequency varies asT4, while
the sublattice magnetization asT2 ~see, e.g., Ref. 17!. The
equation forS̄ at S51/2 reads

1/S̄5(
q

J0S̄

Eq
tanh

Eq

2T
~15!

and has a more complicated form for higher spins.5 Near the
Néel temperature TT yields at arbitraryS and any space
dimensionalityd.2

S̄5F2GSTNéel
TT

SJ0
S 12

T

TNéel
TT D G1/2, ~16!

where GS is some function ofS, G1/253. Thus, unlike
SSWT, the critical exponent for the magnetization has
standard mean-field value,bTT51/2. For smallJ8/J, TT
yields

TNéel
TT .

4pJS2

ln~Jq0
2/J8!

. ~17!

The result~17! is lower than the SSWT value~12! and closed
to experimental data~see Sec. V!. On the other hand, the
result~17! coincides with that of the spherical model@which
is adequate only in the classical limitS→` ~Refs. 18,19!#
and with the result of the spin-wave approximation~5! in the
classical regimeTNéel@JS. The Tyablikov approximation
gives the same result~17! ~with the replacemen
J→2J,J8→2J8) for the Curie temperature of a ferroma
net (J,J8,0). This demonstrates that near the critical te
perature TT does not take into account quantum fluctuat
which are important for small values ofS. Thus we may
conclude that TT is satisfactory from the practical, but n
from theoretical point of view.

To leading logarithmic accuracy, all the discussed
proaches give the same value of the Ne´el temperature. How-
ever, this accuracy is insufficient to treat experimental d
In particular, the factor ofq0

2;10 in the classical regime i
often not taken into account~see, e.g., Ref. 1!, although this
factor gives an essential contribution toTNéel .

To improve the description of the critical region and o
tain a better appoximation for the Ne´el temperature in the
quantum case, it is necessary to take into account fluctua
corrections to the spin-wave theory result forTNéel Eq. ~5!
e

-

e

-
s

t

-

a.

on

more correctly than in SSWT and TT. To this end we use
the next sections the 1/N expansion in theO(N) model.

III. THE QUANTUM NONLINEAR- s MODEL
AND O„N… MODEL FOR QUASI-2D
QUANTUM ANTIFERROMAGNETS

To describe thermodynamics of quantum antiferrom
nets we consider the nonlinear-s model which was proposed
for the one-dimensional Heisenberg model in Ref. 20. In
2D case this model was applied in Refs. 11,12. The la
value of the correlation lengthj@a (a is the lattice param-
eter in the plane! plays a crucial role in the Haldane’s map
ping of an antiferromagnetic Heisenberg model~1! to the
quantum nonlinear-s model ~see, e.g., Ref. 4!. This gives a
possibility to separate and integrate out the ‘‘fast’’ mod
with space scalel<L21 (L satisfies toj21!L!a21) re-
taining ‘‘slow’’ modes with l.L21.

In the quasi-2D case we havej(T<TNéel)5`. However,
at smallq we have

J02Jq.J~aq!212J8~12cosqz!. ~18!

Thus besides the ‘‘true’’ correlation lengthj, there exists
also another variable with scaling dimensionality of lengt

jJ851/a1/2@a, ~19!

wherea52J8/Ja2 is the interlayer coupling parameter; i
this paper we consider only the case wherea!1. On the
scale of order ofjJ8 the regime of fluctuations changes fro
2D to 3D. Thus we may use the scalejJ8 to separate fast and
slow modes in the Haldane’s mapping. Depending on
value of the imaginary time slab thickness

Lt5c/T ~20!

(c;JSa is the fully renormalized spin-wave velocity!, three
regimes are possible:~i! Lt;jJ8, or, equivalently,
T;a1/2c;(JJ8)1/2. This is an analog of the quantum critica
regime Lt;j in the 2D case,11,12 ~ii ! a!Lt!jJ8, i.e.
a1/2c!T!c which is an analog of the renormalized classic
regimea!Lt!j in the 2D case, and~iii ! the classical re-
gimeLt!a ~i.e., JS!T).

Since regime~i! is well described by the standard spi
wave theory~or by SSWT!, we do not treat the thermody
namics at temperatures of order of (JJ8)1/2. From Eqs.~5!
and~12! one can see thatTNéel@(JJ8)1/2. In regimes~ii ! and
~iii ! implementation of principles of finite-size scaling give

TNéel5rsF~jJ8 /Lt ,jJ8 /a!,

where rs;JS2 is the fully renormalized spin stiffness
F(x,y) is a scaling function withF(`,`)50. In regime~ii !
we havejJ8 /Lt!jJ8 /a, so that

TNéel5rsF~jJ8 /Lt ,`!5rsFq~TNéel /a
1/2c!, ~21!

while in regime~iii ! jJ8 /Lt@jJ8 /a and

TNéel5rsF~`,jJ8 /a!5rsFcl~1/a
1/2a!. ~22!

Note that the results of SWT Eq.~5! and SSWT Eq.~12! for
the Néel temperature agree with Eq.~21! for the quantum
regime and with Eq.~22! for the classical regime. At the
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same time, the result of the Tyablikov approximation~17!
satisfies the classical regime scaling form~22! for all spin
values, which confirms the absence of quantum fluctuati
at the critical temperature in this approximation. As follow
from Eq. ~22!, the value of the Ne´el temperature in the clas
sical regime depends on fluctuations on a scale of orde
the lattice constant, i.e., is nonuniversal. Therefore in t
regime we cannot eliminate fast modes by Haldane’s m
ping. Further we will assume that the ‘‘renormalized clas
cal’’ regime ~ii ! takes place.

We use the same procedure as used by Haldane20 ~see full
discussion in Ref. 4! to integrate out fast modes. Thus th
partition function has in terms of a path integral the form

Z5E Dsi~t!expH 2
x0

2 E0
1/T

dt(
i

~]tsi !
2

2
1

2
S2E

0

1/T

dt(
i j

Ji j ~si2sj !
2J)

i
d~si

221!,

~23!

wheres is a three-component unit-length vector field,i is
the index of a site,x0 is the uniform magnetic susceptibility
In the continual limit we reproduce the standard thre
dimensional quantum nonlinear-s model. However, in the
quasi-2D case the large value ofjJ8 gives a possibility to
pass to the continual limit only within the layer
si(t)→si z

(r ,t) wherer is a 2D vector,i z is the index of a
layer. The partition function takes the form

Z5E Dsi z
~r ,t!expH 2

rs
0

2 E0
1/T

dtE d2r(
i z

F 1c02 ~]tsi z
!2

1~“si z
!21

a

2
~si z112si z

!2G J d~si z
221!, ~24!

wherers
05JS2 is the bare spin stiffness,c05(rs

0/x0)
1/2 is

the bare value of the spin-wave velocity. Here and herea
we use the system of units wherea51.

To pass to theO(N) model we replace the three
component field si z

(r ,t) with the N-component one

s i z
m(r ,t), m51 . . .N. The constraint conditions251 may

be taken into account by introducing the slave fie
l i z

(r ,t). To calculate the dynamic susceptibility we also i
troduce the external nonuniform time-dependent magn
field hiz

m(r,t). Then we obtain the partition function of th

O(N) model in the form

Z@h#5E DsDlexpH 2
1

2gE0
1/T

dtE d2r(
i z

F 1c02 ~]ts i z
!2

1~“s i z
!21

a

2
~s i z112s i z

!21 il~s i z
221!

22ghiz~s i z
2s̄ !G J , ~25!
s

of
is
p-
-

-

er

ic

whereg5N/rs
0 is the coupling constant,s̄m5^s i z

m(r ,t)& is

the average part of the fields, which is supposed to be stati
and uniform. After integrating overs̃5s2s̄ the partition
function takes the form

Z@h#5E Dlexp~NSeff@l,h# !, ~26!

Seff@l,h#5
1

2
lndetĜ01

1

2g
~12s̄2!Sp~ il!

1
1

2g
Sp@~ ils̄2h/rs

0!Ĝ0~ ils̄2h/rs
0!#,

~27!

where

Ĝ05@]t
2/c0

21“

21aDz#
21, ~28!

Dzs i z
~r ,t!5s i z11~r ,t!2s i z

~r ,t!.

SinceN enters Eq.~26! only as a prefactor in the exponen
expanding near the saddle point generates a series in 1/N. At
T,TNéel we have the saddle-point valueil50 ands̄2Þ0.
The Green’s function of the fields̃ is defined by

Gmn~q,qz ,vn!

5
rs
0

Z@0#
E d2p

~2p!2
E dpz
2p (

v l

3
]2Z@h#

]hm~p,pz ,v l !]h
n~q2p,qz2pz ,v l2n!

U
h50

,

~29!

whereh(p,pz ,v) is the Fourier transform ofhiz(r ,t). Note
that only diagonal elementsGmm are nonzero, and they ar
proportional to the nonuniform dynamic spin susceptibilit

Gmn~q,qz ,v!5
rs
0

S2
xmm~q1Q,qz1p,v!dmn , ~30!

whereQ5(p,p) is the wave vector of antiferromagnet
structure in the plane; forN53

xab~q,qz ,v!5(
i
ei ~qRi1qzRi

z
!^^S0

auSi
b&&v , ~31!

whereSi
a are spin operators,a,b5x,y,z. Since the partition

functionZ@0# is invariant under rotations in the spin spac
further we will assumes̄m5s̄dmN wheres̄ plays the role of
the relative sublattice magnetizationS̄/S. ThenGNN corre-
sponds to the longitudinal Green’s function,Gl , while other
diagonal components~wich are all equal! to the transverse
Green’s function,Gt . At T,TNéel , the value ofs̄ is deter-
mined by the constraint̂s2&51 which takes the form

12s̄25
T

rs
0(

vn
(
m

E d2k

~2p!2
E dkz
2p

Gmm~k,kz ,vn!.

~32!
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We use the relativistic~hard! cutoff vn
21k2,L2 of fre-

quency summations and momentum integrations; in
regularization scheme the value of the bare spin-wave ve
ity c0 is replaced by the fully renormalized one,c, which
will be putted to be equal to unity except for the final resu

In the limit N→` we may replace in Eq.~27! l by its
saddle-point value to obtain the ‘‘free’’ Green’s functio
~which is the same for transverse and longitudinal com
nents!

G0~k,kz ,vn!5@vn
21k21a~12coskz!#

21. ~33!

After evaluation of the integrals and frequency summation
Eq. ~32! we obtain the Ne´el temperature in the limitN→`

TNéel
0 5

4prs
N5`

Nln~2TNéel
2 /a!

, ~34!

where rs
N5`5N(1/g21/gc) is the renormalized spin stiff

ness in zeroth order in 1/N, gc52p2/L. To compare the
result ~34! with the result of the SSWT we note that th
value of spin stiffness in SSWT isrs

SSWT5gSS̄0 ~for
S51/2 this equals 0.176J which is somewhat lower than th
result of two-loop RG analysis21 and numerical
calculations,22 rs50.181J) and the value of the spin-wav
velocity iscSSWT5A8gS. Thus we see that the value~34! is
N times smaller than the corresponding SSWT value~12!
~besides that, in SSWTa is replaced by its renormalize
value,ac

SSWT52gc8/gc,a). Further we will show that, as
well as in the calculation12 of the correlation length in the 2D
case in the first order in 1/N, ~i! the factor ofN in the de-
nominator of Eq.~34! is to be replaced byN22, ~ii ! rs

N5`

anda in Eq. ~34! are to be replaced by their renormalize
values,rs and ac , ~iii ! terms of order of ln ln(2T2/a) and
unity, which do not enter the SSWT result forTNéel , occur in
the denominator of Eq.~34!.

The exact Green’s function may be expressed as

Gmm~k,kz ,vn!5@vn
21k21a~12coskz!1S~k,kz ,vn!#

21

2C~k,kz ,vn!dmN . ~35!

To first order in 1/N the self-energyS(k,kz ,vn) and the
functionC(k,kz ,vn), which describes renormalizations ow
ing to the long-range order, are given by12

S~k,kz ,vn!

5
2T

N (
vm

E d2q

~2p!2
E

2p

p dqz
2p

3
G0~k1q,kz1qz ,vn1vm!2G0~q,qz ,vm!

P̃~q,qz ,vm!
,

~36!

C~k,kz ,vn!5
2s̄2

g

1

P̃~k,kz ,vn!
, ~37!

where
is
c-

.

-

n

P̃~q,qz ,vn!5P~q,qz ,vn!1
2

g
s̄2G0~q,qz ,vn!, ~38!

P~q,qz ,vn!5T(
v l

E d2p

~2p!2
E

2p

p dpz
2p

3G0~p1q,pz1qz ,v l1vn!G0~p,pz ,v l !.

~39!

Note that the quantityC in Eq. ~37! has in fact the zeroth
order in 1/N, but the corresponding contribution to the co
straint is of order of 1/N. The polarization operato
P(q,qz ,vn) determines the longitudinal Green’s function
the zeroth order in 1/N

Gl
N5`~q,qz ,vn!5

P~q,qz ,vn!

q2P~q,qz ,vn!12s̄2/g
. ~40!

To first order in 1/N the constraint~32! takes the form

12s̄25gT(
vm

E d2k

~2p!2
E dkz
2p

G0~k,kz ,vm!

2gT(
vm

E d2k

~2p!2
E dkz
2p

G0
2~k,kz ,vm!S~k,kz ,vm!

2
2s̄2T

N (
vm

E d2k

~2p!2
E dkz
2p

G0
2~k,kz ,vm!

P̃~k,kz ,vm!
. ~41!

Following Ref. 12 we introduce the function

I ~k,kz ,vm!5T(
vn

E d2q

~2p!2
E dqz
2p

G0
2~q,qz ,vn!

3@G0~k1q,kz1qz ,vm1vn!

2G0~k,kz ,vm!# ~42!

and represent Eq.~41! in the following convenient form:

15gT(
vm

E d2k

~2p!2
E dkz
2p

G0~k,kz ,vm!

2gR~T,xs̄ !1s̄2@12F~T,xs̄ !#, ~43!

where

R~T,xs̄ !5
2T

N (
vm

E d2k

~2p!2
E dkz
2p

I ~k,kz ,vm!

P̃~k,kz ,vm!
, ~44!

F~T,xs̄ !5
2T

N (
vm

E d2k

~2p!2
E dkz
2p

G0
2~k,kz ,vm!

P̃~k,kz ,vm!
, ~45!

and

xs̄54ps̄2/gT. ~46!

The calculation of functionsI , P for the quasi-2D case is
presented in Appendix A.

Thus the functionsR andF determine the 1/N corrections
to the constraint. Expressions~43!–~45! enable one to inves
tigate the magnetization and to calculate the Ne´el tempera-
ture for a quantum quasi-2D antiferromagnet.
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IV. THE SUBLATTICE MAGNETIZATION, NE ´EL
TEMPERATURE, AND CORRELATION FUNCTIONS

As discussed in the beginning of the previous section,
consider the quantum case witha being small enough to
satisfy the condition ln(2TNéel

2 /ac2)@1. The calculation of
the functionsR andF at T@a1/2 @i.e., T@(JJ8)1/2] is dis-
cussed in Appendix B. Neglecting the terms of order
1/ln(2TNéel

2 /ac2) we have

R~T,xs̄ !5
T

2pN
ln
2T2

a
2

~312xs̄ !T

4pN
ln
4prs
NTxs̄

1
T

2pN

ln~2T2/a!

ln~2T2/a!1xs̄
1

8T

3p3N
ln
2T2

a
ln
NL

16rs

2
2T

3p3N
ln
NL

16rs
1

T

4p
I 1~xs̄ ! ~47!

and

F~T,xs̄ !5
1

N
ln
4prs
NTxs̄

1
8

p2N
ln
NL

16rs
1I 2~xs̄ !, ~48!

where the functionsI 1(xs̄),I 2(xs̄) are defined in Appendix
B. After substituting Eqs.~47! and ~48! into the constraint
equation ~43! and using the results of Ref. 12 for th
quantum-renormalized ground-state sublattice magnetiza
s̄05s̄(T50)5 S̄0 /S and the spin stiffnessrs of a quantum
2D antiferromagnet,

s̄0
2

rs
5
g

N S 12
8

3p2N
ln
NL

16rs
D , ~49!

rs5rs
N5`S 11

32

3p2N
ln
NL

16rs
D , ~50!

one can see that the sublattice magnetization, being
pressed in terms ofrs and s̄0 , still depends onL, i.e., is
nonuniversal. To make the sublattice magnetization co
pletely universal we have to introduce the quantu
renormalized parameter of the interlayer coupling

a r5aF12
8

3p2N
ln
NL

16rs
G . ~51!

We shall demonstrate below that at low enough temperat
any regular~nondivergent! terms in the renormalized inter
layer coupling parameter are absent, so that this is renor
ized only due to temperature fluctuations at higherT. Being
rewritten through the renormalized parameters, the constr
equation~43! reads

12
NT

4prs
F S 12

2

N
D ln2T2

a r

1
3

N
ln
4prs

NTxs̄

2
2

N

ln~2T2/a r !

ln~2T2/a r !1xs̄

2I 1~xs̄ !G
5

s̄2

s̄0
2 F11

1

N
ln
4prs

NTxs̄

2I 2~xs̄ !G . ~52!
e

f

on

x-

-
-

es

al-

int

Note that we have simply replaceda by a r in the terms of
order of 1/N in Eq. ~52! since this yields an error of order o
1/N2.

First we consider the casexs̄@1, or, equivalently,

NT/4prs!s̄2/s̄0
2 . ~53!

Sincexs̄ is the decreasing function of temperature, this
equality is satified at low enough temperatures. In this c
the integralsI 1(xs̄) andI 2(xs̄) are of order of 1/xs̄ , i.e., are
small. Thus to leading~zeroth! order in 1/xs the constraint
equation~52! coincides with that in the case of space dime
sionality d521« ~Appendix C! with the replacement
1/«→ ln(2/a), which corresponds to the limit«→0 with si-
multaneous cutting of the integrals over quasimomentum
the scale 1/jJ8. Similar to thed521« case~Appendix C!
we transform the logarithmic term in the right-hand side
Eq. ~52! into power and replaceN→N22. Then we have

~ s̄/s̄0!
1/b2@12I 2~xs̄ !#

512
NT

4prs
F S 12

2

N
D ln2T2

a r

1
3

N
ln

s̄0
2

s̄2

2
2

N

ln~2T2/a r !

ln~2T2/a r !1xs̄

2I 1~xs̄ !G , ~54!

where, being expressed through the renormalized parame

xs̄5
4prs

~N22!T

s̄2

s̄0
2 . ~55!

The ‘‘critical exponent’’b2 , which is the limit ofb21« at
«→0, is given by

b25
1

2

N21

N22
. ~56!

As well as in thed521« case, two regimes are possib
under the condition~53!. Consider first the low-temperatur
~spin-wave! region where

T~N22!ln~2T2/a!/4prs!s̄2/s̄0
2 . ~57!

In this region

s̄5s̄0F12
T~N21!

8prs
ln
2T2

a rc
2G . ~58!

At N53 we reproduce the result of SSWT~10! with
2g8/g being replaced bya r . The factorN21 in Eq. ~58!
has a simple physical meaning: this is the number of gap
~Goldstone! modes. We can conclude that in the temperat
interval ~57! spin-wave excitations give the main contrib
tion to the dependences̄(T). Note that the spin-wave resu
~58! can be obtained also from the untransformed constr
equation~52!.

To demonstrate that in the interval~57! the experimen-
tally observed interlayer exchange parameter coincides w
a r we calculate the self-energyS(k,kz,0). By using Eq.~36!
we get
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S~k,kz,0!5
8k2

3p2N
ln
NL

16rs
~59!

irrespective ofkz . Thus we have

Gt
21~k,kz,0!5k2F11

8

3p2N
ln
NL

16rs
G1a~12coskz!

5Z21@k21a r~12cosqz!#. ~60!

We see that the renormalized Green’s function differs fr
the bare one by the renormalization factorZ and by replace-
menta→a r only. Thus the experimentally observed~fully
renormalized! interlayer coupling is justa r . At higher tem-
peratures the temperature renormalization of the interla
coupling, which will be calculated below, becomes impo
tant.

At intermediate temperatures where

~N22!T/4prs!s̄2/s̄0
2!~N22!Tln~2T2/a!/4prs ,

~61!

we have a 2D-like critical behavior of the sublattice magn
tization,

~ s̄/s̄0!
1/b2512

T

4prs
F ~N22!ln

2T2

a r

13ln
s̄0
2

s̄2 22G .
~62!

For N53 we haveb251, which coincides with the critica
exponent of SWT and SSWT. However, the term w
ln(s̄2/s̄0

2), which is present in Eq.~62!, leads to a significan
modification of the dependences̄(T) in the temperature re
gion under consideration in comparison with SSWT a
leads to a considerable lowering of the Ne´el temperature.
With further approaching the transition point the behavior
the order parameter changes to 3D.

Consider the temperatures which are very close toTNéel ,
so thats̄ is small enough to satisfy the inequalityxs̄!1, i.e.,

s̄2/s̄0
2!~N22!T/4prs . ~63!

After expanding Eq.~52! nearT5TNéel , xs̄50, picking out
the logarithmically divergent parts ofI 1(xs̄) and I 2(xs̄) at
small xs̄ analytically, and evaluating numerically the int
grals, we have

12
T

TNéel
5

s̄2

s̄0
2 F11

1

N
ln

4prs

~N22!TNéel
1

8

p2N
lnxs̄2A0G ,

~64!

whereA052.8906/N. The equation forTNéel reads

TNéel54prsF ~N22!ln
2TNéel

2

a rc
2

13ln
4prs

~N22!TNéel
20.0660G21

. ~65!

As will be clear below, the second term in the denomina
which is of order of lnln(2TNéel

2 /a), leads to a significan
lowering of Néel temperature in comparison with SSW
~where only the first term is taken into account!. To calculate
s̄ in the region~63!, we collect separately the logarithm
er
-

-

d

f

r,

terms in Eq. ~64! which comes from the quasimomen
q@a1/2 ~2D regime! andq!a1/2 ~3D regime!:

12
T

TNéel
5

s̄2

s̄0
2 ~12A0!F11

1

N
ln

4prs

~N22!TNéel
G

3F11
8

p2N
lnxs̄G . ~66!

Unlike the ‘‘2D-like’’ regime, the coefficients at the loga
rithms are different. Transforming the logarithmic terms in
powers we obtain

s̄2

s̄0
2 5F 4prs

~N22!TNéel
Gb3 /b221F 1

12A0
S 12

T

TNéel
D G2b3

,

~67!

where

b35
1

2 S 12
8

p2ND ~68!

is the true 3D critical exponent for the magnetization.
should be noted that we have not to perform the replacem
N→N22 in Eq. ~68! and other contributions which com
from essentially three-dimensional integrals. We get
N53 the valueb3.0.36. The result~68! coincides with that
of the 1/N expansion in thef4 model23 at d53, in agree-
ment with the universality hypothesis. The dependence~67!
is to be compared with that in the Tyablikov approximati
~16! whereb51/2 and the dimensional crossover is abse

Consider now the self-energyS(k,kz,0) atT5TNéel . At
a1/2!k!TNéel the self-energy has the same form as in t
2D case12 with j being replaced byjJ8:

S~k,kz,0!5k2Fh ln
NL

16rs
1
1

N
ln
ln~2TNéel

2 /a!

ln~2k2/a!
1
1

NG .
~69!

Thus the expression for Green’s function rea
(G5Gt5Gl)

G~k,kz,0!5
1

k2 F ~N22!TNéel
4prs

ln
2k2

a G1/~N22!

3
N21

N F12h ln
NL

16rs
G , ~70!

a1/2!k!TNéel .

At k!a1/2, kz!1 thek dependence of the Green’s functio
changes. After integration and frequency summation in~36!
~which are analogous to the calculation of the functionsR
andF in Appendix B! we have

S~k,kz,0!5A1k
21

a

2
A2kz

21
h

2 S k21 a

2
kz
2D ln a

k21akz
2/2

.

~71!

Here
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A15h ln
NL

16rs
1
1

N
ln ln

2T2

a
1
0.4564

N
, ~72!

A2520.6122/N,

and

h58/~3p2N! ~73!

is the 3D critical exponent for the asymptotics of the cor
lation function at the phase transition point in the first ord
in 1/N. ForN53 we haveh.0.09. Using Eq.~71! we find

G21~k,kz,0!5~11A1!ac
h/2S k21 ac

2
kz
2D 12h/2

~74!

k!a1/2, kz!1.

The quantity

ac5a~11A2!/~11A1! ~75!

can be interpreted as the renormalized interlayer couplin
T5TNéel .

Using Eq.~51! we find the following relation between th
renormalized coupling parameters at lowT and at
T5TNéel :

ac5a r S 11
1.0686

N D F ~N22!TNéel
4prs

G1/~N22!

. ~76!

When deriving Eq.~76! we have transformed the term wit
ln ln(2T2/a) into a power and then replacedN→N22 in the
exponent. As in SSWT~see Sec. II!, the renormalized inter-
layer coupling atTNéel is lower than the low-temperatur
one, but the concrete expression atN53 is slightly different
from these in SSWT.

Using Eq.~76! we get the following equation forTNéel in
terms ofac :

TNéel54prsF ~N22!ln
2TNéel

2

c2ac
12ln

4prs
~N22!TNéel

11.0117G21

, ~77!

where c is the fully renormalized spin-wave velocity; i
SSWT we havec5A8g(0)S ~see Sec. II!. For N53 we
have

TNéel54prs / lnF5.5005~4prs!
2

c2ac
G , ~78!

which is similar to the result of the Tyablikov approximatio
~17!, but the bare value ofa is replaced by its renormalize
value at the critical temperature~76! andrs is also replaced
by its renormalized value. Besides that, the result~78! does
not violate the scaling form~21!.

Finally, we consider the spin-correlation function
-
r

at

S~R,Rz!52
1

pE d2k

~2p!2
E

2p

p dkz
2p

ei ~kR1kzRz!

3(
m

E dvImxmm~k,kz ,v!
1

ev/T21
~79!

at T5TNéel . ForN53 we have

S~R,Rz!5u^Si~r !Si1Rz
~r1R!&u.

The static approximation is sufficient to determine the
ymptotics of the correlation function. Using Eqs.~30! and
~49! we derive~cf. Ref. 12!

S~R,Rz!5
T S̄0

2

rs
F11h ln

NL

16rs
G

3E d2k

~2p!2
E

2p

p dkz
2p

G~k,kz,0!ei ~kR1kzRz!.

~80!

One can see that atR2a1Rz
2@1 the asymptotics of the in

tegral in Eq.~80! is determined by the regionk!a1/2 and
kz!1 whereG(k,kz,0) is calculated above@see Eq.~74!#.
Substituting Eq.~74! into Eq. ~80! we have

S~R!5
1

4p

TNéelS̄0
2

rs
~12A12hC!F11h ln

NL

16rs
G

3S 2

ac
11hR212hD 1/2, ~81!

whereR5(R212Rz
2/ac)

1/2 andC.0.5772 is the Euler con-
stant. Using the value ofA1 @Eq. ~72!# and transforming the
term with (1/N)lnln(2T2/a) into power we obtain the fina
result for the spin-correlation function atT5TNéel and
Rac

1/2@1:

S~R!5
TNéelS̄0

2

4prs
F ~N22!TNéel

4prs
G1/~N22!

~12 Ā12hC!

3S 2

ac
11hR212hD 1/2, ~82!

whereĀ150.4564/N. ThusS(R) enables one to determin
the value ofac . As one should expect, being rewritte
through renormalized parametersrs andac , S(R) does not
contain the cutoff parameterL and is thereby completely
universal.

At 1!R!ac
1/2 we derive from Eqs.~70! and ~80! the

leading term of asymptotics of the correlation functio
within a plane (N53)

S~R,0!5
S̄0
2

3rs
S T

4prs
D 2ln2 8

acR
2 . ~83!

Thus we have in this case a logarithmic decrease of the
relation function, as well as in the 2D case at 1!R!j.11
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V. DISCUSSION AND CONCLUSIONS

In the above treatment we analyzed the sublattice mag
tization S̄ of a quasi-2D quantum antiferromagn
(TNéel!JS). At temperaturesT<(JJ8)1/2 the behavior
S̄(T) is satisfactorily decribed by the standard spin-wa
theory. ForT@(JJ8)1/2 we have obtained Eq.~52! which
determinesS̄ to first order in the formal small paramete
1/N. We have three temperature intervals~the boundaries of
the intervals are presented forN53):

~i! The case of low temperatures

Tln~2T2/JJ8!/~4pJS2!!S̄2/S̄0
2 ~84!

@S̄05S̄(T50); S̄05S20.196 for the square lattice# where
the results of SSWT are reproduced.

~ii ! The case of the intermediate temperatures Eq.~61!, or
equivalently

S̄2/S̄0
2!Tln~2T2/JJ8!/~4pJS2!,

12T/TNéel@~12A0!~T/4pJS2!1/2 ~85!

(12A0.0.0365), where a 2D-like critical behavior, whic
is similar to that in SSWT, takes place. However, the corr
tions to SSWT modify considerably the numerical factors,
that the Ne´el temperature is considerably lowered.

~iii ! The vicinity of the Néel temperature Eq.~63!, or

12T/TNéel!~12A0!~T/4pJS2!1/2, ~86!

where we obtain the critical behaviorS̄;(TNéel2T)b3,
b3.0.36.

The detailed description of the temperature region
tween ~ii ! and ~iii !, where S̄2/S̄0

2;T/4prs , cannot be ob-
tained within the first order in 1/N, since Eq.~52! is trans-
formed in different ways in these regions to derive the res
~54! and~64!, respectively. Note, that in region~ii ! the ‘‘2D-
like’’ behavior of the system enables one to calculate corr
tions to SSWT in a regular way, e.g., by using the 1/N ex-
pansion in theCPN21 model.

We have also derived the expressions for the magn
transition temperature Eqs.~65! and ~77!, which contain the
renormalized quantitiesa r ,c52g r ,c8 /g whereg r ,c8 are the ex-
perimentally observable~renormalized! interlayer exchange
parameters at low temperatures andT5TNéel , respectively,
andg.1.1571J is the value of renormalized intralayer co
pling parameter which is weakly temperature depend
Therefore these expressions have universal form, in ag
ment with the scaling analysis. Unlike the corresponding
sults of the spin-wave approaches~see Sec. II!, they contain
the terms of order of lnln(TNéel

2 /JJ8) and unity, which are
formally small as compared to the leading term of order
ln(TNéel

2 /JJ8). However, the lnln terms result in a significa
lowering ofTNéel in comparison with the SSWT value~10! at
not too large ln(J/J8). The regular terms yield small correc
tions only, so that one may expect that the higher-order te
in 1/ln(TNéel

2 /JJ8) may be neglected.
The experimental temperature dependence24 of the sublat-

tice magnetization in La2CuO4 is shown in Fig. 1. For com-
parison, the results of spin-wave approximations~SWT,
SSWT, and the Tyablikov theory; see Sec. II! and the result
e-
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-
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-

ts

c-

ic

t.
e-
-

f

s

of 1/N expansion are also presented. The renormalized v
of the in-plane exchange parameterg.1850 K can be found
from the experimental data25 and the valueg r8/g5531024

was chosen from the best fit to SWT at low temperatu
T,100 K!. The experimental results forg8/g are not reli-
able, and it is difficult to compare our value ofg8/g with
experiment. For example, the result of Ref. 2
g8/g5531025, is by an order lower than that found from
the fit in the spin-wave region. It is also important that t
value of g8/g has an appreciable temperature depende
because of renormalizations. In particular, we have from
~76! for above parametersac /a r5gc8/g r8.0.13. Thus ex-
periments at different temperatures may give different
sults.

One can see that SWT and SSWT yield satisfactory
sults for T,0.6TNéel and T,0.8TNéel, respectively. At
higher temperatures the sublattice magnetization in SWT
SSWT is still linear in temperature, so that the critical exp
nent is bSW51, instead of the experimental on
bexp.0.33. Besides that, both theories give large values
the Néel temperatureTNéel

SWT5672 K, TNéel
SSWT5537 K. This

fact is often not taken into account when treating experim
tal data. At the same time, TT gives the valueTNéel

TT 5454 K
which is much lower than those in SWT and SSWT and
magnetization critical exponentbTT51/2. Thus the Tyab-
likov approximation seems to describe the experimental d
more satisfactorily. However, this approximation may be ju
tified in fact only in the case of ‘‘classical’’ magnets wit
TNéel@JS. Besides that, TT has a number of drawbac
mean-field values of critical exponents, absence of crosso
from 2D-like to 3D behavior of magnetization, neglect
quantum effects at high temperatures~in particular,
TNéel5TC for the sameuJu).

The result of the 1/N expansion to first order in 1/N ~65!
is TNéel5345 K which is considerably lower than in the Ty
ablikov approximation and is in a good agreement with
experimental value,TNéel

exp 5325 K. The spin-wave region ex

FIG. 1. The theoretical temperature dependences of the rela
sublattice magnetizationS̄/S̄0 from different spin-wave approxima
tions and from the 1/N expansion in theO(N) model@Eqs.~54! and
~64!#, and the experimental points for La2CuO4 ~Ref. 24!.
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tends up to 300 K, and the crossover region from 320
about 340 K; the critical 3D region is narrow~about 1 K!.
The results of the numerical solution of Eq.~54! in the tem-
perature regions~i! and ~ii ! and the dependence~64! in the
region~iii ! turn out to be smoothly joined. One can see a
that the result of the 1/N expansion is most close to th
experimental data and demonstrates a correct critical be
ior. One may assume that higher-order 1/N corrections will
give a precise description of the experimental situation. T
we may conclude that using the 1/N expansion in the
O(N) model improves considerably the results of stand
spin-wave approximations in the Heisenberg model.

Recent experiments demonstrate existence of a gap fo
out-of-plane spin-wave excitations24 in La2CuO4 , which is
assumed to be determined by the easy-plane anisotropy.
possible role of easy-axis anisotropy was also discussed,
e.g., Ref. 27. Therefore an extension of the present appro
to 2D systems with a weak anisotropy is of interest. T
results may be expected to be similar to those in
quasi-2D case, since SSWT gives similar descriptions
both the types of magnets with small ordering temperatur15.

The case of ‘‘classical’’ spins cannot be treated cons
tently in the continual limit since in this case the natu
upper limit cutoff parameter~which is the temperature in th
quantum case! is absent, and the integrals are determined
the whole Brillouin zone. Therefore the continual mode
may be used to calculate the critical exponents, but not
temperature dependence of magnetization in a broad inte
and the Ne´el temperature.

It would be also interesting to perform similar calcul
tions of thermodynamic properties for a ferromagnet. T
results should coincide with those for a antiferromagnet o
in the classical case. Unfortunately, the nonlinear-s model
for ferromagnet has the Berry phase termA„s…]s/]t in the
action (A is the vector potential of unit magnetic monopole!,
see, e.g., Ref. 4. This term cannot be eliminated in the qu
tum case and prevents constructing the 1/N expansion. Due
to the Berry phase term, the singular contributions fo
quantum ferromagnet (TC!JS) differ from those for an an-
tiferromagnet by the replacement

ln~T2/8S2gg r ,c8 !→ ln~T/g r ,c8 S! ~87!

~as well as in SSWT; see Ref. 15!. Taking into account only
such terms, the expression for the Curie temperature ha
form (g r85J8)

TC54prsF ~N22!ln
TC
J8S

13ln
2prs

0

~N22!TC
1O~1!G21

~88!

or, in terms of the renormalized exchange parameter at
Curie temperature,

TC54prsF ~N22!ln
TC
gc8S

12ln
2prs

0

~N22!TC
1O~1!G21

,

~89!

where

gc85AgJ8F ~N22!TC
4prs

G1/~N22!

~90!
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andAg;1. One may expect that, as well as in Eqs.~65! and
~77!, the nonsingular terms will influence weakly the valu
of the ordering point. These regular contributions may
calculated for a ferromagnet within the 1/N expansion in the
SU(N) model ~cf. Ref. 4!. However, as discussed in the In
troduction, this expansion gives poor results at not too la
N for d not too close to 2, so that only the ‘‘2D-like’’ region
can be described satisfactory. The description of the 3D c
cal behavior of a quasi-2D ferromagnet requires other me
ods.
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APPENDIX A: ANALYTICAL RESULTS FOR THE
FUNCTIONS P„q,qz ,vn… AND I „q,qz ,vn…

Here we present a list of results for the polarization o
eratorP(q,qz ,vn), Eq. ~39! and the functionI (q,qz ,vn)
determined by Eq.~42! ata1/2!T , and the asymptotic forms
of these functions. Due to inequalitya1/2!T, the possible
values ofq,vn may be divided into two regions. The firs
region is vn50, q!T, while in the second region
q21vn

2@a, i.e., eithervn50 andq@a1/2 or vnÞ0 at ar-
bitrary q.

It may be checked that atq!T andvn50 the main con-
tribution toP comes from the term withvm50. After inte-
grating overk,kz with the use of the Feynman identity~see,
e.g., Ref. 28! we get

P~q,qz,0!5
TK2

2 E
0

1 dz

Az~12z!

1

Az~12z!q412ã~q,qz!
,

q!T ~A1!

where ã(q,qz)5a@q21a(12cosqz)#. At large q@a1/2 the
functionP(q,qz,0) has a 2D form~cf. Ref. 12!

P~q,qz,0!.
T

2pq2
ln
2q2

a
, a!q2!T. ~A2!

In the opposite limit the form of functionP(q,qz,0) changes
from 2D to 3D:

P~q,qz,0!.
T

4A2ã~q,qz!
, q2!a. ~A3!

Consider now the caseq21vn
2@a. Picking out the terms

with m50 andm52n ~if nÞ0) we have

P~q,qz ,vn!5
T

2p~q21vn
2!
ln
2~q21vn

2!2

q2a
1Pqu~q,vn!,

q21vn
2@a ~A4!

where the quantum contributionPqu is given by



e

-

.

nc-

we

12 328 55V. YU. IRKHIN AND A. A. KATANIN
Pqu~q,vn!5
T

p (
mÞ0

1

A~vn
21q212vmvn!

214q2vm
2

3arctanh
vn
21q212vmvn

A~vn
21q212vmvn!

214q2vm
2
.

~A5!

In all the further calculations we will need only th
asymptotic form ofPqu(q,vn) for q

21vn
2@T2. In this limit

we find

Pqu~q,vn!5
T

p~q21vn
2!
ln

qT

q21vn
2 1

1

8Aq21vn
2
,

q21vn
2@T2. ~A6!

For vn50 andq!T we obtain by analogy with the cal
culation ofP(q,qz,0) the result

I ~q,qz,0!5
T

4p

1

q21a~12cosqz!
E
0

1 dz

Az~12z!

3
q2z~12z!1az~12cosqz!

@q4z~12z!12ã~q,qz!#
3/2 , q!T

~A7!

and its asymptotic form

I ~q,qz,0!.
T

2pq4 F ln2q2a
2
31cosqz

2 G , a!q2!T2.

~A8!

In the region withq21vm
2 @a we have

I ~q,qz ,vn!5
Tq2

2p~q21vm
2 !3

ln
2~q21vm

2 !2

q2a

1
T

4p

vn
223q22~q21vn

2!cosqz
~q21vn

2!3

1I qu~q,vn!, q21vn
2@a ~A9!

with

I qu~q,vn!5
T

p
(
mÞ0

q2

@~vn
21q212vmvn!

214q2vm
2 #3/2

3arctanh
vn
21q212vmvn

A~vn
21q212vmvn!

214q2vm
2

1
T

4p
(
mÞ0

q212vmvn1vn
2

vm
2 @~vn

21q212vmvn!
214q2vm

2 #
.

~A10!

In the ultraviolet limitq21vn
2@T2 the following asymptotic

takes place:
I qu~q,vn!5
Tq2

p~q21vn
2!3

ln
qT

q21vn
2 1

T

p

vn
22q2

~q21vn
2!3

,

q21vn
2@T2. ~A11!

APPENDIX B: CALCULATION OF 1/ N CORRECTIONS
TO THE CONSTRAINT AT T<TNéel

Consider briefly the calculation of the functionsR @Eq.
~44!# and F @Eq. ~45!# which determine, according to Eq
~43!, the corrections to the constraint to first order in 1/N.
First we introduce intermediate cutoff parametersC andC8
determined bya1/2!C!T!2pC8!L and divide the re-
gion of summation and integrationq21vn

2,L2 into four
regions: ~1! vn50, q,C, ~2! vn50, C,q,2pC8, ~3!
vnÞ0, q21vn

2,2pC8, ~4! 2pC8,q21vn
2,L. Further we

denote the contributions fromi th region toR and F as
Ri(T,xs̄) andFi(T,xs̄).

In the first region we can use the expressions for the fu
tionsP(q,qz,0) andI (q,qz,0) atq

2!T, Eqs.~A1! and~A7!,
and their asymptotics~A2!, ~A3!, ~A8!. Then

R1~T,xs̄ !5
T

2pN
ln
2C2

a
2

~312xs̄ !T

4pN
ln
ln~2C2/a!1xs̄

xs̄

1
T

4pN
I 1~xs̄ !, ~B1!

where

I 1~xs̄ !5
4

NE0
`

qdqE
2p

p dqz
2p F 1

q2112cosqz

3
I ~q,qz,0!2P̃~q,qz,0!

P̃~q,qz,0!
1
312xs̄

2q2
u~q221/2!

ln~2q2!1xs̄
G .

~B2!

u(x)is the step function. In the second and third regions
use the expressions for the functionsP(q,qz,0) and
I (q,qz,0) atq

2@a, Eqs.~A4! and ~A9!:

R2~T,xs̄ !5
T

pN F lnTC2
312xs̄

4
ln

4prs /NT

ln~2C2/a!1xs̄

1 ln
2pC8

T

ln~2T2/a!

ln~2T2/a!1xs̄
G , ~B3!

R3~T,xs̄ !5
T

pN

ln~2T2/a!

ln~2T2/a!1xs̄
F4C8

3T
1
1

2
2 ln

2pC8

T G ,
~B4!

where we have used the identity

ln~2T2/a!1xs̄54prs /NT ~B5!

which is satisfied in the zeroth order in 1/N. In the fourth
region we obtain
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R4~T,xs̄ !5
8T

3p3N
ln
2T2

a
ln
NL

16rs
2

2T

3p3N
ln
NL

16rs

2
4C8

3pN

ln~2T2/a!

ln~2T2/a!1xs̄
, ~B6!

where we have used the asymptotic forms~A6!, ~A11!, and
the identity~B5!. After collecting allRi ( i51 . . . 4) the in-
termediate cutoff parametersC,C8 are canceled and we fin
the result~47! of the main text.

Analogously, we obtain the contribution from the first r
gion toF in the form

F1~T,xs̄ !5
1

N
ln
ln~2C2/a!1xs̄

xs̄
1I 2~xs̄ !, ~B7!

where

I 2~xs̄ !5
4

NE0
`

qdqE
2p

p dqz
2p F 1

~q2112cosqz!
2

1

P̃~q,qz,0!

2
1

2q2
u~q221/2!

ln~2q2!1xs̄
G . ~B8!

Contributions from other three regions are also easily ca
lated:

F2~T,xs̄ !5
1

N
ln

4prs /NT

ln~2C2/a!1xs̄
, ~B9!

F3~T,xs̄ !5O@1/ln~2TNéel
2 /a!#, ~B10!

F4~T,xs̄ !5
8

p2N
ln
NL

16rs
. ~B11!

Summing up allFi ( i51, . . . ,4) we find the result~48! of
the main text.

APPENDIX C: THE ORDER PARAMETER
AND TRANSITION TEMPERATURE AT d521«

In this appendix we consider the calculation of the sub
tice magnetization to first order in 1/N in the space with the
dimensionalityd521«. We will be interested in the term
of the leading order in« at not too small temperature
T@Je21/« ~which is an analog of the renormalized classic
regime in the 2D case!, so that only the contributions with
zero Matsubara frequences will be taken into account. C
sider first the results for the functionsP and I . Evaluating
the integrals in Eqs.~39! and ~42! at an arbitrary space di
mensionality 2,d,4 ~see, e.g., Ref. 28 for the procedure
calculation of such integrals! we have

P~q,0!5
TKdAd

q42d , ~C1!

I ~q,0!5
TKdAd~32d!

q62d , ~C2!

whereq is thed-dimensional vector,
-

t-

l

n-

Ad5
G~d/2!G~22d/2!G2~d/221!

2G~d22!
,

Kd
2152d21pd/2G~d/2!. ~C3!

G(x) is the Euler gamma function. Atd521« we find to
leading order in«

P~q,0!5q2I ~q,0!5
2TK2

«q22« , K25
1

2p
. ~C4!

The constraint equation to first order in 1/N Eq. ~43! takes
the form

12
gT11«K2

« S 12
2

ND5s̄2F12
K2

N
ln
T11«/«1s̄2/g

s̄2/g G .
~C5!

Using the identity

gT11«/«1s̄251, ~C6!

which is satisfied in the zeroth order in 1/N and transforming
the logarithmic term in Eq.~C5! into a power, we obtain

s̄5~12T11«/TNéel
11«!b21«, ~C7!

b21«5~111/N!/21O~1/N2,«!. ~C8!

The Néel temperature is determined by

TNéel
11«5

«

gK2~122/N!
5
2prs«

N22
. ~C9!

This result coincides with the result of the RG analysis10

The RG result for the critical exponentb reads

b21«5
1

2 S 11
1

N22D1O~«!. ~C10!

Thus one has to replaceN→N22 in Eq. ~C8!. Such a re-
placement is analogous to this in the renormalized class
regime of Ref. 12 and may be justified by the calculations
terms of order of 1/N2, which we did not carry out. As dem
onstrated in Ref. 12 by calculations of analogous contri
tions up to 1/N2, this replacement should be indeed pe
formed. Since the denominator in Eq.~C9! is of order of
N, the replacementN→N22 occurs already in the first
order expression for the transition temperature, Eq.~C9!.

According to Eq.~C7!, two regimes are possible in th
temperature dependence of the order parameter.
Je21/«!T!TNéel we have the spin-wave behavior

s̄512
~N21!T11«

4prs«
. ~C11!

ForN53 this result is analogous to the quasi-2D case re
~10! in the quantum spin case. At 12T/TNéel!1 the tem-
perature dependence of the sublattice magnetization cha
from the linear one to the power behavior with the critic
exponentb21« .

The two temperature regimes above correspond to dif
ent pictures of the excitation spectrum. In the low
temperature regimeT!TNéel we have from Eq.~40! at quasi-
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momentaq,T ~only suchq give a contribution to thermo
dynamic quantities! the zeroth-order longitudinal Green
function

Gl
N5`~q,0!5

g

2
P~q,0!5

gTK2
«q22« , ~C12!

which corresponds to spin-wave excitations. Near the ph
ds

.

m

m

B

.

A

se

transition point we have at an arbitraryq @except for the
exponentially narrow hydrodynamic regionq,(2s̄2/g)1/«#

Gl
N5`~q,0!5

1

q2
, ~C13!

which corresponds to critical~non-spin-wave! excitations.
As follows from Eqs.~C12! and~C13!, the difference of the
excitation spectra is of the order of« lnq.
s
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