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The nonlinears model and its generalization dd-component spins, th©(N) model, are considered to
describe thermodynamics of a quantum quasi-two-dimensitnadsi-2D Heisenberg antiferromagnet. A
comparison with standard spin-wave approaches is performed. The sublattice magnetizafitermerature,
and spin-correlation function are calculated to first order of theeldpansion. A description of crossover from
a 2D-like to 3D regime of sublattice magnetization temperature dependence is obtained. The values of the
critical exponents derived a@=0.36, »=0.09. An account of the corrections to the standard logarithmic
term of the spin-wave theory modifies considerably the value of thel Menperature. The thermodynamic
guantities calculated are universal functions of the renormalized interlayer coupling parameter. The renormal-
ization of the interlayer coupling parameter turns out to be considerably temperature dependent. A good
agreement with experimental data on,CaiQ, is obtained. The application of the approach used to the case of
a ferromagnet is discussd$0163-18207)02018-3

I. INTRODUCTION the same time, it is difficult to justify and improve such
approximations.

Great interest has been paid to properties of quasi-two- To develop a perturbation theory which correctly de-
dimensionallquasi-2D antiferromagnets in connection with scribes the critical behavior, we have to introduce a formal
the investigations of layered perovskitemd copper-oxide large parameter in the Heisenberg model. Thus the Heisen-
systems, including high+. superconductors. In particular, berg model can be treated as a model with a large degen-
La,CuQ, gives one of the best known examples of aeracy within the I expansion. This expansion may be in-
quasi-2D system with small magnetic anisotropy. Unlike 2Dtroduced in two different ways. The first Wiy treats the
systems, quasi-2D ones have finite values of magnetic ordeHeisenberg model as a particular casél £2) of the
ing temperature. At small interlayer coupling/sthe value of SU(M) model (i.e., of the model withM states per spin
magnetic transition temperature is small in comparison withdegree of freedom at each $it&ince theM — limit cor-
the intraplane exchange parameleiThere are a number of responds to SSWTsee, e.g., Ref.)4 at finite M thermody-
approximations which enable us to describe the thermodyaamics is described in terms of the spin-wave picture of ex-
namics of such systems. The standard spin-wave theomitation spectrum. The second wiy? is to consider the
(SWT) takes into account only the spin-wave excitationsHeisenberg model as a particular case<3) of the O(N)
which exist for quasi-2D systems in a wide temperaturemodel(i.e., of the model witiN-component spins The limit
range up to aboud (Refs. 2,3. SWT does not take into N—« gives the quantum spherical model and the laxge-
account the dynamic and kinematic interaction between spinase corresponds to the fluctuatigron-spin-wave picture.
waves, which are important at temperatures near magnetithe advantage of the/(or 1/M) expansions over, say, the
phase transition point. By this reason, SWT gives too highjuasiclassical § expansion is their applicability near the
values of the magnetic transition temperature. Recently, thehase transition temperature.
self-consistent spin-wave thedry (SSWT) has been pro- SinceN=3 andM =2 are in fact not large, the conver-
posed which takes into account partially the interaction begence of such expansions must be investigated separately.
tween spin waves. However, the value of theeNeempera-  For low-dimensional magnets witd=2 (see Ref. ¥ and
ture in SSWT is still too high in comparison with d=2+¢ (Ref. 9 the results in the SU) model coincide in
experiment, and the critical behavior is described quite inthe zeroth order in M with those of the one-loop
correctly. renormalization-groupRG) analysis, and in the first order in

To describe the magnetic phase transition we have to tak&¥/M with the results of the two-loop RG analysis. In these
into consideration fluctuatiomon-spin-wavg corrections to  cases the M corrections to thermodynamic quantities are
thermodynamic quantities. It is difficult to take into accountsmall. However, quasi-2D systems belong © 8ymmetry
such corrections in the standard technique of the Green'group so that correspondingM/corrections are not small
functions because of essentially nonlinear character of equésee discussion in Ref.) @nd the series in M is poorly
tions of motion. There exists the interpolation approximationconvergent. Unlike the M expansion in the SW({) model,
by Tyablikov’ which is based on the random-phase decouthe first-order I corrections in theO(N) model, which
pling of equations of motion for the transverse spin Green’svere considered in the quantum 2D cgsand in the classi-
function. This approach often yields results which arecal case at an arbitrary dimensionality<®#<4 (see, e.g.,
roughly satisfactory from the experimental point of view. At Ref. 13, lead to results which are close to those obtained by
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other methods. The applicability of theNLexpansion at ar- Hereqo= is a cutoff parameter determined by the bound-
bitrary dimensionality 2d=<4 is important for the investi- ary of the Brillouin zone. Note that for the quantum case the
gation of quasi-2D systems since they demonstrate the dimain contribution to integrals over the wave vector comes

mensional crossover from 2D to 3D behavieee, e.g., Ref. from the region withg<T, while in the classical case the
1). On the other hand, the renormalization-graugxpan-  value of Ty, is determined by the whole Brillouin zone.

sion is not appliciable fod=2 andd= 3 simultaneously: for The spin-wave spectrum in SSWT and the Tyablikov ap-
e=d—2 it cannot describe satisfactorily the cake3 and  proach is renormalized in different ways. SSWRefs. 2—4
vice versa, fore =4—d the behavior atl—2 is poor. takes into account the interaction between spin waves in the

Thus, instead of direct calculation of corrections tosimplest self-consistent Born approximation. There exist sev-
SSWT, we start in this paper from the quantum sphericabral generalizations of SSWT on quasi-2D systéfn&®We
model,O(«) and then find the N corrections. Although the will follow the approach of Refs. 14,16 which gives more
results in theO(«) and SU¢) models are different, it will ~ satisfactory results at small/J. The spin-wave spectrum in
be shown that already in the first order iiN1at low enough SSWT has the form
temperatures the results in tN) model are identical to

those in SUf) (i.e., in SSWT. At higher temperatures the EsSV=S(v5— )Y (6)
results of SSWT are modified due to fluctuation corrections.
The plan of the paper is as follows. In Sec. Il we review Yq= 2(CO + cogyy) +2y' cog,,

various approximations in the theory of quasi-2D systems,
which are based on the spin-wave picture of excitation spegy,
trum, and analyze the corresponding expressions for tle¢ Ne
temperature. In Sec. Il we formulate tR€N) model for the Y¢S E _
quasi-2D case and the technique of thid &kpansion, which vl J= E Lcosqxcothz—q +29(7), (7)
is a generalization of that by Chubuket al!? for the 2D a Eq T

case. In Sec. IV we calculate the magnetizationglNem-

erature, and_spin-correlation function to first order ir_\l.lrn _ y'13' :2 yiscos:]zcotth—q+2§T). (®)
Sec. V we discuss our results and compare them with experi- E

mental data on LZCuQ,.

where y and y’ are the renormalized exchange parameters
hich are determined from the self-consistent equations

The sublattice magnetization is given by
Il. SPIN-WAVE APPROXIMATIONS IN THE THEORY

1
OF QUASI-2D ANTIFERROMAGNETS S= S+ == thz— 9)
We start from the Heisenberg Hamiltonian of a quasi-2D
antiferromagnet At Sma" Va|ueS Of\],/\] we haVe
T IN(T?/8yy'S?) S(JJ)Y°<T<JS
22 %iSS ® 272795 In(ygdly)  IS<T<IS

10
with the exchange interactiods; , ;= J for & in a plane and — 10
Jii+s=1J' for & perpendicular to the planes. whereS, is the sublattice magnetization in the ground state.
At small values of interlayer coupling’ it is possible to  The quantityy varies slowly with temperature in the whole
derive analytical results for the ‘Metemperature. First we regionT<Tye and may be replaced by its zero-temperature
consider the standard spin-wave theory. The spectrum ofalue y(0). According to Refs. 2 and 3 we have
spin waves has the form _
swr , " v(0)=1.1571, S,=0.3034 (11
X S % J N for S=1/2 andy(0)=J, S;=S for S—«~. The second case
whereJ, is the Fourier transforms of the exchange parametein Eq. (10) may be realized only in the classical ling& 1.
One can see from Eq10) that the value of the critical ex-
Jg=2J(cogy,+ cogyy) +2J' coy, . (3 ponent for the magnetization {8sy=1. The same critical
behavior takes place at an arbitraty 2. This result is cor-
rect only atd=2+¢ to leading order ire (8=1-2¢, see,
1 e.g., Refs. 10,9 and for higher dimensionalitie8<1.
S= S+ = — cothz— 4) As follows from Eq.(10), the Nesl temperature is deter-
mined by (see Ref. 14; note that some coefficients in this

For small values of’/J SWT yields different analytical ex- Paper are incorrert
pressions for the N temperature in the quantum regime SSWT_ .
(Tneer<<JS) and classical regimeT(e>JS). We have Theel =475
2 ra2 A
V(T2 j800'S)  In(313")>27S y 1/|n(TNée;/8ycy::S) In(J/J ),>27rs
1/|n(Jq§/J ) 1<In(J/d')<2m7S. UIn(dgyel/ve)  1<In(II')<2mS.
) (12)

The sublattice magnetization is determined by

Tt =4mISEX
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Here y.=y(0) and y. are the renormalized exchange pa-more correctly than in SSWT and TT. To this end we use in
rameters aff = Ty, The value ofy. determined from Eq. the next sections the I4/expansion in théd(N) model.
(8) is
, ) Ill. THE QUANTUM NONLINEAR- o MODEL
¥e= (Tneel47ycS7)J’ (13 AND O(N) MODEL FOR QUASI-2D

in both the quantum and classical regimes. Note that the QUANTUM ANTIFERROMAGNETS

renormalization of the interlayer coupling in E42) plays a To describe thermodynamics of quantum antiferromag-
crucial role in lowering the Nel temperature in comparison nets we consider the nonlinearmodel which was proposed
with its SWT value(5) since y,ye/IJ = TyeefdnI F<1. for the one-dimensional Heisenberg model in Ref. 20. In the
In the Tyablikov theory (TT) the excitation spectrum has 2D case this model was applied in Refs. 11,12. The large
the form value of the correlation lengté>a (a is the lattice param-
o= 121 eter in the planeplays a crucial role in the Haldane’s map-
Eq =S(J5—Jg) ™ (14 ping of an antiferromagnetic Heisenberg mod#l to the

. . : _guantum nonlineas= model (see, e.g., Ref.)4 This gives a
As well as in a ferromagnet, the proportionality of the spec possibility to separate and integrate out the “fast” modes

tI’UtrIE toSis nOtttﬂUﬂe _correct ?’[ low temper_a’g_.lées:hl_? theWith space scalé< A1 (A satisfies to§‘1<A<a‘1) re-
anurerromagne € spin-wave 1requency varied aswnile taining “slow” modes withl>A L.

the sublattice magnetization a¢ (see, e.g., Ref. 37 The In the quasi-2D case we hadT<T ) =%. However,

equation forS at S=1/2 reads at smallq we have
—_— J g E — ~ 2+ ’ — .
5= ELtanf’tZ—.lq. (15) Jo—Jg=J(aq)“+2J'(1—-cog,) (18
4 =q Thus besides the “true” correlation lengt$y there exists

Neel temperature TT yields at arbitrar$ and any space a2
dimensionalityd > 2 &y =la">a, (19

2T ST ke T
sy 7T

Neéel

where a=2J'/Ja? is the interlayer coupling parameter; in
this paper we consider only the case wher€l. On the

scale of order ot;, the regime of fluctuations changes from
2D to 3D. Thus we may use the scdle to separate fast and

where I's is some function ofS, I'y,=3. Thus, unlike slow modes in the Haldane’s mapping. Depending on the
SSWT, the critical exponent for the magnetization has thggjye of the imaginary time slab thickness

standard mean-field valuggr=1/2. For smalld’/J, TT
yields L,=c/T (20

12
: (16)

47)S? (c~JSais the fully renormalized spin-wave velocjitythree
oo™ =7 (17 regimes are possible:i) L,~&;, or, equivalently,
In(Jge/J") T~ a%c~(3J")Y2 This is an analog of the quantum critical
The resuli(17) is lower than the SSWT valu@?) and closed regime L,~¢ in the 2D casé'? (i) a<L,<¢y, ie.
to experimental datésee Sec. Y On the other hand, the a*’c<T<c which is an analog of the renormalized classical
result(17) coincides with that of the spherical modethich ~ regimea<L .<{ in the 2D case, andii) the classical re-
is adequate only in the classical lint—~ (Refs. 18,19] gimelL.<a (i.e., JS<T).
and with the result of the spin-wave approximati&hin the Since regimel(i) is well described by the standard spin-
classical regimeTy,>JS. The Tyablikov approximation wave theory(or by SSWT, we do not treat the thermody-
gives the same result(17) (with the replacement namics at temperatures of order af)()*% From Egs.(5)
J——J,d'——J') for the Curie temperature of a ferromag- and(12) one can see thatye> (3J')"2 In regimes(ii) and
net (J,J'<0). This demonstrates that near the critical tem-(iii ) implementation of principles of finite-size scaling gives
perature TT does not take into account quantum fluctuations

which are important for small values & Thus we may Treer=psP (£ /L7650 12),
conclude that TT is satisfactory from the practical, but notwhere p~J<* is the fully renormalized spin stiffness,
from theoretical point of view. d(x,y) is a scaling function withb (e,%) = 0. In regime(ii)

To leading logarithmic accuracy, all the discussed apwe have¢, /L,<¢; /a, so that
proaches give the same value of theeNEemperature. How-
ever, this accuracy is insufficient to treat experimental data. Trnee=psP (&g /L,,oc)=pSCI>q(TNée|/a1’2<:), (21
In particular, the factor ofj3~ 10 in the classical regime is
often not taken into accourisee, e.g., Ref.)1although this
factor gives an essential contribution TR - o _ 1/2

To improve the description of the critical region and ob- Trear=ps (2,631 18) = psPof( Uaa). 22
tain a better appoximation for the Bletemperature in the Note that the results of SWT Ep) and SSWT Eq(12) for
quantum case, it is necessary to take into account fluctuatioihe Nesl temperature agree with E1) for the quantum
corrections to the spin-wave theory result fby Eq. (5)  regime and with Eq(22) for the classical regime. At the

while in regime(iii) &;/ /L > €& /a and
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same time, the result of the Tyablikov approximatidry) whereg:N/pg is the coupling constang™=(a"(r,7)) is
satisfies the classical regime scaling fo(@®) for all spin  he average part of the field, which is supposedzto be static
values, which confirms the absence of quantum fluctuationgnq uniform. After integrating oves=o— o the partition
at the critical temperature in th,is approximation. As follows ¢ ,nction takes the form
from Eq.(22), the value of the Nel temperature in the clas-
sical regime depends on fluctuations on a scale of order of
the lattice constant, i.e., is nonuniversal. Therefore in this Z[h]Zf DAexp(NSy{A,h]), (26)
regime we cannot eliminate fast modes by Haldane’s map-
ping. Further we will assume that the “renormalized classi- 1 . 1
cal” regime (ii) takes place. Sei[\,h]==IndeGy+ =— (1— o) Sp(iN)

We use the same procedure as used by Hafd#see full 2 29
discussion in Ref. ¥ito integrate out fast modes. Thus the

1 _ A .
partition function has in terms of a path integral the form + ES;{(i)\o—h/pg)Go(i)\o—h/pg)],
2
) o 2 27
Z= | Doy(7)exp — 2/, dr i (9,07) where
1w Go=[aHcq+V?+ad,] Y, (28)
_Eszf dTE \]ij(O'i_O'j)z H 5(0]2_1);
0 i i

(23) AZUiZ(r!T):O-iz+1(r17-)_0-iz(rl7—)'
SinceN enters Eq(26) only as a prefactor in the exponent,

where o is a three-component unit-length vector fields ~ €XxPanding near the saddle point generates a serie8linAt/

the index of a sitey, is the uniform magnetic susceptibility. | < Tneet W€ have the saddle-point valug=0 ando“#0.

In the continual limit we reproduce the standard three-The Green's function of the field is defined by

dimensional quantum nonlinear-model. However, in the mn

quasi-2D case the large value éf gives a possibility to G™(9.0z,@n)

pass to the continual limit only within the layers: p° d?p [ dp,

(ri(T)—>0'iZ(I’,T) wherer is a 2D vectorj, is the index of a J’

~z[0]) (2m)2) 274
layer. The partition function takes the form [0]J (2m) o
o« #°Z[h]
p% (ur , 1 , Ih™(p,pz,@)dh"™(q—p,d,= Pz, 01-n) |, _,’
Z=J Daiz(r,r)ex _?Jo erd r% C—g(ﬁfaiz) 29
, @ . whereh(p,p,,w) is the Fourier transform dfniz(r,r). Note
+(Voi )"+ 5 (01,01 01) J5( ol 1), (249 that only diagonal elements™™ are nonzero, and they are
proportional to the nonuniform dynamic spin susceptibility:
where p2=J%’ is the bare spin stiffnessy=(p2/ xo)*? is p?
the bare value of the spin-wave velocity. Here and hereafter G™(q,4z,©)= x4+ Q.qz+ m,®) mn,  (30)

we use the system of units wheaie= 1.

To pass to theO(N) model we replace the three- where Q=(m,7) is the wave vector of antiferromagnetic
component field aiz(r,r) with the N-component one structure in the plane; fal=3
(ri“;(r,r), m=1...N. The constraint conditiom?=1 may

be taken into account by introducing the slave field XA(0,0,,0)= >, eRTERI(SHSPY . (3D
)\iz(r,r). To calculate the dynamic susceptibility we also in- !

troduce the external nonuniform time-dependent magnetigyhereS® are spin operatorsy, B=Xx,y,z. Since the partition
field h{‘z‘(r,r). Then we obtain the partition function of the function Z[0] is invariant under rotations in the spin space,
O(N) model in the form further we will assumer™= o 6,,y Whereo plays the role of

the relative sublattice magnetizati®S. Then GNN corre-
1 sponds to the longitudinal Green’s functids,, while other
Z[h]zf Danexp[——f drf d?r,
29Jo T
2. ¢ 20y (2
+(Voi )"+ 5 (0741707 )" +iN(o] —1)

iz((; o )2 diagonal componentéwich are all equalto the transverse
cg 'z Green'’s functionG; . At T<Tye, the value ofo is deter-

mined by the constrainto®)=1 which takes the form

dk

- T d?k .
1-0?=—> > f(zTﬁ 5 Gk wp).

Ps op, m
~2gh (01, ~ o) } (25) (32
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We use the relativistidhard cutoff wﬁ+ k?<A? of fre- ~ 2,
guency summations and momentum integrations; in this  11(0,d;,00)=11(0,0;,0n) + P Go(d,dz,@,), (38
regularization scheme the value of the bare spin-wave veloc-
ity cq is replaced by the fully renormalized one, which g2 d

. . i p Pz
will be putted to be equal to unity except for the final results. H(q,qz,wn):TZ f (ZT)ZJ

In the limit N—o we may replace in Eq27) \ by its o —n 2T

saddle-point value to obtain the “free” Green’s function X Go(P+0,P,+ 0y, @+ ©1)Gol(P, Py, @)
(which is the same for transverse and longitudinal compo-
nents (39

) Note that the quantitlC in Eq. (37) has in fact the zeroth
Go(K,ky,wn)=[wi+k?+a(l—cok,)] *. (33  orderin 1N, but the corresponding contribution to the con-
straint is of order of M. The polarization operator

After evaluation of the integrals and frequency summation inj(q,q,,,) determines the longitudinal Green’s function in
Eq. (32) we obtain the Nel temperature in the limiN— o the zeroth order in N

4apl~" - 11(q,q;,wn)
0 = > G “(9,9,,0p) = . 40
TNl = Nin(2T2f ) 34 (0000 = 21 4, e+ 207G A0
where pN=*=N(1/g— 1/g.) is the renormalized spin stiff- To first order in 1N the constrain{32) takes the form
ness in zeroth order in M, g.=2#%/A. To compare the d2k r dk
result (34) with the result of the SSWT we note that the 1—gZ=gT>, f 5 2f Z_ZGO(kakszm)
value of spin stiffness in SSWT ipSSWT=4Sg (for om J (2m)°) 2
S=1/2 this equals 0.1Twhich is somewhat lower than the d?k [ dk,
result of two-loop RG analys’s and numerical —gT>, f(z—)zf Z—GS(k,kz,wm)E(k,kz,wm)
calculations?? ps=0.181)) and the value of the spin-wave ©m T 4
velocity is cSSWT= \/8yS. Thus we see that the val(@4) is — 2 2
X ) 20°T k k, Gg(k,k,,
N times smaller than the corresponding SSWT vallig) —U—E f d Zf dke ~0( : wm). (41
(besides that, in SSWT is replaced by its renormalized N wn J (2m)7) 27 TI(kk,, o)
value, ag>"'=2y;/ y<a). Further we will show that, as Following Ref. 12 we introduce the function
well as in the calculatiolf of the correlation length in the 2D
case in the first order in W, (i) the factor ofN in the de- d?q a4 .,
nominator of Eq.(34) is to be replaced by —2, (i) pY =~ |(k’kz""m):T§ f (27)2 5 Go(0:0z,@n)
and « in Eqg. (34) are to be replaced by their renormalized "
values,ps and a., (iii) terms of order of In In(Z%a) and X[Go(k+0,k,+0q;, 0t »y,)
unity, which do not enter the SSWT result fbtg, OCcur in
the denominator of Eq34). ~Golkikz, )] (42
The exact Green’s function may be expressed as and represent Ed41) in the following convenient form:
m —[ 2 2 _ -1 d2k dk
G™(K, K, , ) =[ @2+ K2+ a(1—cok,) + = (K, Ky, @p) ] 1-gTS f(zT)Zf 2—;Go(k,kz,wm)
—C(k,kz,wn) Smn- (39 "
—gR(Tx;)+ a7 [1-F(T,x;)], (43
To first order in 1IN the self-energy2 (k,k,,w,) and the
function C(k,k;,w,), which describes Eenormalizations ow- Where
ing to the long-range order, are given'by oT a2 [ dk, 1(K.k, wn)
S (k,K,,wp) om J (27) 7 T1(K, K, , )
2 aw
-2 [ ol o -2 T i) g
om J (2m)%) 72 N (2m)?) 27 Ti(k,k,,0m)
XGo(k+q-kz+QZ-wn+wm)_GO(QaQZawm) and
19,9z, om) x-=4ma?lgT. (46)
36
(36) The calculation of functiong, II for the quasi-2D case is
— presented in Appendix A.
CkK, )= 20 1 37) Thus the function® andF determine the N corrections
11NZy n

to the constraint. Expressiof3)—(45) enable one to inves-
tigate the magnetization and to calculate theeNempera-
where ture for a quantum quasi-2D antiferromagnet.

9 T(kk,,o)
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IV. THE SUBLATTICE MAGNETIZATION, NE EL Note that we have simply replacedby «, in the terms of
TEMPERATURE, AND CORRELATION FUNCTIONS order of 1N in Eq. (52) since this yields an error of order of

As discussed in the beginning of the previous section, WéUNZ
consider the quantum case with being small enough to First we consider the casez>1, or, equivalently,
satisfy the condition In(B 4/ ac?)>1. The calculation of
the functionsR andF at T>a'? [i.e., T>(3J")Y? is dis-

cussed in Appendix B. Neglecting the terms of order ofsjncex-is the decreasing function of temperature, this in-

NT/4mp<c?loy. (53)

1/In(2T{ef c?) we have equallty is satified at low enough temperatures. In this case
) the integrald ;(x;) andl,(x;) are of order of M, i.e., are
R(T.X:)= LI ﬂ_ (3+2X3T|n47’95 small. Thus to leadingzeroth order in 1k, the constramt
T 2N a 47N NTx; equation(52) coincides with that in the case of space dimen-

5 5 sionality d=2+¢ (Appendix Q with the replacement

T In(22T la) + 81- nZT n NA 1/e—In(2/a), which corresponds to the limi—0 with si-
2aN In(2T9a)+x5 37N a  16ps multaneous cutting of the integrals over quasimomentum on
the scale 1;,. Similar to thed=2+¢ case(Appendix Q

- _2Tr| NA 1(Xﬁ (47  we transform the logarithmic term in the right-hand side of
3m 16 Eqg. (52 into power and replacBl—N—2. Then we have
and (T Y 1~ 1,(x7)]
Ldmes 8 | NA NT 2\ 212 3 a3
0
FTX0 = AN 728 Mg, 120, (48) —1- (1—— In— + —In—
4mpg N a, (o
where the function$,(x;),l,(x;) are defined in Appendix 5
B. After substituting Eqs(47) and (48) into the constraint 2 In(2T ;)
equation (43) and using the results of Ref. 12 for the _Nln(ZTZ/arH—x;_ll(X;) d (54)

guantum-renormalized ground-state sublattice magnetization

FOZU_(T:()):%/S and the spin stiffnesg, of a quantum  Where, being expressed through the renormalized parameters,
2D antiferromagnet,

4ps 07 55
9%_9(, 8  NA @9 X~ IN=2)T o2 59
ps N 372N 16pg)’ . o o
The “critical exponent” 85, which is the limit of 8, at
e—0, is given by
ps=p= 1+ im& (50)
s Fs 37N 16pg/)’ 1N-1
. o . = —F. 56
one can see that the sublattice magnetization, being ex- P2 2N-2 (56)

pressed in terms obs and o, still depends om\, i.e., is
nonuniversal. To make the sublattice magnetization com- As well asinthed=2+¢ case, two regimes are possible
pletely universal we have to introduce the quantum-under the conditior{53). Consider first the low-temperature

renormalized parameter of the interlayer coupling (spin-wave region where
2 < 2/ 52
= 1— 37782N In% . 51) T(N=2)In(2T4/ a)lAmps<oloy. (57)
Ps In this region
We shall demonstrate below that at low enough temperatures
any regular(nondivergent terms in the renormalized inter- - T(N—-1) 2T?
layer coupling parameter are absent, so that this is renormal- o=0o 1- “8mp. nm : (58)

ized only due to temperature fluctuations at higiheBeing
rewritten through the renormalized parameters, the constraifit N=3 we reproduce the result of SSW{L0) with

equation(43) reads 2y'lvy being replaced byy,. The factorN—1 in Eg. (58
has a simple physical meaning: this is the number of gapless
NT 2\ 2T? 3 A4mpg (Goldstong modes. We can conclude that in the temperature
1- 4mp 1- N 'na_r”L NInNTx; interval (57) spin-wave excitations give the main contribu-

tion to the dependence(T). Note that the spin-wave result

2 In(2T% ay) (58) can be obtained also from the untransformed constraint

= 11(X%) equation(52).
2 _ "1\ Ao q

N In(2T o) + x5 To demonstrate that in the intervéd7) the experimen-
s tally observed interlayer exchange parameter coincides with
T 1 4mpg r

==|1+—In —ly(X5)|. (52 a, we calculate the self-energ@y(k,k,,0). By using Eq(36)

00 N NTx; we get
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8k2 NA terms in Eg.(64) which comes from the quasimomenta
% (k,Kkz,0)= %TNlnﬁ (59  g>a*? (2D regimé andq<a*? (3D regime:
S
irrespective ofk,. Thus we have T o2 1 41rpg
1- —=—=(1-A)[l+ - In—r——
G (k0 =k 14 2o | 4 (1 cosk Tt 70 N e
t ( 1Rzy )_ 37T2N n16ps CY( Cco Z) g
_ X |14+ —— .
= Z K2+ ay (1~ cos,) . (60 N '”X% (68)

We see that the renormalized Green'’s function differs fromunlike the
the bare one by the renormalization fackband by replace-
ment a— a, only. Thus the experimentally observéiilly

renormalized interlayer coupling is just, . At higher tem-

“2D-like” regime, the coefficients at the loga-
rithms are different. Transforming the logarithmic terms into
powers we obtain

peratures the temperature renormalization of the interlayer —— BalBy—1 28
X - ! . o 4mpg 3'P2 1 T 3
coupling, which will be calculated below, becomes impor- __ _|__ "% 1— — ,
tant. 05 [(N=2)Teel 1-Ag Teel
At intermediate temperatures where (67)
(N=2)T/Amps<o?lag<(N—2)TIn(2T? a)l4mps, where
(61)
we have a 2D-like critical behavior of the sublattice magne- :1 1— i (68)
e Ps=3 °N
tization, ™
T 2T2 ;g is the true 3D critical exponent for the magnetization. It
(olog)VP2=1— (N—=2)In +3In=—2/. should be noted that we have not to perform the replacement
TPs ay o N—N-—2 in Eq. (68) and other contributions which come

62 from essentially three-dimensional integrals. We get for
For N=3 we haveB,=1, which coincides with the critical N=3 the valugB;=0.36. The result68) coincides with that
exponent of SWT and SSWT. However, the term withof the 1N expansion in they* modef® at d=3, in agree-
In(cZ0?), which is present in Eq62), leads to a significant ment with the universality hypothesis. The depende(toe
modification of the dependencee(T) in the temperature re- S to be compared with that_ln the_ Tyablikov appr(_)X|mat|on
gion under consideration in comparison with SSWT and(16) where3=1/2 and the dimensional crossover is absent.

leads to a considerable lowering of the éldemperature. ~ Consider now the self-energy(k,k;,0) atT=Tye. At
With further approaching the transition point the behavior of <k<2TN_ée| the self-energy has the same form as in the
the order parameter changes to 3D. 2D case” with ¢ being replaced by :

Consider the temperatures which are very clos&\g,,

so thato is small enough to satisfy the inequality<1, i.e., S (kk,,0) = k2| 7ln NA N ilnln(ZTﬁ'ee/a) N 1
S s T 16ps N In(2k¥a) N/
ol og<(N—2)T/4mps. (63 (69)

After expanding Eq(52) nearT=Tyel, X;=0, picking out  Thys the expression for Green's function reads
the logarithmically divergent parts df(x;) andl,(x;) at (G=G,=G))
small x;-analytically, and evaluating numerically the inte-

grals, we have 1 (N_Z)TNéel 2k2 1/(N—2)
G(k,k,,0)= —2[—In—
T o° 1 A7pg 8 k Amps a
l1-—==|1+—=In + InX;=—Ap|,
Tneer 02| N (N=2)Tye 2N 7 °° N NA 70
(64) N LT
whereAy=2.8906N. The equation foiT \ reads
<k <Tyeel-
2Tl2\leel
Trnee=47pg (N—2)In 2 At k<a'? k,<1 thek dependence of the Green’s function
r

changes. After integration and frequency summatio(B8)
Ampg %1 (which are analogous to the calculation of the functidhs

+3In—————-0.066 (65  andF in Appendix B we have

(N=2) Teel

As will be clear below, the second term in the denominator, R T a
which is of order of Inn(T2./«), leads to a significant ~ =(KKzO)=AK™+ S AN+ 5| K™+ Sk I 72— 2.
lowering of Neel temperature in comparison with SSWT ‘ (72)
(where only the first term is taken into accourito calculate
o in the region(63), we collect separately the logarithmic Here




A= nln&Jr—ln In2—T2+ &564 (72
16ps N a N
A,=—0.6122N,
and
7=8/(37°N) (73
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1 d%k (= dk, .
__ T TRz i(kR+K,R,)
S(RR,) wf<2w>? 27
1
XE jdwlmxm”‘(k,kz,w)m (79
m

at T=Tpe- For N=3 we have

S(RR)=[(S(NS g, (r+R)).

is the 3D critical exponent for the asymptotics of the corre-
lation function at the phase transition point in the first orderThe static approximation is sufficient to determine the as-

in 1/N. For N=3 we haven=0.09. Using Eq(71) we find

Ac

2
k+2

G (k,ky,0)=(1+A)) a2

1-7/2
k?) (74)

k<a'? k,<1.

The quantity

.= CY(1+A2)/(1+A1) (75)

ymptotics of the correlation function. Using Eq80) and
(49) we derive(cf. Ref. 12

TSo
S(RRy)=—

1+ nin

NA
16ps

d2k Jw dk,
(2m)2)_.2m

Y

One can see that & a+ R§>1 the asymptotics of the in-

G(k,kZ,O)ei(kR+kZRz).

(80)

can be interpreted as the renormalized interlayer coupling 3bgral in Eq.(80) is determined by the regiok<aY? and

T:TNéel .
Using Eq.(51) we find the following relation between the

renormalized coupling parameters at loW and at
T:TNéel:
1.0686 [ (N—2) T | N2
a1+ 17 ‘ﬂ — 79

When deriving Eq(76) we have transformed the term with
In In(2T? ) into a power and then replacét—N—2 in the
exponent. As in SSWTsee Sec. )| the renormalized inter-
layer coupling atT e is lower than the low-temperature
one, but the concrete expressiorNat 3 is slightly different
from these in SSWT.

Using Eq.(76) we get the following equation foF g in
terms of e :

2
Néel

4mps
+2In
ac (N—2) Teel

2T
Trneer=4mpg (N=2)In 2

-1
+1.011% , 77

where ¢ is the fully renormalized spin-wave velocity; in
SSWT we havec=8y(0)S (see Sec. )l For N=3 we

have
4 2
5500%_:2?%)

c

Tne=4mps/In , (78

which is similar to the result of the Tyablikov approximation
(17), but the bare value ok is replaced by its renormalized
value at the critical temperatuf@6) and p, is also replaced
by its renormalized value. Besides that, the re§I® does
not violate the scaling forni21).

Finally, we consider the spin-correlation function

k,<1 whereG(k,k,,0) is calculated abovgsee Eq.(74)].
Substituting Eq(74) into Eq. (80) we have

1 TneelSh
4w ps

2 1/2
ag+ nR2+277 ’

NA
1+ nln

S(®) 16pJ

(1=A;—7C)

X (81

whereR = (R?+2R%/ a)*? andC=0.5772 is the Euler con-
stant. Using the value ok, [Eq. (72)] and transforming the
term with (1N)InIn(2T%«) into power we obtain the final
result for the spin-correlation function af=Tyg and
Ral?>1:

1(N-2)

— )T _
(N=-DTha] "2 | =

S(R)= 4p
S

TheeiSh
4mps

2 1/2
X(W) ’ (82

whereA;=0.4564N. ThusS(R) enables one to determine
the value ofa.. As one should expect, being rewritten
through renormalized parametgrsand ., S(R) does not
contain the cutoff parametek and is thereby completely
universal.

At 1<R<al? we derive from Eqs(70) and (80) the
leading term of asymptotics of the correlation function
within a plane N=3)

gg 2
S(R0)=3—
3ps

(83

n? :
4mpg aR?

Thus we have in this case a logarithmic decrease of the cor-
relation function, as well as in the 2D case atR<¢. !
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V. DISCUSSION AND CONCLUSIONS

In the above treatment we analyzed the sublattice magne-

tization S of a quasi-2D quantum antiferromagnet
(Theer<<JS). At temperaturesT<(JJ')Y? the behavior

S(T) is satisfactorily decribed by the standard spin-wave

theory. ForT>(JJ')Y? we have obtained Eq52) which
determinesS to first order in the formal small parameter
1/N. We have three temperature intervélse boundaries of
the intervals are presented fiir=3):

(i) The case of low temperatures

(84

[Sp=S(T=0); Sy=S—0.196 for the square lattitavhere
the results of SSWT are reproduced.

(ii) The case of the intermediate temperatures(Ef), or
equivalently

TIN(2T2/33') (473 <SSR

ISL<TIN(2T2133")/(AmISD),

1— T/ Tpees (1= A) (T/ATI )2 (85)

(1-Ay=0.0365), where a 2D-like critical behavior, which
is similar to that in SSWT, takes place. However, the correc

A. A. KATANIN 55
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FIG. 1. The theoretical temperature dependences of the relative
sublattice magnetizatio®/ S, from different spin-wave approxima-
tions and from the M expansion in th€©(N) model[Egs.(54) and
(64)], and the experimental points for 4auQ, (Ref. 24.

tions to SSWT modify considerably the numerical factors, saof 1/N expansion are also presented. The renormalized value

that the Neel temperature is considerably lowered.
(iii) The vicinity of the Nel temperature Eq63), or

1— T/ Treer< (1= Ag) (T/A7I )2, (86)

where we obtain the critical behavidB~ (Tyee— T)73,
B3=0.36.

The detailed description of the temperature region be
tween (ii) and (i), where S¥S3~T/4mps, cannot be ob-
tained within the first order in I, since Eq.(52) is trans-

of the in-plane exchange parameter 1850 K can be found
from the experimental dataand the valuey,/y=5x10"*

was chosen from the best fit to SWT at low temperatures
T<100 K). The experimental results foy’/y are not reli-
able, and it is difficult to compare our value ¢f/y with
experiment. For example, the result of Ref. 26,
y'ly=5%x10"°, is by an order lower than that found from
the fit in the spin-wave region. It is also important that the
value of y'/y has an appreciable temperature dependence
because of renormalizations. In particular, we have from Eq.

formed in different ways in these regions to derive the result§76) for above parametera,/a,= yily!=0.13. Thus ex-

(54) and(64), respectively. Note, that in regidi) the “2D-

periments at different temperatures may give different re-

like” behavior of the system enables one to calculate correcsylts.

tions to SSWT in a regular way, e.g., by using thél Bx-
pansion in theCPN~! model.

One can see that SWT and SSWT vyield satisfactory re-
sults for T<0.6Tys and T<<0.8T\s, respectively. At

We have also derived the expressions for the magnetinigher temperatures the sublattice magnetization in SWT and

transition temperature Eq&5) and(77), which contain the
renormalized quantities, .= 2y, /v wherevy, . are the ex-

SSWT is still linear in temperature, so that the critical expo-
nent is Bgw=1, instead of the experimental one,

perimentally observablérenormalized interlayer exchange g.,,~0.33. Besides that, both theories give large values of
parameters at low temperatures ahe Tye, respectively, the Neel temperatureTae =672 K, Tred '=537 K. This
andy=1.1571 is the value of renormalized intralayer cou- fact is often not taken into account when treating experimen-
pling parameter which is weakly temperature dependental data. At the same time, TT gives the valfy,—454 K

Therefore these expressions have universal form, in agregghich is much lower than those in SWT and SSWT and the

ment with the scaling analysis. Unlike the corresponding remagnetization critical exponenrr=1/2. Thus the Tyab-

sults of the spin-wave approach@ee Sec. )| they contain
the terms of order of InlA/JJ’) and unity, which are

likov approximation seems to describe the experimental data
more satisfactorily. However, this approximation may be jus-

formally small as compared to the leading term of order oftified in fact only in the case of “classical” magnets with

In(Tﬁ,ée,/JJ’). However, the Inln terms result in a significant
lowering of Ty in comparison with the SSWT valy&0) at
not too large Ind/J’). The regular terms yield small correc-

tions only, so that one may expect that the higher-order termguantum effects at

in 1/In(T34/JJ") may be neglected.

The experimental temperature dependéhoéthe sublat-
tice magnetization in La&uQ, is shown in Fig. 1. For com-
parison, the results of spin-wave approximatiof®NT,
SSWT, and the Tyablikov theory; see Seg.dhd the result

Tnee>JS Besides that, TT has a number of drawbacks:
mean-field values of critical exponents, absence of crossover
from 2D-like to 3D behavior of magnetization, neglect of
high temperaturegn particular,
Tnee=Tc for the samdJ|).

The result of the M expansion to first order in i/ (65)
iS Tneer= 345 K which is considerably lower than in the Ty-
ablikov approximation and is in a good agreement with the

experimental valueTy&,=325 K. The spin-wave region ex-
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tends up to 300 K, and the crossover region from 320 tandA,~1. One may expect that, as well as in E(5) and
about 340 K; the critical 3D region is narro@bout 1 K. (77), the nonsingular terms will influence weakly the value
The results of the numerical solution of E§4) in the tem-  of the ordering point. These regular contributions may be
perature regions$i) and (ii) and the dependendé4) in the calculated for a ferromagnet within theNLExpansion in the
region (iii) turn out to be smoothly joined. One can see alsoSU(N) model(cf. Ref. 4. However, as discussed in the In-
that the result of the N expansion is most close to the troduction, this expansion gives poor results at not too large
experimental data and demonstrates a correct critical beha for d not too close to 2, so that only the “2D-like” region
ior. One may assume that higher-ordeN Korrections will  can be described satisfactory. The description of the 3D criti-
give a precise description of the experimental situation. Thusal behavior of a quasi-2D ferromagnet requires other meth-
we may conclude that using the Nl/expansion in the ods.

O(N) model improves considerably the results of standard

spin-wave approximations in the Heisenberg model. ACKNOWLEDGMENT
Recent experiments demonstrate existence of a gap for the
out-of-plane spin-wave excitatioffsin La,CuQ,, which is We are grateful to M. I. Katsnelson for stimulating dis-

assumed to be determined by the easy-plane anisotropy. Tlessions.
possible role of easy-axis anisotropy was also discussed, see,
e.g., Ref. 27. Therefore an extension of the present approach
to 2D systems with a weak anisotropy is of interest. The
results may be expected to be similar to those in the
quasi-2D case, since SSWT gives similar descriptions of Here we present a list of results for the polarization op-
both the types of magnets with small ordering temperature eratorII(q,q,,®,), Eq. (39) and the functionl(q,q,,w,)
The case of “classical” spins cannot be treated consisdetermined by Eq42) ata'?><T , and the asymptotic forms
tently in the continual limit since in this case the naturalof these functions. Due to inequality’><T, the possible
upper limit cutoff parametefwhich is the temperature in the values ofq,w, may be divided into two regions. The first
quantum cases absent, and the integrals are determined byegion is w,=0, q<T, while in the second region
the whole Brillouin zone. Therefore the continual modelsqg?+ w§>a, i.e., eitherw,=0 andq>a1’2 or w,#0 at ar-
may be used to calculate the critical exponents, but not thgjtrary q.
temperature dependence of magnetization in a broad interval |t may be checked that at<T andw,=0 the main con-
and the Nel temperature. tribution to I1 comes from the term witlw,= 0. After inte-

It would be also interesting to perform similar calcula- grating overk,k, with the use of the Feynman identitgee,
tions of thermodynamic properties for a ferromagnet. Thes g., Ref. 28we get

results should coincide with those for a antiferromagnet only
in the classical case. Unfortunately, the nonlineamodel TK, (1 dz 1
for ferromagnet has the Berry phase tefv¢w)do/dr in the 11(q,9,,0) = ZJ _
action (A is the vector potential of unit magnetic monopgle 2 Jo\z(1-2) Vz(1-2)9*+2a(q,q,)
see, e.g., Ref. 4. This term cannot be eliminated in the quan-

tum case and prevents constructing ths &kpansion. Due q<T (A1)
to the Berry phase term, the singular contributions for a

quantum ferromagnefl <JS) differ from those for an an-  wherea(q,q,) = o[ %>+ a(1—cogy,)]. At large q> a2 the

APPENDIX A: ANALYTICAL RESULTS FOR THE
FUNCTIONS II(q,q,,®,) AND 1(q,q,,®,)

tiferromagnet by the replacement functionII(q,q,,0) has a 2D form(cf. Ref. 12
|n(T2/85277|f,c)_>|n(T/’y|f,cS) (87) T 2q2 )
I1(9,9,,0)= =——=In—, <Q°<T. A2
(as well as in SSWT; see Ref. 15 aking into account only (9.9.0 2mq "o *=q (A2)
such terms, the expression for the Curie temperature has the
form (y/=J") In the opposite limit the form of functiohl (q,q,,0) changes

from 2D to 3D:
0

Te 2mpg -1
Te=4mpg (N=2)In7=+3In——=—+0O(1)
rs AT 1000, <a (A3
(88) T a2a(q,q)
or, in terms of the renormalized exchange parameter at the
Curie temperature, Consider now the cas#+ w?> a. Picking out the terms
0 . with m=0 andm= —n (if n#0) we have
Te=dmp] (N=2) "S- + 21— 27P3 +c9(1)}
= -2)In—= n———rpmr ,
T 7S TN-2)Tg » ) T el
89 q.4z,0n)= n q,wn),
( ) z 7N 27r(q2+wﬁ) qza qu n
where
(N=2)T¢ |¥N-2) P+ oi>a (A4)
7é=AyJ’[— (90) I o
4mps where the quantum contributidi, is given by
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T 1
Hqu(qawn): P

m#0 \/(wﬁ-i- q2+ Zwmwn)2+4q2w§1
wﬁ-&— %+ 2wmw;,

X arctanh
\/( wﬁ-‘r q2+ Zwmwn)2+ 4q2w2

(A5)

In all the further calculations we will need only the

asymptotic form ofl14,(q, w,) for >+ w?>T2. In this limit
we find
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I T qT T wi—¢?
qu(d @n) = 71'(q2-i-w2)3 2+w ;(q2+wﬁ)3'
0%+ w2>T2, (A11)

APPENDIX B: CALCULATION OF 1/ N CORRECTIONS
TO THE CONSTRAINT AT T<T

Consider briefly the calculation of the functiofs[Eq.
(44)] and F [Eqg. (45)] which determine, according to Eg.
(43), the corrections to the constraint to first order itN1/
First we introduce intermediate cutoff paramet€rand C’
determined bya'?’<C<T<27C’'<A and divide the re-
gion of summation and integration®+ wﬁ<A2 into four
regions: (1) w,=0, q<C, (2) w,=0, C<g<2wC’, (3)
wn#0, 0%+ w<27C’, (4) 2wC' <q?+ w2<A. Further we
denote the contributions fromth region toR and F as

qT 1
II W)= In + ,
o= 7o) "l 8 g wl
0%+ w2s>T2, (AB)
For w,=0 andq<T we obtain by analogy with the cal- R;(T,x;) andF;(T,x3).

culation ofII(q,q,,0) the result

- T 1 1 z
|(qqu!O)_ E q2—|— a(l_COS:]z) fO \/m

q°z(1—2)+ az(1—cosy,)

‘T zi-o+2Za@a 957
(A7)
and its asymptotic form
20° 3+cogy, y
'(q’QZ'O)_zwq‘* In—-————|, a<q’<T%
(A8)
In the region withg?+ wrzn>a we have
| To? | 2(0°+ wh)?
(q'q21wn)_2ﬂ_(q2+w2m)3 n qza
T 0p—3¢°=(g°+ wp)cog,
A (q2+ wﬁ)3
+1qu(q,@n), q+ wﬁ>a (A9)
with
T q?
qu(q wp) = 2

Tm#0 [(w2+q2+2wmwn)2+4q ]3/2

w2+ 9’4+ 2w,

X arctanh
\/(w +q +2wmwn)2+ 4q

T 9’ + 20 mown+ wn

Em;&o wrzn[(a)ﬁ+ q2+ Za)mwn)2+ 4q2w§1
(A10)

In the ultraviolet limitq?+ w2> T2 the following asymptotic

takes place:

In the first region we can use the expressions for the func-
tionsI1(q,q,,0) andl(q,q,,0) atq><T, Egs.(A1) and(A7),
and their asymptoticA2), (A3), (A8). Then

2c2 3+ ZXUﬁTl IN(2C% a)+x,;
n

RuTxo) =5 N 4aN " x
T
+mll(x(7), (B1)
where
f = dg, 1
1(x)=1], add _ 21| %+ 1—cogy,

19,920 - 1(q,9,0  3+2x, 6(q*°~1/2)
+ 2 2
11(q,0,.0) 29 In(29°%) + x5
(B2)
#(x)is the step function. In the second and third regions we

use the expressions for the functiord(q,q,0) and
1(9,9,,0) atg®>>a, Egs.(A4) and(A9):

T 3+2x;
C 4
27C’'  In(2T?% a)

T In(2T%a)+x5]’

AapgINT
"N(2C%Ta) +x,

Rz(T,XF):

—Nln

(B3)

n
T In(2T?%a) [4C' 1 I27TC’
—In

AN In(2Ta) + x| 3T ' 2 T |
(B4)

R3(T,XF):

where we have used the identity
IN(2T% @)+ x;=4mpsINT (B5)

which is satisfied in the zeroth order inNL/In the fourth
region we obtain
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N |2T2| NA 2T | NA A _T(d/2)T(2-d2)T*(d/l2— 1)
ATXe) = 3NN e, 39N "T6p, d= 2r(d—2) ’
2 2
4C In(2T /a) (BG) K(;l:zd_lﬂdlzr(d/Z). (C3)

37N In(2T%a)+x;° _ : ,
I'(x) is the Euler gamma function. Ad=2+¢ we find to

where we have used the asymptotic fortA§), (A11), and leading order ine
the identity(B5). After collecting allR; (i=1 ... 4) the in-
termediate cutoff paramete@ C’ are canceled and we find
the result(47) of the main text.

Analogously, we obtain the contribution from the first re-
gion toF in the form

2TK, 1

H(qao):qzl(qlo)zqu—s’ KZZE' (C4)

The constraint equation to first order inNLE(g. (43) takes

the form
1 In(2C%a)+x; e s
Fl(T,XF)ZNmi-HZ(X;), (B7) 1- gT " *K, 1_3 _2 _& nTlJr le+d?lg
Xo . N N g
where (C5)

Using the identity

1LO) 4Fdrdqz 1 1 ) _2

)= a = +e —
2\Ag N Oq q _7277 (q2+1_C0$Z)2 H(q,qZ,O) gT let+o 1, (CG)

) which is satisfied in the zeroth order ilNLAnd transforming
1 6(@°-1/2 (gg)  the logarithmic term in Eq(CS) into a power, we obtain
ﬁz IN(2g°) +x51°

o=(1—TYe/Ty 8y Pare, (C7)
Contributions from other three regions are also easily calcu-
lated: Boio=(1+1IN)/2+ O(1IN?¢). (C8)
1 AmpgINT The Neel temperature is determined by
Fo(T %)= N Min2c )+ (B9 2
Titen __° ____ZTPS (9
Neel " gK,(1—2/N)  N-2°
Fa(T.X5) = O[LIN(2T2f )], (B10) gKa(1=2IN)
This result coincides with the result of the RG analySis.
8 NA The RG result for the critical exponept reads
F4(T,Xoﬁ— ;erans (Bll) L L
. . ) =—|1+ —=|+0O(e). C10
Summing up allF; (i=1, ...,4) we find the resul48) of Pose 2 N—-2 (&) (C10

the main text. Thus one has to repladé—N—2 in Eq. (C8). Such a re-

placement is analogous to this in the renormalized classical
APPENDIX C: THE ORDER PARAMETER regime of Ref. 12 and may be justified by the calculations of
AND TRANSITION TEMPERATURE AT d=2+e¢ terms of order of M2, which we did not carry out. As dem-

In this appendix we consider the calculation of the sublat°nstrated in Rezf. 12 by calculations of analogous contribu-
tice magnetization to first order inNUin the space with the tons up to 1N this replacement should be indeed per-
dimensionalityd=2+¢. We will be interested in the terms formed. Since the denominator in E(C9) is of order of
of the leading order ins at not too small temperatures '+ the replacemenN—N—2 occurs already in the first-
TsJe U (which is an analog of the renormalized classicalOTder expression for the transition temperature, €3).

regime in the 2D cageso that only the contributions with According to Eq.(C7), two ][egirr]nes are possible in the
zero Matsubara frequences will be taken into account. Confemperature dependence of the order parameter. At
sider first the results for the functioi$ and|. Evaluating Y€ ~ <1 <Tne We have the spin-wave behavior

the integrals in Eqs(39) and (42) at an arbitrary space di- (N—1)TL+e
o=1-—.

mensionality 22d<4 (see, e.g., Ref. 28 for the procedure of (C1)

calculation of such integralsve have Ampse
For N=3 this result is analogous to the quasi-2D case result

11(q,0) = TlifiAd, (C1) (10) in the quantum spin case. At-1T/Tye<1 the tem-
q perature dependence of the sublattice magnetization changes
from the linear one to the power behavior with the critical
TKgA4(3—d) exponentB,, . .
1(0,0)= T’ (€2 The two temperature regimes above correspond to differ-

ent pictures of the excitation spectrum. In the low-
whereq is thed-dimensional vector, temperature regim€&< Ty We have from Eq(40) at quasi-
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momentag<T (only suchq give a contribution to thermo- transition point we have at an arbitragy [except for the
dynamic quantities the zeroth-order longitudinal Green’s exponentially narrow hydrodynamic regiop< (202/g) ]
function L

G (0,0=—, (C13
L. 07

Gi (q,O)—E (a.0= £q> " (€12 which corresponds to criticalnon-spin-wavg excitations.
As follows from Egs.(C12 and(C13), the difference of the
which corresponds to spin-wave excitations. Near the phasexcitation spectra is of the order sfing.
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