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The dynamics of domain walls in a model weak ferromagnet is shown to be governed by a suitable extension
of the relativistic nonlinealr model to account for the Dzyaloshinskii-Moriya anisotropy and an applied
magnetic field. Our analytical results are confirmed by a numerical calculation in a discrete spin model and
significantly amend earlier treatments. Thus we provide a detailed description of static domain walls and
subsequently study their dynamics. A virial theorem is derived that underlies the existence of a terminal state
and allows a simple calculation of the mobility at low fields for both Bloch anelNealls. We further
establish the existence of a critical field above which a driven domain wall is alwagis Weereas a bifur-
cation takes place below the critical value where the two types of walls behave rather differently. The terminal
states as well as the mobility curves are obtained for practically any strength of the applied field. Implications
for the phenomenology of domain walls in orthoferrites and in rhombohedron weak ferromagnets are discussed
briefly. [S0163-182@97)10017-0

[. INTRODUCTION to interpolate between the expected linear behavior at low
fields (v~ uh, wherep is the wall mobility and a limiting
Weak ferromagnet§/VFM’s) are basically antiferromag- velocity (v~c) in the opposite limit f—o). Formula(1.1)

nets (AFM's) in which a small permanent magnetization shows no sign of a critical field but is in reasonable agree-
arises thanks to an antisymmetric exchange interaction dispent with experimental dath.
covered and studied by Dzyaloshindkand Moriya? An The actual picture in, say, YFe@ more involved in that
early account of the main properties of weak ferromagnetgq (1 1) provides only a rough envelop of the experimental
may be found in the review article of Morijavhile a recent ¢\ e "Tha Jatter is interrupted by at least two plateaus in the

book' focuses on the dynamics of topological magnetic Soli~yiciniv of y~4 and 7 kmi/sec which are identified with the
tons such as domain walls.

At first sight, it is natural to assume that the situation isvelocities of Ior}gitudinal and transvgrse sound and suggest a
similar to that of the extensively studied ferromagn¢fit) res.onan't coqplmg between magnetic 'degrees O.f freedom and
domain walls where the essential dynamical features are Ca&}ttlce_ vibrations. Such magnetoelastic ano_malles are absent
tured by an analytical solution derived by WalReWhen a " (_)rdl_nary ferromagnets because the maximum quker ve-
FM wall is subjected to an external field, it reaches a locity is usually smaller than the speed of sound._ Since the
terminal state with constant velocity=v(h) for field Pure WFM wall dynamics already confronts us with a non-
strengths below a certain critical valing, but undergoes a {rivial problem, magnetoelastic couplings will be neglected
complicated evolution foh>h,,. A related fact is that the in the present work but could be included on a future occa-
maximum velocity achieved by the wall in the regiem  Sion.
<h,, is typically small, of the order of a few hundred meters ~ The semiempirical relatioiil.1) may be thought of as a
per sec. Although important boundary effects in ferromag-Jelativistic extension of the linear mobility relatian= wh.
netic films render the Walker solution inapplicable in its de-Indeed all previous attempts at a theoretical derivation of Eq.
tails, the overall picture is essentially correct and has beefil.1) were based on a phenomenological continuum model
the main source of intuition for many refinements thatthat is a generalization of the relativistic nonlineamodel?
followed® On the other hand, our recent study of AFM domain walls

However, experimental studies of WFM wdllsave re-  suggests that some tricky issues arise in the derivation of a
vealed a significantly different dynamical behavior; no tracecontinuum approximation. The first objective of the present
of a critical Walker field has been found and the Observeq)aper is then to repeat the ana|y5is of Ref. 7 in the presence
wall velocities are typically much greater than those encounyf the Dzyaloshinskii-Moriya anisotropy. We shall find that
tered in ferromagnets. Instead of a Walker maximum Ongeg|ation (1.1) survives in a subtle and interesting way but it
observes a limiting velocity that coincides with the phase certainly falls short of explaining the whole story. For ex-
velocity of the magnons associated with the underlying a”ti‘ample, it is tacitly assumed in the work reviewed in Ref. 4
ferromagnetic exchange interaction. As a consequence, thgat the terminal velocities of driven Bloch and élavalls
limiting velocity is rather high, reaching the value  gre given by two independent copies of relatidrl) distin-
~20 km/sec in the most typical example of an orthoferritegyished only by the respective mobilities. Instead, we find
that exhibits weak ferromagnetism (YF§O One may then  that only Nel walls are described by the simple relativistic

invoke the simple formula formula (1.1) whereas the mobility curve of Bloch walls is
significantly different. Nevertheless, a critical fidld exists

- kb (1.1  above which a driven Bloch wall is dynamically converted

V14 (uh/c)? into a Neel wall. Aboveh, both types of walls are described
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by a single mobility curve of typ€l.l) applied with a mo- - 1 2 3 4
bility w appropriate for Nel walls; see Fig. 9 at the end of oA v N oA v A o
the paper. 1 2 3 4 5 6 7 8

In view of the great diversity as well as crystallographic =
complexity of realistic weak ferromagnets, it is useful to de-

velop a simple microscopic model that entails only the es- a b a b a b a b
sential features of the dynamics. In a sense, our aim hereisto  o—a v A o0 v 04 o0y 040
obtain the analog of the idealized Walker solution. Hence, in
Sec. Il, we introduce the simplest discrete spin model that
embodies the main interactions present in a typical weak
ferromagnet. The model is then used to calculate the profile ™2 b ma b a b ma b
of static domain walls by a relaxation algorithm applied di- O—A—O0—y—O0—A—O0—v—o0o—4 v A—0
rectly on the lattice. The calculated domain walls are repro-
duced very precisely by analytical solutions derived within
the continuum approximation worked out in Sec. Ill. The a b a b -a b -a b
same section lays down the foundation for a complete study N R N A o
of the dynamics of driven domain walls, which is carried out v v -y
in Sec. IV. The main conclusions are summarized in Sec. V
and some calculational details are relegated to the Appendix.

-a -b -a -b a b a b

Il. THE DISCRETE SPIN MODEL O—A OO0 A0 —vyO0A—O—vO04

In order to obtain a manageable theoretical framework we

_conshl_dehr a SmCttI.y (_)ne-dlmenlsmnc(deD) dls;:]re_te Sﬁm mo_:iel the dimerization proces@irst row), of the two degenerate ground
In Which Magnetic 1ons are placed on a chain wnose sites arsqates(second and third rowsand of the two typesantikink and

labeled byi=1,2,...,A. The spin Hamiltonian consists of kink) of prototype domain wallgfourth and fifth rows:
three terms,

FIG. 1. lllustration on a short chain of labeling conventions and

W=We+Wpy+ Wa 21  Wweak ferromagnets are characterized by a sixth-order single-

. E oM A _ ( ) ~ion anisotropy in the basal plane which would technically
corresponding to the exchange, Dzyaloshinskii-Moriyacomplicate the theoretical development. We thus prefer to
(DM), and single-ion anisotropy contributions. The exchangeomplete our model by considering instead the most general

interaction is taken to be antiferromagnetic, i.e., rhombic anisotropy
We=J2 (S-S, (2.2 - 124 0(S2)24 gu(S)2
i Wa=7 2 [0:(Sh7+0o(S)*+0x(S))7], (24
with J>0, and we consider an antisymmetric DM interaction 1 2 ) .
of the form whereS!, S, andS® are the Cartesian components of spin
along the principal axes armg},, g,, andg; are anisotropy
i1 constants.
Wpm= EI (=1)"7""D-(SXS 1), (2.3 Actually a rhombic anisotropy is suitable for the study of

orthoferrites such as YFgOBut a strictly 1D model is not

where D is a vector of constant direction and magnitudedirectly relevant in this case because the interacting magnetic
D. A microscopic explanation of the sign alternation presenfe ions form a 3D latticé® Recall, however, that domain
in the sum of Eq(2.3) may be inferred from the discussion walls are 1D structures embedded in a crystal in such a way
of Moriya® and is crucial for the occurrence of weak ferro- that substantial variations of spin occur along a single direc-
magnetism. Lack of sign alternation would instead lead to dion. Therefore, when a continuum approximation is appli-
spiral spin state. cable, domain walls are effectively described by a differen-

A strictly 1D model describes fairly well rhombohedron tial equation that is formulated in terms of a single spatial
weak ferromagnets such as Mng®@here the magnetic Mn variable in addition to time. In such a context all memory of
ions interact significantly only along the crystallographic the original lattice is reflected in appropriate renormaliza-
axis® Between any two successive Mn ions on thexis tions of the microscopic parameters by simple functions of
there exists a CQcomplex such that the relative orientation the coordination number. Hence we shall assume that the 1D
of the triangle formed by the three oxygen atoms alternatediscrete spin model applies to the domain-wall dynamics of
at any two successive bonds, in direct correspondence witbrthoferrites, with due caution on the determination of the
the sign alternation in Eq2.3). This example suggests the relevant microscopic parameters. Some indirect conclusions
more abstract notatiSremployed in the first row of Fig. 1 to will also be drawn for rhombohedron weak ferromagnets.
illustrate a short chain where open circles stand for the mag- Within the limits of the 1D model the chain direction need
netic ions and ugdown) triangles located on the bonds in- not coincide with any of the principal axes used for the
dicate positive(negative signs in the sung2.3). specification of the anisotropy constants in Ej4). In other

It would be natural to pursue the discussion of the abovevords, spin rotations act as an internal group without specific
example through to its conclusion. However, rhombohedromeference to a coordinate system in real space. In order to
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keep with the interpretation alluded to in the preceding para- a b

graph we will adopt the real-space conventions commonly o4 o

used in discussions of orthoferrifdS but the direction of the 3 3
chain will be left arbitrary. We introduce the unit vectors
e;=(1,0,0), &=(0,1,0), ande;=(0,0,1) along the three
principal axes and take the constant vedioto point along
the second axisD=De,. Spins will be treated as classical 5 5
vectors with constant magnitudeszz s?, which is a simple 1 n 1
multiple of the Planck constant; e.g= 3% for the Fe ions in
YFeO,. Because of this constraint one of the anisotropy con- 3 3
stants may be set equal to zero, egy+ 0, without loss of
generality. The remaining constangs and g; are often
taken to be equal and positive, a choice that leads to a
uniaxial anisotropy with the easy axis in the first direction. n
The restriction of equal magnitudes will not be made in the 3 5 1 1
present work but we will assume for the moment that both m

0, and gy are positive so that the first axis is still the easy
axis.

Thus we are ready to address the first important question F|G. 2. The two degenerate ground states in the absence of an
concerning the nature of the ground state. If the DM anisotexternal field, which are related to each other by the parity trans-
ropy were absentl{=0) the minimum energy configuration formation (a,b)—(—a,—b).
would be the usual N state with spins polarized along the
first axis. ForD+#0, the ground state is also achieved with preted as the magnetization and is seen to assume a nonva-
spins alternating between two distinct values. In the notatiomishing value, hence leading to weak ferromagnetism.
of Fig. 1 all spins to the left of an up triangle take the value The two types of ground states described above are shown
A and those to the right of such a triangle the vaBieln  schematically in the second and third rows of Fig. 1, in
terms of the corresponding unit vectas A/s andb=B/s  preparation for the definition of the prototype domain walls
the energy per site measured in units &, i.e., w  given in the fourth and fifth rows of the same figure. By
=W/s?JA, is given by convention, these configurations will be referred to as anti-
kink and kink and correspond to the two distinct ways of
connecting the two degenerate ground states between the two
ends of the chain. More general domain-wall configurations
(2.5 may be constructed on long chains by retaining the
asymptotic characteristics of the prototype walls while
choosing the intermediate spin values more or less at ran-
dom.

— 1 92 2,,2,,9 2 >

The sign alternation present in E€R.3) is crucial for the
validity of Eq. (2.5) and for the implied repetition of the pair
'Eﬁ,eb)tvicl)og?s:irrlwitctt]:rgrt].etlj\lgvﬁrtlhsoﬁ:‘}e?;itis())rz ?rzrgvrcrlwziend |E)iy 5 However our aim here is to obtain true domain walls that
which lie in the(13) planc-lzO and areg related to each othegr}by’ar(.a local minim_a of the energy functipnal and are thus stable
the parity transformation&b)— (—a,—b). In both cases spin configurations, even though th_e|r energy is greater than
h L b ' : the energy of the ground state. It is then important to con-
€ energy 1S given by sider the dynamics associated with the Hamiltoniarl)—
(2.4). The equation of motion for the spin vect§rtreated as

D
W= —C0S2— 3 sin25+ 2—3 (1—cos%), (2.6)  classical may be put in the standard Landau-Lifshitz form
and the canting anglé is found by minimizing Eq(2.6) to ﬁzsx = Szzsz (2.10
obtain ot i )
where the effective fieldF; is given by the general relation
tan25= m (27) W
Figure 2 also depicts the two vectors Fi=- E (213
1 1 or, more explicitly, by
mzz(a+b), n=§(a—b), (2.8 .
Fi=—3(S41+S-0)—(—1)'DX(S41+S-1)
which will play a special role in the following. These vectors
payasp 9 —0:S'e— 9,576~ gsS’es. (212

may be expressed in terms of the canting angle as

Our first concern is to search for static solutions which
satisfy EqQ.(2.10 with the time derivative absent. It is a
where the = choice corresponds to the two degeneratestraightforward matter to verify explicitly that the ground-
ground states shown in Fig. 2. The vectormay be inter- state configurations may be viewed as the simplest static

m= *(0,0,si¥), n==*(c0s5,0,0, (2.9
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solutions. Nontrivial solutions are difficult to obtain analyti- exercise. Anticipating the discussion of the continuum ap-
cally but their existence is guaranteed by the following arguproximation in Sec. Ill we search for variables that may pos-
ments. Note that the prototype domain walls do not solve Egsess a smooth continuum limit at least in some regions of the
(2.10 thanks to the obstruction created at the interf§€his  parameter space. Thus the=2N sites of the chain are
situation is slightly different from the case of pure AFM grouped into dimers labeled by a sublattice index
walls studied in Ref. §.Therefore, if a prototype wall is =1,2,...,N as illustrated in the first row of Fig. 1. This
somehow created, it will evolve according to .10 in a mode of dimerization is not unique in that every dimer con-
complicated precessional mode. Nevertheless, if some dissiains a bond that carries an up triangle. Discussion of the
pation is at work, it will eventually relax in a spin configu- dual dimerization in which all dimers contain down triangles
ration that solves the static equation and is a local minimunis deferred for the moment. Now it is convenient to relabel
of the energy functional. This minimum inherits the topo- the two spins contained in the&h dimer according to
logical structure of the prototype wall and is thus distinct
from the absolute ground-state minimum. Sa-17A0s $.=B,. (2.14

The preceding rema_rks also s'uggest a simple numerica\lhe advantage of the new spin variablkes andB,, is that
methoc_i for the _calculatlon_of stgnc domain Wal_ls thr_ough dcach one of them is expected to be smooth as the iadex
relaxation algorithm described in Ref. 7. At this point one

‘ ity th : loved in th ical oves from one discrete value to the next. An even more
mus.spemfy € parameters employed In the numerical Calz,, enjent set is provided by the two linear combinatfons
culation. The spin magnitude and the exchange constant

J can be scaled out of static solutions and the only relevant

1 1
parameters are the dimensionless ratios formed by scaling Mo =52 (A+B,), n, (A,—B,) (219

the DM and single-ion anisotropy constants with the ex- 2s

change constant. These ratios are chosen to belong to a pahich satisfy the constraints

rameter regime that is appropriate for orthoferrites but no

special effort is made at this stage to select constants that m,-n,=0, mi+n;=1. (2.19
correspond precisely to a specific substance. Hence we adopt . o )

the valuesD/J=102, g;=0, g,/J=10"4=g,/J in all nu- The idea is simply to presgnt the numerical data for the
merical calculations and consider other possibilities on the/ariables m, and n, as histograms calculated ai
basis of analytical solutions derived in subsequent sections:1,2,...,N. As it turns out, these histograms approach

The small canting angle calculated from H&.7), namely continu_ous curves at small values of the pz?\ramet_'mtro-
25~0.57°, is typical of orthoferrites. To complete the dis- duced in Eq.(2.13. We may then drop the index in the
cussion of parameters we introduce the equivalentgget Vectorsm andn and plot their three components as functions

=0 and of the position variable
B \/9\3 L 92 o D s E=2e(a—ag), a=12,... N, (2.17)
E= N P g3’ &’ (2.13 joining discrete points in the graph by the graphics routine.

Here a( is an arbitrary constant that sets the origin of the
whose theoretical significance will become apparent as theoordinate system. Nevertheless, it is convenient to set the
discussion progresses. In our standard numerical examplerigin at the center of the domain wall which coincides in the
e=10"2, p=1, andd=1. present calculation with the center of the open chain and

The numerical calculation was performed on an operhenceay=(N+1)/2. The resulting graphs are shown in Fig.
chain with an even total number of sitds=2N whereN is 3 and make it apparent that a smooth continuum limit has
also even; these are technical assumptions of no great sigrdeed been reached for the small vaitre 102 used in the
nificance and will be commented upon at later stages. Waumerical calculation.
consider only the antikink configuration illustrated for a It is clear that bottm andn exhibit a more or less stan-
small (A=8) chain in the fourth row of Fig. 1, the discus- dard domain-wall structure. A closer look at the numerical
sion of the kink being completely analogous. The initial data reveals that the vectars andn quickly approach con-
(prototype wall was prepared by assigning the pair of spinstant values far from the wall center which are in excellent
values @,b) throughout the first half of the chain and the agreement with the ground-state valii2®) calculated with
pair (—a,—b) on the second half. This configuration was a canting angles derived from Eq.(2.7). Also note that the
then used as initial condition in the relaxation algorithm ofcomponents oim and n along the second axis vanish. In
Ref. 7 applied for an effective fiel&; now given by Eq. other words, spins are confined in tf8) plane in order to
(2.12. The resulting relaxed state is a static domain walloptimize the energy cost imparted by the DM anisotropy. In
whose interface spreads out tdlalf) width given roughly the context of orthoferrites such configurations are called
by 1/c=100 sites, wheree=10 2 is the parameter intro- ac or Bloch domain wall$.
duced in Eq.(2.13. To avoid interference from the bound-  The numerical calculation just presented accomplishes the
aries the total number of sites must satisfy the inequality main goal of this section but its content cannot be fully ap-
>1/e. In our calculation we used a long chain with preciated before we tie some loose ends. First we return to
=5000 sites in which domain walls fit quite comfortably. the use of an open chain with an even total number of sites

Because of the implicit antiferromagnetic discontinuity of A=2N whereN is also even. Once a domain wall has been
the spin values as one moves from site to site, presenting thealized on the open chain, removing one or more spins from
explicit results in a concise fashion is in itself an interestingeither side and reiterating the relaxation algorithm would af-
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dimerization. The best way to illustrate the question is to
present thesamenumerical data as those employed in Fig. 3
in conjunction with the dual dimerization where all dimers
contain down triangles. Specifically, we simply omit the two
end points of the chain and consider the dimé¢es),
(45), ..., (A—2,A—1) labeled consecutively by an integer
B=1.2,... N—1. We then construct the fields

(@)

1 1
mﬁ=2_3(82B+SZB+l)1 nﬁ=2_3(323_523+1),
(2.18

which are the direct analogs of E@.15 in the dual dimer-
ization scheme. We again consider the histogramsnigr
andng by plotting the data as functions of the variable

&E=2¢(B—By), B=12,... N—1, (2.19

£ with discrete points joined smoothly through the graphics

routine. Here we may set the origin of the coordinate system

: at the center of the wall by choosing the arbitrary constant as

(b) Bo=N/2. The resulting curves are shown in Fig. 4 and
: should be compared to those of Fig. 3.

The observed significant differences between the two fig-
ures are at first disturbing. However a closer examination
reveals that these differences are quite natural and, indeed,
necessary for the consistency of the entire calculation. For
example, the fieldh has flipped sign and now appears as a
kink configuration in contrast to the antikink of Fig. 3. On
the other hand, the asymptotic valuesnofandn must now
be given by

-5

1 1
-01 mzz(b+a), nzi(b—a), (2.20

: instead of the valueg2.8) in the original dimerization.
-5 0 5 Therefore, the necessity of a sign flip in the fieldhecomes
5 self-evident at least in the asymptotic region. The same ar-
gument suggests that the asymptotic values of the field
FIG. 3. The profile of a static domain wall calculated numeri- must remain the same, as actually observed in Figs. 3 and 4,
cally within the discrete spin model. The numerical results are pregr that the kink(antikink) character ofm is preserved_ The
sented using the standard dimerization scheme discussed in the tgxkt statement could have been anticipated on physical
and are very accurately .reproduced by thg continuum solutior@rounds, for a nonvanishing in the ground state signals the
(3:30 and (3.31 for a static Bloch wall applied for=10"%, d  ccyrrence ofweak ferromagnetism and cannot depend on
=1 andk=—1=v. the mathematical process of dimerization.

Nevertheless, no such simple explanation of the observed
fect the wall only mildly provided that >1/e. In particular,  curious differences around the wall center can be given until
the wall need not be located at the center of the chain, aa complete analytical solution is obtained within the con-
long as it stays sufficiently appart from the end points, nottinuum approximation in Sec. lll. At this point we merely
does its center have to coincide with the middle of a bondstate that the answer to any physically relevant question is
On the contrary, when we study the dynamics, we shall exindependent of the specific mode of dimerization, provided
tensively deal with domain walls that glide through the lat-that the mathematical framework is not overinterpreted. For
tice. instance, ifm is interpreted literally as magnetization, one

The possible occurrence of interesting surface statemay wonder whether Fig. 3 or Fig. 4 will describe the results
around the end points of the chain, which may or may not bef an actual measurement. In fact, either figure can be used
related to domain walls, is a separate issue that is not studieak long as experimental resolution is such that spin values
in the present paper. This issue has recently attracted considan be measured at every site. Otherwise, one should expect
erable attention within the pure AFM model applied to ato observe a fuzzy magnetization curve around the wall cen-
Fe/Cr superlatticé>'? One can only expect that adding to ter, which becomes progressively sharper as one moves away
the model the DM anisotropy would lead to a more involvedfrom the wall where the fielan attains definite values that
picture. are independent of the mode of dimerization.

Yet we must address an apparent “ambiguity” that is not A number of physically relevant questions will be asked
related to the size of the chain but rather to the process aind answered unambiguously in the continuation of the pa-
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figuration on the reduced chain is now a domain wall with
total moment—s. But a wall with total momens also exists

on the reduced chain and is again obtained by reversing the
signs of all spins. Therefore for any finite chain with an even
number of sites domain walls develop a net momerg
while the moment of the ground state vanishes. The last re-
mark is pertinent to the possibility of removing only one spin
from either side of the chain. The resulting spin configura-
tion carries a vanishing total moment, but the ground state of
the reduced chain with an odd number of sifes 1=2N

—1 is now doubly degenerate and carries a moment either
s or —s. Hence the total moment of the domain wall again
differs from that of either ground state by an amoug or

s.

The above examples strengthen the earlier conclusion that
the tiny wall moment=s is not localized and is to some
extent elusive. Therefore such a moment is hardly relevant
for macroscopic properties, such as those discussed in the
present paper, but could be important in, say, a semiclassical
(b) guantization of pure AFM domain walls in a quantum anti-

ferromagnetic chaif® The process of dimerization, or any
01 ¢ other substitute, is an inevitable fact of life in the derivation
of a continuum approximation for antiferromagnets. It is then
3 important that the continuum model derived in the following
section cope with apparent paradoxes, as is discussed further
1 after Eq.(3.33.

Ill. THE NONLINEAR o MODEL

The numerical calculation of static domain walls in the
; discrete spin model makes it clear that a suitable continuum
-0t r approximation should be possible to obtain in some region of
| the parameter space. The appropriate region is actually sug-
gested by the specific choice made in Sec. Il. Indeed a rela-

=5 0 5 tively simple continuum model emerges for parameters such
5 ‘ thatg; =0 and
FIG. 4. The same numerical results as those of Fig. 3 now D
presented using the dual dimerization scheme and very accurately — % %<1. (3.1
reproduced by the continuum soluti¢®.30 and(3.31) applied for 3373

£=10"2% d=-1, andk=1=v.
. o . These inequalities are generally satisfied in realistic weak
per. This section is concluded by recalling an example oi

h on th d within th q erromagnets and will be invoked in the following without
such a guestion that was posed within the pure AFM model, cention. We must also consider the effects of an externally

in Ref. 7. At smalle, AFM domain walls acquire a nonvan- e field as well as dissipation. The latter is taken to be
ishing total magnetic moment equaltos with respectto the ¢ ihe standard Landau-Gilbert form and E2.10 is further

ground state. However, it is impossible to ascertai.n W,her%xtended to include the effect of a uniform magnetic figld
the moment of a pure AFM wall is actually located, in view

of the fact that the local values oh are sensitive to the

e T e IS IS
mode of dimerization; in this respect, the result of Ref. 7 was —+ 9| SX—| =S X (Fi+gomoH), (3.2
overstated. Nevertheless the total moment is unambiguously at at

defined on any finite chain irrespectively of the mode of h is the dissipati 2 is th
dimerization, the latter being only a technique for obtaining a/"€'€ ¥ IS the dissipation constan§y~2 Is the gyromag-

continuum approximation. Specifically, let us return to a do-N€tiC ratio, andu,=e/2mec is the Bohr magneton divided
main wall of the type shown schematically in Fig. 1 of Ref. by the Planck constant. In our conventions the combinations

7 on a long finite chain with an even number of sites ©Of Parametersy andgouoH/sJ are dimensionless and may
—2N. Such a wall carries a total momestat sufficiently assume any values within the discrete spin model. However,

weak anisotropy, whereas a wall with total momens can for the validity of a continuum description, inequaliti€% 1)
be obtained on theamechain by reversing the signs of all must be supplemented by

spins. Now suppose that one removes both the leftmost and

the rightmost spin of the original configuration, a move that s JoioH <1 3.3
amounts to reducing the total moment by. Z’he spin con- LAY ' '
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which are sufficiently nonstringent for all practical purposes. 1 1
More convenient rationalized quantities are defined by m= > (A+B), n= 7 (A-B), (3.9
A= 28y h= JoroH (3.4  and introduce the rescaled time variable
g’ 2esJ’ '

and extend the set of parameters introduced in Bd.3. T=2esJt (3.10

Inequalities(3.1) and(3.3) then read We further recall the set of parameteys=0, €, p, andd of
e,ep,ed e\, eh<1 (3.5 Eq. (2.13, which we extend slightly' by c.iefin.ing a \./ec'tdr
N o . whose magnitude is equal @ and its direction coincides
and are conditions for the validity of the continuum modelyith the DM axis d=de,), and the rationalized dissipation
derived in this section. constant\ and fieldh of Eq. (3.4).

The continuum model is derived by a method already em- |p, the strict continuum limim andn satisfy the reduced
ployed in the simpler context of Ref. 7. We adopt the dimer-constraints

ization scheme of Fig. 1 and again defer discussion of the

dual dimerization. The Landau-Lifshitz equatit$2) is then m-n=0, n?=1, (3.11
rewritten as a system of two coupled equations for the sub-
lattice spinsA, andB,, introduced in Eq(2.14): m is expressed entirely in terms ofas

A, A, e _

ot T Y AaX | = AaX (FatGoroH), m= 3 [—n"+(nxn)+(nxd)-nx(nxh)], (312

(3.6
B, B, and the fieldn satisfies the differential equation
at +y BQXT :BaX(Ga_FgOILLOH)v

o ) nX (f+xn)=0, 3.13
where the effective field, andG, are given by
where we have separated the dissipative term and the effec-
Faz _‘](Ba—l+Ba)+DX(Ba—1+Ba) tiVe f|e|df reads

- 91Ai91_ ngiez_ gsAies ,

(3.7 f=n—n"+2(hxn)+(hxd)+(n-h)h+(n-d)d
Ga: _‘](Aa+Aa+l)_DX(Aa+Aa+l) +p2n292+ N3€3. (314)
1 2 3
—01B.8.-0,B,8—093B,6;. The dot stands for differentiation with respect to the time

A sign alternation is no longer present in the DM contribu-Variable 7 of Eqg. (3.10 and the prime with respect to the
tions but its effect has been correctly accounted for in EqsSPatial variable¢ of Eq. (2.17. It is understood that the

(3.7 in relation to the specific mode of dimerization. strong inequalitie3.5) are enforced and terms of ordef
The main assumption supported by the numerical data i§"d higher have tgeen ”eglec_ted,- ,
that the sublattice spind, and B, approach smooth con- Therefore the “magnetization’m may be viewed as an

tinuum limits A=A(&) andB=B(¢) where¢ is the discrete auxiliary field and the dynamics is gover'n(.-:‘d'mainly by Eq.
variable (2.17) that becomes continuous in the limit—0. (3.13 at the heart of which lies the relativistic nonlinear
The dimensionless variableprovides a measure of position Model. The latter corresponds to the first two terms of the
along the original chain. The actual distance on the chain i§ffective fieldf which originate in the pure antiferromagnetic
given bya¢/s wherea is the physical distance between two interaction. The fifth and sixth terms amount to a redefinition
magnetic ions. However the lattice constanwill not be  ©f the anisotropy constants due to the applied field and the
used in any stage of the theoretical development except whe interaction. The third term it is special in that it breaks
quantities such as distance, velocity, etc., will have to bd-Oréntz invariance at nonvanishing field, whereas the term
translated in physical units. Thus we make the replacemenfd1 d) introduces a direct coupling between the applied field

A,—A andB,—B in Egs.(3.6) and(3.7) together with and the DM anisotropy. ,
In order to facilitate a direct comparison to the early work

1 it is also useful to derive the effective field from an action
Aar1—A+(2e)A'+ 5 (2e)°A, principle,
(3.8
1 _ 0A
B.-1—~B~(26)B'+ 5 (26)78", f=== 319

where the prime denotes differentiation with respect.to where A is the action
Subsequent steps of the argument differ from those of
Ref. 7 only in the length of the required algebra and will be
relegated to the Appendix to avoid obscurring the simplicity A:J L dédr 3.1
of the final result. Let us consider the continuum analogs of
the fields(2.15), i.e., andL the corresponding Lagrangian density:
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L=%(hz—n’2)+h~(n><h)—(h><d)-n m=g[—n’+d(n><e2)] (3.20

- ; [(n-h)2+(n-dy2+pn2nZ. @17 o

nxf=0, f=—n"+(d’+p?)n,e,+nze;. (3.21)
This result agrees for the most part with E8.30 of Ref. 4
(restricted to an antisymmetric DM interactjonith the im-
portant exception of the crossed tera(hxd)-n which is
absent in the above reference; so is a parity-breaking gradi-
ent term in Eq.(2.28 of the same reference. It should be f= 5_]: (3.22

It proves useful to rewrite the effective fieldn the abstract
form

mentioned here that the possible existence of a parity- on’
breaking contribution in the fieltch had been anticipated on
symmetry ground$ but such a possibility was apparently
overlooked in the literature for a long tinfé2 This contri- L
bution is sensitive to the symmetry of the lattice and may be _ = 2 2. 23024 02
special to the model considered here. But it should also be =3 j [+ (d™+ p)nz n3Jdé. 329
clear that the crossed terrhXd) in the effective fieldf is . o _
not related to the parity-breaking contribution and its conseRResolving the constraimt®=1 by the standard spherical pa-
quences are more drastic for the dynamics of domain walldametrization,
The implications of these differences will be discussed in the . . )
following as the need arises. n;=sin® cosP, n,=sin@ sin®, nz=coM,

Before proceeding with detailed applications of the de- (329
rived continuum model we must comment on the rational-

where F is an energy functional given by

ized physical units employed throughout this paper. The spir%ll(aldS

magnitudes carries dimension of actiorsJ of frequency, 1

and s2J of energy. The constants and J as well as the F== J [0'2+siPOd 2+ (d?+ p?)

lattice constant do not appear explicitly in the dynamical 2

equations which are formulated in terms of the dimension- X sirf® sir?® + coLO |d¢, (3.25

less ratios, p, d, \, andh. In particular, the spatial coordi-
nate¢ of Eq. (2.17 and the time variable of Eqg.(3.10 are  and static solutions are stationary pointsfofith respect to
both dimensionless. A related fact is that the “velocity of ® and®. Hence we are led to the system of ordinary differ-
light” associated with Eq(3.14) is equal to unity. Recalling ential equations
that the actual distance on the chain is givendsye and
taking into account the definition of time in E¢.10 we O"+[1—P'?—(d?+ p?)sirfd]cod sin® =0,
conclude that velocity is measured in units of (326
(SiIfOd')" =(d?+ p?)sirf® cosb sind.
c=2as)], (3.18

Bloch domain wallsare confined in thé€13) plane and
which coincides with the phase velocity of magnons in thethus satisfy the simpler system
long-wavelength limit of the underlying pure 1D antiferro-
magnet and also provides an expression for the limiting ve- ®=0, O"+coP sin®@=0, (3.27
locity ¢ discussed in the Introduction. On this occasion, we )
wish to return to our earlier remarks concerning the use ofvhose solution reads
the 1D model in relation to orthoferrites. The rationalized
continuum equations of the field for the description of
domain walls within the 3D crystal will have the same form
as those derived above but the interpretation of constants will . ) )
be slightly different. For instance, the limiting velocity is Where the “kink number”« and the “polarity” v are given
given more generally by by

- k=*1, v==1, (3.29
c:2asJ\[§, (3.19

taken in any combination. Therefore the vector
=(ny,Nn5,n3) is given explicitly by

sin® =k tanhé, coPB = (3.28

cosk’

wherez is the lattice coordination number.

As a first application of the continuum model we consider
the derivation of static domain walls at vanishing field. One ny=« tant,
may then neglect field-dependent terms as well as time de-
rivatives in Eqs.(3.12—(3.14) and further insert the special and the corresponding expressions fioe (m,,m,,m3) are
form of the vectord=de, to obtain calculated from Eq(3.20 using as input Eq(3.30:

n2:0, n3 (33@

~ cosk’
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T
M=~ 5 costE | coste 79
m2:0,
& 14
m3:§tanh§ E"‘Kd . (3.3)

Applied for e=10"2, d=1, andk=—1=v the above
continuum approximation is found to be graphically indistin-
guishable from the numerical solution of Fig. 3. A good
estimate of the relative accuracy is already given by th
asymptotic values of the field8.30 and(3.31) evaluated at
E=*o0:

m(*o)==*x(0,0,ed/2), n(xo)==+x(1,0,0.
(3.32

For the specific numerical example, E@3.26 yields
m(=*=)=%(0,0,0.005) andn(*«)=3(1,0,0) which are
consistent with the accurate values given in Eq9). More
generally, for parameters satisfying the inequalit®4), the
canting angle of Eq.(2.7 may be approximated by
~D/2)=¢ed/2 and EQq.(3.32 is consistent with Eq(2.9)
applied for si~6 and cog$~1. An analogous statement of
relative accuracy holds true for all values &€f

We are now in a position to clarify the dimerization am-
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speaking necessary and is probably unattainable on lattices
whose symmetry allows the appearance of parity-breaking
gradient terms? This digression is concluded noting that the
dimerization process becomes more intricate in higher-
dimensional lattices, as discussed in a forthcoming article
on the dynamics of topological solitons in 2D
antiferromagnet$®

We may then return to the standard dimerization scheme
of Fig. 1 to which we will consistently adhere in the rest of
the paper. An immediate dynamical consequence of the rela-
tivistic invariance of Eq(3.13 at vanishing field and dissi-

é)ation is that domain walls moving with a constant velocity

v<1(=c) can be derived by elementary means. For a freely
moving Bloch wall the fieldh is obtained simply by a Lor-
entz transformation of the static soluti¢®.30):

n,=« tantu, n,=0, ngzm, (3.39
where
E—vrT (3.39
u= . .
Ji-v2

The magnetizatioom is then computed from Eq(3.12
where the first three termigradient, dynamical, and DMare
now all important and the fourth term is absent at vanishing

biguity discussed in Sec. Il. Had we derived the continuunfield:
approximation using the dual dimerization centered around

down triangles would simply amount to the replacement

d— —d in Egs. (3.12—(3.14. Therefore the numerical re-
sults of Fig. 4 should also be predicted by E¢&30 and
(3.31) applied ford= —1 and for some suitable choice of the
kink number and polarity which are still free to take the
valuesk==*1 and v==1 in any combination. It is not

difficult to see that Fig. 4 is reproduced very precisely by

applying the continuum solutio8.30 and (3.31) for d=
—1 andx=1=v. More generally, the mapping of solutions

between the two modes of dimerization is given by the

simple ruled— —d, k— — k, v— — v. Therefore the field

changes by an overall sign while the corresponding change![?1

in m may be inferred also from the general relati@12
subjected to the transformation
n—-—n, d—-—d.

(3.33

B € 1 K o
M=~ Zcostu | JT_p2 coshu " "¢/
_ eV KV 33
M VA% cosu’ (339
% tanh| —— 4
Me=7 MU T=p2 coshu ™ ¢/

addition to an apparent Lorentz contraction we note that
e fieldm develops a nonvanishing component in the sec-
ond direction due entirely to the wall motion. Incidentally we
mention that the continuum approximation breaks down in
the ultrarelativistic limit ¢ ~1) where the wall width re-
duces to a few lattice spacings.

The above rule summarizes the manner in which the con- Thijs section is completed with a corresponding discussion
tinuum model copes with the dimerization ambiguity. In par-of Neel domain walls We consider first static solutions for

ticular, the asymptotic values and the ki@atikink) charac-
ter of the fieldm are invariant under transformatié8.33 as
is evident from Eq(3.32). Furthermore the continuum model

handles quite efficiently questions such as the elusive total

moment of a pure AFM wall. Indeed, although the con-
tinuum approximation is by construction oblivious to the cut-

which the vectom is confined in thg12) plane and system
(3.26) reduces to

moves described in the concluding paragraphs of Sec. Il by

mapping solutions of the underlying nonlineamodel onto

T .
=§, ®"=(d?+ p?)cosb sind. (3.37)
ting and pasting of a finite chain, it copes with the variousSolutions of the second equation are given by
. 14
cosb=« tanky, sinb=—~— (3.38

other solutions of the same model obtained through the sym-

metry transformatiom— —n. Having understood this point,

cosh’

no real ambiguity is present in comparing careful numericawhere the kink numbek and the polarityr take the same

calculations with continuum solutions. Moreover a definition
of a magnetizatioom with definite local values is not strictly

values as those of Eq3.29 and ¢ is the rescaled spatial
coordinate
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{=Jd%+ p2¢. (3.39  Whereas the fieldn is calculated from Eq(3.12 using as
input Eq.(3.43 andh=0:
The vectomn reads

I [d°+p?  « K [d?+ p? v tantw
=k tantt, ny=— ns=0,  (3.40 M="2 N1pZcosfw’ "™~ 2 V147 costw °

~ coshy’ (3.45

and the vectom is calculated from Eq(3.20 to yield \/dZTpZ vo R
1— 0% costw ' <@ 1an

€ K
m1: - E \ d2+p2
IV. DRIVEN DOMAIN WALLS

€
m3:§

cost¢’

&

m2=§ \/d +p

v tanhy
coshy ’

The main point of this work is the study of the dynamical
response of a domain wall, either Bloch oréMeo an exter-
nally applied magnetic field in the presence of dissipation.
mszi xdtanky, (3.41) During the initial stgps of_the develt_)pment it i_s conceptually

2 simpler to work strictly within the discrete spin model. The
n?ontinuum description will be invoked at a later stage and
will prove more powerful in establishing the complete pic-

from zero. g T )
. . . . ture. For definiteness let us assume that the initial configura-
The numerical calculation of Sec. Il did not produce evi-_._ . . .
tion is the static Bloch wall calculated in Sec. Il for the

dence for Nel domain walls because it was based on a re-diSCrete systertFig. 3 which is subjected to a uniform field
laxation algorithm that inevitably leads to a local minimum y 9. )

of the energy functional. As a result a &levall would decay that is turned on at=0 and points in the third direction,

where we note that all three components are now differe

into a topologlcally equale.nt Bloch wall with lower energy. h=(0,0h)=he;. 4.
A more precise statement is th@dt3) walls have lower en-
ergy than(12) walls for parameters such that The mathematical problem consists of solving E332) with
initial condition supplied by the static wall. One must then
. D\?2 g, 03 study the ensuing evolution and possibly ascertain the for-
d*+p">1 or J +T>T- (342 mation of a terminal state where the spin configuration

moves rigidly with constant velocity. In particular, one

This inequality is certainly satisfied for the uniaxial anisot- must determine the nature of such a state and the terminal
ropy (9.=9s) used in our numerical calculation and is also velocity v as functions of the applied field.

typical of orthoferrites. However, at least one example is To appreciate the results of an explicit numerical solution
quoted in the literature, the dysprosium orthoferritewe first examine the behavior of the spin configuration far
DyFeGQ,, where the inequality is reversed below 150 K andfrom the wall center or, equivalently, determine the fate of
the role of Bloch and Nel walls is interchangetiHence, in  the two degenerate ground states after the field is turned on.
the bulk of the paper, we shall assume that 3142 is |t is clear that the applied field lifts the degeneracy and cre-
satisfied and defer discussion of the consequences of the 0gtes an imbalance between the two sides of the wall. Actu-
posite inequality for the end of the argument. SinceeNe ally a field by itself would merely set the ground state in
walls are unstable one may question whether or not they argternal precession. The role of dissipation is also important
relevant for the phenomenology of weak ferromagnets. Acin that precession eventually dies out and two new static
tually the inequality(3.42 is marginally satisfied in orthof- ground-state configurations emerge that are both local
errites and Nel walls are substantially stable; they can beminima of the energy functional but now have different en-
experimentally produced and studied apparently withoukrgies thanks to the magnetic field. The precise nature of
great difficulty. Furthermore they will prove to be crucial in these minima is again determined by optimizing the simpli-

our theoretical analysis of driven domain walls. The situationfied energy function(2.5) extended to include a Zeeman
is different in rhombohedron weak ferromagnets where theerm:

two types of walls are separated by a wide energy gap and
Neel walls are rather unstable. 2

&
We conclude this line of reasoning by quoting an analyti- ~W=(a-b)+ed-(axb)+ - (a5+b3) —eh(ag+bs).
cal solution for a freely moving N wall at vanishing field (4.2)
and dissipation. The field is obtained by a Lorentz trans- o ) ) )
formation of the static solutiof3.40), Here we have anticipated that the optimal configurations are
confined in the13) plane(hencea,=0=b,) and have also
v expressed parameters in their rationalized form.
n=« tanfw, np=——-o, ns=0,  (3.43 The original ground state depicted in the first row of Fig.
2 evolves into a state with a field-dependent canting aAgle
with satisfying the algebraic equation

Sin26— ed cos2— eh cos5=0, (4.3

2
W=\/dsz2u=\/dlj:2 (E-vm), (344 (1+8Z
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. o 5~ (d+h), &'~>(d=h), &'~ (h-d).
3'h *1h (4.6)

b a This approximation becomes progressively questionable for
m very strong fields in the regioh~ 1/e.
3 8 Therefore, when the field is turned on, the two ground-
1 n 1 state configurationgdomaing on the two sides of the do-
main wall are expected to adjust to those of Fig. 5 at some
characteristic time intervat,. During the transient period,
7=y, precession effects are strong and the wall behaves in
a complicated manner. However, feb> 7y, the two sides
have adjusted to the new static domains one of which has
n higher energy density. We thus expect the whole spin con-
5 5 1 1 figuration to reach a terminal state where the domain with
m the lower energy expands perpetually at the expense of the
other; whence the motion of the domain wall with a constant
terminal velocityv =v(h).
The qualitative picture described above can be confirmed
by a straightforward numerical calculation in the discrete
h>d 3th spin model. We solve the initial-value problem for E§.2)
for our standard choice of parametees<(10 2, p=1=d)
b together with a typical dissipation consta=10"2 or A
m =2. Simulations were performed for a number of values of
& the rationalized fieldh, using as an initial condition the static
! n 1 Bloch wall calculated numerically in Sec. Il at vanishing
field.

FIG. 5. The fate of the twc_) degenerate gro_unq states of Fig. 2 in Explicit results forh=1/2 are given in Figs. 6 and 7. The
the presence of an extgrnal fidid Qegeneracy is lifted bec’ause the \vall motion was monitored by tracking the point where the
E?Cﬁnd ground sT,tstetﬂ!sglays afh:;eript can_tlllngtant@#efh) and qfirst component of vanishes, using linear interpolation to

gher energy. the fhird row of the figure Tustrales the secon 9cate its actual position between two lattice sites. The cor-
ground state in connection with a mild crossover that takes place a . L . . .
h—d. requndlng yelocny is plottgd in Fig.(® and displays a
transient period after which it quickly approaches a terminal
which reduces to Eq2.7) at vanishing field k=0). Simi- valuev =0.214 that should be accurate to all three significant

larly the ground state shown in the second row of Fig. 2f|gure(sj. Itzl?ure 6fD_) |IIuts_trates theftlmethevolutlllon Otf the
becomes a state with a different canting anleiven by ground-state configurations away from the wall center con-
centrating on the third component ofi whose initial (=

=0) asymptotic €= *+ =) values are those of E§R.9). Af-
sin28' —edcos’ +ch cosd’=0. (4.4  ter the same transient periad; approaches the terminal
valuems=sin §=0.007 499 39 far to the left of the wall and
The two states are depicted symbolically in the first and secthe value mg= —sin §'=—0.002 501 08 far to the right,
ond rows of Fig. 5 and are no longer related by a paritywhich are in excellent agreement with the accurate roots of
reflection becausé+ &'. A simple numerical solution of the the algebraic equation@.3) and (4.4) and in good agree-
algebraic equations and a corresponding calculation of th&ent with the approximate rootgh.6). Finally Fig. 7 dis-
energy(4.2) establishes that both states are local minima buplays the terminal state of the wall with numerical data for
the energy of the second solution is higher. The third row inthe spin presented using the technique discussed in Sec. Il'in
Fig. 5 illustrates the manner in which the second stat€onnection with Fig. 3.
evolves for a sufficiently strong fielch¢>d). Note that for A simple comparison of Figs. 3 and 7 reveals that the
h=d the solution of Eq(4.4) is 8' =0. A new element in the terminal state has acquired a significanteNeomponent
regionh>d is that the vectom points in the same direction (N2#0) and is thus appreciably different from the original
(the direction of the magnetic f|e|dor both types of ground Bloch wall. In partiCUlar, the terminal state of the driven
states but its magnitude is different in the two cases. Th&loch wall has no resemblance to the freely moving Bloch
canting angles” is calculated from wall of Egs.(3.349—(3.36. To push this picture further we
repeated the calculation for a stronger fiekd=3/2) which
) was expected to lead to a stronger BlocheNeybridization.
sin20” +edcos2”—ehcoss”=0, (4.5  The results of Fig. 8 came as a surprise in that the original
Bloch wall (n,=0) had turned completely into a Mewall
which is related to Eq(4.4) by the substitutions’ — — &". (n;=0). Incidentally we note that we are now in the field
Within the domain of validity of the continuum approxima- regimeh>d, becausér=3/2 andd=1, where the vectom
tion the various canting angles introduced above can be appoints in the field direction on both sides, as was anticipated
proximated by by the discussion of Fig. 5 and is evident in Figh)8 How-

3l'h h<d 3h

1+ e
4

2

142
4
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FIG. 6. Dynamical response of the static Bloch wall of Fig. 3to  FIG. 7. The terminal state of the Bloch wall of Fig. 3 driven by
an applied fieldh=1/2, calculated numerically within the discrete a field h=1/2, calculated numerically within the discrete spin
spin model.(a) The wall velocity approaches a terminal value model. Note a significant Bloch-N&hybridization (1,#0).
=0.214 after a transient periog)~5. (b) Response of the ground
state monitored by the values i, far to the left of the wallupper ~ change the situation because the effective anisotropies along
curve and far to its rightlower curve. The corresponding terminal the second and third axes now appear with coefficieidts
values are given in the text. +p? and 1+h2 At low fields, where the inequality?

+ p?>1+h? s still satisfied(13) walls continue to be stable
but may develop a smafll2) component due to the applied
fleld. However, at a sufficiently strong field where the in-

. p . : equality is reversed,13) walls become relatively unstable to
always converted into a Méwall. The critical fieldn. need (1q2) W:ZIIS and a complete dynamical conversi)gn takes place

not comm_de W'th the crossover vahme:d. . in the terminal state. The critical field is then estimated from
A detailed investigation of this important issue based only 24 p2~1+h? or

on numerical simulations would be tedious. Hence we recal
at this point the continuum model which WI|| prove to be a he~ \/m 4.7
very powerful tool. For instance, the continuum model may

be used to provide a simple explanation for the existence ah units specified by Eq(3.4), and is clearly not related to

a critical field which will also yield a rough estimate of its the crossover value=d discussed in connection with Fig.
actual value. The important issue is again inequay? 5. Now, applied ford=1=p, the above estimate yields
that governs the relative stability of Bloch and éllavalls.  ~1 which explains the Bloch-Ng hybridization observed in
Suppose that Eq3.42) is indeed satisfied and thus &leor  Fig. 7 forh=1/2 as well as the complete dynamical conver-
(12) walls are relatively unstable to Bloch ¢t3) walls. A sion of a driven Bloch wall ah=23/2 shown in Fig. 8. The
simple inspection of Eq(3.14 applied ford=de, and h picture is completed in three steps described in the following
=he; suggests that the presence of an applied field maghree subsections.

ever the mild crossover &t=d is not the important issue in
Fig. 8. Rather this calculation suggests the existence of
genuine critical fielch, above which a driven Bloch wall is
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and the problem is accordingly reduced to the solution of
ordinary differential equations. In this subsection we shall
not attempt to find explicit solutions of the above equations.
Instead we will derive a general virial relation that can be
used for a direct calculation of the mobility. The method is
an elementary adaptation of related work in the theory of
magnetic bubble&®

An equivalent form of Eq(4.9) is obtained by taking the
crzoss product of both sides with and using the constraint
n°=1:

Aon'=f—(f-n)n. (4.11)

Next we contract both sides with the vector and use the
identity (n-n’)=0 which is also a consequence of the con-
straint:

Avn’?=(f-n’). (4.12
The right-hand side of Eq4.12 may be written as

(f-n")=0", (4.13

which is indeed an identity if is taken from Eq(4.10 and
o is given by

1
=3 [—(1-v?)n’?2+2(hxd)-n

+(n-h)2+(n-d)%+ p2n3+n3]. (4.14

Equation(4.12 is then written as

Aon'?=¢", (4.15
-01 . . S .
whose advantage is that the right-hand side is a total deriva-
tive.
5 6 5 The virial theorem is obtained simply by integrating both
£ sides of Eq.(4.15 over all space,
FIG. 8. The terminal state of the Bloch wall of Fig. 3 driven by )\UJ n'2dé=o(®)—o(—=»), (4.16

a field h=3/2, calculated numerically within the discrete spin
model. This state is very accurately reproduced by the continuurvhere o(*+<0) are the boundary values of Inspection of
solution for a driven Nel wall given by Eqs(4.43 and(4.449 and  Eq. (4.14 taking into account thatl=de, andh=he;, to-
indicates a complete dynamical conversion of the initial Bloch wall.gether with the fact that only the first componentrobur-
vives at large distances, yields
A. Virial theorem and mobility

A driven domain wall that has reached a terminal state )\Uf n’2dé=—hdny(®)—ny(—=)].  (4.17)
with constant velocity is described by a field of the form

One may also recall the kink number introduced in Sec. II,
n=n(é—vr). (4.8

1
Time derivatives may then be replaced iy —vn’ where k=5 [Ny(e)=ny(==)], (4.18
the prime denotes differentiation with respect to eitbier
the entire argumen— v 7. This distinction will not be made to write the virial relation in the final form
explicit in the following but one must remember that the

argument of all fields i§—v . Equation(3.13 becomes D fw n'2dé=—2xdh. (4.19
Av(nxn’)=nxt, (4.9 It is important to note that the only contribution on the right-
where the effective field takes the reduced form hand side of this relation originates in the crossec )
term discussed earlier, which now proves to be crucial for
f=—(1—v?)n"—2v(hxn’)+(hxd) the very existence of driven domain walls in a terminal state;

5 for, otherwise, the right-hand side of E4.19 would vanish
+(n-h)h+(n-d)d+p“nye;,+nze; (410  leading to an obvious contradiction. Therefore, if the La-
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grangian of Eq(2.30 in Ref. 4 is taken at face value, driven quencies is to consider the Lagrangigdl?) at vanishing
domain walls in a terminal state would not exist for an anti-field (h=0) expressed in terms of the spherical variables
symmetric DM interaction. Relatiof4.19 also contradicts (3.24:
the existence of staticuv=0) walls in the presence of an
applied field f#0) as well as the existence of a rigidly
moving wall (v+#0) at vanishing dissipation\(=0) and a
nonvanishing field lf# 0). s o _
Virial relation (4.19 will be used in two ways. First, as a —(d?+p?)sir’® sifd —cosO]. (4.24

check of consistency of both numerical and analytical regmail fluctuations around the ground st@e= w/2 and ®
sults. For example, the numerical calculation presented in.g or - are calculated by inserting = 7/2+ 6 and® = ¢

1. .
L=5 [(0%+SiPOd?) — (02 +sifOd'2)

Figs. 6 and 7 must be consistent with E¢.19. Indeed
using the input parameters=2, d=1, k=-1, and h
=1/2, the calculated terminal velocity=0.214 of Fig. 6a)
and the fieldn of Fig. 7(a) to compute the integral in Eq.

(4.19 numerically, the virial relation is satisfied to at least

three significant figures.

A second more tangible application of the virial theorem

is an exact calculation of the wall mobility. Equati¢h19
is consistent with dinear mobility relation atlow fields
where

1 A *

v~=uh, —=

w 2xd - n’?dg,

(4.20

supplemented by the stipulation that the integral be evaluated

using as input the profile of the initiatatic domain wall, as

is appropriate in the limit of the vanishing field where the

velocity also vanishes. The sign of the mobility is not
definite because Ed4.20 yields information on both the

direction and the magnitude of the wall velocity. One should

or m+ ¢ in Eq. (4.24 and keeping terms that are at most
guadratic ind and ¢. The resulting quadratic Lagrangian

L%[éz—e'z—em % [p?— "2~ (d?+p?) ]
(4.29

describes two uncoupled free fields with dispersions

Q1 (k) =Voi+k?, Q,(k)=Jw5+k? (4.2

wherew; and w, are the magnon activation frequencies

wi=1, a)z:\/dz-l-pz, (4.27)
expressed in the rationalized units employed throughout this

paper.

For the moment we consider the dimensionless ratio
w, /w4 and compare it to the right-hand side of £4.23 to
obtain the parameter-free theoretical prediction

add that the above result is insensitive to the dimerization

ambiguity discussed earlier because E419 is invariant
under transformation(3.33).

We must now distinguish two cases depending o

whether the initial wall is Bloch or N&. For a Bloch wall
we may use the static solutidB.30 in Eq. (4.20 to obtain

xd

v~ uqh, M=~ 50 (4.2

whereas the Na mobility is calculated from Eqé3.40 and
(4.20:

K d
v~ u-h, =———. (4.22
M2 M2 N V212 T
We also consider the dimensionless ratio
%= J&Z 2 4.23

and relate it to the inequalit{8.42 discussed in connection
with the potential instability of Nel walls. When this in-
equality is satisfied N& walls are relatively unstable to
Bloch walls and their mobility is smallery{;>u,). The
measureti '8 mobility ratio in YFeQ, is uq/u,=1.06. In
DyFeQ; below 150 K, the inequality3.42) is reversed(13)

M1 @3

— (4.28
M2

(l)l.

"On the other hand, Ref. 10 gives the values=11 cn*

and w,=17 cm ! (or w,/w,=1.59 for the frequencies ac-
tually observed in YFe@) while Ref. 4 adopts values in the
rangew;=(11-13) cm? and w,=(15-20) cm? (or 1.15
<w,/w;<1.82. These values are not terribly inconsistent
with the measured mobility ratig,/u,=1.06, in view of
the simplicity of the classical spin model and the fact that
anharmonic corrections to the calculated frequentie®7)
have been neglected.

This subsection is concluded by translating some of the
guantities calculated above in ordinary units. The definition
of the dimensionless time variablein Eq. (3.10 implies
that the magnon activation frequencies of E§27) are mea-
sured in units of 2sJ. Hence

O3 D\* g,
w1=25J\/;, w2=ZsJ\/<j +7. (4.29

These results could also be derived by calculating the mag-
non spectrum of the 1D discrete spin model of Sec. Il using
standard spin-wave techniques. The corresponding frequen-
cies in the 3D model were calculated in Refs. 10 and 19
within the harmonic approximation and read in current nota-

walls become unstable, and their mobility is predicted to bdion

smaller than the mobility of12) walls (u,<u,).

One can also relate the mobility ratio to the experimen-
tally observed magnon activation frequencies in the absence
of the external field. The simplest way to calculate the fre-

z z [z(D)\?
NG S AN AL

(4.30
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where z=6 is the coordination number of the 3D lattice, the chain rule to derive the two independent equations
while settingz=2 reproduces the 1D results of E@.29.

These are further examples of correspondence between the N @ = SF \b SIPO®’ = oF (4.34)
microscopic parameters of the 1D and 3D models; see Eq. 00’ 6P’ ’
(3.19. We also take this opportunity to mention that the

positivity condition ong, may be relaxed to some extent, as whose explicit forms read

long as the arguments in the square roots of E29 and Av®’=—(1-v2)®"—hd cosd cosb
(4.30 remain positive.
Finally we translate the mobilitie§4.21) and (4.22 in +[(1-v?)®'%2+2vhd’ + (d?+ p?)sirfd

ordinary units recalling that velocity is measured in units of

the limiting velocityc of Eq. (3.18. Then —1-h*]cosd sin® (4.39
KC Qomo D [g3] M2 and
177 25y 253 3 h} ’ \v SIPO®’ = — (1—v2)(siROD ')’ —ph(sirt®)’
KC Qoo D [ (D2 g, 12 +hdsin® sind+(d2+ p?)
H2= " 2sy 2533 3) i 7} - 43D X sir2® cosb sind. (4.36

We shall not attempt to generalize the above formulas to anhis is a rather complicated system of nonlinear differential
arbitrary coordination number except to state that theequations and its analytical solution appears to be hopeless.

parameter-free predictiof#.28 remains true in any dimen-  Nevertheless the system simplifies enormously when we
sion. restrict attention to strictly Nl walls, i.e.,
Perhaps the earliest theoretical calculation of i{&)
curves is that of Gyorgy and Haged8twho arrived at two T
formulas of type(1.1), one for each kind of wall. This early 0= 9 (4.3

attempt suffers from two drawbacks. First, the calculated ) ] S o
mobilities appear to be proportiona' to the exchange ratheior which the first equat|0n IS tI‘IVIally satisfied and the sec-
than the DM constant, which is obviously false on physicalond reduces to

grounds because the driving issue is the DM interaction. Sec- N a2 2 .

ond, as we shall see shortly, a description in terms of two ~(1=v)®"+(d"+ p7)cosp sind
completely independent(h) curves is also false. The situa-

_ r_ H
tion was improved in more recent publicatiéh& but sev- =Av®’—hd sind. (4.39
eral issues remained unclear. We now attempt to solve simultaneously the two equations
B. Analytical solution for Néel walls (1—v%)®"=(d?+ p?)cosb sind,
One must now consider the case of a field of arbitrary \o®’ =hd sind, 4.39

strength and possibly make contact with the semiempirical
relation (1.1). Although the numerical simulation is still an in the sense that every solution of E¢4.39 will be a so-
option, one might also hope to derive analytical solutionsiution of Eq. (4.38. The first equation gives
within the continuum model. Such a hope is partially ful-
filled in the present subsection.

Thus we return to Eq4.11) where the effective field of
Eq. (4.10 is again derived from a variational argument of

the form (3.22 by generalizing the energy function&l of ~ Wherex andv are the kink number and polarity discussed in
Eg.(3.23 to Sec. Il andw is the argument of Eq.3.44). The important

observation is that the angie of Eq. (4.40 also satisfies the
second equation in Ed4.39 provided that the parameters
are related by

cosb =k tanhw, sind= (4.40

coshw'’

;F% f [(1-v?)n’'?+2vh-(nxn')+2(hXxd)-n

+(n-h)2+(n-d)2+ pn3+n3ldé. (4.32 v
= uyh, 4.4
Expressed in terms of the spherical variables the above func- N Ha (449
tional reads

where u, is precisely the mobility of a Nad wall calculated

1 ) . ) ) previously in Eq.(4.22. The relativisticlike relation(4.42)
F=5 j [(1-v?)(@'?+siFO®'?) +2vh siPOd’ may then be written as
—2hd sin® cosb + (d2+ p?)sirt® sirfd woh (4.42
V= —F7— .
+(1+h?)co2O]d¢. (4.33 V1+(uoh)?

One may now use the general form of the effective field and thus reproduces E@l.1) applied with a mobility u
from Eq.(3.22 in Eq. (4.11) and a repeated application of =u, appropriate for a N& wall. The lack of a limiting
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velocity ¢ in Eq.(4.42) is, of course, due to the current use of converted completely into a Teewall. A definitive confir-
rationalized physical units where the limiting velocity is mation is achieved by noting that the numerically calculated

equal to one.
To complete the solution we calculate the field from
Eqgs.(4.37) and (4.40,

14

np=«tantw, np=——, n3=0,  (4.43
and the fieldm from the general relatio3.12):
E: /dz-i-pz K
M="% V1= cosRw’
K [d?+ p? v tantw
M=% V147 costw
=L \/—d2+p2—m +xd tantw+h|. (4.4
Ms=3 1—vZ costw <@ 1N - (449

A notable feature of this result is that a driven dllevall
differs from the freely moving Nal wall of Eq. (3.45 only
by an additive field dependent constantnm and the fact

that the velocity is now a definite function of the applied
field given by Eq.4.42. As a check of consistency one can du
verify explicitly that the above solution satisfies the virial

relation(4.19.

The seeds for the analytical solution presented in this su

section may be found in the paper of ZveZdibut its pre-

cise form and physical content remained unclear. In particu

lar, no distinction was made between Bloch andeNgalls.

Nevertheless the above work also contains the seeds for t
crossed term{xd) discussed earlier in the present paper.
But the formalism of Ref. 21 is unwieldy and was clearly not

adopted in more recent publicatichs.

C. Dynamical conversion of Bloch walls

detailed profile of a driven Bloch wall given in Fig. 8 for
=3/2 is reproduced very precisely by the analytical solution
for a driven Nel wall given in Eqs(4.43 and (4.44).

Yet the results foh=1/2 presented in Figs. 6 and 7 in-
dicate that there exists a field regimb<(h;) where the
terminal state of a driven Bloch wall is hybridized and the
velocity is not predicted by either E¢1.42) or (4.45); except
for very low fields where =~ w1 h, in accord with our results
in subsection A. In other words, the mobility curves for the
two types of domain walls coincide fdr>h. and are both
given by the relativistic formul&4.42 applied with a Nel
mobility w,. Belowh. a bifurcation takes place whereby the
two curves split and eventually reach ttew-field) linear
regime at different slopes;~ u.h andv= u,h for Bloch
and Nesl walls, respectively. Although we have been unable
to obtain an analytical solution of Eqgt.35 and(4.36 for
driven Bloch walls in the regioh<h,, the bifurcation de-
scribed above was unambiguously established by repeating
the numerical calculation for a number of field values in the
range 0<h<3/2. The results are summarized in Fig. 9
which is more or less self-explanatory.

Our inability to obtain a complete analytical solution is
e to the nontrivial Bloch-Nal hybridization that takes
place in the regiorh<<h. (see Fig. 7. A related technical
reason is that the contribution of the nonrelativistic term

b2(h>< n) is now crucial, while it had droped out of E@t.38

describing driven Nel walls. The same fact explains the
relativistic nature of the N mobility formula(4.42 and is
the reason why the corresponding expression for Bloch walls

iven by Eq.(4.45 is false. At any rate, the picture obtained
by the combination of analytical and numerical results de-
rived so far is essentially complete and we now turn to the
discussion of its implications.

First we return to the rough estimate of the critical field

given by Eg. (4.7 which yields h,~1 for our standard

We now resume the study of driven Bloch walls initiated choice of parameters, while the numerical results of Fig. 9
by the numerical simulation presented in the beginning of théndicate a valueh.~0.8. Such a discrepancy is not surpris-
main section. It would be natural to expect that the correing because the argument leading to E47) ignores more

spondingv (h) curve is analogous to Eg4.42), namely,

h

V1+(pgh)?

where u4 is now the Bloch mobility of Eq(4.21). In fact,

(4.49

this appears to be the implicit assumption made in all earlier

subtle effects from the remaining terms in E§.14). As a
consequence, E@.7) is, at best, a rough overestimate of the
true critical field. Nevertheless E@4.7) provides a useful
guide especially when it is expressed in terms of the mobility
ratio (4.23 to yield

he~ V(w1 /p2)?—1. (4.46

treatment$. However, the numerical results presented inin a typical orthoferrite such as YFgQnequality (3.42 is

Figs. 6, 7, and 8 already disprove such an assumption.

For example, the accurate terminal veloaity 0.214 cal-
culated numerically foth=1/2 [see Fig. 6a)] clearly dis-
agrees with the value =0.224 obtained from Eq(4.45
applied with u;=1/2; here the Bloch mobilityx; was cal-

satisfied as evidenced by the measured mobility ratio
m1luy=1.06. Therefore, two distinct mobility curve®

~ u.h andv = uyh) emanate from the low-field region that
must join up at a critical value of the driving field and there-
after follow a single curve given by the relativistic &ldor-

culated from Eq(4.21) for our standard choice of parameters mula (4.42. In view of the small mobility ratio the bifurca-
d=1=p, A=2, andk=—1. A more impressive statement tion region is expected to be narrow and may easily have
can be made @t=3/2 where the numerically calculated ter- been missed in the analysis of existing experimental data,

minal velocity (y =0.468) again disagrees with E¢.45
but is, instead, very accurately predicted by E§42 ap-
plied with a Neel mobility u,=1/2v2 given by Eq.(4.22.

especially because other complications are present such as
magnetoelastic anomaliésdowever our detailed theoretical
results for both the mobility curves and the profiles of driven

This is a concrete confirmation of our earlier statement that @omain walls may help to reassess the experimental situa-
critical field h. exists above which a driven Bloch wall is tion.
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1 ; approaches the relativistic limiting velocity and the wall
width reduces to a few lattice spacings. Under such extreme
conditions one must again resort to the discrete spin model
of Sec. Il. However a new element arises when Fig. 5 is
pushed to extreme field values. The second ground state,
now described by the third row of Fig. 5, ceases to be a local
minimum and becomes a saddle point of the enddg® at
a new critical fieldh.~ f(d)/e wheref(d) is some function
of d that can be determined numerically. In our standard
numerical examplén.~190. Therefore, when a field with
strength abovén is turned on, the imbalance between the
o two sides of the wall becomes catastrophic and the motion
So looks more like an avalanche rather than a steady terminal
e state. In this respect, the field, may be interpreted as the
y P analog of the critical Walker field in ordinary ferromagnets
/ g and seems to be the main preoccupation of Ref. 21. None-
g 0 : : theless such a field regime does not appear to be of great
practical value because the corresponding wall velocities
0 5 10 have practically reached the limiting velocity

Finally, we mention that the general subject of dynamical
conversion of domain walls was discussed previously in dif-
ferent physical contexts. For instance, mutual conversion of

FIG. 9. Mobility curves for driven Bloch and N¢walls. The XY andyz kinks was studied in Ref. 23 for an easy-plane
Néel curve(solid line) is given by the analytical expressi¢a.42 ~ antiferromagnetic chain immersed in an in-plane magnetic
applied with a mobilityu, calculated from Eq(4.22; u,=1/2v2  field. Although the above work addresses the question of
for our standard choice of parametetss —1, d=1=p, and\ freely moving (instead of driveh kinks in the absence of
=2. The Bloch curve(dashed ling was obtained by a numerical dissipation, a field-dependent critical velocity was found af-
simulation in the discrete spin model and takes off with a slopeter which dynamical conversion takes place. The closest ex-
nq at low fields ¢~ u.h) where u;=1/2 is the Bloch mobility ample to our current work is discussed in Ref. 24 which
calculated from Eq(4.21). The two curves join up at a critical field considers the effect of a small “symmetric” correction to the
h.~0.8 and thereafter both follow the analyticaleesult of Eq.  antisymmetric DM interaction. Freely moving domain walls
(4.42. The inset demonstrates the bifurcation regime in greater dein the absence of both dissipation and an applied field were
tail, with numerical data for the Bloch curve represented by operthen shown to undergo dynamical conversion at some critical
circles and a dotted straight line indicating the initial slope velocity. On the other hand, we have established dnaen
=1/2. Bloch walls in the presence of dissipation are dynamically

converted forh>h_ even in the absence of a “symmetric”
DM interaction; including the latter in our model will only

When inequality(3.42 is saturated the critical field van- lead to a compounded effect. Therefore the results of Ref. 24
ishes and the bifurcation region shrinks to zero. Putting iheed to be reanalyzed in the light of our current conclusions.
differently, the terminal state is always(&2) wall and the
mobilit_y curve is that Qf E_q(4.4_2) irre_spective of_ the nature V. CONCLUDING REMARKS
of the initial state. This simplified picture remaiasfortiori
correct when inequality3.42) is reversed and may describe  We believe to have presented a complete study of the
the dynamics of domain walls in DyFg®elow 150 K. domain-wall dynamics within the limits of the simplest non-

In contrast, the observed great disparity between Blocltrivial model of a weak ferromagnet which may serve as a
and Nesl walls in rhombohedron weak ferromagnets shouldprototype for more realistic calculations. From a purely the-
be expected to enhance the bifurcation regime and make it@retical point of view the new elements that are likely to
dominant feature in the analog of Fig. 9. As a consequencesurvive the specific model ar@) a clear analysis of the
the mobility curve for Bloch walls will depart significantly dimerization ambiguity inherent in all physical systems in-
from the relativistic result of Eq1.1) for most field values volving antiferromagnetic interactiong)) a related deriva-
of practical interest. Of course, a detailed calculation in thigion of a parity-breaking gradient term in the magnetization
case will require a modification of the Hamiltonian to in- m, and(c) the identification of a crossedh& d) term in the
clude a sixth-order single-ion anisotropy in the basal planeonlinear o model that governs the dynamics of the field
and possibly alternative forms of the dissipative térm. n. These elements are important for a correct understanding

We also comment on the domain of validity of the con- of both structural and dynamical properties of WFM domain
tinuum model in the presence of an applied field. The conwalls and were for the most part absent in earlier treatnfents.
dition eh<1 of Eq.(3.5) is well satisfied in Fig. 9 where the At a more practical level we have presented a complete
maximum displayed value is=10 for whicheh=0.1. For  calculation of driven domain walls whose main features are
greater field values the continuum approximation begins tda) a virial theorem that underlies the existence of a terminal
deteriorate and eventually breaks down whdm~1. An-  state and allows a simple calculation of the low-field mobili-
other way for stating the same fact is that the wall velocityties, (b) a critical field h, above which Bloch walls are dy-

Terminal velocity
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namically converted into N walls, and(c) a related bifur-  curve for driven Bloch walls will share with E¢1.1) some
cation process that leads to a new and interesting picture dfroad characteristics, such as a low-field linear regime and a
the mobility curves. These features should be present also imgh-field limiting velocityc, but will differ from Eq. (1.1)
realistic weak ferromagnets and could be established experir its important details for most field values of practical in-
mentally. terest.

A closer look at orthoferrites should entail a more detailed Finally, there is some room for theoretical improvements
justification of our main results within the proper 3D crystal even within the strict limits of the model considered here.
environment. Such a study would remove some uncertaintfor instance, our inability to obtain an analytical solution for
concerning the correspondence between microscopic parardriven Bloch walls in the subcriticalh<h.) regime forced
eters and those appearing in the continuum model. Incidenis to complete the picture in Fig. 9 by a direct numerical
tally the original determination of parameters carried out bysimulation. It may prove possible to study the neighborhood
Treve$® was based on the assumption of a uniaxial singleof the bifurcation point k~h,) analytically and replace the
ion anisotropy ¢,=03) and a calculation of susceptibilities rough estimate of the critical field given in E(.7) by a
within the leading(classical approximation. It turns out that more accurate value. Inclusion in our basic model of the
the classical susceptibilities are not especially sensitive to thmagnetoelastic couplings mentioned in the Introduction is
precise value ofg,, as long as inequalitie§3.1) are en- also a subject for further investigation.
forced, which must then be determined by independent mea-
surements such as the magnon activation frequefiaeshe ACKNOWLEDGMENTS
mobility ratio!”'® Because of the crudeness of the theoreti- : ,
cal models used to describe a rather complex physical situa. | am very grateful to Victor Baryakhtar for a number of
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orthoferrites, the 1D discrete spin model developed in thi
paper may prove to be more faithful to the description of
rhombohedron weak ferromagnets such as MpC®
FeBG; (iron borate. For such a purpose one must complete In this appendix we provide some of the algebraic details
the model by a prope(sixth-ordej single-ion anisotropy in necessary for the derivation of the extended nonlinear
the basal plane and then repeat the calculations of the presanbdel of Sec. Ill. As a first step we insert the Taylor expan-
paper. As mentioned already, we anticipate that the mobilitysions(3.8) in Egs.(3.6) to obtain

APPENDIX: THE CONTINUUM LIMIT

aA oA

—r T AXSE =AX[—2J(B—eB’+£?B")+2DX (B—&B’ +£?B") — g;A1€;,— 0A,8,— §3A383+ JouoH],

9B B ) )

—r Y| BX S| =BX[—2)(A+eA +e?A") —2DX (A+eA’ +5?A") —01B161~ 02B2€, ~ 93Bags + GoroH]. (A1)

This system of equations is not yet fully consistent because it appears to mix different powers of the small parahoeter
obtain a consistent system we proceed as in Ref. 7. An equivalent form ¢AEgexpressed in terms of the fields and
n of Eqg. (3.9 and rationalized parameters is given by

r'n+%sh(m><r’n+n><h):—(mxn)’—s(mxm’—n><n’)’+[n><(d><m)—m><(d><n)]+s[n><(d><n’)—m><(d><m’)]

1
+e?[nx(dxXm”")—mx(dxn")]— > ep’[My(mXxe,)+ny(nNXey)]

1
~ 5 elmy(mxe;) +ng(nx ey ] +(mxh),

.1 ) .
en+t 5 g2 (mXn+nxm)=2(mxn)+e(MXm’—nxn’')+e[mx(dxm)—nx(dxn)]—e?(nxm”"—mxn")
—&g2[nX(dxXm’)—mx(dxn")]+e3mx(dxm")—nx(dxn")]

1 1
-5 e2p[my(nXe,)+n,(mxe,)]— > e [mg(nXe;) +ng(mxes)]+e(nxh). (A2)
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Here the dot stands for differentiation with respect to theterms of order?. Taking the cross product of both sides of
rationalized time variable of Eq. (3.10 and the prime with  Eqg. (A3) with n and using the reduced constraints yields
respect to the space varialjef Eq. (2.17). Simple inspec-

tion of the above equations suggests that consistency is ob- m= i [—n’+(nxn)+(nxd)—nx(nxh)], (A4)
tained if m is of ordere. The second equation in E¢A2) 2
then becomes, to leading order, which coincides with the expression for the auxiliary field

given in Eq.(3.12. Finally, (A4) is inserted in the first equa-

en=2(mxn)—e(nxn’)—e[nx(dxn)]+e(nxh) tion (A2) to yield, after lengthy but rewarding algebra, the

(A3) extended nonlineasr model (3.13 and(3.14) which is also
and the constraints reduce to those of Bj11) to within correct to within terms of ordes?.
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