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Rotational ordering in solid deuterium and hydrogen: A path integral Monte Carlo study
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The path-integral Monte Carlo method with a constant-pressure ensemble is used to study both translational
and orientational transitions in the phase diagram ¢fadd H, up to megabar pressures. With an intermo-
lecular interaction potential determined to agree with the experimental equation of state, a rotational order-
disorder phase transition is observed. The phase line for this transition is in quantitative agreement with part of
the phase diagram for both,fand H,. No structural phase transition, and no transitions to the D-A and H-A
phases(phase 1) are observed. We attribute this in part to the limitations of simulation cell size.
[S0163-182697)05318-9

[. INTRODUCTION correlations and zero-point motions, absent in LDA calcula-
tions, and avoids as well the need to employ model interac-
The search for a possible metallic phase in molecular hytion potentials. The optimal approach to analysis of the phase
drogen and its isotopes has been pursued since the inceptidiagram would be to perform constant pressure QMC
of the idea by Wigner and Huntington more than 60 yearslectron-proton calculations, but it is currently not possible
ago! The most recent relevant experimental result is the obto carry these out without some approximation, at the low
servation of high electrical conductivity in shock compressedemperatures relevant to the experimental observations.
liquid H, and D,.2 Further progress is expected from experi-  The third alternative is to average over electronic degrees
ments in ultrahigh-pressure diamond anvil cells that are caef freedom and to employ intermolecular pair potentials in
pable of subjecting solid Hland D, samples to pressures up QMC calculations for the nuclear degrees of freedom only.
to 200 GPa2 Mbar or 2000 kbar’~8 In these experiments, We adopt this approach here, employing an anisotropic mo-
the phase diagram for solid Dover a wide range of pressure lecular interaction potential in the finite-temperature path-
P and temperaturd has been agreed upon by several re-integral Monte Carlo(PIMC) method. This does not allow
search groups. For §] however, the phase diagram is still the metallization transition to be studied, but should allow
incomplete, and is furthermore in dispute in the ultrahiRjh- investigation of both lattice and orientational transitions in
(P=1 Mban region. Moreover, correct identification of each the molecular phase, with zero-point motions automatically
phase found in the diagram of either hydrogen isotope is stilincorporated. The particular potential employed here is a hy-
unclearr—8 brid of empirical and scaledb initio contributions, which
Although H, and D, are among the simplest molecular gives very good agreement with the equation of state for
species, the highly quantum nature of their condensed phasbsth H, and D, over the experimentally investigated range
poses a considerable challenge to theory. Frequently, thef pressures. On the basis of the agreement with the experi-
bosonic speciepara-H, andortho-D, can be well approxi- mental phase diagrams of both isotopes demonstrated in this
mated as spherical particles under ambient presSudesv-  paper, we can conclude that it is valid at pressures up to
ever, the spherical approximation breaks down when th@bout 150 GPa.
solid is subjected to high pressure, where the ordering of Application of the PIMC technique to the translational
molecular rotational degrees of freedom becomegcenter-of-magsmotion in solid H, was employed by Zoppi
significant® The identification of H and D, phases under et al?* and by Wagner and CeperléyBoth of these groups
high pressure has been approached theoretically by diretteated the H molecule with spherically averaged potentials.
calculation of electronic energies for various crystal struc-Runge and co-workers have applied PIMC to the rotational
tures with particular molecular orientational orderings im-degrees of freedom, and studied orientational ordering with
posed, within density functional theory in the local densitythe molecular center of mass fixed at given lattice Sité§.
approximation(LDA).1°-” However, characterization of the Although the translatiortvibration) and molecular rotations
lowest-energy states as well as the nature of the phase traare expected to be strongly coupled under pressure, no at-
sitions remains unclear fromb initio calculations®~2° At-  tempt has so far been made to perform finite-temperature
tempts have also been made to study this system by quantuealculations with both degrees of freedom simultaneously
Monte Carlo (QMC) calculations of the electron-proton coexisting, with exception of a two-dimensional study of
mixture?~2® This automatically takes account of electron H, on the surface of graphteand a calculation for small
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clusters® The influence of rotational motion and orientation 42.92 K for H, and D, respectively, are used®
of H, molecules on adsorption and desorption on Pd surV(R;;,€;,£;) is the intermolecular interaction potential.
faces was also studied by a six-dimensional quantum dyF¥he form of this will be discussed below in Sec. Il C.
namical calculatior’

The incorporation of both translational and rotational de- A. Path-integral Monte Carlo method
grees of freedom in the PIMC method is straightforward if S
one starts from a high-temperature density matrix for both The Hamiltonian in Eq(1) poses a many-pody pr'ot?lem
translational and rotational motions. The pair potential use hich - cannot be solved_ analytlcally. While variational
here does not contain any dependence on the intramolecul onte Carlo(VMC) and Fj|ff95|onal Monte CarldDMC)
bond length; i.e., each molecule is a movable, orientabldn€thods are capable of finding the ground state of the sys-

rigid rotor. This neglects the density dependence of the bon m, a numerical solution at finite temperature requir.es. the
lengttf* which is expected to be important at ultrahigh apphcayon of the_ PIMC method. The quantum_—statlstlcal
pressures?151730 The famous “minus sign problem” in properties at any finite temperature are fully described by the

QMC studies associated with fermions is avoided by confindensity matrix. In position space this has the form
p(x,x";B)=(x|e”P"|x"), 2

ing the study to solid systems and, furthermore to boson

systems ofpara-H, and ortho-D,, i.e., for J=0, although

such distinctions are expected to lose their meanings in verywhere x={R, ... ,Ry,Q4, ..., Qy} and g=1KkT. The
dense solids, where the angular momentum of each indihermal expectation value of an operatois then evaluated
vidual moleculeJ, is no longer a good quantum numBér. as Tr(pA), which is written as an integration over the con-
Most of the calculations are performed for,Dfor which  figuration space:

more experimental data is available. An important element of

the calculations is that they are performed in a constant- Jdxdx p(x,x"; B)(x|A|x")

pressure ensemble, rather than the more usual and computa- (A)= fdxp(x,X; 8) ' )

tionally simpler constant-volume ensemble. This enables us

to monitor volume changes and therefore to directly observén this work we are concerned only with thermodynamic or
possible first-order phase transitions. static properties determined by the diagonal elements of the

The remainder of this paper is organized as follows: Indensity matrix,p(x,x;8); i.e., we are concerned only with
Sec. II, the outline of the theoretical model is presentedlocal operatorsA. When the linear rotor degrees of freedom
including a brief summary of the PIMC formulation and its are added to the translational degrees of freedom, the integral
application to both translational and rotational degrees of? Ed. (3) then becomes|$ dimensional.
freedom, a review of the intermolecular potential forms, a The exact many-body density matrp(x,x’;8) is un-
description of the potential used here, and a description dfnown, but the path-integral description takes advantage of
the constant-pressure ensemble. In Sec. Il results for botfs product property to expreggx,x’; ) as the convolution
D, and H, solids are shown, including their equations of of M density matrices or “partitions” at a higher tempera-
state(EOS and orientational order-disorder phase diagramsture MT:
with comparison to experimental data. Finally, Sec. IV sum-

marizes and discusses the results. p(x,x’;,8)=f "'del"'dXMflp(val;T)

Il. THEORETICAL MODEL

Xp(Xy,X2;7) - p(Xp—1,X"; 7). (4)
Within the approximation thateffective) pairwise inter-  are we have defined=g/M. In Eq. (4), as written

actions are valid, a quantum-molecular solid with translay,~ 3 The |owest-order convolution possible corresponds to
tional and rotational degrees of freedom is described by thg; — 5 partitions, while forM=1 there is only a single

Hamiltonian trivial partition, and no convolution. For giveM, the off-

diagonal density matrix, Eq4), is thereby expressed as an

H=T+V, (M —1) dimensional integral over paths defined by the set of
s2 N p2 N M+1 pointg {X=Xg,Xq, - .. ,xM,l,x’},. and .the d_iagonal
T=— _2 V%_Jr _2 |_i2, (1) density matr|Xp(x,x_;,8) as an M —1)-dimensional mtt_agral
2m%5 215 over paths defined by the set ofM points
{X=Xg,X1, - - - Xm_1,Xo}. For ease of reference we shall
N refer tox andx, interchangeably from now on.
V= 5;1. V(Rij,Qi,8)), In this discrete path integral representation,p)rénd ex-

pectation values of local operatafs|A|x’)=A(x) then be-
where R; is the center-of-mass position vector of thth  come explicit integrals ovel X 5N dimensions. Such mul-
molecule ), its orientation vector, ; its angular momentum tidimensional integration is performed with the Metropolis
operator, andR;;=R;—R; is the intermolecular separation Monte  Carlo  sampling techniq#é=®® In the
vector. The molecular mass and moment of inertia are detM X 5N)-dimensional space, each molecul@0<i<N) is
noted bym andl, respectively. With the intramolecular bond represented by a discrete, closed pathvbf‘beads,” with
length fixed, for a linear moleculé,is a scalar constant. The each bead [0<j=<(M-1)] denoting a “position”
values ofm=3676 and 735Zatomic unitg for H, and D,, (Rij ,€;;) in the SN-dimensional configuration space. The
respectively, and rotational constarBs=%2/21 =84.98 and  extent of each path in this space represents the quantum fluc-
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tuation in the molecular position, for both translational and
rotational degrees of freedom. Therefore settvig-1 and
removing the convolution in Ed4) ignores all such fluctua- 0123
tions. This limit displays a strong analogy with the classical
system and provides a useful reference system, as will be
explained in more detail below.

When M is large enough, the high-temperature density
matrix p(x,x";7) can be well approximated by its classical
or semiclassical value. Thus, the primitive approximation

Before permutation moves After permutation moves

e T(T+V)~e* TTe* [a% (5)

can be adopted. This neglects quantum corrections of order
O(7[T,V]), and thereby avoids the problems associated
with the lack of commutability of kinetic and potential en-
ergy terms in the Hamiltonian. For a spherical particle sys-
tem, the use of an exact two-body density matrix is consid-
erably more efficient than the primitive approximatitn.
gggz\éir’o:hﬁe;ﬂ dcé)r;p?(r)?“;r;n?jf E:eré?]?jlgrcsuﬁrisogzgtriﬁﬂal _FIG. 1. Schematic showing the effect of_intrar_nolecular_ permu-
. . . . . . _tation moves. Vectors represent orientational directions
impractical here because of the excessive grid sizes requireg,

Theref dobt the simol imiti imation f i d=0,..., M — 1, of path-integral “beads” of moleculg with,
erefore we adop e' S'm,p er prlmlllve.appromma 1on Ore.g., partition numbeM = 4. The permutation moves allow the path
all degrees of freedom in this work, yielding

to more freely explore the angular space between 0° and 180°.

p(x,x';T)%J' dx"(x|e” TT|x"}{x"|e” "V|x"). (6) With the primitive approximation of Eq(6), the Monte
Carlo sampling of translations and rotations can now be per-
In practice, because of the relatively strong localization informed separately. Each Monte Carlo step then consists of an
the solid phase, the primitive approximation is very efficientattempted Metropolis move for every bead, with each single
here, and small values & are sufficient to ensure conver- molecule move incurring one displacement Rnand one
gence. With the Hamiltonian in Eq1), each of the two rotation in . To enhance sampling efficiency, the whole
contributing factors to the density matrix can then be writtenpath for each molecule also gets a random displacement at
out explicitly3? each MC step; i.e., every bead of the path is moved in the
same way, with identicaAR andA Q. This corresponds to a
2mh 7| ~3N? simplified multilevel sampling® In addition, intramolecule
m permutation moves are performed, which “flip” the molecu-
lar orientation by 180°. Exchange of two nuclei within a
r{ mR—R’|?
Xexpg —

e They=|

i VN molecule returns to the same quantum state JetO
2#%r |~y A “bosonic” para-H, andortho-D,, and for higherJ=even
states. This means that both vali@g, _, of the Mth bead
xXexd —B7/(/+1)]P,(cosd), (7)  of theith molecule “close” toQ;, of the first bead of the
same molecule, anf;,, ; “opposite” to Q;, are permit-
(Xle"™V|x"y=e" TV 5(x—x"). (8)  ted. We therefore make a Metropolis sampling of these two
values in order to implement the intramolecule permutations.
Such intramolecular permutation moves are designed as a
upplement to the rotational processes discussed above, al-
owing the molecular orientational path more freedom. Fig-
ure 1 shows how this works, with the additional permutation
moves allowing the motion corresponding to “opening of a
Fan” between 0° and 180°%The reverse process is allowed

Hered is the polar angle betwee® andQ’, P (cod) is the
Legendre polynomial of order’, and B is the rotational
constant of the molecule. Since only the bosonic specie
paraH, and ortho-D, are being investigated, the angular
momentum/ in Eq. (7) takes only even integer values.
/ max IS an upper cutoff value, taken to be large enough s

il B mad maxt 1) v i
tg’ltethe exponentiae yields a negligible for as well, by detailed balangeThe additional boson sym-
: N N metry deriving from the exchange of two molecules, which
In the primitive approximation, the reference system de- | ields th be i dn :
rived from M =1 reduces the kinetic contribution to the di- 2.0 /' s the same quantum state, can be ignored here since
. . o intermolecular exchange symmetry has a negligible effect in
agonal density matrix to a normalization factor dependen!i solid because of localizatidr®*While this intermolecular
only onm andl. For the quantities computed here, it there'exchange symmetry could also be established by making

:;)raeng"’llsl; sgrr::]a:jr Erzfi?:(t'rtr?ista(;(ilf?grsf(r:(l)arrslilr?slel;rt?g’mlfiin\ql\i/'lth similar intermolecule permutation moves, its neglect
9 greatly simplies the algorithm.

of m—ow and|—o. The latter would imply zero kinetic
energy and delta function behavior ©f| p|x’), whereas for
M =1 the kinetic energy remains finite and the density ma-
trix well behaved. We shall therefore refer to this limit The extended solid is modeled by a simulation cell of
M=1 as the “classical reference” system. finite size, which is periodically duplicated in all three spatial

B. Constant-pressure ensemble
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dimensions to minimize surface and finite size errors. The 1y
N molecules are initially placed according to a given crystal

structure in the cell. The interactions are evaluated making

use of the periodicity and the “minimum imaging”
method®* A cutoff correction to the potential energy is in-
cluded by assuming that beyond the cutoff length the solid isg
a continuous and uniform medium, with the same density as
inside the cell. This allows integration over the exterior den-2
sity. In this work, the cutoff length is chosen to be equal to 2
half of the smallest cell dimension. The initial size and ge- §
ometry of the cell are chosen to accomodate a particulak @ |
density and structure. Most of the calculations are performeg , |
with N=96 and an initial simulation cell determined by two
basis vectorga, andb ) forming a 60° angle and the third

| T=800K | T=250K | T=200K | T=150K | T=100K T=50K

i
i
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one(c,) perpendicular to bptbp andb . This choice, with 80 - o000 20000 30000 40000 50000 50000

the appropriate length ratlap:bp:cp=1:1:\/€/2, has the Monte Carlo Moves

advantage of accomodating both the fcc and hcp lattice struc-

tures. Thus there are six layers in tlog direction and FIG. 2. Histogram of the angles between the three basis vectors

4x 4 molecules in each layer. The packing pattern is eithefaking up Fhe simulation cell, during a classib&P T Monte Carlo
ABABABIN the hcp structure oABCABCin the fcc struc- ™" for solid N, at t_he constant pressure 61=70 KBar. The
ture. With the molecules placed initially at the lattice sites,S2MPIe temperature is lowered in five steps from 300 K to 50 K. A
this yields the ideal value of the crystallographic axial ratio splitting of the cell angle degeneracy, associated with a transition
cla= 873 (c anda are the lattice parametersor hcp. E "from cubic to trigonal structure, is observed around 150 K, in
tens_ive tes(ting with different V:';llueps oF and l\‘/arioucspi.niti(e;l agreement with the results of a classibEP T molecular dynamics
calculation(Ref. 37.
cell geometries has also been made. ( ?

_In order to avoid the bias of a restrictive cell geometry A vatropolis move of the simulation cell is typically per-
v_v|th a predetermined grystal structure, most of the calculaformed every five Monte Carlo steps, where each step in-
tions were performed in Fhe constant-pressuPT) en-  y5jyes hoth single and collective translational and rotational
semble, instead of. the glmpler constant-volume ensemblg, J\. o as described above. About 2000 MC steps are re-
(NVT) where the simulation cell remains fixed. The imple- 4, jireq for equilibration. Statistical averages are collected
mentation of the\ PT ensemble is achieved by an extra Me- ¢rom every second step after this, to a total of about 2000
tropolis move of the cell size and geometry, which generate§aia points. The constant-pressure PIMC code was tested by
a Mgrkov chain of states having a limiting distribution pro- performing a classical calculatigmith M=1) of the struc-
portional to tural transformations in solid nitrogen under pressure. Inter-

_ _ action potentials and starting configurations were taken from

exH ~ BPV=BE(s) + NInV]. © previous molecular dynamics simulatiotisThe results for

Here P is the given pressurd/ the cell volumeE(s) is the  energies and correlation functions duplicate those in Ref. 37.
energy(H) of the configuratiors, ands represents a set of In particular, the same cubic-to-trigonal structural transition
scaled coordinatess=(S,Q) replacesx=(R,Q), where is observed during a sequential lowering of the sample tem-
R=h-S, andh is a 3xX3 metric matrix for an arbitrarily perature aP=70 kbar, signaled by a splitting of the degen-
shaped celf® Each component o8 takes only values be- eracy in the values of the three cell angles and summarized
tween 0 and #4~3%A new state is generated by independentin Fig. 2.
random moves of the three basis vectors of the simulation
cell, altering both the volumey— V,) and the shape of the C. Interaction potentials

cell. This leads to a new metric matrikg— h,,, and there- . . -
fore to a new expectation value of the Hamiltonian,. For this model for the hydrogen solid, the only remaining

E-E.. The change in enthalov is then calculated accord!nput required is the intergction po_tential between two mol-
in%]_{o " g by ecules,V(R1,,€,5). This potential has been the subject

of many studies.Both ab initio basis-set quantum-chemistry
calculations and empirical parameter-fitting schemes have
(10 been used. Most of these studies either originated from or are
applicable to gas phase scattering and deal with the isolated
where v is the change in the cutoff corrections to the po-H,-H, interaction. Much less is known about the potential in
tential energy, since the new state has a different density aral(dense solid environment. Thus only semiempirical forms
cutoff length®* Apart from the direct evaluation of the po- of the isotropic component of this potential have been estab-
tential energy, this is the only place where the cutoff affectdished for solid hydrogen at this time.
the EOS calculated in th&lPT ensemble. Fortunately, a Intermolecular interactions are inherently more compli-
relatively large cancellation occurs v when the change in cated than interatomic ones, due to the larger number of
volume is small, as is often the case. The changes in the cellegrees of freedom. A common and convenient way to ex-
size and geometry are monitored throughout the calculatiorpress the multidimensional functioV(R;,,04,0,) is
and are discussed below. through the spherical harmonic expansi

N [V,
5H=60+P(Vn—vo)—EIn v
0
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TABLE |. Parameter valuegin atomic unitg for the interaction potential between two,Hnolecules
(Refs. 40 and 48

a B Y Rm Cs Cs Cio Co
1.173 1.5671 0.00993 6.50 12.14 215.2 4813.9 143.1
a a Rc
42131074 —8.045¢10°° 5.2912
V(R12,Q4,Q5) e (12R,/R-1?  jf R<128R,,
f(R)= ’ . (14)
_ 2 A R 1, otherwise.
1/ (R12)
172 The parameter values are listed in Table I. The van der
Waals(VDW) coefficientsCg, Cg, andC;q are derived from
X > (/‘lm1/2m2|/’1/'2/'m)Y/lml( 01,01) ab initio calculations of the long-range interactidisThe
My, mz.m other parameters, which determine the short-range repulsive
x Y/zmz( 0y, 62)Y5(0,d), (11) (F:)ﬁgas:e?ore fit to reproduce thermodynamic data of thesblid

where ¢'1m,/,m,|/ 1/ ,/’m) are the Clebsch-Gordon coef- ~ More recently, Hemleyet al. found that while the SG
ficients, (01,¢1), (6,,¢,), and ©,®) are the spherical potential is adequate for solid Hand D, under ambient
angles ofQ,, Q,, and the vectoR,,, respectively. The pressures, additional corrections are needed to fit high-
leading term in this expansion is the spherical averaged conpressure thermodynamic ddtéin particular, they found the
ponent: SG potential should be softened even more in the dense solid
environment, due to enhanced many-body contributions in
Vo(R)=Aqgod R12). (120 the short-range region. This effect can be incorporated by
The other terms in this expansion make up the anisotropigaking anad hocshort-range correction to the SG potential:
part of the potential, which is responsible for the rotational

orderings in the solid. The leading contributions are the long- Vo(R)=Vsa(R)+Vse(R), (15
range electronic quadrupole-quadrupdEQQ) interaction a;(R—Ry)3+a,(R—R,)® if R<R,
A,y and the “atom-diatom scattering” terfigy,=Asgy. 8 Vsa(R) = )

An alternative to the spherical harmonic expansion is to 0, otherwise.
express the potential as a pairwise summation of interactions (16)

between the atomic constituents. Such atom-atom potentialthe parameter values for this correction are also listed in
have been used in some classical molecular simulations forable I. Similar softening corrections were also constructed
other systems; see, e.g., Ref. 37 and 39. An atom-atom irby fitting the EOS derived from liquid B shock wave
teraction has the advantage of simplicity and flexibility, anddata®**4 Both the SG- and Hemley-corrected SG potentials
could be especially convenient for examining the effect ofwere tested here in the EOS calculation, and the Hemley-
intramolecular bond changes and for analysis of Ramagorrected SG potential, E¢15), was subsequently adopted

spectroscopy® It may also avoid possible bias imposed by as the isotropic part of the total potential.
truncation of the spherical harmonic expansion.
2. Anisotropic interaction potentials

1. Isotropic interaction potentials . . .
P P Considerably less work has been done for the anisotropic

The most commonly used,(R) empirical forms are due part of the interaction potential. Since its contribution is neg-
to Buck etal.®® (BUCK) and to Silvera and Goldman ligible in low-pressure solids, it cannot be directly tested
(SG).*° The BUCK potential was fit to gas phase data, whileagainst available experimental data. Usirap initio
SG was fit to solid phase data. The two potentials have esguantum-chemical calculations, Schaefer and co-workers
sentially the same analytic form, but SG found it necessarpave evaluated the six leading terms in the harmonic expan-
to incorporate an additional repulsive term to account forsion of the interaction, Eq.(11), between two H
effective three-body interactions in the solid environnf@nt. molecule<* A pairwise sum of the anisotropic part, consist-
The most visible effects of this three-body contribution are ang of termsAgy,, Az, Ao Agsp, andAs,,, was later
hardening of the potential in the short-range region and @mployed in a solid environment with a variety of lattice
slight raising of the well deptft: The SG potential takes the structures at various densities, to compare with results from
form electronic structure density functional calculations within the

B a BR R LDA.% The Schaefer potential was found to be too repulsive
Vo(R)=Vsg(R)=e 7 in the solid, by the comparison with the LDA. However, a

Ce Cs Cp C simple scaling with the scaling factor linear in the nearest-
—-f(R) §§+ E§+ RT(;_ Rg , (13 neighbor spacindr,,, can be applied to soften the Schaefer

potential and thereby achieve excellent agreement with the
with LDA results?®
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Vani= @V schaefer 17 40

a=0.61+0.31 Ry /Ry—0.5), (18

where R},=3.789 A is a constant, chosen to be the H 30 f
equilibrium nearest-neighbor spacing.

Both the bareVg.haererdnd the scaled/,,; for the aniso-
tropic components have been tested here. It was found that
Vi Yields results in significantly better agreement with ex-
perimental data for the orientational order-disorder transition
(see below.

20

Pressure (GPa)

lll. RESULTS

A. Equation of state
0

It has long been recognized that, as an easily compressible 6 Volume (ommol 10 2
guantum solid, the EOS of Hand D, provide critical infor-

mation for the study of equilibrium states. In particular, the  F|G. 3. The equation of state of DPIMC results calculated
EOS is a key test case for validation of both the theoreticalith the intermolecular potentialy, (open squarés V, (stars,
model and the intermolecular potenti@iMost previous the- V. (open circley andV, (crossey respectively, alf=20 K and
oretical studies have used tiNVT ensemble, particularly N=32 on a fcc lattice. See Eq&l9)—(22). Open triangles are ex-
the ground stateT=0).*+*6~*8The determination of pres- perimental data corrected To=0, from Ref. 43. Inset: solid circles
sureP in theNVT ensemble becomes numerically unreliableare PIMC results at high pressure calculated Wigh at T=300 K

at low pressure, due to cancellation between the kinetic angndN= 96 on a hcp lattice. Solid triangles are experimental data at
potential termS3 The EOS can be obtained more reliably by T=2300 K from Ref. 43. The solid curves in both figures are from
evaluating the volume derivative of the total energyN,  the experimental fitting formula of Ref. 43.

which is obtained by numerical differencing and hence is noj,qensitive to these parameters, and negligible differences in
directly measure_d. However, th(_a t_heo_retlcal determination op _ v/ resulted. Figure 3 shows a segment of theEDS up

E/N has corrections due to a finite-size cuttffthe NPT 5 50 GPa, calculated at=20 K with N=32 on a fcc lattice.

ensemble, on the other hand, provides a direct means f@hne observes tha¥, and V, vyield the same result, while
testing theP-V-T relationship against experimental data.\/_andv, show different behavior but are also very similar
Here, bothP andT are constant input parameters, Withor o one another. This is due to the fact that in each of these
p) directly measured in the equilibrated simulation cell. Thepairs, both components have the same isotropic part of the
error incurred here by the cutoff of the interaction potential istota| potential, and this isotropic term dominates the EOS. In
relatively small, due to cancellations during the Metropolisihe low-pressure regions(5 GP3, all theoretical data over-
moves of the cell itself. lap and are in good agreement with experimental measure-
The most recent measurements of the EOS for sojd D ments. ForP>5 GPa, however, the same deviations of the
and H, were reported by Hemlegt al.. in Ref. 43. Direct  5G results from experimental data noted by Hengewpl*®
P-V measurements were made up to pressures of 26.5 GPage seen here\, andV,). Inclusion of the Hemley correc-
T=300 K, by single-crystal x-ray diffraction. An approxi- tjon, in Eq.(16) (V. andVy), results in excellent agreement
mate determination of the thermal contribution to the presyyith the data. The inset of Fig. 3 shows our EOS result up to
sure, via thermal expansion, then leads to a low temperaturggg GPa, calculated withy at T=300 K andN=96 on a
(T=0) P-V EOS® This thermal pressure correction is less hep lattice. FoP<25 GPa, where direct experimental mea-
than 0.6 GPa in magnitude, which is small compared to thgyrements are available, our result is in excellent agreement
pressures in the range considered. TheO EOS of H, and  ith the data. For largeP, our result also overlaps the ex-
D are then fit by an empirical formula which can be used toyapolation based on thE=0 fit formula. This is to be ex-

extrapolate the EOS into higher pressure regimes. pected since the thermal correction is negligible in the high-
As a test of the intermolecular potential, the EOS forpressure regime.

D, was calculated with four different combinations for the ' similar behavior of the EOS is observed for solig,Hs

total potential: shown in Fig. 4. Note that the EOS for,Hand D, are
virtually identical forP>2 GPa, where the molar volume of

Va=Vsct Vsenacer 19 the solid is about 10 cAimol or densityp~0.06 A3, At
Ve Vet Vo (20 lower pressures, kHipossesses a slightly larger molar volume
b ¥SGT Tani (smaller density, due to its smaller molecular mass. This
_ leads to larger quantum zero-point contributions for the
V.=VggtVertV 21 ) : .
¢ 7SGT USRT ¥ Schaefer @) lighter isotope. The overlap of the EOS for the two isotopes
Vy=Veat Vert Vo (22) at high pressure indicates a trend toward semiclassical be-

havior in dense quantum solids. Because of this overlap, ei-
See Eqgs(13)—(17) for the forms of the individual compo- therP or p can be used interchangeably as the independent
nents. A variety of different lattice structures and differentvariable when comparing Pand H, properties at high pres-
values ofN were chosen. However, the EOS proved to besures.
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FIG. 4. The equation of state of HCircles are PIMC results o 2000 @ 06 ]
calculated with the intermolecular potentidlg, see Eq.(22), at > 20000 - (Dn‘s 1
T=300 K andN=96 on a hcp lattice. Triangles and solid curves [
are experimental data and fit formula from Ref. 43. 15000 r (poc@ |
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Within the primitive approximation of the PIMC calcula- PED
tion, the kinetic energy of the soli&/N, can be evaluated
with the estimatot* FIG. 5. Total energy and quantum corrections to the kinetic
energies for B and H, solids, as a function of densitya) Quan-
K=K{+K;, (23 tum correction to the rotational kinetic energl, /N—KkT. (b)

) Quantum correction to the translational kinetic energy,
K _EE_ ﬂ_ m|Rij_Ri(j71)| (24) (K¢/N=3/2T)\/n, with n=2 for D, andn=1 for H,, respec-
Y BZom \2r 242 ! tively. (c) Total energyE/N. Data points: ) at T=100 K (circles
and 200 K(squarel H, at T=100 K (diamond$ and 180 K(tri-
angle$. Thex axis shows number density: corresponding pressures
- E % are indicated abové). All data are calculated withl=96 in a hcp
" BZdB lattice with the intermolecular potenti, .

E;n;aoxB/(/wL 1[(2/+1)/4w]P (cosp)e B/ (/+1)
= 2 (2/+1)/Am]P (codf)e” B/(/+1)

B. Orientational orderin
(25 ’
HereK has been separated into a translationérationa) The structure of a solid is usually monitored by the pair
and a rotational par; andK,, respectivelyZ is the par-  distribution functiong(R). It is generally difficult to gather
tition function. As before, the subscriptdenotes the bead enough statistics to sample the vectorial natureRoin a

index on theith path, andd the polar angle between orien- numerical simulation, and thus it is conventional to use only
tation vectors();; and€Y;;_1). The potential energy/N is  jts spherical averagg(R):
given directly by

V=(V(x)). (26)

1

Figure 5 shows the total energy and the individual kinetic 9(R)= 477R7p < ; O(Ri; — R)> ' 27
contributions. One observes that the kinetic energy values
are significantly larger than the thermal kinetic energy of a
classical system (8T/2 for K; andkT for K,), testifying to  Thusg(R) only shows thgstatistical number of molecules
the quantum nature of the solid which gives additional zerothat are at a distand® from a given molecule. More defini-
point energy. A more detailed analysis of these zero-pointive information of the relative distribution in the three-
contributions will be made below. On the other hand, thedimensional space is lost, due to the spherical averaging. As
total energy is nevertheless dominated by ¢highly repul- is seen in the following figuregj(R) has well-defined peaks
sive) potential energy in the dense solid environment, to thehat denote the neighbor shells. The width of the peak is a
extent that the contribution of the kinetic energy is negligiblemeasure of the quantum and thermal fluctuations in the dis-
(K/E<5%). This explains the fact that the EOS of,ldnd  tances. For hcp and fcc lattices, the first two pe@lie near-
D, are virtually identical at high pressures, despite their 1:2est neighbor and the next-nearest neighbor, respectiaety
ratio in molecular mass. identical.
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; , ; , tuations in the orientation are ignored in Fig. 6 for purposes
of demonstration. Realisti©O(R) are notably rounded and
have maxima well below their peak values, due to such fluc-
04 ¢ T 1 tuations. Nonetheless, comparing the calcula®g®) with
0.0 | ] ] these “ideal” ones can provide crucial hints in deciphering
04 _L___ } —I—l— the orientational order. Except for ta3 phase, which is

' based on fcc, all the ordered phases in Fig. 6 are based on
08 F po o T c-hep ] hcp lattices'>® Because of the above-mentioned similarity
of the fcc and hcp lattices at short range, the signature for
Pa3 is identical up to second-nearest neighbor on both lat-
0.0 ] tices, and can therefore be compared to the hcp-based orien-
tational signatures at short range.

0.8 |

oM

ofr)

04 | T 1

04 " K " | " | For the study of phase transitions, it is convenient to use
0.8 [ Flat herringbone 1 Tilted herringbone ] an averaged order parameter
£ 0.4 T. B R
3
. o=4wpf "dRRIO(R) 2, 29
: ] 0
~0.4 ’ ‘ whereR,,,, is a distance cutoff imposed by the finite size of
40 T the simulation cell. For conveniencB,,,, is chosen to be
30 & ke equal to the second nearest-neighbor spacing. Another aver-
3 so b I aged order parameter can be defined as
10f + _ 1N
1
o ‘ =N GA™-3), (30)
1.0 15 2.0 25 1.0 15 2.0 25 i=1
Separation (E) wherex " is maximium eigenvalue of the matrix equation
FIG. 6. An illustration of the orientational ordering parameter X2 XV X7 ‘ .
O(R), defined in Eq(28), for several “ideally” ordered phasdso O i) (xiz) (dix) (dix)
fluctuations allowel Structural details foPa3 are given in Refs. 9 (yixiy (Y2 (yiz) (diy) -\ (diy)
and 13; forc-hcp, flat and tilted herringbone in Ref. 12; for 2 (diy) ! (di,)
Pca2, and P2,/c in Ref. 13. The bottom panel shows the corre- (zxi) (zy) () iz iz

spondingg(r) up to second-nearest-neighbor distances.
and wherex;, y;, andz; are the Cartesian coordinate com-
In order to monitor the correlations in molecular orienta-ponents of orientation vecte®; of the ith molecule. Still
tions, an analogous two-body correlation functiofR) is  another alternative way to monitor the lattice ordering is
defined as through the lattice biased order parameter

1 .
NE P,(£;-2)

2
; (31)

Ei<j|:’2(00519)5(Rij—R)> -

O(R)=< S, 3R, <R (28) o=

This function measures the two-body orientation correlatiothere% is the unit vector along a chosen direction in space.

at the intermolecular distande, normalized by the number o101 ther axis of the starting lattice configuration is taken
of molecules at that distancé. is the polar angle between - . L A

the orientation vectors of the molecules locatedRatand asz. For ff:C the initial(111) direction is taken as. In both
R;, i.e., the relative angular orientation. If the molecularCases, the axis coincides with the initiat,, basis vector of

orientations are completely disordered in a sobidhas a  the simulation cell. AlthougtO has the advantage of being
uniform distribution between 0° and 180fote that due to completely independent of a given spatial orientation bias,
the molecular symmetri?,(cosf) averages to zefoThisis O sometimes provides a clearer signal of the orientational
true for all intermolecular distances and thus vyieldsordering.O is useful even in aNPT ensemble, since the
O(R)=0 everywhere. On the other hand, parallel orienta-overall orientation of the lattice does not change much dur-
tions meand=0 andP,(cosf)=1, so that, for example, in ing a simulation run. Previously, Rung# al. have used a
the c-hcp ordered phase proposed eafe®(R)=1 every- still different averaged order paraméter

where. More complicated ordered phases yield distinctly dif-
ferent features iMO(R). O(R) signatures for some of the
structures suggested by recealdb initio calculations are
shown in Fig. 6. For some ordered phases, pairs of molecules
at the same distance, for example, within the nearestHere{u;} are the unit vectors pointing along a particular set
neighbor shell, can have different relative angular orientaof ordered directions on the lattice siteBy definition, this
tions @. In this case, a weighted average is taken according torder parameter can only measure the extent of ordering rela-
the number of pairs of molecules for each valuegoFluc-  tive to a given orientational structure defined by theget

O=

1 N 2
=> Po(Q-u)| . (32)
i=1
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FIG. 7. Orientational ordering phase transition ip &blid at the FIG. 8. The orientational order parame@ydefined in Eq(29),

temperaturd = 100 K. Top row shows the orientational correlation as a function of pressui, for a D, solid atT=100 K. The arrow
function O(R), defined in Eq(28), at pressure® =60 (a), 85 (b), indicates our identification for the transition pressi?g;-85 GPa
90(c), and 160(d) GPa. The bottom row shows the pair distribution (see text

function g(R) at the same pressures. These are calculated with

M=8 andN=96 in a hcp lattice. hcp and fcc, as is evident in Fig. 9. Figure 10 shows the ratio
of the crystallographic axeg/a, for a simulation with the
In the calculations made here, all of these different ordeinitial hcp lattice. Details of the computation of toéa ratio
parameters in Eq$28)—(32) give essentially the same indi- are summarized in the Appendix. The ratio is a little smaller
cation in the onset of a disorder-order transition, i.e., a sharghan the ideal value of 1.633, and is aproximately constant
change from zergor near zerpto a finite value, with only  over the pressure range studied. The value is somewhat less
small differences in the locatiorP(or p) of the transition.  than the approximately constant value reported for @
Figure 7 shows th®©(R) characteristics of a typical mo- lower pressurefup to 14.2 GPa in Ref. 43 and up to 30 GPa
lecular orientational ordering phase transition foj.[For a  in Ref. 49. Precise comparison with experiment is difficult
given temperaturd, the molecular orientation is disordered since the measurements were made fieD, rather for
in the solid at low pressurg@elow the values shown her@as  0-D,, and may furthermore be influenced by experimental
evidenced by the fact th@(R) averages to approximately artifacts such as hydrostatic straffis.
zero. AsP is increased and approaches a transition pressure
Py, deviations fromO(R)=0 become visible and then be-
come more pronouced &3 continues to increase. A well-
defined structure i©O(R) is then clearly evident and stable
throughout the simulation fd?>P,,. The onset of this tran- 250 ¢
sition is more clearly seen in Fig. 8, in which the averaged
order parameteD, Eq. (29), is shown as a function d?. A 200 |
steplike increase is seen in the functia{P) at P=Py,,
indicating a phase transition which is rounded by the finite
size and fluctuation effects. The transition pressByeis
identified as the point where the averaged order paramete
O first shows the most abrupt upward turn. Thus foy & 0w o
T=100 K, P,~85 GPa.

300

150

Témperature (K)

50

C. D, phase diagram

Figure 9 shows the resulting phase diagram in ThE 200

plane for D,. The effects of variable number of particlisis
(N=32, 48, 64, 96) have been tested, as well as different FIG. 9. The phase diagram of ;,Dsolid. The curves are the

choices of the cell geometry, in both the hcp and fcc phasesg, erimental boundaries between three phases 1, 11, and Ill, taken
Although a lattice s_tructural p_hase transition, e.g., be_tweetﬂom Refs. 3(solid line) and 7,8(dashed ling respectively. Solid
these two phases, is allowed in AMPT ensemble, no Sign  circles are PIMC data for the orientational order-disorder phase
of this is observed. The lattice stays in the start-up structur@ansition in the hcp phase; open circles are for fcc. Both of these
(either hcp or fcg throughout a simulation run, including are calculated withvy, and the scaled anisotropic potential, Eq.
when passing through the orientational order-disorder phas@?). Open squares are hcp results with tiescaledanisotropic
transition. The positions of such transitions do, howeverpotential [«=1 in Eg. (17]. All calculations are done with
shift noticably with the two different initial choices of lattice, N=96. The PIMC partition numbe¥ is given in Table II.

Pressure (GPa)
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TABLE Il. Partition numberM used in the PIMC calculations. 1.80
T (K) 20 60 80 106 T<200 300
M 20 16 12 8 4 170 f T=s00K

The orientational correlation functidd(R) is found to be
rather similar for fcc and hcp lattices in the ordered phasess " | Q Qg @ ® % ¥ Roe®ef
This is not too surprising, since these two lattices are very
similar. With the energetics of the dense solids dominated by
the short-range repulsions, the small difference in the ener- ;51
gies of the two lattices for distances beyond second-nearest-
neighbor separations is unresolvable within the accuracy of
the simulation. The signature @(R) in the ordered phase

for both lattices resembles that for tRa3 structure(com- 0640 60 80 100 120 140 160 180 200
pare Fig. 6 and Fig.)7and has, in contrast, very little resem- Pressure (GPa)
blance with the ordering signatures of the other structures

FIG. 10. Dependence of the crystallographic axis rafia in

shown in Fig. 6. A
We now compare the PIMC phase lines with the experi-the hcp structure on pressure for, Bcircles and H, (starg at

mental phase diagram for DTwo sets of experiments have T=300 _K. We use the method of calc_ulat_inga d_escribed in the
- Appendix, subsection 1. The dashed line is the ideal value 1.633.
found three distinct phases for,Dat pressures below 200
GPa(Fig. 9.>"8 The phases are alternatively referred to a
phases I, II, and IIf, or (orientationally disorderadhcp,
broken-symmetry phas@®SP), andA phasé,® respectively.
A triple point is identified at P,~150-165 GPa and
T,~125 K. ForT<T,, solid D, is observed to go through

San upward turn in th&-P plane, approximately parallel to
the experimental I-1ll phase boundary but displaced to lower
pressures by about 15 GPa. Since only one transition is ob-
served below the experimental triple-point temperature, no

o J'! further distinction between phase Il and a structure corre-

two phase transitiondl to Il, and Il to lll) as pressure is  gnonding to the experimental phase Il can be made. How-
increased, while only one transitioft to Ill) occurs for  gyer the fact that our orientational transition is parallel to the

T>T,. _The _positive identificatio_n of fchese phases is Sti”experimental I-1ll phase boundary suggests that phases Il and
uncertain. Single-crystal x-ray diffraction data have showny, might be structurally quite similar.

that phase |, which extends to the Ioﬁvﬁemperature and The effect of the different choices of the interaction po-
-pressure region, has a hcp lattice structiréThe molecu-  anig) Jisted in Sec. |1l A have also been tested, just as in the

lar orientations are disordered here, as for the solid undgtng study. In contrast to the situation for the EOS, the iso-
ambient pressurés. On the other hand, both phases I and yronic part of the potential plays little role here in determin-

Il are believed to be orientationally ordered phases. Thgng the orientational phase transition, apart from holding the
available experimental evidence suggests that they also haygyice at the proper density. The I-Il transition is, however,
hcp-based lattice structuré$;’ although the exact nature of sensitive to the choice of the anisotropic part of the potential,

these phases is still unknown. Based on the assumed hcp 95 might be expected. It is found that the best agreement of
fcc lattice structures, electronic structure calculations havgne |11 transition location with the experimental transition
identified a few e_nerge;ﬂcally prgferred, or_|ent_at|onally O jine for pressure® up to 130 GPa can be achieved by using
dered structures, including those illustrated in Fig.’&:10-13 V. i.e., with the scaled anisotropic potential of E47), for

A comprehensive summary of these structures is given ifye solid in the hep phase. Figure 9 clearly demonstrates that

Ref. 8. Some of these orientationally ordered phases havge ynscaled potential forms are too strong and predict the
already been observed in classical molecular solids such

. e o _ Fransition to occur at too low a pressure. This difference, and
N,, which exhibits a similar phase diagramRecently, a

X , . thus the necessity of the scaling, was also observed in the
group-theoretical analysis of experimental Raman and | rior, fixed lattice, PIMC stud§®

spectra has been made in the attempt to distinguish between
these alternative structures. This analysis eliminated several
of the more popular structures for phase lll, including the
hcp Pca2; and fccPa3 8 The phase diagram of solid +has not yet been investi-

In contrast to the experiments, only one phase transition, gated experimentally in the same detail as that for solid
pure orientational ordering, is observed here. It is evidenD,. Indeed it is still unclear to what extent the,Hphase
from Fig. 9 that the Monte Carlo results for the orientationaldiagram is analogous to that for,DIn particular, the exis-
disorder-order phase transition with a hcp lattice in the relatence of a triple point or, alternatively, of a critical point that
tively low-pressure regionP<130 GPa, show excellent terminates the IlI-lll phase boundary is a matter of some
agreement with the experimental I-1l phase boundary fodebate’”® Unfortunately, considerably fewer experimental
D,. In contrast, the phase line derived for ordering on the fcaneasurements of phase transition points have been made for
lattice lies far too high, i.e., occurs at too low pressure for aH ,. Figure 11 depicts the experimental II-Ill phase boundary
given temperature. This discounts the possibility of a seand the projected I-Il boundary which is obtained by inter-
guence of transitions, hcp-fcc-hcp, proposed by Runge anpolation between the single measurement of the low-
co-workers” 26 At the higher pressures, the PIMC data showtemperature experimental orientational transifoand the

D. H, phase diagram
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FIG. 11. Phase diagram of Hsolid. The solid curve is the FIG. 12. Comparison of the molecular orientational order-

experimental phase boundary between phases Il and Ill. The dasheisorder phase boundary for the ‘“classical reference” solid
curve is the expected boundary between phases | and Il, from theM =1) with the phase boundaries derived from the &nd H,
two measured data points marked by stdRefs. 7 and 8 Solid PIMC data when scaled to the effective rotational temperature de-
squares are PIMC results in the hcp phase for the orientationdined by Eq.(33). Diamonds and solid line; classical reference.
order-disorder phase transition, calculated withand the scaled Plusses: D phase boundary. Stars:,Hbhase boundary. The axis
anisotropic potential of Eq17). shows number density: corresponding pressures are indicated at the
top. All calculations were made for a hcp lattice, with=96.
controversal higher-temperature transition point to thé H-

structure aff =77 K and 150 GPa, when the latter is inter- defined in Eq.(25). The equipartition theorem in classical

preted as a triple point. Superimposed are our PIMC phas%tatistical physics predicts a rotational kinetic energy of

transition results for solid bl in the hcp phase(solid K¢ /N~KT for the two degrees of freedom in the molecular
squares The calculations show that this is also a purely®rientation. However, the measurtid/N noticably exceeds
orientational transition between the SP and an ordered pha%'%'s value, as is evident from Fig(&. One can define the
with Pa3-type local orientational order, with no associatedd!fferenceK,/N—kT as the quantum correction to the tem-

lattice structural transition. Just as for,Dthe crystallo- ]E)eratLIJ:r_e for tr:ﬁ :ottﬁtmnal o}{egrees of tfreegom. It is C'ﬁir
graphic c/a ratio also stays approximately constant, at al'om F1g. Ha) that this quan um correction decreases wi
value somewhat below the ideal val(&g. 10. This is con- increasing temperature, and increases with pressure. B.oth of
sistent with the available experimental measurements foﬁhese trends are understanda'ble in terms of standard pictures
H 51 of hindered rotators. The motion becomes less hindered, ap-

We can identify the observed transition in, Hvith the proaching pure rotation, at high_ temperatures as high_er rota-
same I-ll transition as in B The theoretical phase line “0”‘?" states are populated, while '.t becomes_ more hindered
clearly agrees rather well with the I-Il boundary obtained byat high pressures when the rotors interfere with one another,

interpolation between the experimental points. It also clearlyresultIng in greater vibrationalibrationa) character and

continues beyond the disputed transition poinfTat77 K consequently higher kinetic energy. .
and 150 GPa. Whether or not the location of this continua- To understand the consequences of the rotational quantum

tion is quantitatively accurate or n@s for D,, it may lie too correction for the phase diagram, one can alternatively define

. . p
high), the fact that we do actually see it is consistent with the? effective rotational temperaturByy, by
experimental identification of the transition pointTat 77 K ro_
and 150 GPa as a triple point rather than a critical pbnt. KT =K/ /N. 33
Furthermore, the agreement of the Il phase boundary This allows one to analyze the extent to which the orienta-
with the experimental phase line is consistent with the goodional transition can be described classically for each isotope.
agreement reached for the corresponding boundary jn D Figure 12 shows the order-disorder phase boundaries for
This isotopic consistency, both for the EOS and the orientab, and H, which result when the temperatures are scaled to
tional phase diagrams, provides a strong validification of thehe effective rotational temperature. One observes that the
potential used. Thus the hybrid potentig] with the scaled phase boundary for Palmost overlaps with that of the ef-
anisotropic interaction of Eq17) is therefore expected to be fective ‘“classical reference” system. For Hhere is less
an excellent candidate for further theoretical investigationsagreement with the classical reference, although it also ap-
of the dense phases of the hydrogen isotopes. proaches this in the high-temperature and high-density limit,
as would be expected. This tells us that foy, lthe molecular
orientational transition is strongly dependent upon the quan-
tum nature of the molecule, up to pressures of 140 GPa.
The quantum contributions to the molecular rotational de- It is of interest to compare the scaling behavior of the
grees of freedom are reflected in the rotational kinetic energyotational kinetic energy with that of the translational kinetic

E. Zero-point energies
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180 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ transition is observed for both isotopes which agrees quanti-
tatively with the experimental phase lines up to about 150
GPa. This represents a significant improvement over the pre-
300K vious best theoretical estimates of the I-1l transition for the
170 | ] two isotopes.”?® Use of the constant-pressure ensemble al-
lows different lattices to be accessed during the simulation
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, and thereby vastly increases the configurational space which
e 8 B g © B o @ can be explored. The agreement with experiment implies that
@ g = the interaction potential used here is reliable up to pressures
of about 150 GPa.

The nature of the orientational transition observed to
150 ¢ 1 agree with experiment is for both isotopes a transition from
rotationally disordered hcp to an ordered hcp structure, with
an ordering signature similar to that Bfa3 (out to second-
nearest neighboys This transition agrees with the experi-
mentally observed I-1l transition up to 150 GPa. No lattice
structural transition is observed for either isotope up to 200

FIG. 13. Comparison ot/a ratio for hcp-based b obtained GPa, and the crystallograph'm’a ratio remains app_roxi—
with the two procedures described in the Appendix, subsections 5_nate|y constant. We b?"eve th_at_ no str_uctural tran_SItlonS are
and 2. Circles represent the same data shown in Fig. 10 and aRPServed because during the finite period of a typical Monte
calculated with theg(R), pne, Method (Appendix, subsection )L Carlo run with the sample sizes used here, it is only realisti-
Squares are calculated from the simulation cell dimensiappen-  cally feasible to observe displacement type transitions, such
dix, subsection R The error bar is statistical error bar onlgee ~ as that reproduced for the classicap Nystent’ Since no
discussion in text The dashed line is the ideala value for hcp,  such signal was observed for,Dor H,, this suggests that
1.633. neither the I-Il transition nor the II-Ill transitiofwhich is

not seen hepeis of displacement type.
energy. The latter effectively becomes vibrational energy in One limitation of the current study is that the specific
the solid phase. Quantum corrections to this kinetic energghoice ofN and the geometry of the periodic simulation cell
term can therefore be viewed as deriving primarily fromwas designed to accomodate primarily the fcc and hcp lattice
zero-point vibrations, which scale agn in a harmonic  structures, and several orientationally ordered phases related
model, wheren is the mass indexfor H,, n=1, and for to these lattices. Orientational ordering with longer wave-
D,, n=2). Then the quantum correction to the translationallength than the cell dimensions could not be studied. More
kinetic energy, K,/N—3/2kT)/n, should be independent of importantly, there are many other crystal structures with pe-
isotope and temperature. This is indeed the case for the twidodic boundary conditions that require unit cells very differ-
hydrogen isotopes over the range of pressure studied here, 88t from the fcc/hcp ceff*3*°The recently studied ortho-
is evident from Fig. ). Note also that the translational rhombic structure is an interesting case for future study in
quantum corrections deriving from vibrations induced by re-this regard:® One other such example is tiephase in N,
stricted translation are significantly larger than the rotationalvhich requires a tetragonal simulation cell and a unit cell
corrections deriving from librations induced by hindered ro-With 32 molecules? Such a structure would be impossible to
tation. One can then similiarly define an effective transla-ealize through natural fluctuations in a constant pressure en-
tional (vibrationa) temperature, BT../2=/nK,/N, which semble starting with a hcp simulation cell of 96 particles.
has the mass dependence of the zero-point motion elimil herefore, the observation of more complex orientationally
nated.T., is of course not necessarily equal to the effective®rdered c_;rystlal structures "; preclqdﬁq W;Eth'rr]‘ the current
rotational temperatur&.,. The behavior of the different iso- SCMPutational constraints. The possibility of phase Il being

topes when scaled to such effective temperatures is useful f&tg?ggr\:% tihn?fesi,)tihgzstﬁ:r?fol\fi t%%”'geaeltzr::rtg;elgi f?eerér;\(l:iztl-be

developing simple understanding of features of the phas e S
- ; - ween specific structures for phases Il and Ill, to establish

diagram in quantum materials. The example shown abov =vhich ispthermodynamically stgble at high pressure

scaling the molecular orientational transition wikfy could Speculations have been made that phase Il] ma. involve

be valuable for predicting the phase diagram of the reIate(gO P P Y

quantum solid HD(Refs. 7 and Bif a reliable estimation of me kind of elongation of the intramolecular bond which
its quantum rotational kinetic energy can be made could alter the total energy and consequently the structure of

the solid®>'>!° Having shown here the usefulness of the
PIMC method with intermolecular interactions for covering
IV. SUMMARY AND DISCUSSION relatively large areas of the configuration space, it would be
interesting to now apply the PIMC method with an atom-
j?om interaction potential which would allow the intramo-

1.60 |

cfa

1.40

20 40 60 80 100 120 140 160 180 200
Pressure (GPa)

In this study of the phase diagrams of[@and H, up to
megabar pressures, we showed that the PIMC method m
be applied in a constant-pressure ensemble with simulta~
neous translation and rotational molecular motion incorpo-
rated. Utilizing an intermolecular interaction potential deter-
mined to agree with the experimental equation of state over a The authors wish to thank Karl Runge for much valuable
large range of pressures, a rotational order-disorder phaselp. Discussions with Roy Pollock and Jim Belak are also

cular vibron motion to be incorporated.
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In the case of the initially perfect hcp lattice wilh= 96
APPENDIX: ESTIMATION OF HCP ASPECT RATIO described in Sec. Il B, the three simulation cell dimensions
are related t@ anda as follows:

There are several ways to calculate tla ratio in con-

stant pressure PIMC calculations. One can either extract it ap,=4a,

from knowledge of the pair distribution functiog(R) and

the number density in the hcp structugg,.,, or directly b,=4a,

from sampling of the simulation cell dimensioas, b,, and

Cp - cp=3cC. (A3)

If one can assume that the system does not deviate much

from the ideal hcp structur@s is indeed true in our simula-
The molecular numbet(R) located at poinR from some  tions), then one can derive an estimate &da from

origin can be easily obtained frog(R). One can then define

1. From g(R) and pycp,

the lattice constar by means of the weighted average oJa= 8¢y . (Ad)
3(ap+bp)
>n(R)R
- >n(R) ’ (A1) In this case the statistical error bar ofa can easily be

derived from the statistical error of the three dimensions
where 2n(R)=12 is the number of first-nearest- nelghbora by, andc,.

molecules in the hcp structure. From the number density of ? Methods 1 and 2 give almost identical results, but the
the hcp lattice,pne,=4+3/38%c, the ratioc/a is then ob-  gystem fluctuations influence the data from the second
tained from method noticeably more than in the first method using
43 d(R) (see Fig. 13 We therefore take the first method, em-
(A2) ploying g(R) andpy, to be more reliable. The data in Fig.

cla= z——, ¢
3a°pnep 10 are produced with method 1.
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