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Rotational ordering in solid deuterium and hydrogen: A path integral Monte Carlo study
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The path-integral Monte Carlo method with a constant-pressure ensemble is used to study both translational
and orientational transitions in the phase diagram of D2 and H2 up to megabar pressures. With an intermo-
lecular interaction potential determined to agree with the experimental equation of state, a rotational order-
disorder phase transition is observed. The phase line for this transition is in quantitative agreement with part of
the phase diagram for both D2 and H2. No structural phase transition, and no transitions to the D-A and H-A
phases~phase III! are observed. We attribute this in part to the limitations of simulation cell size.
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I. INTRODUCTION

The search for a possible metallic phase in molecular
drogen and its isotopes has been pursued since the ince
of the idea by Wigner and Huntington more than 60 ye
ago.1 The most recent relevant experimental result is the
servation of high electrical conductivity in shock compress
liquid H2 and D2.

2 Further progress is expected from expe
ments in ultrahigh-pressure diamond anvil cells that are
pable of subjecting solid H2 and D2 samples to pressures u
to 200 GPa~2 Mbar or 2000 kbar!.3–8 In these experiments
the phase diagram for solid D2 over a wide range of pressur
P and temperatureT has been agreed upon by several
search groups. For H2, however, the phase diagram is st
incomplete, and is furthermore in dispute in the ultrahighP
(P*1 Mbar! region. Moreover, correct identification of eac
phase found in the diagram of either hydrogen isotope is
unclear.5–8

Although H2 and D2 are among the simplest molecul
species, the highly quantum nature of their condensed ph
poses a considerable challenge to theory. Frequently,
bosonic speciespara-H2 andortho-D2 can be well approxi-
mated as spherical particles under ambient pressures.9 How-
ever, the spherical approximation breaks down when
solid is subjected to high pressure, where the ordering
molecular rotational degrees of freedom becom
significant.3 The identification of H2 and D2 phases unde
high pressure has been approached theoretically by d
calculation of electronic energies for various crystal str
tures with particular molecular orientational orderings i
posed, within density functional theory in the local dens
approximation~LDA !.10–17However, characterization of th
lowest-energy states as well as the nature of the phase
sitions remains unclear fromab initio calculations.18–20 At-
tempts have also been made to study this system by qua
Monte Carlo ~QMC! calculations of the electron-proto
mixture.21–23 This automatically takes account of electro
550163-1829/97/55~18!/12253~14!/$10.00
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correlations and zero-point motions, absent in LDA calcu
tions, and avoids as well the need to employ model inter
tion potentials. The optimal approach to analysis of the ph
diagram would be to perform constant pressure QM
electron-proton calculations, but it is currently not possib
to carry these out without some approximation, at the l
temperatures relevant to the experimental observations.

The third alternative is to average over electronic degr
of freedom and to employ intermolecular pair potentials
QMC calculations for the nuclear degrees of freedom on
We adopt this approach here, employing an anisotropic m
lecular interaction potential in the finite-temperature pa
integral Monte Carlo~PIMC! method. This does not allow
the metallization transition to be studied, but should allo
investigation of both lattice and orientational transitions
the molecular phase, with zero-point motions automatica
incorporated. The particular potential employed here is a
brid of empirical and scaledab initio contributions, which
gives very good agreement with the equation of state
both H2 and D2 over the experimentally investigated rang
of pressures. On the basis of the agreement with the exp
mental phase diagrams of both isotopes demonstrated in
paper, we can conclude that it is valid at pressures up
about 150 GPa.

Application of the PIMC technique to the translation
~center-of-mass! motion in solid H2 was employed by Zopp
et al.24 and by Wagner and Ceperley.25 Both of these groups
treated the H2 molecule with spherically averaged potentia
Runge and co-workers have applied PIMC to the rotatio
degrees of freedom, and studied orientational ordering w
the molecular center of mass fixed at given lattice sites.17,26

Although the translation~vibration! and molecular rotations
are expected to be strongly coupled under pressure, no
tempt has so far been made to perform finite-tempera
calculations with both degrees of freedom simultaneou
coexisting, with exception of a two-dimensional study
H2 on the surface of graphite27 and a calculation for smal
12 253 © 1997 The American Physical Society
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clusters.28 The influence of rotational motion and orientatio
of H2 molecules on adsorption and desorption on Pd s
faces was also studied by a six-dimensional quantum
namical calculation.29

The incorporation of both translational and rotational d
grees of freedom in the PIMC method is straightforward
one starts from a high-temperature density matrix for b
translational and rotational motions. The pair potential u
here does not contain any dependence on the intramole
bond length; i.e., each molecule is a movable, orienta
rigid rotor. This neglects the density dependence of the b
length21 which is expected to be important at ultrahig
pressures.12,15,17,30 The famous ‘‘minus sign problem’’ in
QMC studies associated with fermions is avoided by con
ing the study to solid systems and, furthermore to bo
systems ofpara-H2 and ortho-D2, i.e., for J50, although
such distinctions are expected to lose their meanings in v
dense solids, where the angular momentum of each i
vidual molecule,J, is no longer a good quantum number.3,9

Most of the calculations are performed for D2, for which
more experimental data is available. An important elemen
the calculations is that they are performed in a consta
pressure ensemble, rather than the more usual and com
tionally simpler constant-volume ensemble. This enables
to monitor volume changes and therefore to directly obse
possible first-order phase transitions.

The remainder of this paper is organized as follows:
Sec. II, the outline of the theoretical model is present
including a brief summary of the PIMC formulation and i
application to both translational and rotational degrees
freedom, a review of the intermolecular potential forms
description of the potential used here, and a description
the constant-pressure ensemble. In Sec. III results for b
D2 and H2 solids are shown, including their equations
state~EOS! and orientational order-disorder phase diagram
with comparison to experimental data. Finally, Sec. IV su
marizes and discusses the results.

II. THEORETICAL MODEL

Within the approximation that~effective! pairwise inter-
actions are valid, a quantum-molecular solid with trans
tional and rotational degrees of freedom is described by
Hamiltonian

H5T1V,

T52
\2

2m(
i

N

¹Ri
2 1

\2

2I(i
N

L i
2 , ~1!

V5
1

2(iÞ j

N

V~Ri j ,Vi ,Vj !,

whereRi is the center-of-mass position vector of thei th
molecule,Vi its orientation vector,L i its angular momentum
operator, andRi j[Ri2Rj is the intermolecular separatio
vector. The molecular mass and moment of inertia are
noted bym andI , respectively. With the intramolecular bon
length fixed, for a linear molecule,I is a scalar constant. Th
values ofm53676 and 7352~atomic units! for H2 and D2,
respectively, and rotational constantsB[\2/2I584.98 and
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42.92 K for H2 and D2 respectively, are used.9,26

V(Ri j ,Vi ,Vj ) is the intermolecular interaction potentia
The form of this will be discussed below in Sec. II C.

A. Path-integral Monte Carlo method

The Hamiltonian in Eq.~1! poses a many-body problem
which cannot be solved analytically. While variation
Monte Carlo ~VMC! and diffusional Monte Carlo~DMC!
methods are capable of finding the ground state of the
tem, a numerical solution at finite temperature requires
application of the PIMC method. The quantum-statistic
properties at any finite temperature are fully described by
density matrix. In position space this has the form

r~x,x8;b!5^xue2bHux8&, ~2!

where x[$R1 , . . . ,RN ,V1 , . . . ,VN% and b[1/kT. The
thermal expectation value of an operatorA is then evaluated
as Tr(rA), which is written as an integration over the co
figuration space:

^A&5
*dxdx8r~x,x8;b!^xuAux8&

*dxr~x,x;b!
. ~3!

In this work we are concerned only with thermodynamic
static properties determined by the diagonal elements of
density matrix,r(x,x;b); i.e., we are concerned only with
local operatorsA. When the linear rotor degrees of freedo
are added to the translational degrees of freedom, the inte
in Eq. ~3! then becomes 5N dimensional.

The exact many-body density matrixr(x,x8;b) is un-
known, but the path-integral description takes advantage
its product property to expressr(x,x8;b) as the convolution
of M density matrices or ‘‘partitions’’ at a higher temper
tureMT:

r~x,x8;b!5E •••E dx1•••dxM21r~x,x1 ;t!

3r~x1 ,x2 ;t!•••r~xM21 ,x8;t!. ~4!

Here we have definedt[b/M . In Eq. ~4!, as written,
M>3. The lowest-order convolution possible corresponds
M52 partitions, while forM51 there is only a single,
trivial partition, and no convolution. For givenM , the off-
diagonal density matrix, Eq.~4!, is thereby expressed as a
(M21) dimensional integral over paths defined by the se
M11 points $x5x0 ,x1 , . . . ,xM21 ,x8%, and the diagonal
density matrixr(x,x;b) as an (M21)-dimensional integral
over paths defined by the set ofM points
$x5x0 ,x1 , . . . ,xM21 ,x0%. For ease of reference we sha
refer tox andx0 interchangeably from now on.

In this discrete path integral representation, Tr(r) and ex-
pectation values of local operators^xuAux8&5A(x) then be-
come explicit integrals overM35N dimensions. Such mul-
tidimensional integration is performed with the Metropo
Monte Carlo sampling technique.31–33 In the
(M35N)-dimensional space, each moleculei (0, i<N) is
represented by a discrete, closed path ofM ‘‘beads,’’ with
each bead j @0, j<(M21)# denoting a ‘‘position’’
(Ri j ,Vi j ) in the 5N-dimensional configuration space. Th
extent of each path in this space represents the quantum
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55 12 255ROTATIONAL ORDERING IN SOLID DEUTERIUM AND . . .
tuation in the molecular position, for both translational a
rotational degrees of freedom. Therefore settingM51 and
removing the convolution in Eq.~4! ignores all such fluctua
tions. This limit displays a strong analogy with the classi
system and provides a useful reference system, as wil
explained in more detail below.

WhenM is large enough, the high-temperature dens
matrix r(x,x8;t) can be well approximated by its classic
or semiclassical value. Thus, the primitive approximation

e2t~T1V!'e2tTe2tV ~5!

can be adopted. This neglects quantum corrections of o
O(t2@T,V#), and thereby avoids the problems associa
with the lack of commutability of kinetic and potential en
ergy terms in the Hamiltonian. For a spherical particle s
tem, the use of an exact two-body density matrix is cons
erably more efficient than the primitive approximation31

However, the incorporation of the molecular orientation
degrees of freedom for H2 and D2 renders this approac
impractical here because of the excessive grid sizes requ
Therefore we adopt the simpler primitive approximation
all degrees of freedom in this work, yielding

r~x,x8;t!'E dx9^xue2tTux9&^x9ue2tVux8&. ~6!

In practice, because of the relatively strong localization
the solid phase, the primitive approximation is very efficie
here, and small values ofM are sufficient to ensure conve
gence. With the Hamiltonian in Eq.~1!, each of the two
contributing factors to the density matrix can then be writ
out explicitly:31

^xue2tTux8&5S 2p\2t

m D 23N/2

3expF2
muR2R8u2

2\2t G (
l 50

l max 2l 11

4p

3exp@2Btl ~ l 11!#Pl ~cosu!, ~7!

^xue2tVux8&5e2tV~x!d~x2x8!. ~8!

Hereu is the polar angle betweenV andV8, Pl (cosu) is the
Legendre polynomial of orderl , and B is the rotational
constant of the molecule. Since only the bosonic spe
para-H2 and ortho-D2 are being investigated, the angul
momentuml in Eq. ~7! takes only even integer value
l max is an upper cutoff value, taken to be large enough
that the exponentiale2Btl max(l max11) yields a negligible
value.

In the primitive approximation, the reference system d
rived fromM51 reduces the kinetic contribution to the d
agonal density matrix to a normalization factor depend
only onm and I . For the quantities computed here, it ther
fore has a similar effect to taking a classical limit, i.e., w
m andI large and finite.~This differs from the extreme limit
of m→` and I→`. The latter would imply zero kinetic
energy and delta function behavior of^xurux8&, whereas for
M51 the kinetic energy remains finite and the density m
trix well behaved.! We shall therefore refer to this limi
M51 as the ‘‘classical reference’’ system.
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With the primitive approximation of Eq.~6!, the Monte
Carlo sampling of translations and rotations can now be p
formed separately. Each Monte Carlo step then consists o
attempted Metropolis move for every bead, with each sin
molecule move incurring one displacement inR and one
rotation in V. To enhance sampling efficiency, the who
path for each molecule also gets a random displacemen
each MC step; i.e., every bead of the path is moved in
same way, with identicalDR andDV. This corresponds to a
simplified multilevel sampling.31 In addition, intramolecule
permutation moves are performed, which ‘‘flip’’ the molec
lar orientation by 180°. Exchange of two nuclei within
molecule returns to the same quantum state forJ50
‘‘bosonic’’ para-H2 andortho-D2, and for higherJ5even
states. This means that both valuesViM21 of theM th bead
of the i th molecule ‘‘close’’ toVi0 of the first bead of the
same molecule, andViM21 ‘‘opposite’’ to Vi0 are permit-
ted. We therefore make a Metropolis sampling of these t
values in order to implement the intramolecule permutatio
Such intramolecular permutation moves are designed a
supplement to the rotational processes discussed above
lowing the molecular orientational path more freedom. F
ure 1 shows how this works, with the additional permutati
moves allowing the motion corresponding to ‘‘opening of
fan’’ between 0° and 180°.~The reverse process is allowe
for as well, by detailed balance.! The additional boson sym
metry deriving from the exchange of two molecules, whi
also yields the same quantum state, can be ignored here
intermolecular exchange symmetry has a negligible effec
a solid because of localization.31,33While this intermolecular
exchange symmetry could also be established by mak
similar intermolecule permutation moves,31 its neglect
greatly simplies the algorithm.

B. Constant-pressure ensemble

The extended solid is modeled by a simulation cell
finite size, which is periodically duplicated in all three spat

FIG. 1. Schematic showing the effect of intramolecular perm
tation moves. Vectors represent orientational directio
Vij , j50, . . . ,M21, of path-integral ‘‘beads’’ of moleculei , with,
e.g., partition numberM54. The permutation moves allow the pa
to more freely explore the angular space between 0° and 180°
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12 256 55T. CUI, E CHENG, B. J. ALDER, AND K. B. WHALEY
dimensions to minimize surface and finite size errors. T
N molecules are initially placed according to a given crys
structure in the cell. The interactions are evaluated mak
use of the periodicity and the ‘‘minimum imaging
method.34 A cutoff correction to the potential energy is in
cluded by assuming that beyond the cutoff length the soli
a continuous and uniform medium, with the same density
inside the cell. This allows integration over the exterior de
sity. In this work, the cutoff length is chosen to be equal
half of the smallest cell dimension. The initial size and g
ometry of the cell are chosen to accomodate a partic
density and structure. Most of the calculations are perform
with N596 and an initial simulation cell determined by tw
basis vectors~ap andb p) forming a 60° angle and the thir
one~cp) perpendicular to bothap andb p . This choice, with
the appropriate length ratioap :bp :cp51:1:A6/2, has the
advantage of accomodating both the fcc and hcp lattice st
tures. Thus there are six layers in thecp direction and
434 molecules in each layer. The packing pattern is eit
ABABABin the hcp structure orABCABCin the fcc struc-
ture. With the molecules placed initially at the lattice site
this yields the ideal value of the crystallographic axial rat
c/a5A8/3 (c anda are the lattice parameters!, for hcp. Ex-
tensive testing with different values ofN and various initial
cell geometries has also been made.

In order to avoid the bias of a restrictive cell geome
with a predetermined crystal structure, most of the calcu
tions were performed in the constant-pressure (NPT) en-
semble, instead of the simpler constant-volume ensem
(NVT) where the simulation cell remains fixed. The impl
mentation of theNPT ensemble is achieved by an extra M
tropolis move of the cell size and geometry, which genera
a Markov chain of states having a limiting distribution pr
portional to

exp@2bPV2bE~s!1NlnV#. ~9!

HereP is the given pressure,V the cell volume,E(s) is the
energy^H& of the configurations, ands represents a set o
scaled coordinates.s[(S,V) replacesx5(R,V), where
R5h•S, and h is a 333 metric matrix for an arbitrarily
shaped cell.35 Each component ofS takes only values be
tween 0 and 1.34–36A new state is generated by independe
random moves of the three basis vectors of the simula
cell, altering both the volume (V0→Vn) and the shape of the
cell. This leads to a new metric matrix,h0→hn , and there-
fore to a new expectation value of the Hamiltonia
E0→En . The change in enthalpy is then calculated acco
ing to

dH5dv1P~Vn2V0!2
N

b
lnSVn

V0
D , ~10!

wheredv is the change in the cutoff corrections to the p
tential energy, since the new state has a different density
cutoff length.34 Apart from the direct evaluation of the po
tential energy, this is the only place where the cutoff affe
the EOS calculated in theNPT ensemble. Fortunately,
relatively large cancellation occurs indv when the change in
volume is small, as is often the case. The changes in the
size and geometry are monitored throughout the calculat
and are discussed below.
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A Metropolis move of the simulation cell is typically per-
formed every five Monte Carlo steps, where each step
volves both single and collective translational and rotation
moves as described above. About 2000 MC steps are
quired for equilibration. Statistical averages are collect
from every second step after this, to a total of about 20
data points. The constant-pressure PIMC code was tested
performing a classical calculation~with M51) of the struc-
tural transformations in solid nitrogen under pressure. Int
action potentials and starting configurations were taken fro
previous molecular dynamics simulations.37 The results for
energies and correlation functions duplicate those in Ref.
In particular, the same cubic-to-trigonal structural transitio
is observed during a sequential lowering of the sample te
perature atP570 kbar, signaled by a splitting of the degen
eracy in the values of the three cell angles and summariz
in Fig. 2.

C. Interaction potentials

For this model for the hydrogen solid, the only remainin
input required is the interaction potential between two mo
ecules,V(R12,V1 ,V2). This potential has been the subjec
of many studies.9 Bothab initio basis-set quantum-chemistry
calculations and empirical parameter-fitting schemes ha
been used. Most of these studies either originated from or
applicable to gas phase scattering and deal with the isola
H2-H2 interaction. Much less is known about the potential
a ~dense! solid environment. Thus only semiempirical form
of the isotropic component of this potential have been esta
lished for solid hydrogen at this time.

Intermolecular interactions are inherently more comp
cated than interatomic ones, due to the larger number
degrees of freedom. A common and convenient way to e
press the multidimensional functionV(R12,V1 ,V2) is
through the spherical harmonic expansion9,38

FIG. 2. Histogram of the angles between the three basis vec
making up the simulation cell, during a classicalNPTMonte Carlo
run for solid N2 at the constant pressure ofP570 KBar. The
sample temperature is lowered in five steps from 300 K to 50 K.
splitting of the cell angle degeneracy, associated with a transit
from cubic to trigonal structure, is observed aroundT5150 K, in
agreement with the results of a classicalNPTmolecular dynamics
calculation~Ref. 37!.
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TABLE I. Parameter values~in atomic units! for the interaction potential between two H2 molecules
~Refs. 40 and 43!.

a b g Rm C6 C8 C10 C9

1.173 1.5671 0.00993 6.50 12.14 215.2 4813.9 143.1
a1 a2 Rc

4.21331024 28.04531025 5.2912
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V~R12,V1 ,V2!

5 (
l 1 ,l 2 ,l

Al 1 ,l 2 ,l ~R12!

3 (
m1 ,m2 ,m

~ l 1m1l 2m2ul 1l 2l m!Yl 1m1
~u1 ,f1!

3Yl 2m2
~u2 ,f2!Yl m* ~Q,F!, ~11!

where (l 1m1l 2m2ul 1l 2l m) are the Clebsch-Gordon coe
ficients, (u1 ,f1), (u2 ,f2), and (Q,F) are the spherica
angles ofV1, V2, and the vectorR12, respectively. The
leading term in this expansion is the spherical averaged c
ponent:

V0~R![A000~R12!. ~12!

The other terms in this expansion make up the anisotro
part of the potential, which is responsible for the rotation
orderings in the solid. The leading contributions are the lo
range electronic quadrupole-quadrupole~EQQ! interaction
A224 and the ‘‘atom-diatom scattering’’ termA0225A202.

38

An alternative to the spherical harmonic expansion is
express the potential as a pairwise summation of interact
between the atomic constituents. Such atom-atom poten
have been used in some classical molecular simulations
other systems; see, e.g., Ref. 37 and 39. An atom-atom
teraction has the advantage of simplicity and flexibility, a
could be especially convenient for examining the effect
intramolecular bond changes and for analysis of Ram
spectroscopy.39 It may also avoid possible bias imposed
truncation of the spherical harmonic expansion.

1. Isotropic interaction potentials

The most commonly usedV0(R) empirical forms are due
to Buck et al..38 ~BUCK! and to Silvera and Goldma
~SG!.40 The BUCK potential was fit to gas phase data, wh
SG was fit to solid phase data. The two potentials have
sentially the same analytic form, but SG found it necess
to incorporate an additional repulsive term to account
effective three-body interactions in the solid environmen40

The most visible effects of this three-body contribution ar
hardening of the potential in the short-range region an
slight raising of the well depth.41 The SG potential takes th
form

V0~R!5VSG~R!5ea2bR2gR2

2 f ~R!HC6

R6 1
C8

R8 1
C10

R102
C9

R9 J , ~13!

with
-

ic
l
-

o
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ls
or
n-

f
n

s-
ry
r

a
a

f ~R!5H e2~1.28Rm /R21!2, if R,1.28Rm,

1, otherwise.
~14!

The parameter values are listed in Table I. The van
Waals~VDW! coefficientsC6, C8, andC10 are derived from
ab initio calculations of the long-range interactions.42 The
other parameters, which determine the short-range repul
core, are fit to reproduce thermodynamic data of the D2 solid
phase.40

More recently, Hemleyet al. found that while the SG
potential is adequate for solid H2 and D2 under ambient
pressures, additional corrections are needed to fit h
pressure thermodynamic data.43 In particular, they found the
SG potential should be softened even more in the dense s
environment, due to enhanced many-body contributions
the short-range region. This effect can be incorporated
making anad hocshort-range correction to the SG potentia

V0~R!5VSG~R!1VSR~R!, ~15!

VSR~R!5H a1~R2Rc!
31a2~R2Rc!

6, if R<Rc,

0, otherwise.
~16!

The parameter values for this correction are also listed
Table I. Similar softening corrections were also construc
by fitting the EOS derived from liquid D2 shock wave
data.43,44 Both the SG- and Hemley-corrected SG potenti
were tested here in the EOS calculation, and the Hem
corrected SG potential, Eq.~15!, was subsequently adopte
as the isotropic part of the total potential.

2. Anisotropic interaction potentials

Considerably less work has been done for the anisotro
part of the interaction potential. Since its contribution is ne
ligible in low-pressure solids, it cannot be directly test
against available experimental data. Usingab initio
quantum-chemical calculations, Schaefer and co-work
have evaluated the six leading terms in the harmonic exp
sion of the interaction, Eq.~11!, between two H2
molecules.45 A pairwise sum of the anisotropic part, consis
ing of termsA022, A202, A220, A222, andA224, was later
employed in a solid environment with a variety of lattic
structures at various densities, to compare with results fr
electronic structure density functional calculations within t
LDA.26 The Schaefer potential was found to be too repuls
in the solid, by the comparison with the LDA. However,
simple scaling with the scaling factor linear in the neare
neighbor spacingRnn can be applied to soften the Schaef
potential and thereby achieve excellent agreement with
LDA results:26
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Vani5aVSchaefer, ~17!

a50.6110.31~RNN /RNN
0 20.5!, ~18!

whereRNN
0 53.789 Å is a constant, chosen to be the H2

equilibrium nearest-neighbor spacing.
Both the bareVSchaeferand the scaledVani for the aniso-

tropic components have been tested here. It was found
Vani yields results in significantly better agreement with e
perimental data for the orientational order-disorder transit
~see below!.

III. RESULTS

A. Equation of state

It has long been recognized that, as an easily compres
quantum solid, the EOS of H2 and D2 provide critical infor-
mation for the study of equilibrium states. In particular, t
EOS is a key test case for validation of both the theoret
model and the intermolecular potential.3,9 Most previous the-
oretical studies have used theNVT ensemble, particularly
the ground state (T50).41,46–48The determination of pres
sureP in theNVT ensemble becomes numerically unreliab
at low pressure, due to cancellation between the kinetic
potential terms.33 The EOS can be obtained more reliably
evaluating the volume derivative of the total energy,E/N,
which is obtained by numerical differencing and hence is
directly measured. However, the theoretical determination
E/N has corrections due to a finite-size cutoff.41 TheNPT
ensemble, on the other hand, provides a direct means
testing theP-V-T relationship against experimental dat
Here, bothP andT are constant input parameters, withV ~or
r) directly measured in the equilibrated simulation cell. T
error incurred here by the cutoff of the interaction potentia
relatively small, due to cancellations during the Metropo
moves of the cell itself.

The most recent measurements of the EOS for solid2
and H2 were reported by Hemleyet al.. in Ref. 43. Direct
P-V measurements were made up to pressures of 26.5 G
T5300 K, by single-crystal x-ray diffraction. An approx
mate determination of the thermal contribution to the pr
sure, via thermal expansion, then leads to a low tempera
(T50) P-V EOS.43 This thermal pressure correction is le
than 0.6 GPa in magnitude, which is small compared to
pressures in the range considered. TheT50 EOS of H2 and
D2 are then fit by an empirical formula which can be used
extrapolate the EOS into higher pressure regimes.

As a test of the intermolecular potential, the EOS
D2 was calculated with four different combinations for th
total potential:

Va5VSG1VSchaefer, ~19!

Vb5VSG1Vani, ~20!

Vc5VSG1VSR1VSchaefer, ~21!

Vd5VSG1VSR1Vani. ~22!

See Eqs.~13!–~17! for the forms of the individual compo
nents. A variety of different lattice structures and differe
values ofN were chosen. However, the EOS proved to
at
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insensitive to these parameters, and negligible difference
P2V resulted. Figure 3 shows a segment of the D2 EOS up
to 50 GPa, calculated atT520 K withN532 on a fcc lattice.
One observes thatVa and Vb yield the same result, while
Vc andVd show different behavior but are also very simil
to one another. This is due to the fact that in each of th
pairs, both components have the same isotropic part of
total potential, and this isotropic term dominates the EOS
the low-pressure region (<5 GPa!, all theoretical data over-
lap and are in good agreement with experimental meas
ments. ForP.5 GPa, however, the same deviations of t
SG results from experimental data noted by Hemleyet al.43

are seen here (Va andVb). Inclusion of the Hemley correc
tion, in Eq.~16! (Vc andVd), results in excellent agreemen
with the data. The inset of Fig. 3 shows our EOS result up
200 GPa, calculated withVd at T5300 K andN596 on a
hcp lattice. ForP,25 GPa, where direct experimental me
surements are available, our result is in excellent agreem
with the data. For largerP, our result also overlaps the ex
trapolation based on theT50 fit formula. This is to be ex-
pected since the thermal correction is negligible in the hi
pressure regime.

Similar behavior of the EOS is observed for solid H2, as
shown in Fig. 4. Note that the EOS for H2 and D2 are
virtually identical forP.2 GPa, where the molar volume o
the solid is about 10 cm3/mol or densityr;0.06 Å23. At
lower pressures, H2 possesses a slightly larger molar volum
~smaller density!, due to its smaller molecular mass. Th
leads to larger quantum zero-point contributions for t
lighter isotope. The overlap of the EOS for the two isotop
at high pressure indicates a trend toward semiclassical
havior in dense quantum solids. Because of this overlap
therP or r can be used interchangeably as the independ
variable when comparing D2 and H2 properties at high pres
sures.

FIG. 3. The equation of state of D2. PIMC results calculated
with the intermolecular potentialsVa ~open squares!, Vb ~stars!,
Vc ~open circles!, andVd ~crosses!, respectively, atT520 K and
N532 on a fcc lattice. See Eqs.~19!–~22!. Open triangles are ex
perimental data corrected toT50, from Ref. 43. Inset: solid circles
are PIMC results at high pressure calculated withVd , atT5300 K
andN596 on a hcp lattice. Solid triangles are experimental data
T5300 K from Ref. 43. The solid curves in both figures are fro
the experimental fitting formula of Ref. 43.
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Within the primitive approximation of the PIMC calcula-
tion, the kinetic energy of the solid,K/N, can be evaluated
with the estimator31

K5Kt1Kr , ~23!

Kt52
m

bZ

]Z

]m
5 K 3N2t

2
muRi j2Ri ~ j21!u2

2\2t L , ~24!

Kr52
B

bZ

]Z

]B

5K (
l 50
l maxBl ~ l 11!@~2l 11!/4p#Pl ~cosu!e2tBl ~ l 11!

(
l 50
l max@~2l 11!/4p#Pl ~cosu!e2tBl ~ l 11! L .

~25!

HereK has been separated into a translational~vibrational!
and a rotational part,Kt andKr , respectively.Z is the par-
tition function. As before, the subscriptj denotes the bead
index on thei th path, andu the polar angle between orien-
tation vectorsVi j andVi ( j21) . The potential energyV/N is
given directly by

V5^V~x!&. ~26!

Figure 5 shows the total energy and the individual kinet
contributions. One observes that the kinetic energy valu
are significantly larger than the thermal kinetic energy of
classical system (3kT/2 for Kt andkT for Kr), testifying to
the quantum nature of the solid which gives additional zer
point energy. A more detailed analysis of these zero-poi
contributions will be made below. On the other hand, th
total energy is nevertheless dominated by the~highly repul-
sive! potential energy in the dense solid environment, to th
extent that the contribution of the kinetic energy is negligibl
(K/E<5%!. This explains the fact that the EOS of H2 and
D2 are virtually identical at high pressures, despite their 1
ratio in molecular mass.

FIG. 4. The equation of state of H2. Circles are PIMC results
calculated with the intermolecular potentialsVd , see Eq.~22!, at
T5300 K andN596 on a hcp lattice. Triangles and solid curves
are experimental data and fit formula from Ref. 43.
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B. Orientational ordering

The structure of a solid is usually monitored by the p
distribution functiong(R). It is generally difficult to gather
enough statistics to sample the vectorial nature ofR in a
numerical simulation, and thus it is conventional to use o
its spherical averageg(R):

g~R!5
1

4pR2r K (
i, j

d~Ri j2R!L . ~27!

Thusg(R) only shows the~statistical! number of molecules
that are at a distanceR from a given molecule. More defini
tive information of the relative distribution in the three
dimensional space is lost, due to the spherical averaging
is seen in the following figures,g(R) has well-defined peaks
that denote the neighbor shells. The width of the peak i
measure of the quantum and thermal fluctuations in the
tances. For hcp and fcc lattices, the first two peaks~the near-
est neighbor and the next-nearest neighbor, respectively! are
identical.

FIG. 5. Total energy and quantum corrections to the kine
energies for D2 and H2 solids, as a function of density.~a! Quan-
tum correction to the rotational kinetic energy,Kr /N2kT. ~b!
Quantum correction to the translational kinetic energ
(Kt /N23/2kT)An, with n52 for D2 and n51 for H2, respec-
tively. ~c! Total energyE/N. Data points: D2 atT5100 K ~circles!
and 200 K~squares!; H2 at T5100 K ~diamonds! and 180 K~tri-
angles!. Thex axis shows number density: corresponding pressu
are indicated above~a!. All data are calculated withN596 in a hcp
lattice with the intermolecular potentialVd .
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In order to monitor the correlations in molecular orien
tions, an analogous two-body correlation functionO(R) is
defined as

O~R!5 K ( i, j P2~cosu!d~Ri j2R!

( i, jd~Ri j2R! L . ~28!

This function measures the two-body orientation correlat
at the intermolecular distanceR, normalized by the numbe
of molecules at that distance.u is the polar angle betwee
the orientation vectors of the molecules located atRj and
Ri , i.e., the relative angular orientation. If the molecu
orientations are completely disordered in a solid,u has a
uniform distribution between 0° and 180°@note that due to
the molecular symmetryP2(cosu) averages to zero#. This is
true for all intermolecular distances and thus yie
O(R)50 everywhere. On the other hand, parallel orien
tions meanu50 andP2(cosu)51, so that, for example, in
thec-hcp ordered phase proposed earlier,12 O(R)51 every-
where. More complicated ordered phases yield distinctly
ferent features inO(R). O(R) signatures for some of th
structures suggested by recentab initio calculations are
shown in Fig. 6. For some ordered phases, pairs of molec
at the same distance, for example, within the near
neighbor shell, can have different relative angular orien
tionsu. In this case, a weighted average is taken accordin
the number of pairs of molecules for each value ofu. Fluc-

FIG. 6. An illustration of the orientational ordering parame
O(R), defined in Eq.~28!, for several ‘‘ideally’’ ordered phases~no
fluctuations allowed!. Structural details forPa3 are given in Refs. 9
and 13; for c-hcp, flat and tilted herringbone in Ref. 12; fo
Pca21 andP21/c in Ref. 13. The bottom panel shows the corr
spondingg(r ) up to second-nearest-neighbor distances.
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tuations in the orientation are ignored in Fig. 6 for purpos
of demonstration. RealisticO(R) are notably rounded and
have maxima well below their peak values, due to such fl
tuations. Nonetheless, comparing the calculatedO(R) with
these ‘‘ideal’’ ones can provide crucial hints in decipheri
the orientational order. Except for thePa3 phase, which is
based on fcc, all the ordered phases in Fig. 6 are base
hcp lattices.12,13 Because of the above-mentioned similar
of the fcc and hcp lattices at short range, the signature
Pa3 is identical up to second-nearest neighbor on both
tices, and can therefore be compared to the hcp-based o
tational signatures at short range.

For the study of phase transitions, it is convenient to u
an averaged order parameter

O54prE
0

Rmax
dRR2@O~R!#2, ~29!

whereRmax is a distance cutoff imposed by the finite size
the simulation cell. For convenience,Rmax is chosen to be
equal to the second nearest-neighbor spacing. Another a
aged order parameter can be defined as

Ō5
1

N(
i51

N

~ 3
2l i

max2 1
2 !, ~30!

wherel i
max is maximium eigenvalue of the matrix equatio

S ^xi
2& ^xiyi& ^xizi&

^yixi& ^yi
2& ^yizi&

^zixi& ^ziyi& ^zi
2&
D S ^dix&

^diy&

^diz&
D 5l iS ^dix&

^diy&

^diz&
D ,

and wherexi , yi , andzi are the Cartesian coordinate com
ponents of orientation vecterVi of the i th molecule. Still
another alternative way to monitor the lattice ordering
through the lattice biased order parameter

Õ5F 1N(
i51

N

P2~Vi• ẑ!G2, ~31!

whereẑ is the unit vector along a chosen direction in spa
For hcp thec axis of the starting lattice configuration is take
as ẑ. For fcc the initial~111! direction is taken asẑ. In both
cases, theẑ axis coincides with the initialcp basis vector of
the simulation cell. AlthoughO has the advantage of bein
completely independent of a given spatial orientation bi
Õ sometimes provides a clearer signal of the orientatio
ordering.Õ is useful even in anNPT ensemble, since the
overall orientation of the lattice does not change much d
ing a simulation run. Previously, Rungeet al. have used a
still different averaged order parameter26

Ô5F 1N(
i51

N

P2~Vi•ui !G2. ~32!

Here$ui% are the unit vectors pointing along a particular s
of ordered directions on the lattice sitesi . By definition, this
order parameter can only measure the extent of ordering r
tive to a given orientational structure defined by the setui .
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In the calculations made here, all of these different orde
parameters in Eqs.~28!–~32! give essentially the same indi-
cation in the onset of a disorder-order transition, i.e., a sha
change from zero~or near zero! to a finite value, with only
small differences in the location (P or r) of the transition.

Figure 7 shows theO(R) characteristics of a typical mo-
lecular orientational ordering phase transition for D2. For a
given temperatureT, the molecular orientation is disordered
in the solid at low pressure~below the values shown here!, as
evidenced by the fact thatO(R) averages to approximately
zero. AsP is increased and approaches a transition pressu
Ptr , deviations fromO(R)50 become visible and then be-
come more pronouced asP continues to increase. A well-
defined structure inO(R) is then clearly evident and stable
throughout the simulation forP.Ptr . The onset of this tran-
sition is more clearly seen in Fig. 8, in which the average
order parameterO, Eq. ~29!, is shown as a function ofP. A
steplike increase is seen in the functionO(P) at P5Ptr ,
indicating a phase transition which is rounded by the finit
size and fluctuation effects. The transition pressurePtr is
identified as the point where the averaged order parame
O first shows the most abrupt upward turn. Thus for D2 at
T5100 K, Ptr;85 GPa.

C. D2 phase diagram

Figure 9 shows the resulting phase diagram in theT-P
plane for D2. The effects of variable number of particlesN
(N532, 48, 64, 96) have been tested, as well as differe
choices of the cell geometry, in both the hcp and fcc phase
Although a lattice structural phase transition, e.g., betwee
these two phases, is allowed in ourNPT ensemble, no sign
of this is observed. The lattice stays in the start-up structu
~either hcp or fcc! throughout a simulation run, including
when passing through the orientational order-disorder pha
transition. The positions of such transitions do, howeve
shift noticably with the two different initial choices of lattice,

FIG. 7. Orientational ordering phase transition in D2 solid at the
temperatureT5100 K. Top row shows the orientational correlation
functionO(R), defined in Eq.~28!, at pressuresP560 ~a!, 85 ~b!,
90 ~c!, and 160~d! GPa. The bottom row shows the pair distribution
function g(R) at the same pressures. These are calculated w
M58 andN596 in a hcp lattice.
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hcp and fcc, as is evident in Fig. 9. Figure 10 shows the ra
of the crystallographic axes,c/a, for a simulation with the
initial hcp lattice. Details of the computation of thec/a ratio
are summarized in the Appendix. The ratio is a little smalle
than the ideal value of 1.633, and is aproximately consta
over the pressure range studied. The value is somewhat l
than the approximately constant value reported for D2 at
lower pressures~up to 14.2 GPa in Ref. 43 and up to 30 GP
in Ref. 49!. Precise comparison with experiment is difficul
since the measurements were made forn-D2 rather for
o-D2, and may furthermore be influenced by experiment
artifacts such as hydrostatic strains.43

th

FIG. 8. The orientational order parameterO, defined in Eq.~29!,
as a function of pressureP, for a D2 solid atT5100 K. The arrow
indicates our identification for the transition pressure,Ptr;85 GPa
~see text!.

FIG. 9. The phase diagram of D2 solid. The curves are the
experimental boundaries between three phases I, II, and III, tak
from Refs. 3~solid line! and 7,8~dashed line!, respectively. Solid
circles are PIMC data for the orientational order-disorder pha
transition in the hcp phase; open circles are for fcc. Both of the
are calculated withVd , and the scaled anisotropic potential, Eq
~17!. Open squares are hcp results with theunscaledanisotropic
potential @a51 in Eq. ~17#. All calculations are done with
N596. The PIMC partition numberM is given in Table II.



e
er
b

ne
re
y

-
re

r
e
0
a

til
w
an

d
nd
h
ha
f
p
av
r

a
h

I
e
e
he

n,
en
a
la
t
fo
fc
r
se
an
w

er
ob-
no
rre-
ow-
the
and

o-
the
so-
n-
the
er,
ial,
t of
n
ng

that
the
nd
the

-
lid

at
me
al
e for
ry
r-
w-

33.

12 262 55T. CUI, E CHENG, B. J. ALDER, AND K. B. WHALEY
The orientational correlation functionO(R) is found to be
rather similar for fcc and hcp lattices in the ordered phas
This is not too surprising, since these two lattices are v
similar. With the energetics of the dense solids dominated
the short-range repulsions, the small difference in the e
gies of the two lattices for distances beyond second-nea
neighbor separations is unresolvable within the accurac
the simulation. The signature ofO(R) in the ordered phase
for both lattices resembles that for thePa3 structure~com-
pare Fig. 6 and Fig. 7! and has, in contrast, very little resem
blance with the ordering signatures of the other structu
shown in Fig. 6.

We now compare the PIMC phase lines with the expe
mental phase diagram for D2. Two sets of experiments hav
found three distinct phases for D2 at pressures below 20
GPa~Fig. 9!.3,7,8 The phases are alternatively referred to
phases I, II, and III,3 or ~orientationally disordered! hcp,
broken-symmetry phase~BSP!, andA phase,7,8 respectively.
A triple point is identified at Pt;150-165 GPa and
Tt;125 K. ForT,Tt , solid D2 is observed to go through
two phase transitions~I to II, and II to III! as pressure is
increased, while only one transition~I to III ! occurs for
T.Tt . The positive identification of these phases is s
uncertain. Single-crystal x-ray diffraction data have sho
that phase I, which extends to the low-temperature
-pressure region, has a hcp lattice structure.3,43 The molecu-
lar orientations are disordered here, as for the solid un
ambient pressures.3,9 On the other hand, both phases II a
III are believed to be orientationally ordered phases. T
available experimental evidence suggests that they also
hcp-based lattice structures,3,4,8 although the exact nature o
these phases is still unknown. Based on the assumed hc
fcc lattice structures, electronic structure calculations h
identified a few energetically preferred, orientationally o
dered structures, including those illustrated in Fig. 6.3,7,8,10–13

A comprehensive summary of these structures is given
Ref. 8. Some of these orientationally ordered phases h
already been observed in classical molecular solids suc
N2, which exhibits a similar phase diagram.39 Recently, a
group-theoretical analysis of experimental Raman and
spectra has been made in the attempt to distinguish betw
these alternative structures. This analysis eliminated sev
of the more popular structures for phase III, including t
hcpPca21 and fccPa3.8

In contrast to the experiments, only one phase transitio
pure orientational ordering, is observed here. It is evid
from Fig. 9 that the Monte Carlo results for the orientation
disorder-order phase transition with a hcp lattice in the re
tively low-pressure region,P,130 GPa, show excellen
agreement with the experimental I-II phase boundary
D2. In contrast, the phase line derived for ordering on the
lattice lies far too high, i.e., occurs at too low pressure fo
given temperature. This discounts the possibility of a
quence of transitions, hcp-fcc-hcp, proposed by Runge
co-workers17,26At the higher pressures, the PIMC data sho

TABLE II. Partition numberM used in the PIMC calculations.

T ~K! 20 60 80 100,T,200 300

M 20 16 12 8 4
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an upward turn in theT-P plane, approximately parallel to
the experimental I-III phase boundary but displaced to low
pressures by about 15 GPa. Since only one transition is
served below the experimental triple-point temperature,
further distinction between phase II and a structure co
sponding to the experimental phase III can be made. H
ever, the fact that our orientational transition is parallel to
experimental I-III phase boundary suggests that phases II
III might be structurally quite similar.

The effect of the different choices of the interaction p
tential listed in Sec. III A have also been tested, just as in
EOS study. In contrast to the situation for the EOS, the i
tropic part of the potential plays little role here in determi
ing the orientational phase transition, apart from holding
lattice at the proper density. The I-II transition is, howev
sensitive to the choice of the anisotropic part of the potent
as might be expected. It is found that the best agreemen
the I-II transition location with the experimental transitio
line for pressuresP up to 130 GPa can be achieved by usi
Vd , i.e., with the scaled anisotropic potential of Eq.~17!, for
the solid in the hcp phase. Figure 9 clearly demonstrates
the unscaled potential forms are too strong and predict
transition to occur at too low a pressure. This difference, a
thus the necessity of the scaling, was also observed in
prior, fixed lattice, PIMC study.26

D. H2 phase diagram

The phase diagram of solid H2 has not yet been investi
gated experimentally in the same detail as that for so
D2. Indeed it is still unclear to what extent the H2 phase
diagram is analogous to that for D2. In particular, the exis-
tence of a triple point or, alternatively, of a critical point th
terminates the II-III phase boundary is a matter of so
debate.5,7,8 Unfortunately, considerably fewer experiment
measurements of phase transition points have been mad
H2. Figure 11 depicts the experimental II-III phase bounda
and the projected I-II boundary which is obtained by inte
polation between the single measurement of the lo
temperature experimental orientational transition50 and the

FIG. 10. Dependence of the crystallographic axis ratioc/a in
the hcp structure on pressure for D2 ~circles! and H2 ~stars! at
T5300 K. We use the method of calculatingc/a described in the
Appendix, subsection 1. The dashed line is the ideal value 1.6
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controversal higher-temperature transition point to the HA
structure atT577 K and 150 GPa, when the latter is inter
preted as a triple point. Superimposed are our PIMC pha
transition results for solid H2 in the hcp phase~solid
squares!. The calculations show that this is also a pure
orientational transition between the SP and an ordered ph
with Pa3-type local orientational order, with no associate
lattice structural transition. Just as for D2, the crystallo-
graphic c/a ratio also stays approximately constant, at
value somewhat below the ideal value~Fig. 10!. This is con-
sistent with the available experimental measurements
H2

51.
We can identify the observed transition in H2 with the

same I-II transition as in D2. The theoretical phase line
clearly agrees rather well with the I-II boundary obtained b
interpolation between the experimental points. It also clea
continues beyond the disputed transition point atT577 K
and 150 GPa. Whether or not the location of this continu
tion is quantitatively accurate or not~as for D2, it may lie too
high!, the fact that we do actually see it is consistent with th
experimental identification of the transition point atT577 K
and 150 GPa as a triple point rather than a critical point.7,8

Furthermore, the agreement of the H2 I-II phase boundary
with the experimental phase line is consistent with the go
agreement reached for the corresponding boundary in D2.
This isotopic consistency, both for the EOS and the orien
tional phase diagrams, provides a strong validification of t
potential used. Thus the hybrid potentialVd with the scaled
anisotropic interaction of Eq.~17! is therefore expected to be
an excellent candidate for further theoretical investigatio
of the dense phases of the hydrogen isotopes.

E. Zero-point energies

The quantum contributions to the molecular rotational d
grees of freedom are reflected in the rotational kinetic ener

FIG. 11. Phase diagram of H2 solid. The solid curve is the
experimental phase boundary between phases II and III. The das
curve is the expected boundary between phases I and II, from
two measured data points marked by stars~Refs. 7 and 8!. Solid
squares are PIMC results in the hcp phase for the orientatio
order-disorder phase transition, calculated withVd and the scaled
anisotropic potential of Eq.~17!.
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defined in Eq.~25!. The equipartition theorem in classica
statistical physics predicts a rotational kinetic energy
Kr /N;kT for the two degrees of freedom in the molecula
orientation. However, the measuredKr /N noticably exceeds
this value, as is evident from Fig. 5~a!. One can define the
differenceKr /N2kT as the quantum correction to the tem
perature for the rotational degrees of freedom. It is cle
from Fig. 5~a! that this quantum correction decreases wi
increasing temperature, and increases with pressure. Bot
these trends are understandable in terms of standard pict
of hindered rotators. The motion becomes less hindered,
proaching pure rotation, at high temperatures as higher ro
tional states are populated, while it becomes more hinde
at high pressures when the rotors interfere with one anoth
resulting in greater vibrational~librational! character and
consequently higher kinetic energy.

To understand the consequences of the rotational quan
correction for the phase diagram, one can alternatively de
an effective rotational temperature,Teff

r , by

kTeff
r 5Kr /N. ~33!

This allows one to analyze the extent to which the orien
tional transition can be described classically for each isoto
Figure 12 shows the order-disorder phase boundaries
D2 and H2 which result when the temperatures are scaled
the effective rotational temperature. One observes that
phase boundary for D2 almost overlaps with that of the ef-
fective ‘‘classical reference’’ system. For H2 there is less
agreement with the classical reference, although it also
proaches this in the high-temperature and high-density lim
as would be expected. This tells us that for H2, the molecular
orientational transition is strongly dependent upon the qu
tum nature of the molecule, up to pressures of 140 GPa.

It is of interest to compare the scaling behavior of th
rotational kinetic energy with that of the translational kinet

ed
he

al

FIG. 12. Comparison of the molecular orientational orde
disorder phase boundary for the ‘‘classical reference’’ so
(M51) with the phase boundaries derived from the D2 and H2
PIMC data when scaled to the effective rotational temperature
fined by Eq. ~33!. Diamonds and solid line; classical referenc
Plusses: D2 phase boundary. Stars: H2 phase boundary. Thex axis
shows number density: corresponding pressures are indicated a
top. All calculations were made for a hcp lattice, withN596.
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energy. The latter effectively becomes vibrational energy
the solid phase. Quantum corrections to this kinetic ener
term can therefore be viewed as deriving primarily from
zero-point vibrations, which scale asAn in a harmonic
model, wheren is the mass index~for H2, n51, and for
D2, n52). Then the quantum correction to the translation
kinetic energy, (Kt /N23/2kT)An, should be independent of
isotope and temperature. This is indeed the case for the
hydrogen isotopes over the range of pressure studied here
is evident from Fig. 5~b!. Note also that the translationa
quantum corrections deriving from vibrations induced by r
stricted translation are significantly larger than the rotation
corrections deriving from librations induced by hindered ro
tation. One can then similiarly define an effective transl
tional ~vibrational! temperature, 3kTeff

t /25AnKt /N, which
has the mass dependence of the zero-point motion eli
nated.Teff

t is of course not necessarily equal to the effectiv
rotational temperatureTeff

r . The behavior of the different iso-
topes when scaled to such effective temperatures is useful
developing simple understanding of features of the pha
diagram in quantum materials. The example shown abo
scaling the molecular orientational transition withTeff

r could
be valuable for predicting the phase diagram of the relat
quantum solid HD~Refs. 7 and 8! if a reliable estimation of
its quantum rotational kinetic energy can be made.

IV. SUMMARY AND DISCUSSION

In this study of the phase diagrams of D2 and H2 up to
megabar pressures, we showed that the PIMC method m
be applied in a constant-pressure ensemble with simu
neous translation and rotational molecular motion incorp
rated. Utilizing an intermolecular interaction potential dete
mined to agree with the experimental equation of state ove
large range of pressures, a rotational order-disorder ph

FIG. 13. Comparison ofc/a ratio for hcp-based D2 obtained
with the two procedures described in the Appendix, subsection
and 2. Circles represent the same data shown in Fig. 10 and
calculated with theg(R), rhcp method ~Appendix, subsection 1!.
Squares are calculated from the simulation cell dimensions~Appen-
dix, subsection 2! The error bar is statistical error bar only~see
discussion in text!. The dashed line is the idealc/a value for hcp,
1.633.
n
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transition is observed for both isotopes which agrees qua
tatively with the experimental phase lines up to about 1
GPa. This represents a significant improvement over the
vious best theoretical estimates of the I-II transition for t
two isotopes.17,26 Use of the constant-pressure ensemble
lows different lattices to be accessed during the simulat
and thereby vastly increases the configurational space w
can be explored. The agreement with experiment implies
the interaction potential used here is reliable up to press
of about 150 GPa.

The nature of the orientational transition observed
agree with experiment is for both isotopes a transition fr
rotationally disordered hcp to an ordered hcp structure, w
an ordering signature similar to that ofPa3 ~out to second-
nearest neighbors!. This transition agrees with the exper
mentally observed I-II transition up to; 150 GPa. No lattice
structural transition is observed for either isotope up to 2
GPa, and the crystallographicc/a ratio remains approxi-
mately constant. We believe that no structural transitions
observed because during the finite period of a typical Mo
Carlo run with the sample sizes used here, it is only reali
cally feasible to observe displacement type transitions, s
as that reproduced for the classical N2 system.

37 Since no
such signal was observed for D2 or H2, this suggests tha
neither the I-II transition nor the II-III transition~which is
not seen here! is of displacement type.

One limitation of the current study is that the speci
choice ofN and the geometry of the periodic simulation ce
was designed to accomodate primarily the fcc and hcp lat
structures, and several orientationally ordered phases re
to these lattices. Orientational ordering with longer wav
length than the cell dimensions could not be studied. M
importantly, there are many other crystal structures with
riodic boundary conditions that require unit cells very diffe
ent from the fcc/hcp cell.12,13,39The recently studied ortho
rhombic structure is an interesting case for future study
this regard.16 One other such example is thee phase in N2,
which requires a tetragonal simulation cell and a unit c
with 32 molecules.39 Such a structure would be impossible
realize through natural fluctuations in a constant pressure
semble starting with a hcp simulation cell of 96 particle
Therefore, the observation of more complex orientationa
ordered crystal structures is precluded within the curr
computational constraints. The possibility of phase III bei
similar to thee phase of N2 could alternatively be investi-
gated via investigation of the free energy differences
tween specific structures for phases II and III, to estab
which is thermodynamically stable at high pressure.

Speculations have been made that phase III may invo
some kind of elongation of the intramolecular bond whi
could alter the total energy and consequently the structur
the solid.3,15,19 Having shown here the usefulness of t
PIMC method with intermolecular interactions for coverin
relatively large areas of the configuration space, it would
interesting to now apply the PIMC method with an atom
atom interaction potential which would allow the intram
lecular vibron motion to be incorporated.
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APPENDIX: ESTIMATION OF HCP ASPECT RATIO

There are several ways to calculate thec/a ratio in con-
stant pressure PIMC calculations. One can either extra
from knowledge of the pair distribution functiong(R) and
the number density in the hcp structure,rhcp, or directly
from sampling of the simulation cell dimensionsap , bp , and
cp .

1. From g„R… and rhcp

The molecular numbern(R) located at pointR from some
origin can be easily obtained fromg(R). One can then define
the lattice constanta by means of the weighted average

a5
(n~R!R

(n~R!
, ~A1!

where (n(R)512 is the number of first-nearest-neighb
molecules in the hcp structure. From the number density
the hcp lattice,rhcp54A3/3a2c, the ratio c/a is then ob-
tained from

c/a5
4A3

3a3rhcp
, ~A2!
a
o

Air
re
h
a-
e

it

r
of

with a given by Eq.~A1!. Estimation of the statistical erro
of c/a with this method is difficult, because it derives pa
tially from the error ing(R).

2. From simulation cell dimensions

In the case of the initially perfect hcp lattice withN596
described in Sec. II B, the three simulation cell dimensio
are related toc anda as follows:

ap54a,

bp54a,

cp53c. ~A3!

If one can assume that the system does not deviate m
from the ideal hcp structure~as is indeed true in our simula
tions!, then one can derive an estimate forc/a from

c/a5
8cp

3~ap1bp!
. ~A4!

In this case the statistical error bar ofc/a can easily be
derived from the statistical error of the three dimensio
ap , bp , andcp .

Methods 1 and 2 give almost identical results, but
system fluctuations influence the data from the sec
method noticeably more than in the first method us
g(R) ~see Fig. 13!. We therefore take the first method, em
ploying g(R) andrhcp, to be more reliable. The data in Fig
10 are produced with method 1.
s.
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