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Elastic properties and the mechanical stability of icosahedral boron crystals
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The elastic constants of the icosahedral boron crystals have been studied by the formulation of Born and
Huang. First of all, a technique of symmetry decomposition has been developed for general crystals possessing
molecular units in order to see the relaxation mechanism by the internal shift. It is proven that if a librational
mode is Raman active, which is often the case, the mode is able to relax the external strain considerably. For
a boron, when only central forces are assumed,dhecomponent completely vanishes. A shear strjn
induces rotations of icosahedra, which cancel the shear strain completely. This gives a qualitative account for
why this crystal is metastable. The rotations of icosahedra frequently happen in order to relax other types of
strain too. This rotation-induced relaxation mechanism is looked upon as a special example of the above
general property. The cancellation fex would remain in boron carbide, if only central forces are assumed,
even though additional elements are introduced in the unit cell. In this case, the stability of the crystal has been
ascribed to large noncentral forces, which emerge from the covalent bonds of the linear chain in the unit cell.
Another way of stabilizing the crystal structure @fboron is suggested: the surface contact of icosahedra,
which is realized in the crystal g8 boron. In this family of crystals, the only direction in which a rotational
motion is not induced is the direction. The deformity of the icosahedron, instead, leads to an unexpected
effect on the elasticity of boron carbide. The crystal is shown to be less stiff io &xés than in theab plane,
despite the strongest interatomic forces being oriented parallel to thés. The rhombohedral site slightly
deviates from the lattice vector, and this geometry gives rise to a great relaxation in the compression along the
C axis.[S0163-18207)04518-9

[. INTRODUCTION discussion with a general formalism of the internal relaxation
for an external strain for those crystals which possess mo-
The crystal structures of boron crystals have icosahedrkecular units in the crystal structure. Fullerenes are promising
B,, as the common building block, and have several poly<rystals for the application of this theory.
morphic modifications. Among thena-rhombohedral boron The mechanical stability of crystal structures has been
is the simplest one, while metastable. This crystal structuréioroughly studied by Born and Huafdhe following is a
can be stabilized by introducing impurity atoms, the way ofbrief summary of the important results of their study. The
which is embodied in the crystals of boron carbideselastic constants,, are customarily represented in a matrix
(B15C,). Another way of stabilization is to form a larger form of 6X6 dimensions. The mechanical stability of a crys-
icosahedral unita By, unit enclosed with a larged@shel),  tal is expressed in the most general forntheorem | (sta-
which is embodied in the crystal of @-rhombohedral bility condition): the matrix[c,,] is positive definite.
boron! These have the rhombohedral Bravais lattices with We should note that negative values are not prohibited for
the same space gromd symmetry. Some crystal structures C,q - For cubic crystals, the stability condition has particu-
of this family are depicted in Fig. 33 along with the names larly simple forms;
of the bonds. Note that the atom site 1, which is called the
rhombohedral site, slightly deviates from the lattice vector Cas>0, C11>>Cqp, andcq;+2c4,>0. 1)
[Fig. 1(c)]. This deviation is, while slight, an inevitable re-
quirement for the mechanical stability of this family, which If we take only nearest-neighbor forces into account and if
will be seen later. these forces are central forces, the conclusion is then drawn
The stability of boron modifications has been understoodhat the simple-cubig¢so structure is unstable. This is be-
in terms of the chemical bonding requiremé&A The prop-  causec;, depends only on the next-nearest-neighbor or
erty of being electron deficient is the chief motivation by further-distant forces, so that it would vanish if only nearest-
which boron crystals find their way to stabilize the struc-neighbor central forces are assumed. In reality, there are
tures. So far, this viewpoint has been so accepted that thmany forces beyond the nearest-neighbor distance. However,
other viewpoints might be overlooked. The mechanical stathe nearest-neighbor forces are by far stronger than any
bility provides a useful insight into the stability of crystals, other, so that the above simple conclusion is qualitatively
and thus is also important. In this paper, the elastic constaniglid.
of a-boron modifications have been calculated, and the sta- A way to avoid this instability is to form the fcc structure,
bility of the crystal structures is discussed on this basis. Wavhere all the condition&l) are met by assuming only central
will see that rotational motions of icosahedra relax externaforces of the nearest neighbors. This example indicates the
strains a great deal. Considering the importance of thidirst category for crystals to stabilize their structurésat-
mechanism of rotation-induced relaxation, we will begin ouregory 1) the stability condition is satisfied even when only
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FIG. 1. The crystal structures ¢&) a-rhombohedral boron, ang) boron carbide (B;,C,). The site which is symmetry equivalent to
atom 1 is customarily called the rhombohedral site, and the site symmetry equivalent to atom 3 is called the equatorial site. The abbreviations
of the types of bond are indicated. The equatorial bondsron are replaced with the covalent bonds of the linear chain C-B-C in boron
carbide. The rhombohedral site is slightly deviated from the lattice véctohe polar angle® and 8, are defined about the center of an
icosahedror{inversion center For « boron 8> 6, but reversed in boron carbide.

central forces of the nearest neighbors are assunhedhe  when a crystal does not have any floppy mode, we cannot
bcc structure, the second condition of Ef) does not hold. exclude the possibility that no restoring force is exerted in a
However, the distance of the next-nearest neighbors is cloggarticular direction of strain.
to that of the nearest neighbors, so that this crystal structure Bearing these theorems in mind, we proceed to a discus-
is more stable than sc. sion on a special property of rotational motions which plays
For the diamond crystals, the crystal structure would ban the elasticity. Interesting properties of rotational motions
unstable in view of the criteriofl). The c,, component be- in elastic continua used to be discussed in connection with
comes zero when only the nearest-neighbor central forces atie strain gradient theorié$ Unfortunately, these effects are

used, because th®, is given by only microscopic or second-order effects, so that experimen-
tal observation is difficult. In contrast, the present effect is
cqa=constf f /(f,+1,), (20  macroscopic, and is easily observed.

where f, and f, are the bond-stretching and the angle-
bending forces, respectivelyOf course, the diamond struc-
ture is stable. In this case, we should not ignore the contri-
bution of the noncentral forcé,. By the nature of the The elastic constants can be calculated by the force con-
covalent bond, the noncentral force is relatively large in diastants in problems of lattice vibrations. A general formula-
mond crystals, in contrast with ionic crystdl¥his example tion has been established by Born and Hulrdere, we
gives the second category for crystals to stabilize their strucfollow them, but use a slightly different version of the theory
tures:(category 1) noncentral forces are strong enough for as given by LaxX?'3 because it has a convenient form for
the stability condition to holdThese criteria are simple, but discussing the symmetry properties. The effect of the long-
are applicable for a surprisingly wide range of crystals. In therange Coulomb force is disregarded from the present argu-
following, we will see that these criteria are useful also forment.
boron crystals. The elastic constants,, ,z are given by

A closely related criterion is given by the constraint
theory.l‘_) The zero-frgquency yibrations other than rigid Cpavp=lnv,aBl+av,uBl—[apm,vB]+(na,vB) (3)
translational and rotational motions are calfeppy modes
They have a special consequence for the elastic propertiesaccording to the notations of Born and Huang. The first three

Theorem II: The existence of floppy modes implies no terms on the right-hand side represent the contribution of the
restoring force for a deformation in some direction, so thahhomogeneous external deformation. The last term represents
the component of the elastic constant in that direction vanthe contribution of the internal shift, that is, relative displace-
ishes. ments of the atoms in the primitive unit cétptic modes

A good example is provided by a two-dimensional squareThroughout this papew, 8, u, andv refer to the Cartesian
lattice. The converse is not necessarily correct; that is, eveeoordinates, whilep and o are used for the Voigt notation,

IIl. THEORY OF THE INTERNAL RELAXATION
FOR AN EXTERNAL STRAIN
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which runs from 1 to 6. The indiceks and « refer to the
lattice site and the atom site in the unit cek=£1,...5),

respectively. The calculation of the external part is rather

straightforward:
1 1 ! ’ ’ !
[wv.apl==7 o E. K (X=X,
X (X*=X!") g, @
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words,theorem IIt only symmetric Raman-active modes can
be induced as the internal shift by external strains.

As an example, NaCl-type crystals have no Raman-active
mode, so that no internal shift is induced. This fact is known
as the statement that there is no contribution by the internal
shift to the elastic constants, if the crystal has an inversion
center and if every atom is located in the ceffefurther-
more, by investigating the decomposition of the individual
productu« to the irreducible representations, we can easily

where Q, is the volume of the primitive unit cell, and find selection rules for which type of Raman madecan be

Kl «" are the force constants between atdmsnd!’«’,
whose equilibrium positions are expressedXyThe inter-

coupled to the particulau,,, .
In view of Eq.(8), first a specific type of optic moda is

nal shift is induced in order to relax the external deformation discriminated by[%, , ] for a given deformatioru,,,,. The
and hence the contribution to the elastic energy must b&agnitude of the contribution is then determined by the in-
negative. For special classes of crystals, however, the intewerse of[, ",]. The matrix[} },] gives the dynamic matrix
nal shift does not occur. A general criterion as to whether thgor the zone-center modes, on weighting with masses.
internal shift is induced or nOt, and if induced, which type of Rough|y Speaking, thea Component of this inverse matrix

which we proceed with our argument.
The internal shifuy induced by an external strain,, is
given by

that mode. Therefore, the lowest-frequency mode dominates
the magnitude of the relaxation. From this follows the gen-
eral property thatcorollary I: Raman-active librational

c k'Y k! modes, if they exist, are able to greatly reduce the strain
= — ) ) Uyg, (5)  energy. Librational modes are based on rotations of molecu-
©mov viov B lar units. The symmetry of rotation is represented by the

and, correspondingly, the part of the internal shifcip, , 5
is given by

K

(na,vB)=-— )

moopoallp’ v viov B

The minus sign indicates a negative contribution. The matr

ces in these equations are defined by

By transforming the displacement vectar§ to the sym-

metry vectorsu,, we have alternative expressions for Egs.

antisymmetrized product of the Cartesian coordinatés, (
XT';)a, which are frequently consonant with the symmetry
of Raman activity, [',XI",)s. The contribution of the libra-
tional mode with the frequencw, depends on inversely
w?. Since the frequency of the librational mode is dominated

i_by noncentral forces, the effect of corollary | drastically ap-

pears as the noncentral forces are decreased. In the same line
of proof, we can reach theorem II, which states the relaxation

kK K' 1 e mechanism in terms of floppy modes.
1o E Ko™ Besides the selection rule, another advantage of the sym-
K o 7 metry decomposition is nonsingularity of the dynamic matrix
« 1 in the form[;;,]. A rather annoying problem when evalu-
_ Ikl” k"1l k! . . .. ek k4 .
w v B _Q_o |’§K:’ K™ Xg" - ating Eqg.(6) is that the original matn){M .1 is singular,

owing to the acoustic modes, and hence the inverse does not
exist. Because only the symmetry blocks possessing Raman
activity is involved in Eq.(9), the selected blocks have al-

(5) and (6) ready been nonsingular.
r ror] Yr
a7 la ] |a v gt (8) lll. CALCULATIONS OF a-BORON MODIFICATIONS
and Rhombohedral crystals of theboron modifications have
the point symmetnp 4. There are six independent compo-
r ror] Yr nents of the elastic constants, say;, Cs3, Cas, C12, Ci3,
(pevpf)=—| o olla & |a v g 9 andc,,.'® According to the stability condition, we can ob-

tain the interrelationships betweep, . Out of the six rela-

Here,r denotes the label of the irreducible representationtionships,c,,>0, c33>0, andc,,;>c¢;,, have simple forms.
anda denotes the index of a different set belonging to theThe remaining relationships have relatively complicated

same irreducible representation.

forms. Instead of using these inequalities, it is easier to use

The coefficient§ , ,] tell us the selection rule for which an alternative form of the stability condition, in which all the
typera of the optic mode couples to an external deformationeigenvalues of the matrijc,,,.| must be positive. This form
U, - The pair of indicesua is transformed as is the sym- is used in the following calculations.

metrized product of the Cartesian coordinatds, X I'p)s.

In order to discuss the selection rule, we should explicitly

Hence, only those symmetry vectors which are transformedive the coordinates of the system and the representations.
as ("',XI',)s can be coupled to the external strain. In otherThe crystal axes are taken in such a way tha,aaxis is



12 238 KOUN SHIRAI 55

TABLE |. The elastic constants of-rhombohedral boron in TABLE II. The selection rules in the matriX , g] for Dgq.
units of GPa. Results of different models are compas€dpnly For Eg, the label of the partner is followed. For the coordinates of
central forces are usedtl) and (Ill) noncentral forces are added. the system and the representation, see the text.

These parameters are listed in the last row(lJnthe contribution
of the external deformation alone and the result of including the vB Allowed r
internal shift are separately shown. Téyg component is compared

with the average of the diagonal componetys The frequency of 1 AggtEg2
the E4 librational modew, is also tabulated. The stability has been 2 Ayt Eg2
judged by the positive-definite property of the elastic matrix. The 3 Agg
experimental data are the elastic constantg bbron, nota boron. 4 Eg2
5 Eql
Calculation 6 Eql
0 I ()  Experiment

(ext) (+int)

shift completely cancels the contribution of the homoge-

Cu 389.5 3022 3145 323.9 467 neous external deformation. This result is an unexpected one
Css 455.1 3094 3274 333.7 473 from the viewpoint of the constraint theory. In the Appendix,
Cus 1231 0.0 0.0 33.4 198 we will show that there is no floppy mode in a network
Cp 129.8 137.1 130.1 122.4 241 which is topologically equivalent to the crystal structurenof
Cis 123.1 166.4  160.8 158.6 ? boron. There are so many constraints for the bonding in this
Cua -9.2 0.0 0.0 —-5.8 15.1 crystal structure that it is unlikely that the strain(=u,;
Cas/Cq (%) 0 0 10 42 =duy/dz) does not change any bond length. The component
w (cm™Y) 28 30 163 C44 becomes nonzero only after the angle-bending forces be-
Stability No No O tween the adjacent icosahedra are included, as shown in col-
_ umn (1) of Table I. The angle-bending force within the
Force fp=13 H+ )+ icosahedron is not enough. There is no symmetry reason for
constants  f"=3.0 _ canceling the external contribution. In this sense, the cancel-
fr (mdyn/A) f7%=1.0 f3=0.15 7=0.04 lation is just accidental. For the case in which the Cauchy
fa (mdyn A) relations hold, extra symmetry properties appear in the elas-

tic constant$:*8 But, this is not the case here.

Let us investigate what happens with a vanishing compo-
nent, say,c,4, When only central forces are used. Tty
component is the elastic response for the shear straiffhe
parallel to thex axis, and they axis is in a plane of a mirror. induced optic quesrare determined t?y the selection rule
The basis set foE, is so arranged that the first and secong@bout the coefficienf, , ,]. The selection rules foDgy
partners are transformed asz( y2). symmetry are su.mmarlzed in Tak?le Il. For the strain
only E42-type optic modes are excited. énboron, there are
six Eg modes. The induced internal shifts, are expressed
by a linear combination of these allowed modes.

First, let us examine the preceding theory for the simplest * The induced internal shift by the strain is found to be a
boron modification,a boron. The lattice vibrations of this perfect rotation of an icosahedron. It should be noted that the
crystal are well understood by the studies using the valencgiprational mode is close to a perfect rotation about the
force modet® and the shell modef. In the present paper, the axis, but is slightly different. A linear combination of six
valence-force model is used because of its clear physm@g modes plus the external deformation completes a perfect
meaning. Two types of forces, the bond-stretching foffces rotation of the icosahedron. Obviously, a perfect rotation of
and the angle-bending forcég, are assumed, but more gen- an jcosahedron causes no strain on intraicosahedral bonds.
eral terminologies, the central and noncentral forces, respegyt, it is amazing that it is also true for intericosahedral
tively, are sometimes used. The superscripts of the force cofhonds. A detailed analysis shows that this special situation
stants refer to the types of bond or angdee Fig. 1 for the  actually happens. Let us see this situation by taking a rhom-
abbreviations bohedral bond as an example. The polar aryle slightly

The results of the calculation are listed in Table I. Whenlarger thand, in « boron (Fig. 1), and thereby the angle’
only central forces are used, the results are presented sefgrmed by the bond 1-10and thec axis is smaller than
rately in column(l), the case in which only the contribution 6, (Fig. 2. Free rotations of the two icosahedra induce a
of the external deformation is considered, and the case iEhange in the length of the bond 1/10.e., a slight expan-
which the contribution of the internal shift is taken into ac- gjgp. However, for the net displacement of atom félative
count. Then, noncentral forces are subsequently added ig atom 1, we should add the contributiog of the external

columns(ll) and (ll). The frequency of thé librational straine,. As shown in Fig. 2, the rotation by an angleis
mode w, is a measure of the contribution of the librational j,quced in such a way that a contraction of the bond

mode to the internal relaxation, and is included with thisq_1q by the shear strain is canceled by an expansion
utility.

A notable result is that some components, say vanish
when only central forces are used. The effect of the internal 20-(agxX X1 =Uy,85,(2X —ag), . (10

8Experiment data: fo3-rhombohedral boron, I. M. Silvestrova, L.
M. Belayev, Y. V. Pisarevski, and T. Niemyski, Mater. Res. Bull.
9, 1101(1974.

A. a boron

caused by the rotation, from which is determined as
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(b)

(a)

FIG. 3. The relaxation inx boron for the compression in the
direction,e 1, for the case of central forces onlg), and for the case
of angle-bending forces includ€d). The used parameters are those
of (1) and(lll), respectively, in Table I. The external displacements
are shown relatively by taking the center of the main diagonal as the
FIG. 2. When a shear strain, is applied, this figure shows how origin.
the bond 1-10is changed. A contraction of the bond due to the
external contribution,,, is canceled by an expansion caused by the
rotations of two icosahedra.

If we regard the icosahedron as a rigid sphere, the crystal
of a boron is topologically the same as the sc structure. As
Note that for the case in which atom 1 is on the lattice vectomentioned in Introduction, the sc structure is unstable in that
ay, this rotation never occurs, sinee=0 according to Eq. no restoring force is exerted for a shear strain, cg,=0.
(14). For equatorial bonds, it is easier to show that the bondiccordingly, the instability ofa boron is reasonable. The
length is invariant, because there is no external contributiomnly unexpected result ia boron is that the strain of any
in this direction. intericosahedral bond is completely relaxed by free rotations

Judging from the categorf), the crystal ofa boron must  of the icosahedra.
be unstable, which is consistent with experimental fact. The As for the other components,,,, the internal shift also
accidental cancellation foc,, is removed by introducing contributes to the relaxation, although not as seriously as for
angle-bending forces, as shown(ifl) in Table I. The pa- c¢,,, as shown in Table I. For example, the effect of the
rameters used here are basically the same as those given ipyernal shift onc,; is shown in Fig. 3. For the case of central
Beckelet al,'® except forfy. In the present study, fdi, forces only, we can see that nearly perfect rotations of icosa-
five angles are taken into account about an equatorial atonmedra occufFig. 3@]. From the selection rule in Table I,
while the two angles of 143° are taken into account in thecoupling to rotations takes place for all the components ex-
Beckel calculation. These values presently have the besept c;;. Further examples are given in another
agreement with experimental spectra. Even taking anglepublication?® where one can see that even a small variation
bending forces into account, tieg, component is still small, in the structure or in forces causes a drastic change of the
namely, 10% of the main diagonal componegt which is  rotations in both the magnitude and orientation. Indeed, the
defined by (24,+c33)/3. Therefore, the above conclusion is mechanism of the rotation-induced relaxation would be a

gualitatively correct. ubiquitous response appearing in those crystals which have
Unfortunately, there are no experimental data for elastidibrational modes, if only central forces are exerted on the
constants ofr boron. Situations are similar for othermodi-  atoms. A prominent effect of this rotation-induced relaxation

fications. As far as the author is aware, there is only onenay be free rotations of icosahedra in fullerenes at high tem-
experimental report on the elastic constant@boron, al- peratures. In this connection, the fact that both high- and
though not complet& The data are listed in the last column low-temperature phases of a crystaj@ave a point group

of Table |. Before obtaining the present result, the authofT}, is not accidental. In cubic symmetry, onlyand T,, are
simply predicted that the values were similar betweesnd  point groups in which rotational motions have Raman activ-
B boron, because of similarity in the crystal structures. Thusity.

the original intention for citing the data g8 boron was a At the same time, in Fig.(®), we can see that even small
better comparison between the calculation and experiment iangle-bending forces have the apparent effect of suppressing
a poor experimental situation. But, the purpose has now beete rotational motions. Table | shows that as angle-bending
changed to show the difference between these two crystalforces are added, the frequency of the librational mode is
Thec,, component relative to the main-diagonal componentsjuickly increased. This prevents the librational mode from
is larger inB boron, namely 40%, than in the calculation of participating in the relaxation mechanism, as expected in the
a boron. The largeness af,, seems to contribute to the theory of Sec. Il. An important implication to fullerenes lies
stability of 8 boron. at this point. It is not very appropriate to say that weakness
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of the intermolecular forcévan der Waals forgdtself is the cboron boron carbide
cause for free rotations of icosahedra. Weakness in the non-
central character of the force is responsible for this. Actually,
the present case of boron is opposite to the molecular crys-
tals, that is, the intermolecular forces are stronger than the
intramolecular forces. In spite of this, we have seen that ro-
tations are easily induced if only central forces are assumed.
In the analogy with the other crystal cases mentioned in
the Introduction, the crystal aof boron can be stabilized by
introducing further elements in the crystal structure. Boron
carbide and3 boron are the examples. In the following sec-
tions, we will see details as to how the crystal structure is
stabilized, through evaluation of the elastic constants.

B. Boron carbide

The vibrations of boron carbide (BC,) have lately been
calculated® We now know a set of appropriate force con-
stants, and these values are used in this study. keC,B
some difficulties in the interpretation of experimental data
are involved, as described in Ref. 21, so that careful analysis
is needed. The reader is referred to Ref. 21 in order to know
the meaning of the values of the force constants in this crys-
tal, in particular, the angle-bending forces.

We notice that the linear-chain fordg is much larger
than any other forces. The next strongest one is the rhombo-
hedral forcef[", while the chain-icosahedral ford¢' is a
little smaller thanf™. The intraicosahedral force” is the _ _ _
smallest of the nearest-neighbor central forces. Let us first F!G- 4. Schematic comparison of the relaxation for the compres-
compute the elastic constants by the central forces only. Thon In thez direction,z5, betweenx boron and boron carbide. The

balance of forces is schematically shown in Fig. 4, compareffo":'."’?he.dral are .represemed by the thd@sanq .(b) show the
with the situation fora boron. equilibrium positions, an¢c) and(d) show the positions after com-

In this figure, we can see that the strongest two types O_;?ression. The force constants for thc_e str_etching forces are _indicated
' . . in (a) and(b). Note that the deformation is exaggerated for illustra-

bonds are along or almost along the crystalxis, while the
other weak bonds are nearly perpendicular to thaxis.
From this observation, we could expect that the crystal is Then, let us fix the bond lengths in the chain, and consider
more stiff in thez direction than in thex-y plane, that is, \what are going on with the other bonds. Sink® is the
C33>Cyy. The calculated result is opposite to this intuition. next.strongest force, a way in which the bond lengths of
The result is listed in columfl) in Table Ill. In the case of  thombohedral bonds remain unchanged as far as possible is
the external contribution alone, the inequabity>c,; holds,  energetically favorable. We should note that, in the equilib-
as expected. Once the contribution of the internal shift isjum positions, the relationships between the polar angles
taken into account, an appreciable effect of the internal reanq g, are opposite between,§&, and & boron; A9’ = ¢’
laxation occurs forcgs, resulting incgz<cy;. Leeetal. g >0 for B;sC, andA ¢’ <0 for a boron. For a compres-
showed this apparent decreaseci by the first-principles  sjon in thez direction, in thea-boron case, a further negative
calculation’® In a boron, cg3 is slightly larger tharcyy, @ decrease inA ¢’ is desirable for the strain energy in the
expected from the balance of forcgsig. 4@)]. In order to  yhombohedral bond, because much energy loss due to a com-
see what happens with boron carbide, we again check whicgression of the rhombohedral bond is saved in this direction.
types of internal shift are induced. But, the direction of this deformation is opposite to the ex-

An analysis similar to thex-boron case shows that the ternal compression in the direction. A relaxation in this
deformation of icosahedra greatly reduces the strain energyay is, therefore, not effectiiig. 4(c)]. In the ByC, case,
in the z direction. Let us consider the situation ;. SUP-  on the other hand, it is easier to increaseid’, the com-
pose the crystal is subject to a compression iretgection.  pression of the rhombohedral bond is greatly saved, and this
In the a-boron case, the internal shift is induced in such ageformation is consonant with the external compression in
way that the icosahedra are compressed irettlieection and  the 7 direction[Fig. 4(d)]. That is whycas is greatly reduced
are elongated in th&-y plane, as shown in Fig.(d). The  for B,.C,.
restoring forces which act on the icosahedron in #g It is a surprising matter that the icosahedra are rather elon-
plane are weak, because oriff are such forces, and these gated in thez direction under the compression of this direc-
are much weaker thaf{". In the B;,C, case, on the other tion. An essential point is that a deformity of the icosahedra,
hand, the situation is different. Sindé is much stronger i.e., weak forces of intraicosahedral bonds, completely spoils
than any others, a way to keep the bond length of the chaistronger forces in the direction, which would otherwise
invariant is energetically most favorable. lead to the stiffness in this direction.
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TABLE Ill. The elastic constants of boron carbide in units of
GPa. The arrangement and the notations are the same as in Table I.

Calculation
I 1] 11
(ext) (+int)

Ci1 300.2 182.0 190.1 235.6

Cas 341.8 81.3 87.9 113.7

Cus 86.8 0.0 27.2 44.4

Cio 100.1 182.0 176.6 132.6

Cis 86.8 141.9 138.9 133.6

Cus 4.6 0.0 -10.3 -47

Cas/Cq (%) 0 17 23

w (cm™) 14 120 171

Stability No No o FIG. 5. The type of intericosahedral bonding@&fhombohedral

Force fL“:1.o )+ (1)+ borqn. Two adjacent § units contact each othgr by a fape, where
h_ th_ in._ ten intermolecular bonds are formed. In thg, Bnit, many internal

constants fr=24 fa=002  fz=-01 bonds are omitted to avoid unnecessary complication

f. (mdyn/A) ff=5.4 f5=0.3 '

f, (mdyn A) =23 f9=0.05 modulusE have been measured for boron cartitgoung’s

fa=0.5 modulusE has dependence on the direction in which the

measurement is done. The explicit formula is given in Ref. 7
(p. 149. The measured value in Ref. 23 must be the orien-

For a compression in the-y plane, a similar situation tational average dE. But, this way of comparison to experi-

must happen, but the situation about the polar angle must JB€Nt is no more than a simple order estimationebycyy,
reversed from the case of the compression inztidérection. by which estimation agreement is obvious at the outset.
Hence, the relaxation af boron for thex direction could be C. j boron
greater than that of BC,, if other conditions are not '

changed. However, the polar angles are relatively close to Because of the very complicated crystal structuregof
/2 in this case: in other words, the bond has already beehoron, e.g., the unit cell contains 105 atoms, no calculation
almost fully stretched, so that the effect of the relaxation iswas made for this crystal. Instead, an implicationgdvoron

not appreciable in botlr boron and B4C,. In this way, we which can be drawn from the foregoing arguments will be
can see that a slight deviation of the angiftom 6, leads to ~ given.

a great consequence op, andcgs. In B boron, the primary building block is agB unit,

Let us check the stability of the crystal. As shown in which is looked upon as a double-layered icosahedtdn.
Table Il the c,, component is still zero when only central This Bg, unit is located at each vertex of the rhombohedral
forces are used. In addition to free rotations of icosahedra, &ttice, instead of the B unit in a boron. A further structural
free rotation of the linear chain is induced in order for anyunit, like a linear chain in BC,, is located in the main
chain-related bonds to be left invariant. It would be con-diagonal in the primitive unit cell, but we can disregard the
cluded, on the basis of categafly, that the B4C, crystal is  effect of this extra unit from the present argument. dn
unstable. Insertion of a linear chain does not help the meboron, two adjacent icosahedra are connected by only one
chanical stability, if only central forces are considered. bond. In this sense, the intericosahedral bonding ®iat

Next, let us introduce angle-bending forces and check theontact In the point contact case, free rotations of icosahedra
stability. The results are listed in the remaining columns ofinduce no restoring force, because the displacements are al-
Table Ill. As expected, the stability is recovered by introduc-ways perpendicular to the intericosahedral bonds. gbo-
ing angle-bending forces. However, one thing to note is thaton, the double-layered icosahedra contact each other by
only a small value of " is not enough to stabilize the crystal, face, namelyface contactas shown in Fig. 5. In this situa-
even though it makes,, nonzero; the elastic matrpc,,] is tion, any rotation of the double-layered icosahedra necessar-
not yet positive definite. A relatively strong, angle-bendingily changes in the lengths of the intericosahedral bonds more
force f¢ is necessary for stability. The set of parameters i 1€ss. Hence, net restoring forces for a shear strain are
the last column is presently the best fit to the experimentafXerted by the central forces, which are much stronger than
spectra. The forcéC is formed in the angles with a carbon @1 noncentral force. As a consequence, we expect that the

atom as the apex atom. The associated bonds are similar fg4 COMPonent does not vanish even when only central

the usual covalent bonding based on #g8 bond. Hence, it orces are used, and that the value is larger than that of
is reasonable that thi is large ' B,3C,. Therefore, the stability o boron falls in category

The ratioc,, to the average diagonal component in- ().
creases by more than 20%. We can say that the stability of
the B,3C, crystal falls in categoryll). The angle-bending
forces are the primary cause of the resistance to shear strains.Our argument first shows the selection rule that only
Experimentally, only averaged quantities like Young's Raman-active modes are induced for external strains. Gen-

IV. CONCLUSIONS
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eral properties of the relaxation mechanism for externaktrong bonds lie in the crystal axis, which must makess
strains have then been proven for those crystals which havearger thanc,,. There is, however, a flaw in the stiffness in
molecular units in the unit cell. The relaxation is dominatedthe z direction. The icosahedron in boron crystals is rather
by the lowest-frequency mode. It often happens that the liflexible. This relaxes considerably the strain energy caused
brational mode of such a crystal is Raman active. Then, thby compression in the direction. A special geometry of the
relaxation is predominantly caused by that mode. As an imerystal B 4C,, i.e., the initial orientation of the rhombohedral
mediate consequence, this effect drastically appears, if norbond relative to the lattice vector, is quite favorable for this

central forces are ignored.
The present study on the elastic properties ofd¢Hgoron

relaxation. In this respect, a slight deviation of the rhombo-
hedral site from the lattice vector is an inevitable require-

modifications well illustrates this general theory. As to thement for the mechanical stability of the-boron modifica-

specific properties of the-boron modifications, the follow-

tions.

ing conclusions have been deduced, although no direct com-
parison between the calculation and experiment is possible at
the present time.

In the case in which each icosahedron contacts the adja- The author enjoyed a discussion with Professor M. F.
cent icosahedra by point contacts, free rotations of icosaheLhorpe regarding the roles of floppy modes on the elasticity.
dra completely relax the shear strain energy accumulated ihhe discussion was held when M.F.T. visited Japan, which
the intericosahedral bonds; an accidental cancellation bévas realized by the financial support of Yamada Science
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tween the external strain and the internal shift takes placd-oundation.

This leads toc,,=0. On the basis of category), we can
conclude that the crystal structure @fboron is unstable.

The chance that this accidental cancellation takes place
will be reduced when the crystal structure has additional el

ements in the unit cell. In the .BC, case, insertion of the

linear chain, however, does not eliminate the accidental cal
cellation. Instead, in this case, highly oriented covalen

(gentral forcesf;",
N-particle system, the number of floppy modess given by

APPENDIX

In this Appendix, we will show that the crystal structure
of a boron is stable in view of the constraint theory, when

f and f* are considered. For an

bonds formed around the carbon atoms provide strong anglé-=3N—6—N¢/2, whereN_ is the number of constraints. A

bending forces, which make the crystal structure stable in R0SitiveF means that the system is mechanically unstéble.

way similar to diamond crystals. In the case@boron, the

For an isolated icosahedral unitBthere are 12 atoms and

icosahedral unit is quite enlarged, and this enlarged icosah&0 intraicosahedral bonds’, and accordingly the icosahe-
dron is bonded to the adjacent units by face contacts, whicHron is stable. Then, we can regard the icosahedron as a rigid
prevents the accidental cancellation even when only centrfPhere. The crystal structure @fboron is thus topologically

forces are used. This leads to the conclusion fhhbron is
quite stable.

regarded as the sc structure. The only difference is that the
lattice point is replaced by the rigid rotor, so that the degrees

For the above argument, it was a good description to apof freedom of the lattice poirsphergis six. For each icosa-
proximate the icosahedral unit by a rigid sphere. For theiedron, there are 6 rhombohedral bofifsand 12 equatorial
elastic components which are not coupled to librationabondsf;9, resulting in 18 constraintsl,, in all. The number
modes, the deformity of the icosahedron plays an importandf floppy modesF=6N—N.2 becomes negative, from

role in the internal relaxation. In the,§C, case, most of the

which the above conclusion follows.
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