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Elastic properties and the mechanical stability of icosahedral boron crystals
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ISIR, Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567, Japan

~Received 26 July 1996!

The elastic constants of the icosahedral boron crystals have been studied by the formulation of Born and
Huang. First of all, a technique of symmetry decomposition has been developed for general crystals possessing
molecular units in order to see the relaxation mechanism by the internal shift. It is proven that if a librational
mode is Raman active, which is often the case, the mode is able to relax the external strain considerably. For
a boron, when only central forces are assumed, thec44 component completely vanishes. A shear strain«4

induces rotations of icosahedra, which cancel the shear strain completely. This gives a qualitative account for
why this crystal is metastable. The rotations of icosahedra frequently happen in order to relax other types of
strain too. This rotation-induced relaxation mechanism is looked upon as a special example of the above
general property. The cancellation for«4 would remain in boron carbide, if only central forces are assumed,
even though additional elements are introduced in the unit cell. In this case, the stability of the crystal has been
ascribed to large noncentral forces, which emerge from the covalent bonds of the linear chain in the unit cell.
Another way of stabilizing the crystal structure ofa boron is suggested: the surface contact of icosahedra,
which is realized in the crystal ofb boron. In this family of crystals, the only direction in which a rotational
motion is not induced is thez direction. The deformity of the icosahedron, instead, leads to an unexpected
effect on the elasticity of boron carbide. The crystal is shown to be less stiff in thec axis than in theab plane,
despite the strongest interatomic forces being oriented parallel to thec axis. The rhombohedral site slightly
deviates from the lattice vector, and this geometry gives rise to a great relaxation in the compression along the
c axis. @S0163-1829~97!04518-9#
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I. INTRODUCTION

The crystal structures of boron crystals have icosahe
B12 as the common building block, and have several po
morphic modifications. Among them,a-rhombohedral boron
is the simplest one, while metastable. This crystal struc
can be stabilized by introducing impurity atoms, the way
which is embodied in the crystals of boron carbid
(B13C2). Another way of stabilization is to form a large
icosahedral unit~a B12 unit enclosed with a large B60 shell!,
which is embodied in the crystal of ab-rhombohedral
boron.1 These have the rhombohedral Bravais lattices w
the same space groupD3d

5 symmetry. Some crystal structure
of this family are depicted in Fig. 1,2,3 along with the names
of the bonds. Note that the atom site 1, which is called
rhombohedral site, slightly deviates from the lattice vec
@Fig. 1~c!#. This deviation is, while slight, an inevitable re
quirement for the mechanical stability of this family, whic
will be seen later.

The stability of boron modifications has been understo
in terms of the chemical bonding requirement.1,4,5 The prop-
erty of being electron deficient is the chief motivation
which boron crystals find their way to stabilize the stru
tures. So far, this viewpoint has been so accepted that
other viewpoints might be overlooked. The mechanical s
bility provides a useful insight into the stability of crystal
and thus is also important. In this paper, the elastic const
of a-boron modifications have been calculated, and the
bility of the crystal structures is discussed on this basis.
will see that rotational motions of icosahedra relax exter
strains a great deal. Considering the importance of
mechanism of rotation-induced relaxation, we will begin o
550163-1829/97/55~18!/12235~9!/$10.00
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discussion with a general formalism of the internal relaxat
for an external strain for those crystals which possess
lecular units in the crystal structure. Fullerenes are promis
crystals for the application of this theory.

The mechanical stability of crystal structures has be
thoroughly studied by Born and Huang.6 The following is a
brief summary of the important results of their study. T
elastic constantscrs are customarily represented in a matr
form of 636 dimensions. The mechanical stability of a cry
tal is expressed in the most general form:theorem I (sta-
bility condition): the matrix@crs# is positive definite.

We should note that negative values are not prohibited
crs . For cubic crystals, the stability condition has partic
larly simple forms,7

c44.0, c11.c12, and c1112c12.0. ~1!

If we take only nearest-neighbor forces into account and
these forces are central forces, the conclusion is then dr
that the simple-cubic~sc! structure is unstable. This is be
cause c12 depends only on the next-nearest-neighbor
further-distant forces, so that it would vanish if only neare
neighbor central forces are assumed. In reality, there
many forces beyond the nearest-neighbor distance. Howe
the nearest-neighbor forces are by far stronger than
other, so that the above simple conclusion is qualitativ
valid.

A way to avoid this instability is to form the fcc structure
where all the conditions~1! are met by assuming only centra
forces of the nearest neighbors. This example indicates
first category for crystals to stabilize their structures:(cat-
egory I) the stability condition is satisfied even when o
12 235 © 1997 The American Physical Society
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FIG. 1. The crystal structures of~a! a-rhombohedral boron, and~b! boron carbide (B13C2). The site which is symmetry equivalent t
atom 1 is customarily called the rhombohedral site, and the site symmetry equivalent to atom 3 is called the equatorial site. The abb
of the types of bond are indicated. The equatorial bonds ina boron are replaced with the covalent bonds of the linear chain C-B-C in b
carbide. The rhombohedral site is slightly deviated from the lattice vector~c!. The polar anglesu andu0 are defined about the center of a
icosahedron~inversion center!. For a boronu.u0 , but reversed in boron carbide.
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central forces of the nearest neighbors are assumed. In the
bcc structure, the second condition of Eq.~1! does not hold.
However, the distance of the next-nearest neighbors is c
to that of the nearest neighbors, so that this crystal struc
is more stable than sc.

For the diamond crystals, the crystal structure would
unstable in view of the criterion~I!. Thec44 component be-
comes zero when only the nearest-neighbor central forces
used, because thec44 is given by

c445const f r f a /~ f r1 f a!, ~2!

where f r and f a are the bond-stretching and the ang
bending forces, respectively.8 Of course, the diamond struc
ture is stable. In this case, we should not ignore the con
bution of the noncentral forcef a . By the nature of the
covalent bond, the noncentral force is relatively large in d
mond crystals, in contrast with ionic crystals.9 This example
gives the second category for crystals to stabilize their st
tures:(category II) noncentral forces are strong enough f
the stability condition to hold.These criteria are simple, bu
are applicable for a surprisingly wide range of crystals. In
following, we will see that these criteria are useful also
boron crystals.

A closely related criterion is given by the constrai
theory.10 The zero-frequency vibrations other than rig
translational and rotational motions are calledfloppy modes.
They have a special consequence for the elastic propert

Theorem II:The existence of floppy modes implies n
restoring force for a deformation in some direction, so t
the component of the elastic constant in that direction v
ishes.

A good example is provided by a two-dimensional squ
lattice. The converse is not necessarily correct; that is, e
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when a crystal does not have any floppy mode, we can
exclude the possibility that no restoring force is exerted i
particular direction of strain.

Bearing these theorems in mind, we proceed to a disc
sion on a special property of rotational motions which pla
in the elasticity. Interesting properties of rotational motio
in elastic continua used to be discussed in connection w
the strain gradient theories.11 Unfortunately, these effects ar
only microscopic or second-order effects, so that experim
tal observation is difficult. In contrast, the present effect
macroscopic, and is easily observed.

II. THEORY OF THE INTERNAL RELAXATION
FOR AN EXTERNAL STRAIN

The elastic constants can be calculated by the force c
stants in problems of lattice vibrations. A general formu
tion has been established by Born and Huang.6 Here, we
follow them, but use a slightly different version of the theo
as given by Lax,12,13 because it has a convenient form f
discussing the symmetry properties. The effect of the lo
range Coulomb force is disregarded from the present a
ment.

The elastic constantscma,nb are given by

cma,nb5@mn,ab#1@an,mb#2@am,nb#1~ma,nb! ~3!

according to the notations of Born and Huang. The first th
terms on the right-hand side represent the contribution of
homogeneous external deformation. The last term repres
the contribution of the internal shift, that is, relative displac
ments of the atoms in the primitive unit cell~optic modes!.
Throughout this paper,a, b, m, andn refer to the Cartesian
coordinates, whiler ands are used for the Voigt notation
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which runs from 1 to 6. The indicesl and k refer to the
lattice site and the atom site in the unit cell (k51,...,s),
respectively. The calculation of the external part is rat
straightforward:

@mn,ab#52
1

2

1

V0
(

kk8 l 8
Km n
lk l 8k8~Xlk2Xl 8k8!a

3~Xlk2Xl 8k8!b , ~4!

where V0 is the volume of the primitive unit cell, and

Km n
lk l 8k8 are the force constants between atomslk and l 8k8,

whose equilibrium positions are expressed byX. The inter-
nal shift is induced in order to relax the external deformati
and hence the contribution to the elastic energy must
negative. For special classes of crystals, however, the in
nal shift does not occur. A general criterion as to whether
internal shift is induced or not, and if induced, which type
optic mode is induced, is determined by a selection rule
which we proceed with our argument.

The internal shiftum
k induced by an external strainuma is

given by

um
k 52F k k8

m n8
G21Fk8

n8 n bGunb , ~5!

and, correspondingly, the part of the internal shift incma,nb
is given by

~ma,nb!52F k

m8 m aGF k k8

m8 n8
G21Fk8

n8 n bG . ~6!

The minus sign indicates a negative contribution. The ma
ces in these equations are defined by

F k k8

m n
G5

1

V0
(
l 8

Km n
lk l 8k8 ,

~7!

F k

m n bG5
1

V0
(
l 8k8

Km n
lk l 8k8Xb

l 8k8 .

By transforming the displacement vectorsum
k to the sym-

metry vectorsua
r , we have alternative expressions for Eq

~5! and ~6!,

ua
r 52F r r

a a8
G21F ra8 n bGunb ~8!

and

~ma,nb!52F ra m aGF r r

a a8
G21F ra8 n bG . ~9!

Here, r denotes the label of the irreducible representati
anda denotes the index of a different set belonging to
same irreducible representation.

The coefficients@a m a
r # tell us the selection rule for which

typera of the optic mode couples to an external deformat
uma . The pair of indicesma is transformed as is the sym
metrized product of the Cartesian coordinates, (Gp3Gp)s .
Hence, only those symmetry vectors which are transform
as (Gp3Gp)s can be coupled to the external strain. In oth
r
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words,theorem III: only symmetric Raman-active modes ca
be induced as the internal shift by external strains.

As an example, NaCl-type crystals have no Raman-ac
mode, so that no internal shift is induced. This fact is kno
as the statement that there is no contribution by the inte
shift to the elastic constants, if the crystal has an invers
center and if every atom is located in the center.14 Further-
more, by investigating the decomposition of the individu
productma to the irreducible representations, we can eas
find selection rules for which type of Raman modera can be
coupled to the particularuma .

In view of Eq.~8!, first a specific type of optic modera is
discriminated by@a m a

r # for a given deformationuma . The
magnitude of the contribution is then determined by the
verse of@a a8

r r
#. The matrix@a a8

r r
# gives the dynamic matrix

for the zone-center modes, on weighting with mass
Roughly speaking, thera component of this inverse matri
is given by the inverse of the square of eigenfrequency
that mode. Therefore, the lowest-frequency mode domin
the magnitude of the relaxation. From this follows the ge
eral property thatcorollary I: Raman-active librationa
modes, if they exist, are able to greatly reduce the str
energy. Librational modes are based on rotations of mole
lar units. The symmetry of rotation is represented by
antisymmetrized product of the Cartesian coordinates,Gp

3Gp)a , which are frequently consonant with the symme
of Raman activity, (Gp3Gp)s . The contribution of the libra-
tional mode with the frequencyv l depends on inversely
v l
2. Since the frequency of the librational mode is domina

by noncentral forces, the effect of corollary I drastically a
pears as the noncentral forces are decreased. In the sam
of proof, we can reach theorem II, which states the relaxa
mechanism in terms of floppy modes.

Besides the selection rule, another advantage of the s
metry decomposition is nonsingularity of the dynamic mat
in the form @a a8

r r
#. A rather annoying problem when evalu

ating Eq. ~6! is that the original matrix@m n8
k k8# is singular,

owing to the acoustic modes, and hence the inverse does
exist. Because only the symmetry blocks possessing Ra
activity is involved in Eq.~9!, the selected blocks have a
ready been nonsingular.

III. CALCULATIONS OF a-BORON MODIFICATIONS

Rhombohedral crystals of thea-boron modifications have
the point symmetryD3d . There are six independent comp
nents of the elastic constants, say,c11, c33, c44, c12, c13,
and c14.

15 According to the stability condition, we can ob
tain the interrelationships betweencrs . Out of the six rela-
tionships,c44.0, c33.0, andc11.c12, have simple forms.
The remaining relationships have relatively complicat
forms. Instead of using these inequalities, it is easier to
an alternative form of the stability condition, in which all th
eigenvalues of the matrix@crs# must be positive. This form
is used in the following calculations.

In order to discuss the selection rule, we should explic
give the coordinates of the system and the representati
The crystal axes are taken in such a way that aC2 axis is
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parallel to thex axis, and they axis is in a plane of a mirror
The basis set forEg is so arranged that the first and seco
partners are transformed as (xz, yz).

A. a boron

First, let us examine the preceding theory for the simp
boron modification,a boron. The lattice vibrations of this
crystal are well understood by the studies using the valen
force model16 and the shell model.17 In the present paper, th
valence-force model is used because of its clear phys
meaning. Two types of forces, the bond-stretching forcesf r
and the angle-bending forcesf a , are assumed, but more ge
eral terminologies, the central and noncentral forces, res
tively, are sometimes used. The superscripts of the force
stants refer to the types of bond or angle~see Fig. 1 for the
abbreviations!.

The results of the calculation are listed in Table I. Wh
only central forces are used, the results are presented s
rately in column~I!, the case in which only the contributio
of the external deformation is considered, and the cas
which the contribution of the internal shift is taken into a
count. Then, noncentral forces are subsequently adde
columns~II ! and ~III !. The frequency of theEg librational
modev l is a measure of the contribution of the libration
mode to the internal relaxation, and is included with th
utility.

A notable result is that some components, sayc44, vanish
when only central forces are used. The effect of the inter

TABLE I. The elastic constants ofa-rhombohedral boron in
units of GPa. Results of different models are compared;~I! only
central forces are used;~II ! and ~III ! noncentral forces are added
These parameters are listed in the last row. In~I!, the contribution
of the external deformation alone and the result of including
internal shift are separately shown. Thec44 component is compared
with the average of the diagonal componentscd . The frequency of
theEg librational modev l is also tabulated. The stability has bee
judged by the positive-definite property of the elastic matrix. T
experimental data are the elastic constants ofb boron, nota boron.

Calculation
Experimenta~I! ~II ! ~III !

~ext! (1 int)

C11 389.5 302.2 314.5 323.9 467
C33 455.1 309.4 327.4 333.7 473
C44 123.1 0.0 0.0 33.4 198
C12 129.8 137.1 130.1 122.4 241
C13 123.1 166.4 160.8 158.6 ?
C14 29.2 0.0 0.0 25.8 15.1
C44/Cd ~%! 0 0 10 42
v l (cm

21) 28 30 163
Stability No No s

Force
constants

f r
in51.3
f r
rh53.0

~I!1 ~II !1

f r ~mdyn/Å!
f a ~mdyn Å!

f r
eq51.0 f a

in50.15 f a
re50.04

aExperiment data: forb-rhombohedral boron, I. M. Silvestrova, L
M. Belayev, Y. V. Pisarevski, and T. Niemyski, Mater. Res. Bu
9, 1101~1974!.
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shift completely cancels the contribution of the homog
neous external deformation. This result is an unexpected
from the viewpoint of the constraint theory. In the Append
we will show that there is no floppy mode in a netwo
which is topologically equivalent to the crystal structure ofa
boron. There are so many constraints for the bonding in
crystal structure that it is unlikely that the strain«4([u23
[]uy /]z) does not change any bond length. The compon
c44 becomes nonzero only after the angle-bending forces
tween the adjacent icosahedra are included, as shown in
umn ~III ! of Table I. The angle-bending force within th
icosahedron is not enough. There is no symmetry reason
canceling the external contribution. In this sense, the can
lation is just accidental. For the case in which the Cauc
relations hold, extra symmetry properties appear in the e
tic constants.6,18 But, this is not the case here.

Let us investigate what happens with a vanishing com
nent, say,c44, when only central forces are used. Thec44
component is the elastic response for the shear strain«4 . The
induced optic modes are determined by the selection
about the coefficient@a m a

r #. The selection rules forD3d

symmetry are summarized in Table II. For the strain«4 ,
only Eg2-type optic modes are excited. Ina boron, there are
six Eg modes. The induced internal shiftsum

k are expressed
by a linear combination of these allowed modes.

The induced internal shift by the strain«4 is found to be a
perfect rotation of an icosahedron. It should be noted that
librational mode is close to a perfect rotation about thex
axis, but is slightly different. A linear combination of si
Eg modes plus the external deformation completes a per
rotation of the icosahedron. Obviously, a perfect rotation
an icosahedron causes no strain on intraicosahedral bo
But, it is amazing that it is also true for intericosahed
bonds. A detailed analysis shows that this special situa
actually happens. Let us see this situation by taking a rho
bohedral bond as an example. The polar angleu is slightly
larger thanu0 in a boron ~Fig. 1!, and thereby the angleu8
formed by the bond 1-108 and thec axis is smaller than
u0 ~Fig. 2!. Free rotations of the two icosahedra induce
change in the length of the bond 1-108, i.e., a slight expan-
sion. However, for the net displacement of atom 108 relative
to atom 1, we should add the contributionuext of the external
strain«4 . As shown in Fig. 2, the rotation by an anglev is
induced in such a way that a contraction of the bo
1–108 by the shear strain is canceled by an expans
caused by the rotation, from whichv is determined as

2v–~a33X1!5uyza3z~2X
12a3!y . ~10!

e

TABLE II. The selection rules in the matrix@ r n b# for D3d .
For Eg , the label of the partner is followed. For the coordinates
the system and the representation, see the text.

nb Allowed r

1 A1g1Eg2
2 A1g1Eg2
3 A1g

4 Eg2
5 Eg1
6 Eg1
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Note that for the case in which atom 1 is on the lattice vec
a3 , this rotation never occurs, sincev50 according to Eq.
~14!. For equatorial bonds, it is easier to show that the bo
length is invariant, because there is no external contribu
in this direction.

Judging from the category~I!, the crystal ofa boron must
be unstable, which is consistent with experimental fact. T
accidental cancellation forc44 is removed by introducing
angle-bending forces, as shown in~III ! in Table I. The pa-
rameters used here are basically the same as those give
Beckelet al.,16 except forf a

re. In the present study, forf a
re,

five angles are taken into account about an equatorial a
while the two angles of 143° are taken into account in
Beckel calculation. These values presently have the
agreement with experimental spectra. Even taking an
bending forces into account, thec44 component is still small,
namely, 10% of the main diagonal componentcd , which is
defined by (2c111c33)/3. Therefore, the above conclusion
qualitatively correct.

Unfortunately, there are no experimental data for ela
constants ofa boron. Situations are similar for othera modi-
fications. As far as the author is aware, there is only o
experimental report on the elastic constant ofb boron, al-
though not complete.19 The data are listed in the last colum
of Table I. Before obtaining the present result, the aut
simply predicted that the values were similar betweena and
b boron, because of similarity in the crystal structures. Th
the original intention for citing the data ofb boron was a
better comparison between the calculation and experime
a poor experimental situation. But, the purpose has now b
changed to show the difference between these two crys
Thec44 component relative to the main-diagonal compone
is larger inb boron, namely 40%, than in the calculation
a boron. The largeness ofc44 seems to contribute to th
stability of b boron.

FIG. 2. When a shear strain«4 is applied, this figure shows how
the bond 1-108 is changed. A contraction of the bond due to t
external contributionuext is canceled by an expansion caused by
rotations of two icosahedra.
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If we regard the icosahedron as a rigid sphere, the cry
of a boron is topologically the same as the sc structure.
mentioned in Introduction, the sc structure is unstable in t
no restoring force is exerted for a shear strain, i.e.,c4450.
Accordingly, the instability ofa boron is reasonable. Th
only unexpected result ina boron is that the strain of any
intericosahedral bond is completely relaxed by free rotati
of the icosahedra.

As for the other componentscrs , the internal shift also
contributes to the relaxation, although not as seriously as
c44, as shown in Table I. For example, the effect of t
internal shift onc11 is shown in Fig. 3. For the case of centr
forces only, we can see that nearly perfect rotations of ico
hedra occur@Fig. 3~a!#. From the selection rule in Table II
coupling to rotations takes place for all the components
cept c33. Further examples are given in anoth
publication,20 where one can see that even a small variat
in the structure or in forces causes a drastic change of
rotations in both the magnitude and orientation. Indeed,
mechanism of the rotation-induced relaxation would be
ubiquitous response appearing in those crystals which h
librational modes, if only central forces are exerted on
atoms. A prominent effect of this rotation-induced relaxati
may be free rotations of icosahedra in fullerenes at high te
peratures. In this connection, the fact that both high- a
low-temperature phases of a crystal C60 have a point group
Th is not accidental. In cubic symmetry, onlyT andTh are
point groups in which rotational motions have Raman ac
ity.

At the same time, in Fig. 3~b!, we can see that even sma
angle-bending forces have the apparent effect of suppres
the rotational motions. Table I shows that as angle-bend
forces are added, the frequency of the librational mode
quickly increased. This prevents the librational mode fro
participating in the relaxation mechanism, as expected in
theory of Sec. II. An important implication to fullerenes lie
at this point. It is not very appropriate to say that weakn

e

FIG. 3. The relaxation ina boron for the compression in thex
direction,«1 , for the case of central forces only~a!, and for the case
of angle-bending forces included~b!. The used parameters are tho
of ~I! and~III !, respectively, in Table I. The external displacemen
are shown relatively by taking the center of the main diagonal as
origin.
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12 240 55KOUN SHIRAI
of the intermolecular force~van der Waals force! itself is the
cause for free rotations of icosahedra. Weakness in the
central character of the force is responsible for this. Actua
the present case of boron is opposite to the molecular c
tals, that is, the intermolecular forces are stronger than
intramolecular forces. In spite of this, we have seen that
tations are easily induced if only central forces are assum

In the analogy with the other crystal cases mentioned
the Introduction, the crystal ofa boron can be stabilized b
introducing further elements in the crystal structure. Bor
carbide andb boron are the examples. In the following se
tions, we will see details as to how the crystal structure
stabilized, through evaluation of the elastic constants.

B. Boron carbide

The vibrations of boron carbide (B13C2) have lately been
calculated.21 We now know a set of appropriate force co
stants, and these values are used in this study. For B13C2,
some difficulties in the interpretation of experimental da
are involved, as described in Ref. 21, so that careful anal
is needed. The reader is referred to Ref. 21 in order to kn
the meaning of the values of the force constants in this c
tal, in particular, the angle-bending forces.

We notice that the linear-chain forcef r
c is much larger

than any other forces. The next strongest one is the rhom
hedral forcef r

rh , while the chain-icosahedral forcef r
ci is a

little smaller thanf r
rh . The intraicosahedral forcef r

in is the
smallest of the nearest-neighbor central forces. Let us
compute the elastic constants by the central forces only.
balance of forces is schematically shown in Fig. 4, compa
with the situation fora boron.

In this figure, we can see that the strongest two types
bonds are along or almost along the crystalc axis, while the
other weak bonds are nearly perpendicular to thec axis.
From this observation, we could expect that the crysta
more stiff in thez direction than in thex-y plane, that is,
c33.c11. The calculated result is opposite to this intuitio
The result is listed in column~I! in Table III. In the case of
the external contribution alone, the inequalityc33.c11 holds,
as expected. Once the contribution of the internal shif
taken into account, an appreciable effect of the internal
laxation occurs forc33, resulting in c33,c11. Lee et al.
showed this apparent decrease inc33 by the first-principles
calculation.22 In a boron,c33 is slightly larger thanc11, as
expected from the balance of forces@Fig. 4~a!#. In order to
see what happens with boron carbide, we again check w
types of internal shift are induced.

An analysis similar to thea-boron case shows that th
deformation of icosahedra greatly reduces the strain en
in thez direction. Let us consider the situation forc33. Sup-
pose the crystal is subject to a compression in thez direction.
In the a-boron case, the internal shift is induced in such
way that the icosahedra are compressed in thez direction and
are elongated in thex-y plane, as shown in Fig. 4~c!. The
restoring forces which act on the icosahedron in thex-y
plane are weak, because onlyf r

eq are such forces, and thes
are much weaker thanf r

rh . In the B13C2 case, on the othe
hand, the situation is different. Sincef r

c is much stronger
than any others, a way to keep the bond length of the ch
invariant is energetically most favorable.
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Then, let us fix the bond lengths in the chain, and consi
what are going on with the other bonds. Sincef r

rh is the
next-strongest force, a way in which the bond lengths
rhombohedral bonds remain unchanged as far as possib
energetically favorable. We should note that, in the equi
rium positions, the relationships between the polar angleu8
and u0 are opposite between B13C2 anda boron;Du8[u8
2u0.0 for B13C2 andDu8,0 for a boron. For a compres
sion in thez direction, in thea-boron case, a further negativ
decrease inDu8 is desirable for the strain energy in th
rhombohedral bond, because much energy loss due to a c
pression of the rhombohedral bond is saved in this direct
But, the direction of this deformation is opposite to the e
ternal compression in thez direction. A relaxation in this
way is, therefore, not effective@Fig. 4~c!#. In the B13C2 case,
on the other hand, it is easier to increase inDu8, the com-
pression of the rhombohedral bond is greatly saved, and
deformation is consonant with the external compression
thez direction@Fig. 4~d!#. That is whyc33 is greatly reduced
for B13C2.

It is a surprising matter that the icosahedra are rather e
gated in thez direction under the compression of this dire
tion. An essential point is that a deformity of the icosahed
i.e., weak forces of intraicosahedral bonds, completely sp
stronger forces in thez direction, which would otherwise
lead to the stiffness in this direction.

FIG. 4. Schematic comparison of the relaxation for the compr
sion in thez direction,«3 , betweena boron and boron carbide. Th
icosahedra are represented by the spheres.~a! and ~b! show the
equilibrium positions, and~c! and~d! show the positions after com
pression. The force constants for the stretching forces are indic
in ~a! and~b!. Note that the deformation is exaggerated for illustr
tion.
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For a compression in thex-y plane, a similar situation
must happen, but the situation about the polar angle mus
reversed from the case of the compression in thez direction.
Hence, the relaxation ofa boron for thex direction could be
greater than that of B13C2, if other conditions are no
changed. However, the polar angles are relatively close
p/2 in this case: in other words, the bond has already b
almost fully stretched, so that the effect of the relaxation
not appreciable in botha boron and B13C2. In this way, we
can see that a slight deviation of the angleu from u0 leads to
a great consequence onc11 andc33.

Let us check the stability of the crystal. As shown
Table III the c44 component is still zero when only centr
forces are used. In addition to free rotations of icosahedr
free rotation of the linear chain is induced in order for a
chain-related bonds to be left invariant. It would be co
cluded, on the basis of category~I!, that the B13C2 crystal is
unstable. Insertion of a linear chain does not help the m
chanical stability, if only central forces are considered.

Next, let us introduce angle-bending forces and check
stability. The results are listed in the remaining columns
Table III. As expected, the stability is recovered by introdu
ing angle-bending forces. However, one thing to note is t
only a small value off a

rh is not enough to stabilize the crysta
even though it makesc44 nonzero; the elastic matrix@crs# is
not yet positive definite. A relatively strong, angle-bendi
force f a

c is necessary for stability. The set of parameters
the last column is presently the best fit to the experime
spectra. The forcef a

c is formed in the angles with a carbo
atom as the apex atom. The associated bonds are simil
the usual covalent bonding based on thesp3 bond. Hence, it
is reasonable that thef a

c is large.
The ratioc44 to the average diagonal componentcd in-

creases by more than 20%. We can say that the stabilit
the B13C2 crystal falls in category~II !. The angle-bending
forces are the primary cause of the resistance to shear str
Experimentally, only averaged quantities like Young

TABLE III. The elastic constants of boron carbide in units
GPa. The arrangement and the notations are the same as in Ta

Calculation
I II III

~ext! (1 int)

C11 300.2 182.0 190.1 235.6
C33 341.8 81.3 87.9 113.7
C44 86.8 0.0 27.2 44.4
C12 100.1 182.0 176.6 132.6
C13 86.8 141.9 138.9 133.6
C14 4.6 0.0 210.3 24.7
C44/Cd ~%! 0 17 23
v l (cm

21) 14 120 171
Stability No No s

Force
constants

f r
in51.0
f r
rh52.4

~I!1
f a
rh50.02

~II !1
f a
in520.1

f r ~mdyn/Å! f r
c55.4 f a

c50.3
f a ~mdyn Å! f r

ci52.3 f a
ci50.05
f a
cc50.5
be

to
n
s

a

-

e-

e
f
-
t

n
al

to

of

ins.

modulusE have been measured for boron carbide.23 Young’s
modulusE has dependence on the direction in which t
measurement is done. The explicit formula is given in Re
~p. 145!. The measured value in Ref. 23 must be the ori
tational average ofE. But, this way of comparison to exper
ment is no more than a simple order estimation byE'c11,
by which estimation agreement is obvious at the outset.

C. b boron

Because of the very complicated crystal structure ofb
boron, e.g., the unit cell contains 105 atoms, no calculat
was made for this crystal. Instead, an implication forb boron
which can be drawn from the foregoing arguments will
given.

In b boron, the primary building block is a B84 unit,
which is looked upon as a double-layered icosahedron.24,25

This B84 unit is located at each vertex of the rhombohed
lattice, instead of the B12 unit in a boron. A further structural
unit, like a linear chain in B13C2, is located in the main
diagonal in the primitive unit cell, but we can disregard t
effect of this extra unit from the present argument. Ina
boron, two adjacent icosahedra are connected by only
bond. In this sense, the intericosahedral bonding is apoint
contact. In the point contact case, free rotations of icosahe
induce no restoring force, because the displacements ar
ways perpendicular to the intericosahedral bonds. Forb bo-
ron, the double-layered icosahedra contact each othe
face, namely,face contact, as shown in Fig. 5. In this situa
tion, any rotation of the double-layered icosahedra neces
ily changes in the lengths of the intericosahedral bonds m
or less. Hence, net restoring forces for a shear strain
exerted by the central forces, which are much stronger t
any noncentral force. As a consequence, we expect tha
c44 component does not vanish even when only cen
forces are used, and that the value is larger than tha
B13C2. Therefore, the stability ofb boron falls in category
~I!.

IV. CONCLUSIONS

Our argument first shows the selection rule that o
Raman-active modes are induced for external strains. G

FIG. 5. The type of intericosahedral bonding ofb-rhombohedral
boron. Two adjacent B84 units contact each other by a face, whe
ten intermolecular bonds are formed. In the B84 unit, many internal
bonds are omitted to avoid unnecessary complication.

le I.
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eral properties of the relaxation mechanism for exter
strains have then been proven for those crystals which h
molecular units in the unit cell. The relaxation is dominat
by the lowest-frequency mode. It often happens that the
brational mode of such a crystal is Raman active. Then,
relaxation is predominantly caused by that mode. As an
mediate consequence, this effect drastically appears, if n
central forces are ignored.

The present study on the elastic properties of thea-boron
modifications well illustrates this general theory. As to t
specific properties of thea-boron modifications, the follow-
ing conclusions have been deduced, although no direct c
parison between the calculation and experiment is possib
the present time.

In the case in which each icosahedron contacts the a
cent icosahedra by point contacts, free rotations of icosa
dra completely relax the shear strain energy accumulate
the intericosahedral bonds; an accidental cancellation
tween the external strain and the internal shift takes pla
This leads toc4450. On the basis of category~I!, we can
conclude that the crystal structure ofa boron is unstable.

The chance that this accidental cancellation takes p
will be reduced when the crystal structure has additional
ements in the unit cell. In the B13C2 case, insertion of the
linear chain, however, does not eliminate the accidental c
cellation. Instead, in this case, highly oriented coval
bonds formed around the carbon atoms provide strong an
bending forces, which make the crystal structure stable
way similar to diamond crystals. In the case ofb boron, the
icosahedral unit is quite enlarged, and this enlarged icos
dron is bonded to the adjacent units by face contacts, wh
prevents the accidental cancellation even when only cen
forces are used. This leads to the conclusion thatb boron is
quite stable.

For the above argument, it was a good description to
proximate the icosahedral unit by a rigid sphere. For
elastic components which are not coupled to libratio
modes, the deformity of the icosahedron plays an impor
role in the internal relaxation. In the B13C2 case, most of the
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strong bonds lie in the crystalc axis, which must makec33
larger thanc11. There is, however, a flaw in the stiffness
the z direction. The icosahedron in boron crystals is rath
flexible. This relaxes considerably the strain energy cau
by compression in thez direction. A special geometry of the
crystal B13C2, i.e., the initial orientation of the rhombohedr
bond relative to the lattice vector, is quite favorable for th
relaxation. In this respect, a slight deviation of the rhomb
hedral site from the lattice vector is an inevitable requi
ment for the mechanical stability of thea-boron modifica-
tions.
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APPENDIX

In this Appendix, we will show that the crystal structu
of a boron is stable in view of the constraint theory, wh
central forces f r

in , f r
rh , and f r

eq are considered. For an
N-particle system, the number of floppy modesF is given by
F53N262Nc/2, whereNc is the number of constraints. A
positiveF means that the system is mechanically unstabl10

For an isolated icosahedral unit B12, there are 12 atoms an
30 intraicosahedral bondsf r

in , and accordingly the icosahe
dron is stable. Then, we can regard the icosahedron as a
sphere. The crystal structure ofa boron is thus topologically
regarded as the sc structure. The only difference is that
lattice point is replaced by the rigid rotor, so that the degr
of freedom of the lattice point~sphere! is six. For each icosa-
hedron, there are 6 rhombohedral bondsf r

rh and 12 equatorial
bondsf r

eq, resulting in 18 constraintsNc in all. The number
of floppy modesF56N2Nc/2 becomes negative, from
which the above conclusion follows.
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