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In this work we study the quantum Toda lattice, developing the asymptotic Bethe ansatz method first used
by Sutherland. Despite its known limitations we find, on comparing with Gutzwiller's exact method, that it
works well in this particular problem and in fact becomes exadt gsows large. We calculate ground state
and excitation energies for finite-sized lattices, identify excitations as phonons and solitons on the basis of their
guantum numbers, and find their dispersions. These are similar to the classical dispersions fér, sméll
remain similar all the way up th =1, but then deviate substantially as we go farther into the quantum regime.
On comparing the sound velocities for variousobtained thus with that predicted by conformal theory we
conclude that the Bethe ansatz gives the energies per particle accuBt\¥). On that assumption we can
find correlation functions. Thus the Bethe ansatz method can be used to yield much more than the thermody-
namic properties which previous authors have calculd®d163-18207)14817-2

[. INTRODUCTION with large amplitude behaves very much like a solitéig.
1). The classical periodic system was studied by Kac and van
The Toda latticé,introduced by Toda in 196%is a chain  Moerbeké and Date and Tanak. It is completely solved:
of particles which interact with nearest neighbors with anGiven any initial condition of the system its future time evo-
exponential potential. The quantum mechanical Hamiltoniadution can be written down exactly.

for a periodic Toda system of length (i.e., n+N=n) is In quantum mechanics, there have been several treatments
based on various approximations and assumptions. Origi-
Nog2 N nally, Sutherlanfitreated the problem using tli@symptotig
H=— 21 ozt 7721 e (Un+17Un) (1)  Bethe ansatz. On the other hand, Gutzwilleas given an
n= n n=

exact treatment of the three- and four-particle lattices, and

where theu, are displacements from equilibrium sites. We his quantization algorithm is capable of generalization to
have chosen appropriate units to remdyem (the mass of largerN as well. His results were rederived in thenatrix

the particle, and the length scale of the potential. The infi- formalism by Skiyanifi and by Pasquier and Gaudirthe
nite system also has a linear term in the poteritimicancel ~Method makes a transparent connection with the classical
the one in the exponentialbut with periodic boundary con- formulation of the problem. However, calculating with this
ditions this vanishesy is a measure of the anharmonicity @lgorithm is a formidable task. The method is summarized in
and also of the scale of the quantum effects. The largis;, ~ Sec. IV. Sutherlarftioriginally recovered the classical results
the more “classical” the system and the more harmonic thehigh 7) in the thermodynamic limiti{— ). Later author$
low-energy excitations. In the classical limit the parametefave remained in this thermodynamic limit, but have looked
7 can be scaled out but in the quantum case this can only k@ arbitrary», and have calculated various thermodynamic
done by introducing afi # 1 in the above equation. We shall functions.

occasionally write
2
h= \ﬁ 2
n

so that the Hamiltonian can be rescaled and rewritten as

& R
— H=—— —(Un4+1—Up)
A DI T AP I

n=1

The Toda lattice is interesting, classically and quantum
mechanically, because it is the one example of a nonlinear
lattice which can be solved exactly. Elementary excitations
are cnoidal waves, which are periodic waves analogous 10 giG. 1. How a classical cnoidal wave continuously goes from
the normal modes of a harmonic lattice, and solitons, whicthearly harmonic to solitonic with increasing amplitude. Above, the
are traveling-pulse-like solutions which retain their shap&irst “normal mode” which goes into a one-soliton state. Below,
even after interaction with other excitations. The periodicthe second mode which goes into a two-soliton state. The same
system does not support solitons of the infinite-chain typething happens in our quantum description when we put more and
since these involve a net compression, but a cnoidal waveore phonons into a particular phonon mddet to scalg

0163-1829/97/58.8)/1219614)/$10.00 55 12 196 © 1997 The American Physical Society



55 QUANTIZING THE TODA LATTICE 12 197

In this paper, we use the Bethe ansatz to look at the cas#isplays the fact that the limiting process leaves us with a
of finite N, which in some ways is more illuminating when one-parameter model, the Toda lattice with a general cou-
one tries to classify excitations as phonons or solitons. Segling constanty (see below, from which the classical, the
tion 1l obtains the Toda lattice as a limiting case of theharmonic, and the extreme anharmonic limits follow.
1/sintf model, an idea due to Sutherland, and Sec. Ill sets up Our starting point is the Hamiltonian
the Bethe ansatz equations for the latter model and performs

.. . . L N 2 N
the same limit to obtain equations describing the Toda lat- . d D 1 4
tice. Though the asymptotic Bethe ansatz is in general inac- ST AL ox,2 +gm,n=1 SinF[ (X—X,)/2a]" S

curate for finiteN, we find in this model that it is much better m<n

than it has been given credit for, and in particular becomegyerea is a length scale giving the range of the potentias
exact not only foN— oo but also forp—0 with finite N. In 3 coupling constant, and the particles are on a ring of length
Sec. IV we demonstrate this by setting up exact equationg (so that the densitd=N/L). In the dilute limit when the

using Gutzwiller's method and seeing what approximationgyariicles are far apart, the shbecomes an exponential; we
are involved in going from these to the Bethe equations. Thechieve this limit by making the substitution

claim'® that the Bethe ansatz misses a fixed fraction of states

does not stand scrutiny. One need only glance at the har- Xp=n/d+u,a, (5)
monic limit (Sec. \j where every one of the states is ac- . . .

counted for accurately. where u,, are displacements from lattice sites spaced 1/

Having done this, we examine the opposite, highly quan@Part. We letad go to zero, and assume that thés are
tum limit in Sec. VI, which makes clearer how the low-lying Poundedthat is, the wave function vanishesis- ). Then
phononlike modes go over to solitonlike states as their occu/® have fom<n andda<l1,
pation number is increased. Section VIl calculates dispersion X%
relations for phonons and solitons, and compares the classi- sinhz( m ”) =sintt
cal and quantum results. We find that the results are essen- 2a
tially the same, apart from the quantization of energy levels, n—m
for =2 (A<1), but as one decreas@durther the quantum =(1/4)exp<—+ U,— Um)
results deviate more and more from the classical, though ad
they remain qualitatively similar down tﬂﬂo In this re- and the potentia| in the Hamiltonian becomes
gime we get phononlike excitations whose energies cannot
be derived from harmonic approximatiofwhy we think of n—m
them as phonons is discussed in Sec.)\dhd solitonlike 4gmzn exp{— ag ~ (Un—Um)|.
excitations which can be thought of as authentic examples of
the much discussed “quantum soliton.” So on putting

Section VIII considers finite-size effects and makes con-
tact with conformal theory to find correlation functions. We g= 7 otiad 7
offer evidence that the asymptotic Bethe ansatz, in theitsé prob- 4a?
lem, gives the ener er particle accurately to ordéf 1/ : : .
thouggh on general gr{)l?ndspit is guaranteedyonly to give ref-’.md then allowingad to go tp zero, all Ferms in the interac-
sults accurate to order 1. Finally, we consider in Sec. IX howflon except the nearest—ne|g_hbor tertne. n_=mfr1) are
all this relates to the classical lattice, and the AppendixdeStrOVEd' and we finally arrive at the Hamiltonian

gives, for completeness, a brief discussion of the other con- N

m-n  Uy,—Up
2adJr 2 )

(6)

2 N
served quantitiegHenon’s integralg and why they are con- a?Hg=— >, _za +9>, e (Unr1~tn),
served in the classical and quantum cases. n=1 dUp n=1

which is the Toda Hamiltonian, Eq1).

Il. SCALING THE 1/sinh 2 MODEL TO THE TODA MODEL

. . Ill. SOLUTION BY THE ASYMPTOTIC BETHE ANSATZ
Sutherland was the first to treat the quantum Toda lattice,

as a limiting case of the 1/sidimodel, by pioneering the use ~ The 1/sinR system, being integrable, is characterized by
of the asymptotic Bethe ansatz. He contented himself witiN\ commuting integrals of motion. If we suppose that the
recovering the classical results, and showed that the classicp#rticles are moved far away from one another, they do not
solitons are recovered by taking the classical limit of par-interact except during short-range collisions, and for the rest
ticlelike excitations of the Bethe equations. He did not ex-of the time they have well-defined momenta which can be
plore regimes other than the classical, thermodynamic limittaken to be the conserved quantities. During two-body colli-
Later authors like Mertefishave directly treated the Toda sions the most that can happen is an exchange of momenta,
lattice by Bethe's ansatz, using the phase shifts obtainednd one can show that-particle collisions can be com-
from the Toda potential, but the validity of the Bethe ansatzpletely described in terms of successive two-particle colli-
(which involves summing over phase shifts a given particlesions and their phase shifts, so that the momenta are reor-
suffers in collisions with all other particless unclear in a  dered but not changed. The Bethe ansatz wave function is a
model where only nearest-neighbor interactions appear. Wgum of plane-wave product states, characterized by a set of
therefore use Sutherland’s approach and scale the /sinkingle-particle momentdp,} and an amplitude for each
model. Our scaling procedure is somewhat more explicit anghlane-wave state which features a different permutation of
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these momenta. All that is required for calculation is the 1 (g
two-body phase shifg(p—p’) for two particles with mo- a= §|n(§)(= —In#). (14
mentap and p’;® then equations for the,, can be written
down and solved. These equations are
Note that the total momentum of the systerk

2w 1 EN: =(ad)(27/N)Z;l;, goes to zero aad goes to zero, so that
p”_T|n+ L& #(Pn=Pm)- ®  weare working in a zero-momentum frame. This is a conse-
m#n quence of the length of the underlying 1/sinhodel going

Herel, are integers for od® or half-odd-integers for even 1o infinity (on the scale of the range of the potentiahe

N, no two of which are equal. The energgigenvalue of Momentum being inversely proportional to the system

Hg) is then given by=p?2, so that the energy of the corre- length. However, our simultaneous scaling up of the interac-

sponding Toda problemn\,/vould @azpz tion by an exponential factqf7) ensures that the individual
..

This solution is derived in the limit when the particles are pa(t|iIFe“moTenta remain finite. Thus we have gone from a
far apart, weakly interacting, and in approximately plane-lls'n gas” with particles described by actual position co-

wave states, so hely one would not expect the results to ordinates, to a lattice with particle positions described as

hold at higher densities. It is known, however, that thisdlsplacements from lattice sites, and no net momentum,

*asymptotic Bethe ansatz” holds at all densities in the limit Wh'Ch is what we wanted. The energy of this Toda problem

N— (the thermodynamic limjtprovided the virial expan- 'S >k2. Since the problem continues to be Galilean invariant,
sion has no singularities as a function af! For this par- 2 finite momentunk,, can always be introduced into the
ticular problem, it turns out that the solution is also exact for220ve equations by addingk,/N to the right-hand side, at

arbitraryN in the limit »— 0. Otherwise, though not exact, it @ total energy cost dti/N. This ki need not be quantized,
is often a very good approximation. since as the length of the underlying 1/éimhodel expands

The total momentum is the quanta of momentum become infinitesimal.
Thel, in Egs.(8) and (13) are the quantum numbers of
2md XN the system, and uniquely specify the state of the system. The
ptot:Tz Iy (9  momentak, are ordered in the same way ks[despite the
n=1 apparently opposite sign fop>2 in Eg. (13)] and we as-
Owing to the Galilean invariance of the 1/sinmodel, a sume that the order is ascendingninin the ground state the
state with zero total momentum can always be boosted tb, are successive integefsr half integery generally taken
have a total momentumy, by adding an appropriate integer to be centered about zefthough it does not matter here,
to all the quantum numbers, at a net energy quis{N,  since one subtracts their average value in(£g)] and in the
independent of the coupling constant. We can take the ex@Xxcited states one or more of them are increased by various
pression for the two-body phase shift in the 1/2isgistem  integer values, always making sure no two of them have the

from Sutherland: same value. _ S
Although we took the dilute limit in arriving at these

0(p)=2[ard'(1+S+ipa)—ardg’(1+ipa)], (10 equations, the Toda Hamiltoniafl) which they describe
contains no reference to the lattice constant, and therefore
they are valid at all densities, or at least at all densities suf-
ficiently low that the particles do not cross each otti€he
wave function will give the typical “spread” iru, and we
S= ﬁeUZad_ (1D must assume, for physical reasons, that the interparticle sepa-
2 ration is much larger than thjsMertens’ treatment,if fol-

whereS(S+1)=2ga’=(5/2)e'@4. Since we are taking the
dilute limit, S—oo for any value ofn, and we can write

In the limit S—c, the phase shift10) becomes lowed through, gives the same equations as the above but
with an extra term on the right-hand side equal to
f(p)=2paln S—2IminT'(1+ipa) (12 (27rad/N) 21, (which is the abové,,,; he does not consider

a limiting case of the 1/sithmodel and does not take
d—0). This term has no significance and, in particular, must
not be confused with the phonon or soliton mome(8ac.
VII). In fact, it may be subtracted out, since it is independent
; of n, to recover our equations. We prefer this, the rest frame,
given by Eq.(9), and rearrangthe p, on the left of EQ(8)  pecayse it is the frame in which one normally discusses

cancels with a term from the phase shift, leaving onlyph,nons and also because it is convenient in making contact
O(1/L) and smaller terms Defining dimensionless “mo- | ith Gutzwiller's work.

menta” byk,=p,a, dividing out the commorl, and taking Since one can add a constant quantity to lthavithout

[we can show this by using Stirling’s expansion for lage
in the firstI’ function in Eq.(10)]. We substitute foS from
Eq. (11, put the resulting phase shift into the Bethe equa
tions (8), noting that=,(Pn— Pm) = NPn— Piot Where pio; IS

ad—0 we end up with the equations to be solved: effect on the equations, they contain some redundancy:
N N—1 quantum numbers are enough to characterize the sys-
ak,=— %(h]_ % + 1 S Imin T[1+i(k,— k)], tem. We could define new quantum numbers by
e
(13

where for convenience we have written vn=Inons1—Inon—1, N=1,2,...,N=-1, (15
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so that thev, may take any integer value from 0 upwards. whereD(«) is basically the characteristic polynomial of the
(These are the number of “holes” between successive intekax matrix (see the Appendjx
gersl,, starting from the righj. These are, in the harmonic
limit, the phonon occupation numbefSec. V.
Equationg(13) can be solved numerically, for instance, by D (k) =aNkN+EANT 2N 72+ iAAN T3N3+
the Newton-Raphson method, for moderate valuds wfith- _\N—1 AN
out much difficulty if one has a good starting guess. If not, DT Avafiet (21 A (18
the numerical methods tend to converge to spurious solutions
where the ordering of thk’s is not the same as that of the and # is defined in Eq.(2). Suppose that its zeroes are
I's. i€,i€s, ... iey; thenD(k) can also be written as
Alternatively, one could pass to the thermodynamic limit
and write down integral equations from which various ther-
modynamic quantities could be calculated, as in Yang and
Yang’'s treatment of thé-function Bose gas. This has been
done by Mertens and by Hader and Merténale define
(N/27) é(k)dk as the number ok’s betweenk andk+dk.
Then Eq.(13) yields the integral equation for the density of ~ The same recursion relations are derived by Sklyénin,
the k’s in the ground state which is, in agreement with and by Pasquier and Gaudirirom different points of view.
Mertens, They have two independent solutions, differing in their be-
havior at+ and —o. Gutzwiller sets

D(K)=1;[ (hk—iep). (19)

£(k)=—2a+ EJB £(K') Rep(L+i(k—k')dk' (16)
mJ)-B (1) _ (=) r’ ,
RN (L e <

(¢ is the digamma function For reasons given in the next
section, Matsuyanté gets the same equation for the distri-
bution of the zeros of Hill's determinant in the Gutzwiller (—1)%r"

method(but without the inhomogeneous part since he takes r@—=_— —r", 20
=1 or(7;=2). g P K f NKHiF(l—K-I—IEi) K ( )

wherer’ andr” are coefficients to be matched later when
“joining” the two solutions, andr andr’ are two new

IV. COMPARISON WITH GUTZWILLER'S variables which(it turns ouj are complex conjugate. They
FORMULATION have solutions

The Bethe equations for the Toda lattice can also be de-
rived from Gutzwiller's solution of the problem, if some ap-
proximations are made. This helps clarify what K& mean 1 _—
in the nondilute limit, in particular, their correspondence D(x+1)
with the classical variables, and also tells us when our ap- 1 +1
proximations are valiq. We br'iefly describg Gutzwiller's [ m 1 m
method and the resulting quantization conditions. K '

Gutzwiller, following the classical ideas of Kac and van 1 1
Moerbeke?® tries to write the wave function of th-body D(k+3)
lattice as a series involving the wave functions of the 0
(N—1)-body open lattice obtained by removing one particle.
Suppose these N—1)-body wave functions are
‘lleKz,,,KNfl; the indicesk correspond to the classical vari- 0
ables u; [the eigenvalues of the truncatedN+{1)-
dimensional Lax matrik For the open chain they are purely 1 -
imaginary but when using them as a basis in the closed chain D(k—=3)
Gutzwiller shows that one must extend them to have a real 1= 1 1 |. (21
integer part; in other wordsk;=ip;+k;, wherek; is an D(x—2) 1 Y2y
. . . K—2) D(k—2)
integer. One aims to find the spectrum of f@is. It turns out
that if one writes the wave function as 0 1 1
V=2C, x, ry_ ¥y iy, Where the sum is over the D(k—1)
integers k;, one can get a solution of the form

CKlemKN,.l:(Kl_ K2)(K2_'K3).‘ ' 'rK.lsKZt 3 prowdgd The former approaches a constantkas +, and the latter
the coefficients, s, ... satisfy identical recursion relations gpproaches a constant las> — .

If one tries to join these solutions, one gets the consis-
it i N =D(K)r,, (17)  tency condition

*1
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1 +1
D(k—1) D(k—1)
1
1
D(«)
A(k)= 1
D(k+1)

Here the+ signs are for evel, the — signs for oddN. This
determinant hadN purely imaginary zeros, which we call
ip1, ipy, ..., ipy (in ascending order (If N is odd and
all odd integralsA;, As, ... vanish—this happens, for in-
stance, in the ground state—then there are dhlyl zeros

but in that casec=0 also satisfies the quantization condi-

tions below, and so we include it among th's.) It is clear
that in addition to thesep,+ 1, wherel is an arbitrary inte-
ger, are also zeros of the determinant.

The determinant is part of what we need to find the spec-
trum of p, but it is not enough since we do not know the

constants of motion iD(x). We need more quantization

RAHUL SIDDHARTHAN AND B. SRIRAM SHASTRY

conditions; to supply these Gutzwiller defines an angleP’

o= (1/2)argf’'/r")y=arg(r’) sincer’ andr” are complex
conjugate. If one normalizes the solutions tf§)=r{2)=1,
one finds

AN (L+i[p—
b=argr’)= Imin m (1,+|[P €m])

M,

(23

Then ¢ is a monotonically increasing function pf Abbre-
viating ¢(p,) as ¢,, Gutzwiller's quantization condition
reads

P1=pr,=---=¢y (modulo). (24
In addition he assumes that
b1+ ot -+ py=0. (25

If both of these conditions are satisfied, the allowed values o

¢, are very limited; they can only be of the form
| ,7m+ma/N, wherem is the same integer for afl andl , is
an arbitrary integer, different for differemt. But ¢, is an
increasing function op,,; hence, if thep, are ordered, we
must have thd, also in increasing order. Then, from Eq.
(25), we get

>l +ma=0, (26)
n

which yieldsm= —X1,,. So we have, finally, expressions for
Gutzwiller's phase angles:

55
0
*1
D(x)
o =0. (22
1
D(k+1)
1 *1
D(k+2) D(x+2)
|
21
¢n:77(|n_Tm>:argr,
ANPIT T (14 pn— €m])
=ar 7
M
=—aNpy+ 2, ImIn T(1+i[pp— €m])
m
— Imln ri’pn, @7
T >l 1 .
apf‘ﬁ('n_Tm +N§Imln I'(1+i[pn—€ml)
Imin i,

N (28)

[a=3In(5/2)=—In #]. These, then, are the exact Gutzwiller
equations which can be combined with Eg2) to calculate
the p,, and ¢, ; once the latter are known, all the conserved
quantities can be found. Thg in this equation are the quan-
tum numbers of the system, and are the same ak, timethe
earlier, very similar Bethe ansatz equatidt8)— to which
these equations in fact reduce providégl the last term can
be ignored and?2) p, is very close toe, for all n. These
things can happen under two circumstances.

There is an argument in Ref. 12 showing that ihe
§hould approache, as N—« (and one knows on general
grounds that the asymptotic Bethe ansatz is correct in this
limit). This also happens ak—x, for finite N. We can
understand the latter fact intuitively as follows: As—oo,
the polynomialdD («) tend to infinity.(This is not obvious—
for example, they do not vanish &s—0 —but it will be
demonstrated in Sec. YIThen they will be small only in a
small region close to their zeros, and so the matrix of which
Eqg. (22) is the determinant tends to the unit matrix except
whenp, lie in some small regions surrounditeg. Thus the
determinant can only vanish when thes approach the
€'s; otherwise it is close to unity. For the same reason, Eq.
(21) tends to unity(its zeros will be close tap,+1=0,
I=1, and fork=ie¢, all theD’s in the denominators will be
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very large. Then the last term in Eq28) will vanish, and all
the p’s can be substituted witk's, and we recover exactly
the Bethe ansatz equations.

Thus the Bethe ansatz is actually more accurate in the
guantum limit than in the classical limit. Indeed, even for
=1 andN = 4-6, the agreement with Matsuyama’s exact
diagonalization resultd is excellent(one gets exactly his
answers, to his reported accurgcgnd this looks neither like
a thermodynamic limit nor like an extreme quantum limit.

One might imagine that the Bethe ansatz equations could
be improved by subtracting the term KdAmIn ri’kn, but it
turns out that this term is always small compared to the

others and does not greatly improve the results, while it is
computationally expensive to include; therefore we ignore it

3.5

25K

Energy

0.5F

in all cases.
Finally, we observe that Eq28) does not remain the
same if thep’s and e's are increased by a constant quantity,

because of the last term which does not appear in the Bethe
ansatz equations. We cannot therefore transform these eas}{g

to a nonzero-momentum frame.

V. HARMONIC LIMIT (HIGH #)

For largen (the classical limit the lattice is harmonic, at
least for sufficiently small quantum numbers. The largés,

the larger the energies and the quantum numbers required f

q (wavenumber}

FIG. 2. Phonon energigdor the Hamiltonian(3), in units of
plotted against wave numbgrfor various . The solid line is
the harmonic-lattice curve and the curves for all “large” values of
7 lie on top of it. The dotted line is fom=2, the dashed line
7=0.1, and the dot-dashed ling=0.01. The range of is [ — 7,

w]. Energies are in units of27 [using the Hamiltoniar(1)]; or
with the Hamiltonian(3) energies are in units df]. Here and in
later graphs, units are chosen to get;gindependent curve in the
Parrge 7 limit.

anharmonicity to show up. Treating this case makes clear the

mapping between the phononic quantum numbers and th‘?arge”

I
First, the exact solution. There ake-1 normal modes in
the system, characterized by “phonon momenta”
numbersqg,=2#n/N, wheren=1,... N—1. In our nota-
tion the coefficient of thau? terms in(1) is #/2. Then the
frequencyw,, of the nth mode is

w,=2\27 sin(%).

An arbitrary state of the system is then characterized by
set of nonnegative integefs,} (phonon occupation num-
berg. The energy of such a state is

(29

N—-1
E=Nn+ 2 (Vn+%)wn
n=1

N—-1
=N7y+2\27 Zl (vn+%)sin(%n). (30)

The first term arises from the constant term in the Taylor
expansion of the exponential potential. For the ground statg, ;

we setv,=0 and find

ar
E=N»n++27 cot(m), (31
which for largeN has an expansion
2 T
E=N7;+\/2_7;;N—6—N+O(1/N3) . (32)

This expression agrees @(1/N) with the result of solv-
ing Eq. (13) numerically for ten particles, and for various

7: 10, 100, and higher. The ground state is when the
I, are contiguous, with no “holes”; the energy calculated
from Eq. (30) is in good agreement with the value obtained

Or Wav€om the Bethe ansatz. Numerical calculations show that the

v, Which describe a phononic state are exactly the numbers
defined in Eq(15). In other words, the number of phonons
in a moden is given by the number of holes betwehj.,
andly_ni1.

This prescription accounts for all the states of the har-
monic lattice, and the quantitative agreement is very close
gor low phonon numbergthe higher is, the higher the
allowed phonon numbers before anharmonic effects start
showing up. Figure 2 gives the dispersion curve for single
phonons; only for low» does it differ from the harmonic-
lattice curve. Calculations show that the energies of phonons
are additive(provided there are not too many of therand
so multiphonon states are also accurately described.

VI. STRONGLY QUANTUM ANHARMONIC LIMIT

(n—0)

In the large# case, increasing occupation numbers will
ng out anharmonic corrections in the energy, and modes
with very high occupation numbers will resemble solitons. In
Sec. VIl we demonstrate this with calculations, butyifis
not large, anharmonicity shows up even in low-lying modes.
Having looked at the harmonic limit in the last section,
we now look at the opposite limit of the lattice;— 0; in this
case it turns out that the phase shift simplifies greatly, and
we can in fact solve Eq13) for k,—an uncommon phenom-
enon in Bethe ansatz calculations.
Equation(12) for the phase shift is

(k) =2k InS—2 ImInC(1+ik),
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and asn—0, k also becomes small. In this limit the term
involving the I function becomes £k, where
y=0.577 25 ... isEuler’'s constant. A quick way to derive
this result is to assum& is a large integer in Eq(10)
and to expand the firstl' function as a product
(S+ik)(S—1+ik)---(1+ik)['(1+ik), and if k<1, the
argument of this i&/S+k/(S—1)+ - - - +k + a piece which
cancels the second term in E@0). As S—, using the
definition  y=Ilim,_ .1+ (1/2)+(1/3)+ - - - +(1/n)—Inn,
the phase shift becomes

(k) = 2k(InS+ ) (33

(this is actually correct to quadratic orderki, which when
substituted in Eq(8) yields

2md
Kn=——

| 2d InS) >, (k,—k
N n+W('y+n )min(n_ m)

2md 2d
TI”+ W(y—f—ln S)(NK,—Kiop),

and on substituting fok,,; from Eq. (9) and rearranging, we
find

7(l,—31,/N)

Kn=— N(y+a)

(34)
(Note that for very small, « will be large and negative, and
so the negative sign above is deceptive;Kktseare ordered in
the same way as tHes.) Equation(34) thus givesk,, for any
excited state specified by any integégs and the energy is

SkZ as before. Note that the system now looks like a free
Fermi gas or a hard-sphere gas, which indeed is the unde,

lying model behind the asymptotic Bethe ansaie derived

our results as a limiting case of a gas of particles interactin

by a 1/sin potentia). There is a continuous transition from
this system to the classical Toda lattice:ass increased. As

we show below, even in this limit the excitations retain their

qualitative features.

In the ground state, th&, are contiguous and may be
takento be 1, 2, .., N. Then a simple calculation gives the
ground state energy as

Eo=AN(N?—1)/12~AN%/12, (35

where
I 36
~ No(at ) 39

Now we consider excitations in which the ldst, are
excited by an amountn—we insertm holes between_,
andly_, 41, Or in phonon language, we addphonons in the
[th  normal mode. I, are now 1,2,3,...N—I,
N—I+m+1, N=I+m+2,...,N+m+1. Again, one can
calculate the excitation energy; it is

m2
N

E—EO:A(N|—|2)(m+ (37

We consider several cases.
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(1) m small, arbitrary I.In this case, we get approxi-

mately
E—Eo=A(NI—1?)m. (39)

This looks very much like a phonon dispersion; it rises from
zero to a maximum at the zone boundary, where its slope
dies off. It is linear in the number of “quantarh, and for the
lower-energy modeflower ) it is also linear in mode num-
ber or wave numbefi.e., the second mode has twice the
energy of the first mode, and so)on

Moreover, for phonons we know that the zero-point en-
ergy in each mode is half the energy of one phonon; we can
therefore sum half the above expression olefor m=1,
and see, as a check, whether we recover the zero-point en-
ergy (35). And indeed, we do get

N-1
|21 IA(NI-12)= HAN(N?-1),

in agreement with Eq(35).

The excitations are noninteracting—if we have several
such excitations in different modes, their combined energy is
the sum of their individual energies, if there are not too many
of them. These hole excitations are thus quite analogous to
phonons, though they cannot be derived by approximating
the lattice to a harmonic lattice.

(2) =1, m large.These are the excitations which one
would expect to be solitonlike. In this limit, we get

2

m
m+ —|.
N

E-Eo=A(N-1) (39

For largem the energy is thus quadratic m. This energy,
however, is measured in the zero-momentum frame which is

%ot the frame in which one normally discusses solitons. The

question of what is the correct frame is discussed in the next
section, where dispersion relations are derived.

(3) I small, m large.From Eg.(37) we note that ifl is
small, the excitation energy is proportionalltd-or instance,
the energy fol =2 is twice that forl=1. It is tempting to
suppose that this is a two-soliton state, since the energies of
solitons are additive provided that they are few in number
and hence well separated “most of the time.” In that case
there would be a continuous transition between a phononic
excitation of the second normal mode and the two-soliton
state, just as there is between the excitation of the first nor-
mal mode and the one-soliton stdtd. Fig. 1 and Sec. IX

If the last two integers are excited by different amounts,
one would presumably have two solitons with different en-
ergies. Here, too, the total excitation energy is the sum of the
individual energies. Carrying this picture further, an
(N—1)-soliton state (with all solitons having equal
energies=N-—1, m large has all the particles except one
moving in one direction like hard spheres, and is related by a
Galilean transformation to a one-soliton state. Rssoliton
state(with all solitons identicalis simply a uniform transla-
tion of the lattice as a whole. One cannot put more thian
solitons in anN-particle lattice. The last few sentences are
speculative, but they indicate the possibility of writing an
arbitrary excited state as a kind of nonlinear superposition of
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solitons.(To make this more convincing, read cnoidal waves 2=

for solitons) Much the same thing is done in the classical
periodic systeniSec. 1X). o *ox
1.6 E3 *
VII. DISPERSION RELATIONS FOR PHONONS 145 * * .
AND SOLITONS = x o o «
§ 1.2 o o
We now find the dispersion relations for phonons and 5 T
solitons. First, however, we clarify the meaning of the mo- £ ! ° : e o |
mentum of these excitations. Losy o o *
As remarked earlier, the fact that we take the dilute limit ~ ol * 9 o x |
gives us a zero total momentum. Mertens’ treatment, on the
other hand, yields a finite momentuRk, proportional to oar % N
21, and to the densitd. This momentum is not a physically ool % x|
relevant quantity. It is not the momentum of a phonon
(though it is proportional to )t since it depends oy while % = T 0 i 2 s
the phonon momentum is a purely geometrical quantity de- A (wavanumber)
pending only on the system size and lattice spacing. Nor is it
the momentum of a solitofit is not even proportionakince FIG. 3. The velocity of sounddE/dq, plotted againsg for
the soliton momentum does not depend on the lattice Spa(\’/_ariousnfora 19-particle lattice. The solid line is the curve for the
ing. harmonic lattice, valid for largey. The crosses represent=2, the

The phonon momenturg is the wave number of an os- circles»=0.1, and the asteriskg=0.01. Units are as in the previ-
cillatory excitation. For amN-particle latticeq hasN equally ~ ©US 9raph for the phonon dispersion.
spaced values generally taken to lie betweem and = (the

first Brillouin zong in units of the inverse lattice spacing. v =27 cosq. (45
The soliton momentum is a little trickier to define in the
quantum case. We discuss it below. The relations are different in the two cases, but have some

First consider the smali limit. We consider a single-  similar features, and at intermediate valuesyofne obtains
phonon, occupying normal mode; its excitation energy, interpolations between these. Dividing the energies of exci-
from Eq. (38) with I=n andm=1, isE—Eo=A(NN—n?  tation by 27 one gets results independentin the clas-
and its wave numbeg, in units of inverse lattice spacing, is sjcal limit#—0 or n—o. The results are plotted in Figs. 2
27n/N (modulo 2r; we can choose the value to lie between gng 3(for a 19-particle lattice One observes that fay>2
—m and.) Note thatS1,=n in this case, if it was taken to  the dispersion is more or less the classical harmonic-lattice
be zero in the ground state, and gas proportional to this  dispersion, while it begins to deviate far<2. This is fur-
quantity. This givesw, the frequency(or the excitation en- ther emphasized by Fig. 4 which shows how the long-

ergy of one phonon, sincé=1), in terms ofq as wavelength sound velocity varies with= — Inf.
S | oeqe2 40 7
= a9 2a) q<2m, (40) '
and the phase velocity of sound is 61
= il 1 a - 41
P 20w |t 2 @

IS
T

while the group velocity is

[
T

sound velocity

v q'

Y20+ a)?| 1 7 42 Al

(in units of the lattice spacing
In the classical limit, of course, the phonons are what one ¢ e
would find from a harmonic approximation. For a mode with
wave numbei the energy is % ) > o 2 7 6
o
E—Eo=227 siniq, (43

FIG. 4. Variation of long-wavelength sound velocity, in the
which yields the phase velocityn units of lattice spacing  same units as in Fig. 3, as a function@f= — Ini=(1/2)In(7/2)].
Note thata=0 seems to divide the harmonic and quantum anhar-
Sin%q monic regimes, i.e., the region where the harmonic approximation
v p=2@ q (44) is valid for small excitations and the region where the zero-point
motion is so large that the harmonic approximation is not valid even
and the group velocity in the ground state.




12 204 RAHUL SIDDHARTHAN AND B. SRIRAM SHASTRY 55

90 T T T T T T T 100

90 ’

80

701

60

50

Energy

401

30

20

. . ) ) . . .
2 4 6 8 10 12 14 16 18
Momentum Momentum

FIG. 5. Dispersion curves for the classical and quantum cnoidal FIG. 6. The soliton dispersions, plotted in a frame in which
waves. The solid curve is the classical cnoidal wave or solitonzﬁgllkﬁo. For »>2 all the curves lie on top of each other; they
viewed in the appropriate frame. The dotted curve is the quantunare shown by the solid line. The dashed line is for 2 when they
cnoidal wave in a frame in whicE,’}‘;llkn:O. This lies closest to  just start peeling apart. The dash-dotted line and the dotted line are
the classical curve among the cases considered. The dashed cufee »=0.1 andn=0.01, respectively. The energies are in units of
corresponds to the frame in which only the “innek’s are cen-  #; i.e., the Hamiltonian(3), in terms of#, is used.
tered at zero, i.eZ#;zlkr,:O (as in the ground state of the system
The dot-dashed curve corresponds Kg—1 being fixed at its  slightly different. In plotting these curves we have used the
ground-state value—implausible perhaps but included here for vaHamiltonian(3), whose limit ash— 0 is the classical prob-
riety. All curves are forN=10 and (in the quantum cagefor  |em in the correct units. Figure 5 shows the dispersion curves
7=1000. The Hamiltoniar(3) is used; in other words, energies fqr 7=1000.
from the Hamiltonian(1) are plotted in units of. Figure 6 shows the particular dispersion curve obtained

) ) by averaging, .\ to zero, for variousy. As in the case of
When we consider a soliton, we have to make clear whajhe phonon curves, the soliton dispersions lie on top of each

frame to _view it in to _obtain an appropri_ate momentum. INgipnar for largey but begin peeling apart fop~2: as 7 is

the classical case it is usually viewed in the frame whergq ced farther they move farther and further away. Thus we
“most” of the particles are at rest and only a localized €x-inq again thaty=2 or# =1 is a boundary between classical
citation is moving. We would like to choose a frame in the ;4 quantum regimes. For higherthe dispersions are es-
quantum case such that the dispersion agrees with the clagsaly the classical ones apart from the discreteness of the

_sical formL_JIa; in particular as the energy OT the eXCitationenergy levels. For lower the results deviate significantly
increases it behaves more and more like a single hard spheir

SO i fom the classical ones. All the curves above have been cal-
moving in a stationary background and the energy tends tQ 1ated for a ten-particle lattice
2 .
K (pIu;(jthe .ground-?tate e_nﬁljgy h . | In the »—0 limit we have thek,, given by Eq.(34); for
We identify a soliton with a state whek, is greatly e ground state we take thig to be centered at zefa.e.,
excited compared to all the oth&is. We can achieve the they range from— (N—1)/2 to (N— 1)/2 for oddN or from
k? dispersion if we work in a frame where thés excluding — _ N/2 to N/2 for evenN], and for the soliton we exciti, by
ky are (roughly speakingcentered around zero. In that case ’

for | itationsk.s Kk N). th | “>%an amounim. ThenZI,=m. Clearly if we want thek, (for
or large excitationky>ky, (< )'t N totaz mozmentum IS n<N) to be centered at zero, we must add to E2f) a
very nearlyky, the total energy is nearlgy“~k=, and the

o o _ guantity to cancel th&l,/N in the numerator, and instead
guadratic dispersion is achieved. N

: . tract=N"11 /(N—1). In this new frame, we hav
However, exactly how to define the frame is not clear.SUb actn-i1a/( ) S newframe, we have

There are various possibilities—one could choose the aver- -
P [l = N1/ (N=1)]

age of allk,, exceptk; andky to be zero(so that thek’s are k,=— , (46)

not very much displaced from the ground-state valuome N(y+a)

could make the average &, including k; but excepting

ky zero; one could fix one of thé’s (say ky, kyj or k=S ko= — m(m+N/2) 47
= 0=

kn_1) to its ground-state value; and so on. These possibili-
ties are plotted in Fig. 5, fop=1000, and the dispersion for

a classical cnoidal wave of wavelength plotted for com- 2 N(N+1)
parison, calculated from the formula fof=u,—u,_4 given E-Eo= 2 Kn®— Eo:m m?+Nm-+ — 2

in Ref. 1(cf. Sec. IX. Of the possibilities listed the second Y (49)
(where thek’s exceptingky average to zensseems the clos-

est to the classical curve, but the agreement is imperfect arithe energy formula is not very different from E@9). The
the “correct” frame would appear to be something close butdetails of this formula should not be taken very seriously

N(y+a) ’
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VIIl. CORRELATION FUNCTIONS, FINITE-SIZE
EFFECTS, AND CONFORMAL THEORY

We now turn to the issue of correlation functions of the
Toda lattice, making contact with the theory of conformal
invariance in this class of systems. Conformal invariance has
G given considerable insight into correlation functions of quan-
a tum many-body models having critical behavior, as typified
by a vanishing of excitation energies or power law correla-
tions, and useful reviews of this fast-growing field are to be
found in Refs. 14 and 15.

Let us first note that the quantum Toda lattice in its
ground state is not quite a lattice: The Bragg peaks are
melted due to zero-point motion. In the harmonic limit this is
simple to see, since we can write the displacement in terms
of the phonon creation operators and the phonon dispersion
wq=2v|sin(@/2)| as
FIG. 7. Particle-hole excitations. In between the bounding upper

Energy

Energy

Q

and lower curves lies a continuum of allowed energy values corre- 1 ) 1 N
sponding to eacl)) whereQ is as defined in Sec. VIl for a single Un=\/——z expign): \/_(aq_a—q)r (50)
particle-hole pair. The upper graph corresponds to the harmonic N'a Vg

limit, the lower graph to then—0 limit (the energy scales are

different in the two graphs ( o whereby (u2)= (LIN)3(Llwg) ~ (L/mv)In(N). The phonon

velocity v = \27 in the harmonic limit of the Toda problem.

since we are not clear about what the appropriate frame is |;Ehe structure function at the first reCiprocaI lattice vector

which to view the soliton. But the essential idea, that theG=(27/N) is

energy is quadratic in the momentum at large energies, will

remain. In this frame the energy is in fa@part from a =S (ei2ming-i2mn

constant piecepurely quadratic in the momentum—there is <pGpG>_m . (e € )

no linear term. This can be reconciled to our picture of the ’

low-% limit as a hard sphere gas, so that at any time the

entire energy apart from the zero-point contribution comes

from the kinetic energy of one particle, the other particles 1

being at rest. ;e—“w/v'“(lm—“bzm,w—v, (52)
Finally, if we wish to compare our system to the free

Fermi gas which it resembles in one limit, we could look at

the “particle-hole excitation spectrum” commonly plotted

for such systems. To do this we start from the ground stat

with contiguoud ,; pick up one of these, sa;,,, move it to

I;, (wherel; >1y since all other states are occupiednd

define the momentum of this “particle-hole excitation” as

Q=2mx(l,,—1m)/N. (This is basically the total phonon mo-

mentum of such an excitation.Then one gets a one-

parameter range of energies for ev€yas shown in Fig. 7.

<ei27-runefi2ﬂrrum> — e,2w2<(un,um)2>

where we have used the Gaussian cumulant theorem
e{exp(a)>=exp(1/3a2)) and the logarithmic integral
(LN)Z[1—cos@rn) ) wg~(1/mv)In(rirg). We thus see that
the Toda lattice may be expected to have power law corre-
lations for all , since it has low-energy excitations for all
7, namely, the phonons.

A characteristic of conformally invariant theories is the
“central charge”c. One way of checking for conformal in-
variance is to compute corrections to the ground-state energy

The harmonic andy—0 limits look similar, qualitatively; o 5 finjte-sized system, which is expected to have a behav-
the phonon or hole brandlthe lower edge foQ<2m) isa o,

sine curve in the former case and a parabola in the latter, and

the particle branclithe upper edge and the lower edge for

Q>2) is a straight line in the harmonic limit and a curve E(L)=Le,—
(which indicates nonlinearijyotherwise. The upper edge of 6L
the particle hole continuum has been identified with a “soli-
ton” by Sutherland, and corresponds to promotiagfrom
the ground-state configuration to one with a larger value, and
is thus essentially identical to our picture explained above.
study of the quantum numbers of the solitons and th
phonons leads to a suggestive “phonon decomposition” o
the soliton: We can view the soliton creation operatgr
schematically in terms of a phonon creation operafi)as

Cmv
— +0(1/L?), (52

wherev is the velocity of the low-lying excitations, such that
tower of excited states exists with energy
2@/L X integer. A glance at Eq32) shows that in that
imit of large » we havec=1, as indeed does the initial
fllsinI"F model. The case af=1 usually leads to exponents
varying continuously with coupling constants, and hence Eq.
(51) is consistent with this possibility. In the present model,
we must, however, first establish that the asymptotic Bethe
t —raf m ansatz gives the correct energy@91/N) or O(1/L). This is
Aczrmom™[82zm]™ “9 not guaranteed priori by any theoretical argument and must
i.e., a particular kind of highly symmetric multiphonon state.be checked for self-consistencfincidentally, in the Toda
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TABLE I. Ground-state energy as a function of system size.

N

E/N (energy per particle

n=2

n=10

7=100

29
33
41
49
57
65
81
97
113
129

1.675512397777
1.675665073759
1.675847391894
1.675947956073
1.676009234239
1.676049312911

2.890224040772
2.890370838890
2.890546128059
2.890642813964
2.890701728785
2.890740261674

1/N3 term does seem to be very nearly zero. ker10 and
100 the numbers we obtained did not allow us to make such
fits—the error bars turned out to be much larger than the
values themselves. We conjecture that the coefficient of the
1/N® term vanishes at alf, but for high » the Bethe ansatz
may not be accurate to this orderihand may be unable to
reproduce this result. We are unable to make a statement
about higher odd powers.

Accepting that the Toda lattice is@=1 theory, we can

7.713369630480 1o jish the power law of the density correlator as in Eq.
7'71340738069%51), without too much detailed calculation, on using the

7.713452036110
7.713476466168
7.713491273955
7.713500922044

lattice we are at a fixed density, and so we will not distin-
guish betweer. andN.) The internal check performed is to
compute the velocity at a fixeg and to compute the energy
for variousN and to check against E¢52).

Galilean invariance of the model. The theory of conformal
invariance(see, e.g., Ref. )5ays that if we have an excita-
tion that boosts the total momentum ky;, then the change
in energy is

First we note that in the extreme anharmonic limit equa-
tion (35) for the ground state in the low-limit does indeed
give the same sound velocity as Ed1) or (42), and so in
the low-7 limit c=1 exactly, as it is in the harmonic limit.

We performed the calculation foj=2, 10, 100(Table ).
As in Figs. 2 and 3, we use the Hamiltonié) and units of
# [equivalently, the Hamiltonial) with units of \27]; in
these units the sound velocity for the harmonic lattice is 1
exactly. From these results, we get

tively, with uncertainties in the second decimal place. Thu

vc=1.0764+0.0006 (7=2),

1.035-0.003 (7=10),

1.01+=0.03 (%=100.

On interpolating the 19-particle results of Fig. 3 for@, we
get the estimates=1.08,1.04,1.01 for=2,10,100, respec-

we get for the central charge

c=1.00+0.01

1.000.03 (%=100.

(7=2,10),

The uncertainty in the cases=2, 10 arises mainly from the
inaccuracy in our determination a@f. The results seem to

indicate thaftc is equal to 1 at all values, and moreover it is

reproduced correctly by the Bethe ansatz everpatl00,
which is well into the “classical” limit. It thus appears that men) behave, in the ground state and in the excited states. In
the error in energy per particle goes, at worst, as the inversthe ground state thes and therefore th&'s are all closely
cube of the number of particles. The error bars could bespaced. In the excited states the separations between them
reduced by increasing the system size further.
In the anharmonic limit, in fact, the series stops therel_, .1, the gap betweeky_,, andky_,.; widens and one
(E/N has only a constant piece and &i/piece while in
the harmonic limit all odd powers N2, 1/N°, and so on are
missing. One might conjecture that this is the case at alln particular, forn=1 one has a one-soliton state; for
values of7. For =2 we took the ground-state energies pern=2, a two-soliton statéwith equal amplitudes and so on.
particle for variousN, subtracted,, and the 1N? piece, and
fitted the results to power series iMNlstarting atN™ 3. The
result was a coefficient of 0.0210.006 for theN~2 term

and — 1.1+ 0.2 for theN™* term. Thus the coefficient of the uq,u5, . ..

SE=2mvXIN, (53
Keot| 2
a=2u, (55)

wherea is the exponent determining the decay of a primary
operator. However, Galilean invariance implies that

SE= ﬁot (56)
N’
hence we find
4
a=— (57)

Comparing with the harmonic limit resulb1), we see that
the primary operator may be identified with the density fluc-
tuationpg and hence the resulfl) is true at all provided

we substitute the appropriate valueudfr). A similar result

é's well known to be true for the 4% models for the density
correlation function, but unlike in that case, there is a diffi-
culty in defining a “bosonic” correlator, since we are always
working at a fixed density, and hence the compressibility is
Zero.

IX. COMPARISON WITH THE CLASSICAL KAC
MOERBEKE FORMULATION

—=van

To summarize the above, we now have a picture of how
thek’s in the Bethe ansat@r thep’s in Gutzwiller's treat-

widen. If there is a gap ofn integers betweety_, and

hasm phonons in theath normal mode. If the gap between
thek’s becomes very large, the excitation becomes solitonic.

We now compare this description with the description of
the system in the classical variables of Kac and van
Moerbeke*!  Briefly they use the variables
n—1 Which are the eigenvalues of a truncated
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Lax matrix obtained by striking off the first row and column which is sufficient to calculate finite-size effects and even
(i.e., removing the first particle from the problgnThese correlation functions using conformal theory. TB¥1/N3)
u's are the momenta of the particles in the remaining operierm seems to vanish in the exact solution, though the Bethe
chain if the system is dilute. Kac and van Moerbeke showansatz solution probably does not reproduce this result.
that theseu’'s are confined to theN—1 closed intervals We have demonstrated that in fact the Bethe ansatz equa-
where the characteristic polynomial of the Lax matrix, tions are a simplification of Gutzwiller's method and can be
[NI—L|, is equal to or greater than 2 in magnitude. Thederived from them. The parameter governing the error can be
polynomial goes tat« for large\, while it oscillates in the taken to be the difference j, ande, in Sec. IV. According
middle; for the ground state it touches the lines =2 in  to Matsuyam# this difference falls exponentially witN, so
N—1 places so that the closed intervals referred to above arbat the error goes as V(7 wheref(7) is some dimen-
single points and all the.'s are stationary. For an excited sionless number. We also show that the error vanishes as
state the polynomial crosses the liness £2, and so the becomes small, so th&{r)—0 asn—0.
closed intervals get a finite width and tjaés oscillate inside Thus, we can treat finite-sized systems, account for low-
these intervals as the system evolves. lying states(phonong and higher excitationgsolitong, and
The analogs of the classical's are Gutzwiller'sp’s or,  find their dispersions and velocities. Comparison with con-
approximately, Sutherland’k’s. Whereas there ardl—1  formal theory gives the “central charge=1, which means
w's each confined to a different interval in the classical pic-that the coefficient of the W¥? term in theE/N expansion is
ture, in Gutzwiller's picture each of thdl—1 analogous essentially the sound velocity.
variables has a spectrum Nfvaluesp,. On calculating the We find that the properties of excitations are very similar
classicalu’s in the ground state, as is done in Ref. 1, we findto the classical properties faj>2 (#<<1), apart from the
that their values lie almost exactly in between the quantununderlying discreteness of the energy levels. The quantiza-
p (i.e., k) values. There is an analogy between thie and  tion is then analogous to the quantization of a harmonic lat-
the “gaps” in thek spectrum. In the ground state the gapstice. The soliton, which is an effect of large occupation of
are minimum, theu’s fit into these gaps, and the’'s are  one mode, is no different from the classical object described
stationary. In an excited state some or all of these gaps béy Toda; even its energy is effectively not quantized since
tween thek’s widen, and the corresponding’s are no the occupation number is so large.
longer stationary but oscillate in intervals of finite width. In ~ For small » (large#) things are different: The phonons
particular a pure cnoidal wave corresponds to exactly on@o longer derive from a harmonic approximation, and the
w acquiring a width in which to oscillate or, exactly, one gapsoliton dispersions no longer match the classical ones,
among thd , (hence thek,) widening. though qualitatively the dispersion curves retain some simi-
A single cnoidal wave has the formdla lar features, both for solitonkigh-amplitude cnoidal wavés
and for phonons. For both excitations the dispersions depend
on 7, and moreover the energy of a mode deviates rapidly
e =1+ (2Kp)%{ dre[2(n/A = vt)K]—E/K}, (59) from linearity with increasing occupation numberso that
n need not be macroscopi@t least for finite lattice size
N) for the mode to become solitonlike—the soliton’s energy

wherer,,=u,—Uu,_;, K andE are the complete elliptic in- IS indeed quantized. Thus if the largesoliton is essentially
tegrals of the first and second kinds, is the wavelength the soliton of Toda’s classical lattice, the corresponding
(=N for the first “normal mode” or one solitori\/2 for the small-y object deserves to be called the quantum soliton.
second normal mode, elcandv is given by

1 E]-V2 APPENDIX: HE NON'S INTEGRALS, CLASSICAL
2Kv= m-“ Kl (59 AND QUANTUM
In this appendix we discuss the integrability of the Toda
lattice classically and quantum mechanically; while much of
For low modulusk of the elliptic functions, this is like a the discussion is not new it seems difficult to find it in one
sinusoidal wave, but as the modulus increases it becomgyace elsewhere. Following Pasquier and Gaddimo give
sharply peaked locally and flat elsewhefég. 1). As re-  a proof of quantum integrability, we show that their con-
marked in Sec. VII, the dispersion calculated from this ex-served quantities are the same aséteés integrals, whose
pression is close to the dispersion, in an appropriate refeigonservation is necessary for Gutzwiller's treatment to go
ence frame, of the quantum cnoidal wave. through.
The equations of motion for the classical lattice can be
written in the Lax form

X. CONCLUSIONS

In conclusion, we have shown that the usefulness of the —=LM—-ML, (A1)
asymptotic Bethe ansatz in the quantum Toda problem is not
confined to finding thermodynamic properties. The method
gives results for energy per particle accurateQ¢l/N?),  where
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b, a; ay The definitions hold in both the classical and the quantum
cases. Classically their conservation follows from the classi-

ar by a cal equations of motion
L= a; bs ,
dL
an-1 d_tn:Mnfan_LnMn
ay an-1 by
where
0 a; —ay
-a;, 0 a u gin
M= —-q (A8)
M= —a, O (A2) —e " W+1 Q
' an-1 Quantum mechanically these satisfy the Yang-Baxter equa-
ay —ay.; O tions: We may rewriteL,—L, 4(u)=(u—p,)(1+ cré)/Z

—exp(—=ayoy +exp(qn)cr; and show that the monodromy
matrix Ty(u)—Ty(u) satisfies the Yang-Baxter condition
aj=e 4,972 p=p;. (A3) Tg(u)Tg,(v)Rg,g,(u—v)=_R)gvg_,)(u—v)Tg,(u)Tg(v) with
) _ Rg.gr=a(u—v)+b(u—v)og.04. Taking a trace over the
From this one can show that the eigenvalues of the Laxuxiliary spacesry, oy the integrability is established. We
matrix L or, equivalently, the coefficients, of the charac- now show that these coefficients are in factnde’s inte-

teristic polynomial of the Lax matrix are conserved grals. Consider a polynomial in, Fy(u), defined by
quantitiest These are Heon'’s integrals, and are given by

and

k+21=N
Im= 2 PP, P (X)) Faw= X (u=p)u=p) - (u=p;)
P TR P E R PR |
X(=Xj,) (=X, (A4) X=X )(=Xp) - (= X)), (A9)
where the indices satisfy the same restrictions as in the defi-
where nition of Henon’s integrals. It is easily seen that
Xj:e_(qj+l_qj), (A5)

N
— __1\n N—n
there are no repeated indices in fhis or theq’s in a given Fr(u) ,;0 (= D)nu™ " (AL0)

term (4,0, ... ,jnJ1t1,j2,02+1, ... are all different
the total number of such indices in each termnis(i.e., We can show by induction that this polynomial is the trace of
k+2l=m), and the sum is over all distinct terms satisfying Tn(u). Defining
these conditionsgi.e., terms not differing merely in the order
of factors. Fu(u)= all the terms irFy(u) which do

In quantum mechanics, the coefficients of the Lax matrix
are the same, and have no ordering problems, but now the
equations of motiofAl) are no longer valideach term in
the matrix product has to be ordejezhd the proof that the  Fy(u)=Fn(u)—Fy(u)
coefficients are conserved fails. Gutzwifleassumes that
they are conserved nonethele§® only takes the cases
N=3,4 where it can be verified easilyTheir conservation (A12)
can be shown as a consequence of the work of Pasquier and )
Gaudin’ who prove that the coefficients ofin the trace of W claim that
the “monodromy matrix” Ty are in involution, where

not include a factoe?, (A11)

= all the terms irF(u) which include a factoe,

B Fu(u) eINF [ _4(u)
TN(U)ZL].LZ' . LNY (AB) TN_ einJrlFKH_l(u) FKI(U) . (Alg)
L. (u)= u—p, e (A7) The claim is easily verified foN=1,2, etc. Suppose it is true
" —e % 0)° for N; then,
(U=Pps ) Fy(u) —eINTINFG G (u)  eIN1Fg(u)
Tnr1=Tabne1= , Al4
WA IV (U py e MR (- e MR W) F(W) A
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which one can check is the same as

Frsa(u) eINr1F(u)

T - . Al5
T e L) P A

Thus our claim is true for alN, and in particular the trace dfy is Fy(u).
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