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Stochastic wave growth in scattering media
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Stochastic growth of waves is studied in a scattering medium in which the wave propagation is diffusive.
This analysis generalizes previous work on randomly growing waves in nonscattering media and on constant
growth in scattering media. New results are obtained for the stochastic laser threshold, the distribution of
photons in the medium, the impulse response of the medium, and the transmission and reflection coefficients
of a slab of random amplifying medium.@S0163-1829~97!12517-6#
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I. INTRODUCTION

The purpose of this paper is to study growth of waves
media in which they diffuse spatially due to scattering wh
growing at a randomly varying rate. Propagation, grow
and damping of waves in scattering media have been in
sively studied, with considerable attention being paid
cases in which photons can be considered to diffuse
space.1–6 In parallel, the theory of random growth of unsca
tered waves has been developed in the plasma phy
literature.7,8 The behavior of nonrandomly damped or gro
ing diffusing waves has also been investigated.3,5 However,
the case of simultaneous random growth and spatial di
sion does not appear to have been treated to date.

Random growth of diffusing waves is expected to be r
evant to the theory of laser action in scattering media, wh
one cannot realistically expect the growth rate to be unifo
when the refractive properties of the medium are rando
varying. Such a medium could be realized by mixing po
ders of a lasing medium and an absorbing one, for exam
Similarly, in plasma physics there are situations in wh
waves are simultaneously pumped and scattered, for exa
waves driven by electron beams in space and the labora
In such cases, the rate of wave growth or damping is
pected to be a random function of position and/or time
cause of the effects of turbulence, for example.

In Sec. II of this paper we briefly outline the basic theo
of random growth of scattered waves. The important r
played by boundary conditions is seen in Sec. III in whi
the case of a finite slab source with open boundaries is c
sidered, generalizing previous work for waves damped
constant rate.3 In this section we calculate the laser thresho
and, below threshold, quantities such as the probability
tribution of photons, the power output from the slab, and
reflection and transmission coefficients for incident lig
Section IV outlines corresponding results for cases in wh
one or both boundaries are reflecting.

Before proceeding, it should be noted that this analysi
complementary to recent work on localized waves in me
with random loss and gain, which has extended standard
calization theory of undamped waves to incorporate a var
of types of random loss and gain.9,10 Strong localization of
light in a time-independent medium would preclude the d
fusive propagation of photons assumed here, while weak
550163-1829/97/55~18!/12175~7!/$10.00
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calization would introduce phase-sensitive phenomena
considered here.

II. BASIC THEORY

In this section we consider waves propagating in a o
dimensional system in which they are scattered or th
growth rate varies randomly, but not both. This lays the ba
for subsequent sections in which these two effects are c
bined. Spatial diffusion in the one dimension consider
should more generally be considered to approximate the o
dimensional projection of the true motion of photons in thr
dimensions. A more sophisticated analysis would incorpor
the fixed velocity of the waves and allow only diffusion
angle, but the present approximation has proved to be
equate for many purposes.1–6

A. Spatial scattering, no growth or damping

If undamped waves are scattered, the mean velocity
their photons decays on the same scale as the scatt
length, with propagation dominated by photon diffusion
longer scales. This behavior can be encapsulated in the
lowing pair of stochastic differential equations for photo
positionx and velocityv:

dx

dt
5v, ~1!

dv
dt

52kvv1Dvv
1/2j~ t !, ~2!

wheret is time,kv is the scattering rate,Dvv is the diffusion
coefficient that results from multiple scatterings, andj(t) is
a white noise signal~correlations between scattering cente
are neglected here!.

Equations~1! and~2! are the equations for Brownian mo
tion. They can be solved exactly in an infinite medium givi
the probability distribution11
12 175 © 1997 The American Physical Society
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p~x,v,t !5
1

2p~dets!1/2
expF2

1

2dets
~sxxx8

2

22sxvx8v81svvv82!G , ~3!

with x85x2^x(t)& andv85v2^v(t)&. The elements of the
variance matrixs are given by

sxx~ t !5
Dvv

2kv
3 ~2kvt2314e2kvt2e22kvt!, ~4!

sxv~ t !5
Dvv

2kv
2 ~12e2kvt!2, ~5!

svv~ t !5
Dvv

2kv
~12e22kvt!, ~6!

with dets5sxxsvv2(sxv)
2. Relevant moments of this dis

tribution, and its variance inx, are given by

^v~ t !&5v0e
2kvt, ~7!

^x~ t !&5~v0 /kv!@12exp~2kvt !#, ~8!

s2~x,t !5sxx~ t !, ~9!

respectively, wherev0 is the initial velocity and the photon
all start atx50. Hence, for timest*1/k, diffusion domi-
nates. This implies that adiffusive approximationcan be
made forb@v0 /kv , in which photons are assumed to prop
gate ballistically to a pointx'v0 /kv , then undergo pure
diffusion.

B. Stochastic growth, no spatial scattering

Robinson7,8 analyzed a model in which radiation is n
explicitly scattered, but undergoes random growth a
damping. In this model, the energy in the waves undergo
random walk in the logarithmG of the energy densityW
@i.e., the net gain relative to a reference levelW0 at t50,
with G5 ln(W/W0)#. In the absence of saturation mech
nisms, this results in a probability distributionp(G,t) at time
t given by

p~G,t !5
1

~2p!1/2s~G,t !
expF2

@G2^G~ t !&#2

2s2~G,t ! G , ~10!

s2~G,t !52s2~G!tGt, ~11!

^G~ t !&5^G&t, ~12!

where^G& is the mean growth rate,s(G) its standard devia-
tion, andtG its coherence time. If there is no scattering, t
reflection coefficient for waves incident normally on a slab
0<x<b is zero~assuming no refractive index mismatch
the edge!, and the relevant time ist5b/v0, wherev0 is the
incident wave velocity.

The mean energy density is obtained by averag
W5W0e

G over p(G,b/v0); likewise, the standard deviatio
s(W) can be calculated, giving8

^W~ t !&5W0^e
G&, ~13!
-

d
a

-

t

g

5W0exp@^G~ t !&1 1
2 s2~G,t !#, ~14!

5W0exp~Gefft !, ~15!

Geff5^G&1s2~G!tG , ~16!

s2~W!5^W~ t !&2@exp$s2~G,t !%21#. ~17!

These results implys(W)/^W&'exp@s2(G,t)/2#@1 for
s(G)*2. A key result is Eq.~16!, which implies that net
growth can occur even when the mean growth rate is ne
tive, because the exponential factor in Eq.~13! weights
growth more heavily than damping, resulting in the te
s2(G)tG in Eq. ~16!. The net transmission coefficient i
found by dividing Eq.~15! byW0 and settingt5b/v0.

For largeW saturation effects may become important. W
do not discuss these effects in this paper because their in
poration into stochastic growth theory has been discus
elsewhere.8 Pumping and saturation effects in scattering m
dia with nonrandom growth rates have also been stud
previously.3,5

III. FINITE MEDIUM WITH OPEN BOUNDARIES

In this section we consider growth of waves in a sl
medium lying between open boundaries atx50 andx5b
and using the diffusion approximation discussed in Sec. II
Section III A deals with scattering in the absence of grow
or damping, while Sec. III B builds upon these results
incorporate a randomly varying growth rate.

A. Diffusion without growth or damping

In the case of pure diffusion on an interval@0,b#, with
absorbing boundaries to account for the escape of radia
from the faces of the slab, we can write down the followi
Fokker-Planck equation for the evolution of the probabil
distribution of position

] tp~x,t !5 1
2 Dxx]x

2p~x,t !, ~18!

whereDxx is a constant spatial diffusion coefficient. This ca
be transformed into the equation

]Tp~X,T!5 1
2 ]X

2p~X,T!, ~19!

on the interval@0,1# if we make the substitutions

X5x/b, ~20!

T5tDxx /b
2. ~21!

The problem of diffusion on the interval@0,1# with ab-
sorbing boundaries can be solved straightforwardly in clo
form ~Ref. 11, p. 132! for a distribution initially localized at
X0 in the interval. The result is

p~X,T!52(
n51

`

e2lnTsin~npX0!sin~npX!, ~22!

ln5n2p2/2. ~23!
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Equations~22! and ~23! express the Green function of Eq
~18! or, equivalently, the impulse response of the mediu
The functions sin(npX) are eigenfunctions that satisfy th
open-boundary requirementp(0,T)5p(1,T)50 for all T.

The corresponding probability current is given by

j ~X,T!52 1
2 ]Xp~X,T!, ~24!

52 (
n51

`

npe2lnTsin~npX0!cos~npX!. ~25!

This current equals the net powerP(X,T) crossing a plane a
X in the positive direction at timeT.

The expectation values of the energyU ~proportional to
the number of photons! passing rightward through the le
and right faces of the slab~a negative quantity at the lef
face! are

U~X!5E
0

`

j ~X,T!dT, ~26!

5
2

p (
n51

`
1

n
sin~npX0!cos~npX!, ~27!

with X50 andX51, respectively. This gives12,13

uU~1!u5U 2p (
n51

`
~21!n

n
sin~npX0!U5X05x0 /b, ~28!

uU~0!u5U 2p (
n51

`
1

n
sin~npX0!U512X0512x0 /b. ~29!

The reflection and transmission coefficients for waves in
dent at x50 are given by Eqs.~28! and ~29!, with
x05v0 /kv in the diffusive approximation. ForX051/2,
R5T51/2, as expected on physical grounds; likewise,
X050, R51 andT50, and forX051, R50 andT51.

We can calculate the probabilityp(x) of finding a photon
at a givenx, without regard tot, by integrating Eq.~22! over
t and notingp(x,t)5p(X,T)/b. This quantity is the energy
density atx ~proportional to the photon density! in the case
of a constant, rather than impulsive, unit source. Using E
~20!–~22! we find12,13

p~x!5E
0

`

dTp~X,T!/b ~30!

5
4

p2b (
n51

`
1

n2
sin~npx0 /b!sin~npx/b!

~31!

5
2

b H x0
b S 12

x

bD , x0,x,

x

b S 12
x0
b D , x,x0 .

~32!

Note that p(x) is a triangular function, which peaks a
x5x0 as expected for a source atx0. Note also that
.

i-

r

s.

E
0

b

dxp~x!5~x0 /b!~12x0 /b!,1, ~33!

because of losses through the boundaries.

B. Scattering with growth and damping

If growth and damping are independent of scattering,
results of Secs. II B and III A can be combined to treat ra
dom growth of scattered waves. In general, the joint pr
ability distribution of position and gain has the form

p~x,G,t !5p~x,t !p~G,t !, ~34!

wherep(G,t) is given by Eq.~10! andp(x,t) is the solution
of Eqs.~1! and ~2!, or of Eq. ~18! in the case of pure diffu-
sion.

The power crossing a plane rightwards at fixedx is given
by

P~x,t !5E
2`

`

dGeGj ~x,G,t !, ~35!

where j (x,G,t)5 j (x,t)p(G,t). This yields

P~x,t !5 j ~x,t !exp@^G~ t !&1 1
2 s2~G,t !#, ~36!

where^G(t)& ands2(G,t) are given by Eqs.~11! and ~12!,
and j (x,t) is given by Eq.~25! for pure diffusion.

Figure 1 showsP(x,t) as a function oft for various
^G&. In all cases there is a rapid rise at smallt, followed by
an exponential falloff that is dominated by then51 term in
Eq. ~25!. The rate of decrease witht is smaller for large
^G&, reflecting the generation of new photons within the m
dium, which becomes more effective as^G& increases.

Transmission and reflection coefficients can be obtai
by the same procedure used in Sec. III C. In general, we
that the total integrated probability current at a gainG at x is

j ~G,x!5E
0

`

j ~x,t !p~G,t !dt, ~37!

with j (x,t)5J(X,T)Dxx /b
2. The total energy passing right

wards atx is then

FIG. 1. Wave powerP(x,t) passing the pointx in the rightward
direction vs t, as given by Eq.~36!, for x51, x051/2, Dxx51,
b51, ands2(G)tG52. From top to bottom, the three curves ha
^G&52,0,22, respectively.



n
on

fo

ga-

r-

stic
ss
ise,
rpo-

tant
th

r
ly
ro-

12 178 55P. A. ROBINSON
U~x!5E
2`

`

eGj ~G,x!dG5E
0

`

P~x,t !dt, ~38!

where the reference energyW0 introduced earlier has bee
set equal to unity without loss of generality. The reflecti
and transmission coefficients for waves incident atx50 are
U(0) andU(b), respectively, withx05v0 /kv in the diffu-
sive approximation.

In the case of pure diffusion, we can substitute
j (x,t) in Eq. ~37! using Eqs.~25!, ~20!, and~21!. This yields

j ~G,x!52
Dxx

b2 (
n51

` E
0

`

dtnpe2Lntsin~npx0 /b!

3cos~npx/b!
1

s~G,t !~2p!1/2

3expF2
~G2^G~ t !&!2

2s2~G,t ! G , ~39!

Ln5
n2p2Dxx

2b2
. ~40!

Using Eqs.~11! and ~12! one then obtains

j ~G,x!52S p

2ks
D 1/2Dxx

b2

3 (
n51

`

nsin~npx0 /b!cos~npx/b!I n , ~41!

ks52s2~G!tG , ~42!

I n5expSG^G&
ks

D E
0

`

dtt21/2expF2
b

t
2hnt G ~43!

5Ap

hn
expSG^G&

ks
22AbhnD , ~44!

hn5Ln1^G&2/2ks , ~45!

b5G2/2ks . ~46!

We can now write
r

U~x!5
pDxx

b2 (
n51

`

nsin~npx0 /b!

3cos~npx/b!
Jn

@2ksLn1^G&2#1/2
, ~47!

Jn5E
2`

`

dGexp@G~11x!2$G2~x21an
2!%1/2#, ~48!

x5^G&/ks , ~49!

an
252Ln /ks . ~50!

Hence,

Jn5E
0

`

dG@exp$2G~11y1Ay21an
2!%

1exp$G~11y2Ay21an
2!%#. ~51!

For this integral to converge, both exponents must be ne
tive; i.e.,

2~y21an
2!1/2,11y,~y21an

2!1/2, ~52!

for all n, with the most stringent resulting condition occu
ring for n51. The left-hand inequality in Eq.~52! is always
satisfied, while the right-hand one requires

Geff5^G&1s2~G!tG,L1 . ~53!

Thus, the effective growth rate from standard stocha
growth theory must be less than the minimal diffusive lo
rate from the slab if the integrals are to converge; otherw
the slab lases and the analysis must be extended to inco
rate pumping and saturation effects. The threshold~53! gen-
eralizes the one obtained Letokhov in the case of cons
growth rate3 and neatly combines standard stochastic grow
theory with diffusive propagation. The threshold~53! is
analogous to the criticality condition for a nuclear reacto14

in which neutrons diffuse through a material of random
varying fissile content. The effect of randomness is to int
duce the terms2(G)tG into Eq. ~53!.

When the integral in Eq.~51! converges, we find

Jn5
@^G&214Lns

2~G!tG#1/2

Ln2Geff
, ~54!

and
U~x!5
pDxx

b2 (
n51

`

nsin~npx0 /b!cos~npx/b!
Jn

@2ksLn1^G&2#1/2
, ~55!

5
pDxx

b2 (
n51

`
nsin~npx0 /b!cos~npx/b!

Ln2Geff
~56!

5
pDxx

2b2L1
(
n51

` H nsin@np~x02x!/b#

n22a2 1
nsin@np~x01x!/b#

n22a2 J , ~57!
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a25Geff /L1,1 ~58!

@Note thata2 is real but can be of either sign, subject to E
~58!.# The standard result given by Eq.~3! on p. 99 of Ref.
12 enables Eq.~57! to be summed in closed form. Two cas
must be distinguished, depending on the sign ofx02x. For
x0.x, we obtain

U~x!5csc~ap!„sin@a$p2p~x02x!/b%#

1sin@a$p2p~x01x!/b#… ~59!

5
sin@pa~12x0 /b!#cos~pax/b!

sin~pa!
, ~60!

Likewise, forx0,x, we find

U~x!5csc~ap!~2sin@a$p2p~x2x0!/b%u#

1sin@a$p2p~x01x!/b%#! ~61!

5
sin~pax0 /b!cos@pa~12x/b!#

sin~pa!
. ~62!

Figure 2 showsU(x) vs x for x051/3 and various values
of a2, both positive and negative. Fora2,0, U(x) de-
creases approximately exponentially withux2x0u, in accord
with the rapid absorption of photons in this case. F
a50, U(x) is piecewise constant in accord with conserv
tion of energy and with Eqs.~28! and ~29!. For 0,a2,1,
U(x) increases in magnitude with increasinga and toward
the edges of the medium, effects that result from wave a
plification in these cases. In all cases, the discontinuity
x5x0 is unity, reflecting the unit input of energy at this poi
at time zero.

Using the results in the previous paragraph, we can ev
ate the transmission and reflection coefficients for waves
cident atx50, obtaining

T5uU~b!u5U sin~pax0 /b!

sin~pa!
U, ~63!

R5uU~0!u5U sin@pa~12x0 /b!#

sin~pa!
U. ~64!

FIG. 2. Total wave energyU(x) passing the pointx in the
rightward direction vsx, as given by Eqs.~60! and ~62!, for
x051/3 andb51. In order of increasing magnitude at the boun
aries, the curves correspond toa2529,21,0,0.36,0.64.
.

r
-

-
t

u-
-

Physically, we can reproduce the case discussed in Sec.
by taking the limitGeff50 ~i.e.,a50), which leads again to
Eqs. ~28! and ~29!. This step immediately generalizes Eq
~28! and ~29! to the caseGeff50 rather than the case wit
both ^G&50 and s2(G)tG50, which was studied in Sec
III A. It also shows thatU(x) only depends only on the sig
of x02x in this limit, as required by conservation of energ

The sum of the reflection and transmission coefficients

R1T5U 2sin~pa/2!

sin~pa!
cosFpaS 122

x0
b D GU<1 ~65!

~recall thata2,1 has been assumed!, with x05v0 /kv in the
diffusive approximation. Equality holds in Eq.~65! only for
a50, in which case it holds for allx0. For a2,0 and
0,x0,b, R1T decreases exponentially with increasin
uau. Denoting the limits ofU(x) asx→x0 from above and
below asU1 andU2 , respectively, we findU11U251, as
required physically.

The next quantity we calculate isp(G,x), the time-
averaged probability of finding a gainG at x. This also cor-
responds to the probability distribution of gain for a consta
~rather than impulsive! unit source

p~G,x!5E
0

`

dtp~G,t !p~x,t !, ~66!

5
Dxx

b (
n51

`
sin~npx0 /b!sin~npx/b!

@2ksLn1^G&2#1/2

3expFG^G&
ks

2
2

ks
~G2$2ksLn1^G&2%!1/2G .

(67)

The probabilityp(G,x) can be integrated overG to obtain
p(x), thereby reproducing Eq.~32!. Note that Eq.~67! has
exponential tails at both positive and negativeG, with the
longer tail occurring at positiveG. This excess of probability
relative to Eq.~10! occurs because scattering causes a sm
proportion of photons to spend long periods in the slab
fore escaping. This light has time to undergo large amou
of damping or growth,3,5 particularly when net growth help
to maintain its intensity.

Figure 3 shows one instance ofp(G,x) vsG. The expo-
nential tails at largeuGu are clearly visible, with the positive
G tail extending further than the one at negativeG, as de-
scribed above. In contrast to this, infinite-medium stocha
growth theory predicts a Gaussian dependence ofp(G,x) on
G, with a much more rapid falloff at largeuGu.8

The energy densityW(x,t) at x and t can also be calcu-
lated:

W~x,t !5p~x,t !E
2`

`

dGeGp~G,t !, ~68!

5p~x,t !exp~Gefft ! ~69!

from Eq. ~15!.
The time-integrated energy densityW(x) is equivalent to

the energy density due to a constant source. It can be
tained as follows:
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W~x!5E
0

`

dtW~x,t ! ~70!

5E
2`

`

dGeGp~G,x! ~71!

5
4

p2b(n51

`
sin~npx0 /b!sin~npx/b!

n22a2 ~72!

5
2

p2b(n51

`
1

n22a2$cos@np~x02x!/b#

2cos@np~x01x!/b#%, ~73!

subject toa2,1. Again, two cases must be distinguishe
depending on the sign ofx02x. For x0.x, we find12,13

W~x!5
2sin@pa~12x0 /b!#sin~pax/b!

bpasin~pa!
. ~74!

Similarly, for x0,x

W~x!5
2sin@pa~12x/b!#sin~pax0 /b!

bpasin~pa!
. ~75!

Equations~74! and ~75! reproduce Eq.~32! in the limit
a→0 and generalize it to the case of random gain.

Figure 4 showsW(x) vs x for x051/3 and various values
of a2, both positive and negative. Fora2,0, W(x) de-
creases approximately exponentially with botha and
ux2x0u, as a result of the absorption of photons. Fora50,
W(x) is a triangular function, in accord with Eq.~32!. For
0,a2,1,W(x) increases rapidly asa increases, owing to
amplification within the medium. Asa→1, the laser thresh
old, W(x) approaches a sinusoidal form in which the loc
tion of x0 becomes unimportant owing to the subsequ
amplification in which most photons are generated e
where.

In the case of steady driving, we can integrate Eqs.~73!
and ~74! to find the total energy in the slab. Fora2,1, this
yields

FIG. 3. Probability distributionp(G,x) of gainG vsG, as given
by Eq. ~67!, for Dxx51, b51, ks54, ^G&54, andx5x051/2.
,

-
t
-

E
0

b

W~x!dx5
2

p2a2sin~pa!
@sin~pax0 /b!2sin~pa!

1sinpa~12x0 /b!# ~76!

5
4

p2a2cos~pa/2!
sin~pax0/2b!

3sin@~pa/2!~12x0 /b!#, ~77!

IV. OTHER CASES

Detailed results were derived in Sec. III for the case o
one-dimensional slab geometry with open boundary con
tions. In this section we briefly outline the cases of on
dimensional media with one or two reflecting boundaries

A. Finite medium with mixed boundary conditions

If we consider a one-dimensional medium with an op
boundary atx5b and a reflecting boundary atx50, we must
solve the diffusion equation~19! subject to the reflecting
boundary condition]Xp(X,T)50 at X50 and the open
boundary conditionp(1,T)50 for all T. The eigenfunctions
that satisfy these conditions are of the form cos@(n21

2)pX]
and the resulting spatial probability distribution is

p~X,T!52(
n51

`

e2lnTcosF S n2
1

2DpX0GcosF S n2
1

2DpXG ,
~78!

ln5S n2
1

2D
2

p2, ~79!

for the initial distributionp(X,0)5d(X2X0).
The analysis of stochastic growth proceeds from Eqs.~78!

and~79! in a similar manner to that in Sec. III. The first poin
we note is that, on physical grounds, all radiation m
emerge from the boundary atx5b. At large t it is the slow-
est decaying eigenfunction that determines the behavior
long-term stability of the system. Hence, for random grow
in a scattering medium, Eq.~53! must be satisfied for stabil

FIG. 4. Time-integrated wave energy densityW(x) vs x, as
given by Eqs.~74! and ~75!, for b51 andx051/3. From top to
bottom the curves correspond toa250.81,0.25,0,21,24, respec-
tively.
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ity, with L15p2Dxx/4b
2. When this condition is fulfilled,

we can calculate the power output as a function of time
other quantities in a similar manner to Sec. III.

B. Finite medium with reflecting boundary conditions

If both boundaries of a one-dimensional medium are
flecting, the diffusion equation~19! is solved subject to the
derivative ofp(X,T) vanishing atX50,1 for allT. The cor-
responding eigenfunctions are of the form cos(npX) and the
resulting probability distribution is

p~X,T!5112(
n51

`

e2lnTcos~npX0!cos~npX!, ~80!

ln5n2p2/2, ~81!

for the initial distributionp(X,0)5d(X2X0).
In this case,p(X,T) evolves to a steady-state distributio

as t→`. Hence, the stability criterion~53! becomes
Geff,0, as in an infinite medium. Other properties of th
system can be derived as in Sec. III.

V. SUMMARY AND DISCUSSION

The stochastic growth of waves in a strongly scatter
medium has been studied, generalizing and unifying pre
ous works in which either scattering or random growth w
omitted. Among the main results are new expressions for
i

d

e-

s

g
i-
s
he

stochastic laser threshold, the reflection and transmission
efficients for incident waves, the spatial and gain probabi
distributions of light for impulsive and steady-state sourc
and the dependence of the power leaving the medium
time. In particular, it was shown that the laser threshold
the point at which the effective growth rate from standa
stochastic growth theory exceeds the minimal diffusive lo
rate. It was also shown that scattering modifies the Gaus
gain distribution of standard stochastic growth theory to o
with exponential tails at large positive and negative ga
with positive gain being particularly favored.

It should be noted that, because it ignores phase,
analysis here is only valid provided the localization length
the waves is much greater than the slab size or, in hig
dimensional systems, if there is no localization of the wav
in question. Complementary work on localization of ra
domly growing waves has been done elsewhere.9,10Also, the
analysis here has not included saturation effects, which
required to treat global lasing of the medium.
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