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Stochastic wave growth in scattering media
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Stochastic growth of waves is studied in a scattering medium in which the wave propagation is diffusive.
This analysis generalizes previous work on randomly growing waves in nonscattering media and on constant
growth in scattering media. New results are obtained for the stochastic laser threshold, the distribution of
photons in the medium, the impulse response of the medium, and the transmission and reflection coefficients
of a slab of random amplifying mediurfiS0163-182607)12517-4

[. INTRODUCTION calization would introduce phase-sensitive phenomena not
considered here.
The purpose of this paper is to study growth of waves in
media in which they diffuse spatially due to scattering while
growing at a randomly varying rate. Propagation, growth, Il. BASIC THEORY
and damping of waves in scattering media have been inten-

sively studied, with considerable attention being paid to |n this section we consider waves propagating in a one-

cases in which photons can be considered to diffuse iglimensional system in which they are scattered or their

space'®In parallel, the theory of random growth of unscat- growth rate varies randomly, but not both. This lays the basis

tered waves has been developed in the plasma physigsr subsequent sections in which these two effects are com-

literature?® The behavior of nonrandomly damped or grow- pined. Spatial diffusion in the one dimension considered

ing diffusing waves has also been investigatéddowever,  should more generally be considered to approximate the one-

the case of simultaneous random growth and spatial diffudimensional projection of the true motion of photons in three

sion does not appear to have been treated to date. dimensions. A more sophisticated analysis would incorporate
Random growth of diffusing waves is expected to be rel-the fixed velocity of the waves and allow only diffusion in

evant to the theory of laser action in scattering media, wherangle, but the present approximation has proved to be ad-

one cannot realistically expect the growth rate to be uniformequate for many purposés’

when the refractive properties of the medium are randomly

varying. Such a medium could be realized by mixing pow-

ders of a lasing medium and an absorbing one, for example. A. Spatial scattering, no growth or damping

Similarly, in plasma physics there are situations in which .

waves are simultaneously pumped and scattered, for example If undamped waves are scattered, the mean velocity of

waves driven by electron beams in space and the Iaboratoqtﬁe'r photons decays on the same scale as the scattering

In such cases, the rate of wave growth or damping is ex_ength, with propagation dominated by photon diffusion on
’ : I ] longer scales. This behavior can be encapsulated in the fol-
pected to be a random function of position and/or time be-

cause of the effects of turbulence, for example. Iow[n'g pair of stochast.lc differential equations for photon
: . . . positionx and velocityv:

In Sec. Il of this paper we briefly outline the basic theory
of random growth of scattered waves. The important role
played by boundary conditions is seen in Sec. Ill in which dx
the case of a finite slab source with open boundaries is con- — =y, (1)
sidered, generalizing previous work for waves damped at a
constant raté.In this section we calculate the laser threshold
and, below threshold, quantities such as the probability dis-
tribution of photons, the power output from the slab, and the dv 112
reflection and transmission coefficients for incident light. gt~ ke Dy, @
Section IV outlines corresponding results for cases in which
one or both boundaries are reflecting.

Before proceeding, it should be noted that this analysis isvheret is time, k, is the scattering ratd) ,, is the diffusion
complementary to recent work on localized waves in mediaoefficient that results from multiple scatterings, &ft) is
with random loss and gain, which has extended standard la white noise signalcorrelations between scattering centers
calization theory of undamped waves to incorporate a varietare neglected here
of types of random loss and gaif® Strong localization of Equationg1) and(2) are the equations for Brownian mo-
light in a time-independent medium would preclude the dif-tion. They can be solved exactly in an infinite medium giving
fusive propagation of photons assumed here, while weak Icthe probability distributioft
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p(X,U ,t) = WEX% e
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with X" =x—(x(t)) andv'=v —(v(t)). The elements of the
variance matrixo are given by

DUU
Uxx(t):T(Zkvt—3+4e*ku1_e72kvt), @
va -~
()= Zz(1-e Y% ©
va _
va(t): 2k (1_e 2kvt), (6)

with detr= o,,0,,— (0y,)2. Relevant moments of this dis-
tribution, and its variance ix, are given by

(v(t))y=vee !, (7)
(x(1))=(vo/k,)[1—exp —k,t)], (8)
0'2(X,t)=a'xx(t), 9

respectively, where is the initial velocity and the photons
all start atx=0. Hence, for timeg=1/k, diffusion domi-
nates. This implies that diffusive approximationcan be
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=Woex(G(1))+ 3 0%(G,1)], (14
=Woexp(Igit), (19
Ler=(T)+o*(Dtr, (16)
a?(W)=(W(t))*[exp{o*(G,t)} — 1]. (17)

These results imply o(W)/(W)~exd c?(G,t)/2]>1 for
o(G)=2. A key result is Eq(16), which implies that net
growth can occur even when the mean growth rate is nega-
tive, because the exponential factor in H43) weights
growth more heavily than damping, resulting in the term
a?(I)ty in Eq. (16). The net transmission coefficient is
found by dividing Eq.(15) by W, and setting=b/v,.

For largeW saturation effects may become important. We
do not discuss these effects in this paper because their incor-
poration into stochastic growth theory has been discussed
elsewheré. Pumping and saturation effects in scattering me-
dia with nonrandom growth rates have also been studied
previously®®

lll. FINITE MEDIUM WITH OPEN BOUNDARIES

In this section we consider growth of waves in a slab
medium lying between open boundariesxat0 andx=Db
and using the diffusion approximation discussed in Sec. Il A.
Section Il A deals with scattering in the absence of growth
or damping, while Sec. Il B builds upon these results to

made forb>v4/k, , in which photons are assumed to propa-incorporate a randomly varying growth rate.

gate ballistically to a poink~uvq,/k,, then undergo pure
diffusion.

B. Stochastic growth, no spatial scattering

A. Diffusion without growth or damping

In the case of pure diffusion on an intenjd,b], with
absorbing boundaries to account for the escape of radiation

Robinsori® analyzed a model in which radiation is not from the faces of the slab, we can write down the following
explicitly scattered, but undergoes random growth and=okker-Planck equation for the evolution of the probability
damping. In this model, the energy in the waves undergoes distribution of position

random walk in the logarithnG of the energy densityV
[i.e., the net gain relative to a reference leWd) att=0,

with G=In(W/Wp)]. In the absence of saturation mecha-

nisms, this results in a probability distributigG,t) at time
t given by

B [G—(G(1))]?
20%(G,1)

pP(G,t)= } (10

1
(2m) Y0 (G, t) exl{
d?(G,t)=20?(I)trt,

(G()=(It, 12

where(T") is the mean growth rate;(T") its standard devia-

13

tion, andty its coherence time. If there is no scattering, the

aP(X,1) = 3 Dyyd@2p(X,1), (18)

whereD,, is a constant spatial diffusion coefficient. This can
be transformed into the equation

Irp(X,T)= 3 o3p(X,T), (19

on the interval 0,1] if we make the substitutions
X=x/b, (20
T=tD,,/b?. (21)

The problem of diffusion on the intervaD,1] with ab-

reflection coefficient for waves incident normally on a slab atsqrhing houndaries can be solved straightforwardly in closed
O=x=b is zero(assuming no refractive index mismatch at form (Ref. 11, p. 132for a distribution initially localized at

the edgg and the relevant time is=b/vy, wherev is the
incident wave velocity.

The mean energy density is obtained by averaging
W=W,e® overp(G,b/v,); likewise, the standard deviation

(W) can be calculated, givifig

(W(t))=Wo(e®), (13

Xp in the interval. The result is
p(X,T)=22, e MTsinnmXy)sinnmX), (22
n=1

Ap=n272/2. (23
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Equations(22) and (23) express the Green function of Eq. 10.000
(18) or, equivalently, the impulse response of the medium. )
The functions sin{mX) are eigenfunctions that satisfy the 1.000
open-boundary requiremep{0,T)=p(1,T)=0 for all T. ’
The corresponding probability current is given by =
> 0.100
J(X,T)== 3 9xp(X,T), (24) a
. 0.010}
=— Z nﬂei}\"TSin(n'ﬂXO)COE{nWX). (25 0.001 . . . )
n=1 :
0.0 0510 15 20 25
This current equals the net powe(X,T) crossing a plane at t

X in the positive direction at timé&.

The expectation values of the energy(proportional to
the number of photonspassing rightward through the left
and right faces of the slata negative quantity at the left

FIG. 1. Wave poweP(x,t) passing the point in the rightward
direction vst, as given by Eq(36), for x=1, xq=1/2, D,,=1,
b=1, ando?(I")tr=2. From top to bottom, the three curves have
(I')=2,0,— 2, respectively.

face are
- b
U(X):f j(X,T)dT, (26) Jo dxp(x)=(Xqg/b)(1—Xq/b)<1, (33
0
. because of losses through the boundaries.
2 1.
:; nzl HSIn(anO)Cos(an), @7 B. Scattering with growth and damping
with X=0 andX=1, respectively. This givé&!3 If growth and damping are independent of scattering, the
’ results of Secs. Il B and Il A can be combined to treat ran-
2 2 (=1 dom growth of scattered waves. In general, the joint prob-
lu=|= > - sin(n7Xy)| =Xo=xXo/b, (28)  ability distribution of position and gain has the form
T n=1
. p(x,G,t)=p(x,t)p(G,t), (34
1 . : .
[U)|=|—= > Ssin(nmXo)| =1—Xo=1-Xo/b. (29  Wherep(G,t) is given by Eq(10) andp(x.t) is the solution
7 n=1N of Egs.(1) and(2), or of Eq.(18) in the case of pure diffu-

The reflection and transmission coefficients for waves inci> - . . .
The power crossing a plane rightwards at fixeid given

dent at x=0 are given by Egs.(28) and (29), with b

Xo=vg/k, in the diffusive approximation. FoiXy=1/2, y

R=T=1/2, as expected on physical grounds; likewise, for 0

Xo=0,R=1 andT=0, and forX,=1, R=0 andT=1. P(x,t)=f dGe®j(x,G,t), (35)
We can calculate the probabilify(x) of finding a photon o

at a givenx, without regard td, by integrating Eq(22) over  wherej(x,G,t)=](x,t)p(G,t). This yields

t and notingp(x,t) =p(X,T)/b. This quantity is the energy

density atx (proportional to the photon densjtin the case P(x,t)=j(x,t)exd (G(1))+ % 0?(G,1)], (36)
of a constant, rather than impulsive, unit source. Using Egs.
(20—(22) we find213 where(G(t)) ando?(G,t) are given by Eqs(11) and(12),

andj(x,t) is given by Eq.(25) for pure diffusion.

* Figure 1 showsP(x,t) as a function oft for various
p(X)= fo dTp(X,T)/b (B0 (). In all cases there is a rapid rise at smalfollowed by
an exponential falloff that is dominated by the=1 term in
Eqg. (25). The rate of decrease withis smaller for large

:é > izsin(nrrxolb)sin(nrrx/b) (T"), reflecting the generation of new photons within the me-
b A=1n dium, which becomes more effective d8) increases.
(31) Transmission and reflection coefficients can be obtained
by the same procedure used in Sec. Il C. In general, we find
&( 1— f) Xo<X that the total integrated probability current at a ga@imtx is
2] Db b)’ '
b X Xo (32) . . .
b 1—E , X<Xg. j(G,X)—J'O j(x,H)p(G,t)dt, (37

Note that p(x) is a triangular function, which peaks at with j(x,t)=J(X,T)D,./b?. The total energy passing right-
X=Xg as expected for a sourcea}. Note also that wards atx is then
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e * 7Dy e
U(X)ZJ_WGGJ(G,X)dG= fo P(x,t)dt, (38) U(x)= bzxle nsin(nxy/b)
where the reference enerdy, introduced earlier has been J,
set equal to unity without loss of generality. The reflection X cognmx/b) 12 (47)
o u ou ity [2k,Ap+(T)7]
and transmission coefficients for waves incidenkatO are
U(0) andU(b), respectively, withxo=vq/k, in the diffu- w
sive approximation. Jn=f dGexg G(1+x)—{GA(x*+ad)}*?], (49
In the case of pure diffusion, we can substitute for -
j(x,t) in EqQ.(37) using Eqs(25), (20), and(21). This yields x=(TY/k,, (49)
Dyyen [ 2_
[(Gx=- 773, | dtnme r'sinmx, /b) an=2An/K, . (50)
n=t 70 Hence,
XcognNmXIb)——=——%—1» * 5
o(G,H)(2m) Jo=| dG[exp{—G(1l+y+y +an7)}
0
(G—(G(1)))?
X ex;:{ - W , (39) + exp{G(1+y— \/y2+ an)}]. (51)
For this integral to converge, both exponents must be nega-
N272D tive; i.e.,
=TT (40)
—(y?+a2)P<1+y<(y?+ad'? (52)
Using Egs.(11) and(12) one then obtains for all n, with the most stringent resulting condition occur-
ring for n=1. The left-hand inequality in Eq52) is always
1/2D Y e . . .
[(Gx)=— T XX satisfied, while the right-hand one requires
’ 2k,/ b?
. FCe=(I)+aA(D)tp<A;. (53
XE nsin(nmxy/b)cognmx/b)l,,, (41)  Thus, the effective growth rate from standard stochastic
n=1 growth theory must be less than the minimal diffusive loss
rate from the slab if the integrals are to converge; otherwise,
k,=20?(I)ty, (42 the slab lases and the analysis must be extended to incorpo-
rate pumping and saturation effects. The threstib8l gen-
G(I)\ (= P B eralizes the one obtained Letokhov in the case of constant
Ih=exg — ) f dit”"exp — T — 7t (43  growth raté and neatly combines standard stochastic growth
o 170 theory with diffusive propagation. The thresho(83) is
analogous to the criticality condition for a nuclear reattor
_ /zex G(I') 2B (44) in which neutrons diffuse through a material of randomly
Vg, K, B, varying fissile content. The effect of randomness is to intro-
duce the termu?(I')ty into Eq. (53).
7= An+(T)2I2K,, (45) When the integral in Eq(51) converges, we find
I)2+4A,0%(0)tp]Y2
B=G2, . (46) A AT LY (54)
An_reff
We can now write and
U(x)= TrDXXi nsin(nx,/b)cog nx/b) n (55)
b7 = o T2k, A (TP
Dy NSIN(N7Xq/b)cognarx/b
_ ™Dy NSy /b)cog i) 6
b n=1 An_reff
Dy w [ NSinm(Xo—x)/b] nsifnm(xo+x)/b
_ 7Dy r{(oz)]+rf(02)]' 57

N 2b2A1n:1

n2—a

n2—a
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a’= e/ A<1 (58) Physically, we can reproduce the case discussed in Sec. Il A
5. ) ) ) by taking the limitI" 4= 0 (i.e., «=0), which leads again to
[Note thata“ is real but can _be of either sign, subject to Eq'Eqs.(28) and (29). This step immediately generalizes Egs.
(58).] The standard result given by E) on p. 99 of Ref.  (5g) anq(29) to the casd ;=0 rather than the case with
12 enables Eq57) to be summed in closed form. Two cases (T)=0 and ¢(I')ty=0, which was studied in Sec.

must be distinguished, depending on the sigk@fx. For ;o |t also shows thatJ(x) only depends only on the sign
Xo>X, we obtain of Xo—x in this limit, as required by conservation of energy.

U(x) = csd a) (sif af7m— 7(Xo— X)/b} ] The sum of the reflection and transmission coefficients is
i - 2si 12 1 x
+sin a{7— w(xg+x)/b]) (59 R4 T— .r(Tfa )CO ol 220 | <1 65
sin(wa) 2 b

si ma(1—Xq/b)]cod max/b) . .
= , (60 (recall thate®<1 has been assumeavith x,=v/k, in the

sin(e) diffusive approximation. Equality holds in E¢5) only for
Likewise, forxy<x, we find =0, in which case it holds for alk,. For a®<0 and
. 0<xg<b, R+T decreases exponentially with increasing
U(x)=csqam)(—sin a{m—m(X—Xo)/b}u] |a|. Denoting the limits ofU(x) asx—x, from above and
: below asU , andU _, respectively, we find) , +U_=1, as
+ - +x)/b 61 + +
si{a{m=m(Xo+x)/bH) (61 required physically.
sin(maxo/b)cog wa(1—x/b)] The next qua_qtity we (_:alculate ip(G,x),.the time-
= Sin(ma) (62 averaged probability of finding a gafd at x. This also cor-

responds to the probability distribution of gain for a constant

Figure 2 showsJ(x) vs x for x,=1/3 and various values (rather than impulsiveunit source
of &2, both positive and negative. Far’<0, U(x) de- "
creases apprpximately gxponentially with.— x0|,_in accord p(G,X):f dtp(G,t)p(x,t), (66)
with the rapid absorption of photons in this case. For 0
a=0, U(x) is piecewise constant in accord with conserva-

tion of energy and with Eqg28) and (29). For 0<a?<1, Dyxwa SIN(N7Xq/b)sin(nx/b)

U(x) increases in magnitude with increasingand toward :Tn:l [2k, A, +(T)2]72

the edges of the medium, effects that result from wave am-

plification in these cases. In all cases, the discontinuity at &(ry 2 5 12
X=X, is Unity, reflecting the unit input of energy at this point i (GAZKAR ()T
at time zero. 7 7

Using the results in the previous paragraph, we can evalu- (67)
ate the transmission and reflection coefficients for waves inThe probabilityp(G,x) can be integrated oves to obtain
cident atx=0, obtaining p(x), thereby reproducing Eq32). Note that Eq.67) has
sin(waXq/b) exponential tails at both positive and negati@e with the
Tsnma) | (63)  longer tail occurring at positive. This excess of probability
relative to Eq.(10) occurs because scattering causes a small
s ma(1—xo/b)] proportion of photons to spend long periods in the slab be-
. ‘ (64)  fore escaping. This light has time to undergo large amounts
sin(ma) of damping or growth;? particularly when net growth helps
to maintain its intensity.
Figure 3 shows one instance pfG,x) vs G. The expo-
) - - ; ' * nential tails at largéG| are clearly visible, with the positive-
E G tail extending further than the one at negat{Se as de-

1F 3 scribed above. In contrast to this, infinite-medium stochastic
- growth theory predicts a Gaussian dependenqgg &, x) on
<) i 77& G, with a much more rapid falloff at largis|.2
= 0 s | tTCP;e energy densityV(x,t) atx andt can also be calcu-
3 ated:

—— W(x,t)=p(x,t)fldGer(G,t), (68)

0.0 0.2 0.4 06 08 1.0
X =p(x,t)explest) (69

FIG. 2. Total wave energy(x) passing the poink in the  from Eg.(15).
rightward direction vsx, as given by Eqs(60) and (62), for The time-integrated energy densify(x) is equivalent to
Xo=1/3 andb=1. In order of increasing magnitude at the bound- the energy density due to a constant source. It can be ob-
aries, the curves corresponddéd=—9,—1,0,0.36,0.64. tained as follows:

T=|U(b)|=

R=|U(0)|=
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FIG. 3. Probability distributiop(G,x) of gainG vs G, as given
by Eq.(67), for Dy,=1,b=1, k,=4,(I')=4, andx=Xx,= 1/2.

W(x)=f:dtW(x,t) (70
:Jx dGe®p(G,x) (72)
4 sin(nmxy/b)sin(nmx/b)
=~ 2b&, 2 o2 (72
2 & 1
—%zl = —{cognm(xo=x)/b]
—cognm(Xy+x)/b]}, (73

subject toa?<1. Again, two cases must be distinguished,
depending on the sign of,— x. For x,>x, we find%**

2si wa(1—Xq/b)]sin(max/b)

W0 = brasin(7a) (74)
Similarly, for xg<<x
W) = 2sif ma(1—x/b)]sin(maxy/b) 75

brasin(7a)

Equations(74) and (75 reproduce Eq.32) in the limit
a—0 and generalize it to the case of random gain.

Figure 4 showdV(x) vsx for xo=1/3 and various values
of «?, both positive and negative. Far’<0, W(x) de-
creases approximately exponentially with both and
[x—Xol|, as a result of the absorption of photons. ket 0,
W(x) is a triangular function, in accord with E¢32). For
0<a?<1, W(x) increases rapidly aa increases, owing to
amplification within the medium. Aa—1, the laser thresh-
old, W(x) approaches a sinusoidal form in which the loca-
tion of x, becomes unimportant owing to the subsequen

INSON

0.0 .
0.0 0.

2 04 06 08 1.0
X

FIG. 4. Time-integrated wave energy densiy(x) vs x, as
given by Eqgs.(74) and (75), for b=1 andx,=1/3. From top to
bottom the curves correspond 6=0.81,0.25,0;-1,— 4, respec-
tively.

f obW(x)dx= m[sin(waxolb) —sin(7a)
+sinra(1-Xo/b)] (76)
4 .
= ZaZood maim SN T/ 20)
X sin (mal2)(1—Xo/b)], (77

IV. OTHER CASES

Detailed results were derived in Sec. Il for the case of a
one-dimensional slab geometry with open boundary condi-
tions. In this section we briefly outline the cases of one-
dimensional media with one or two reflecting boundaries.

A. Finite medium with mixed boundary conditions

If we consider a one-dimensional medium with an open
boundary ak=b and a reflecting boundary at=0, we must
solve the diffusion equatiofl9) subject to the reflecting
boundary conditiondyp(X,T)=0 at X=0 and the open
boundary conditiorp(1,T)=0 for all T. The eigenfunctions
that satisfy these conditions are of the form[¢os 3) wX]
and the resulting spatial probability distribution is

IO(X,T)=2nZl e)‘“TCOE{<n— %) X0 cos{(n— %) 77)(},
(78)

1\,
)\n=(n—§) e, (79

for the initial distributionp(X,0)= §(X—X,).
The analysis of stochastic growth proceeds from E&).
and(79) in a similar manner to that in Sec. Ill. The first point

amplification in which most photons are generated elsewe note is that, on physical grounds, all radiation must

where.

In the case of steady driving, we can integrate E@8)
and(74) to find the total energy in the slab. Faf<1, this
yields

emerge from the boundary at=b. At larget it is the slow-
est decaying eigenfunction that determines the behavior and
long-term stability of the system. Hence, for random growth
in a scattering medium, E@53) must be satisfied for stabil-
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ity, with A;=m?D,,/4b%. When this condition is fulfilled, stochastic laser threshold, the reflection and transmission co-
we can calculate the power output as a function of time anefficients for incident waves, the spatial and gain probability

other quantities in a similar manner to Sec. lll. distributions of light for impulsive and steady-state sources,
and the dependence of the power leaving the medium on
B. Finite medium with reflecting boundary conditions time. In particular, it was shown that the laser threshold is

the point at which the effective growth rate from standard
‘stochastic growth theory exceeds the minimal diffusive loss
rate. It was also shown that scattering modifies the Gaussian
gain distribution of standard stochastic growth theory to one
with exponential tails at large positive and negative gain,
with positive gain being particularly favored.
o It should be noted that, because it ignores phase, the
p(X,T)=1+2> e *TcognmwXy)cognmX), (80)  analysis hereis only valid provided the localization length of
n=1 the waves is much greater than the slab size or, in higher
- dimensional systems, if there is no localization of the waves
Ap=n7/2, (82) in question. Complementary work on localization of ran-
for the initial distributionp(X,0)= 8(X— Xo). domly growing waves has been done eI_sewﬁéPeAlso, the
In this casep(X,T) evolves to a steady-state distribution analy3|s here has not mclt_Jded saturat|or_1 effects, which are
as t—w». Hence, the stability criterion(53) becomes equired to treat global lasing of the medium.

I'e<0, as in an infinite medium. Other properties of this
system can be derived as in Sec. Il ACKNOWLEDGMENTS

If both boundaries of a one-dimensional medium are re
flecting, the diffusion equatiofil9) is solved subject to the
derivative ofp(X,T) vanishing atX=0,1 for all T. The cor-
responding eigenfunctions are of the form cesX) and the
resulting probability distribution is
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