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Diffusionlike motion of the modulation wave in incommensurate solids
studied by NMR and NQR in a sinusoidal-electric-field gradient
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Slow random-walk-type motion of the modulation wave in structurally incommensurate systems represents
a collective atomic self-diffusion in solids. The diffusion const@nfor the thermally induced modulation
wave motion has been determined using a technique based on NMR and nuclear quadrupole résQRnce
in an inhomogeneous electric-field gradient which varies sinusoidally with space. This technique is generally
applicable to solids with a modulated superstructure. It is capable of measuring extremé&yJalwes such
as 1015 cm?/s, so that spatial motion is observed on a nanometric scale. The diffusive motion is discussed
analytically on a scale small compared to the wavelength of the modulation wave, whereas large-scale diffu-
sion is treated numerically. For small-scale motion, spin-echo decay curves in a NMR/NQR experiment show
an exponential decay with the exponent proportional to the cube of time and the decay strongly varies over the
incommensurate spectrum. For large-scale motion, the spin-echo decay is less strong and the variation over the
spectrum vanishes. The diffusion constant has been determined experimentalfZifCRtby *°Cl NQR and
in K,SeQ, by K NMR. In both casesP behaves critically in the vicinity of the para-to-incommensurate
transition and rapidly decreases on going deeper into the incommensurate phase. This can be explained by the
mechanism of thermally induced depinning of the modulation wave at the impurity pinning centers.
[S0163-18297)00117-3

I. INTRODUCTION depinned for a certain time by borrowing the thermal energy
from the lattice, whereas it becomes pinned again after the
Slow collective self-diffusion of atomic ensembles in sol- energy is emitted back. Since thermal depinning is a random
ids with modulated structures has recently become a subjestochastic process, the resulting modulation wave motion is
of intense research. Examples are the modulation wave maf a random-diffusion-like character. Similar depinning ef-
tion in structurally incommensurdte (INC) and charge- fects can be produced also by external forces like an ac elec-
density-wavg CDW) system§ and the superlattice motion in tric field in CDW systems.
guantum flux lattices. These systems are characterized by the Thermal fluctuations of the modulation wave in the close
existence of a superstructure, the periodicity of which is genvicinity of T, have been reported recently in the INC phases
erally incommensurately related to that of the underlying lat-of Rb,ZnCl, (Refs. 1 and 2and K,SeQ (Ref. 2 in NMR
tice; i.e., one periodicity is not a multiple of the other. line shape and spin lattice relaxation studies. Here we present
The dynamics of the superstructures is one of the opervidence that the thermally induced modulation wave motion
guestions in condensed matter physics. Elementary excitan INC systems is of a diffusional character. The diffusion
tions of the frozen-in modulation wave in structurally INC coefficient D for the collective self-diffusion motion has
and CDW systems are harmonic oscillatibo$ the ampli-  been determined in a broad temperature interval. The values
tude (amplitudon mode and phasgphason modearound of D were found to be many orders of magnitude smaller
the time-average values. Whereas the amplitude fluctuatiorfsom those characteristic for liquids. The smallness of these
are always small—except in the close vicinity of the para-coefficients indicates that the effective diffusing particles
INC transition temperaturé,—the phase fluctuations can be have a large effective mass and can be associated with the
quite large. The theory of an ideal defect-free INC phaseensembles of atoms lying on the modulation wave between
predicts the existence of a low-frequency translational phapinning centers.
son mode (Goldstone mode which moves frictionless We present a method for the determination of extremely
throughout the crystal and induces transport phenomena subbw diffusion coefficients which is based on the high-field
as superfluidity and superconductivity. These phenomenBIMR and zero-field nuclear quadrupole resonafN®R)
were in reality not observed in INC systems as the discretéechniques in a spatially inhomogeneous electric-field gradi-
lattice effects and impurities in real structures pin the moduent (EFG). The spatially inhomogeneous EFG is an intrinsic
lation wave and restrict its translational degrees of freedomfeature of a solid system without a perfect translational peri-
The random spatial distribution of pinning centers and ran-odicity. It is produced by the displacements of electrically
dom pinning strength destroy the harmonic character of theharged ions from their positions in a perfect lattice as a
thermally induced motion of the free modulation wave. Theresult of the presence of impurities or the existence of a
wave can overcome the pinning potential and stay locallymodulated superstructure. The necessary condition for the
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diffusion coefficient determination is a known spatial varia-ing ions and is thus an intrinsic feature of a solid system. The
tion of the intrinsic inhomogeneous EFG, the situation whichnecessary condition for the diffusion constant determination
is found in modulated structures only. The use of the intrin-is a known spatial variation of the intrinsic EFG. Such a
sic EFG makes the method easily applicable in practice. Thseituation is generally seldom found. In perfect lattices the
method is capable of measuring coefficiebtsas small as EFG repeats exactly at each physically equivalent site in the
10" cn/s and is under the above conditions superior to theperiodic unit cells and does not depend on space. Impurities
standard method of high-field NMR in a linear magnetic-destroy locally the translational periodicity and impose a
field gradient. A short account of a part of the theory pre-spatial variation on the EFG. Due to the random spatial dis-

sented here has been published in a recent L&tter. tribution of impurities, the variation of the EFG is also spa-
tially random and a defined relation between space and reso-
Il. DIEEUSION IN A SPATIALLY INHOMOGENEOUS nance frequency cannot be derived. The same situation is
ELECTRIC-EIELD GRADIENT encountered in solids with a glassy type of disorder.

There exists, however, a class of solids in which a well-
The standard method for the observation of diffusionaldefined frequency-space relation exists. These are the sys-

effects in liquids and solids is the high-field NMR technique tems with a modulated structure like structurally INC sys-
in the presence of a spatial magnetic-field gradient. The deems. There, some local atomic propertg.g., atomic
cay of the transverse magnetization is measured in the prepositions in the unit cellis modulated in space in a sinu-
ence of a steadyor pulsé gradient. In case of a steady spidal manner and forms the modulation wave, the wave-
gradient, the spin-echo attenuation at time(2is the spac- |ength of which is usually large compared to the high-
ing between the rf pulses in a two-pulse experimengiven  temperature unit cell length. A one-dimensional wave of

by atomic displacements can be described in the continuum ap-
) proximation by a displacement fi€ldi:
M(27) 27 5 gH\? 273 L
P e e B ke M 1) u(x,t) =A(t)cosp(x,t). 3

HereT, represents the transver@pin-spin relaxation time, ~ The wave is characterized by the amplitw@nd the phase

y the gyromagnetic ratio, andH/dz the linear magnetic- ; Which in the plane wave regiearies in the directionx

field gradient, assumed to have cylindrical symmetry aroun@f the wave propagation as=qx. Hereq is the wave vector

the z axis. The diffusion-induced damping is exponential Of the modulation wave. Both and¢ undergo thermal fluc-

with the exponent proportional to the cube of time. tuations in timet. . o o
The basic idea of detecting diffusional motions uses the The EFG tensor at a given lattice site reflects the distri-

fact that the nuclear resonance frequency varies in space inttion of surrounding ionic and electronic electric charges.

controlled way; i.e., there exists a well-defined frequencyJn the modulated phase the atomic displacements from the

space relation. In case of a linear magnetic-field gradientd@raelectric positions affect the EFG tensor elemgfjtaind
this relation takes a linear form change their paraphase values. The changes are, however,

small, and each element can be expanded in powers of the
oH displacements. In the local approximatioﬂ,\/ij depends on
Y E)Z (2)  the displacement(x) at the positiorx only. This approxi-
mation is valid in the long-wavelength limit where the con-
and every point in space along tlzeaxis has a uniquely tribution to the EFG at a particular lattice site is coming from
defined resonance frequency. The motion of molecules itharges in a region of dimension small compared to the dis-
space is observed via the changes of their resonance frequeance where the modulation displacemafx) changes ap-
cies during the time of experiment. preciably. In that case we can write
The frequency-space relation in the above case is a con-
sequence of a magnetic coupling between the nuclear mag- 1 anij 2 4
netic dipole moments and the space-varying magnetic field. ol vt (4)

An analogous frequency-space relation can be obtained from 0.

the electrostatic coupling of nuclear electric quadrupole moWhereVi; is the paraphase value. The quadrupole-perturbed
ments of nuclei with spind>1/2 to the spatially varying NMR and pure quadrupole NQR frequencies can be written
electric-field gradients. If the EFG variation in space is@S @ linear combination of the EFG tensor elements. Using

known, one can determine the frequency-space relation fdrds:(3) and(4), we can write the resonance frequency in the
the quadrupole-perturbed Zeeman frequeficy high-field ~ form
NMR) or pure quadrupole frequendyn zero-field NQR. _
The diffusional motion can be than observed in a similar way ©(X) = @0+ ©1€04ax)+ 2C0S(0X) + w3CoS(qX) + -+ '(5)
as in the magnetic case by measuring the quadrupole echo
decay as a function of time. Here it is worth mentioning thatThis equation represents a frequency-space relation in modu-
the diffusion constant determination in a spatially varyinglated structures and is basic for the observation of diffusional
EFG is possible also in the zero-field NQR technique and nonotions in a spatially inhomogeneous EFG. In contrast to the
only in the high-field NMR, as in the case of a spatially linear magnetic-field gradients, the space labeling is here not
varying magnetic field. unique due to the periodicity ob(x). Since the displace-

In solids the frequency-space relation originates from thenentsu are small, the series of E(p) converges rapidly and
electrostatic interaction between the nuclei and the neighbothe leading behavior is given by the lowest-order terms. Un-

o(Z2)=wyt

du
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less forbidden by symmetry, this is the linear term. The casand
where the odd powers of cagf) are forbidden is found,

e.g., in pure NQR of thé&,BX, family crystals(Rb,ZnCl,, h2:i8w1 (10b)
Rb,ZnBr,, ..) because of the paraphase mirror plane L qu'

symmetry'® The leading behavior is there given by the qua- o . .
dratic term. In high-field NMR the linear or quadratic depen-Here .the subscripL. indicates th_e linear case. Mathieu's
dence is determined by the orientation of the crystal in théfduation represents a mathematically exactly solvable prob-

magnetic field, i.e., by the relative orientation of the EFG em. The SOIUt'QnS forth_e case whees a p‘?”F’d.'C van_able
tensor eigenframe with respect to the external magnetic field'¢ calledMathieu functionsand represent infinite series of
The symmetry of the EFG tensor elements in the EFG eigerg"€ @nd cosine terms which generally do not converge. The
frame, which determine th¥,, element in the laboratory Mathieu functions are shown in the Appendix.
frame, determine the linear, quadratic, or mixed linear-
guadratic dependence of the resonance frequency.

We calculate now the quadrupolar spin-echo attenuation The frequency-space relation here takes the form
in an inhomogeneous EFG in the presence of diffusion. We
use the classical description of NMR with the following »(X) = wo+ w,0S(gX). 1D

Bloch-like (Torrey) ~equation’” for the transverse \ye again seek the solution o . (x,t) in the form of Eq.
M. =M,+iM, magnetization in the frame rotating with the (g Introducing a new variablg=qx, we get the following

2. Quadratic case

frequencyw, around thez axis: equation forM . (i,w):
N o) wgIM , — = 4 Dy2M 6 & 2
- o)~ wo]M. T, ) WP M., (,0)+(bg—h&cody)M , (#,0)=0, (12)

The same equation follows from the semiclassical descripyith
tion of NQR2 The solution depends on the particular form

of w(x) and is generally different for the cases when linear 1 . 1
or quadratic terms dominate the expansion of Ex). We bQ:q2_ lo= 2], (139
will first look for the exact solution of the problem.
2 | wo
A. Exact solution Q=qz—D- (13b

The difiusional Bloch equation in a sinusoidal EFG CalNrhis is again Mathieu’s equation with the solutions in the

be mathematically solved exactly. We will consider SePat, - of Mathieu functions.
rately the cases of linear and quadratic frequency-space rela-

tions.
B. Solution for a short-spatial-scale diffusion
1. Linear case The problem of diffusion in a sinusoidal EFG is math-
The frequency-space relation in the linear case takes th@matically exactly solvable, but the solutions in the form of
form Mathieu functions do not converge and the calculation of
coefficientsB (see the Appendixis also complicated. There
w(X) = wg+ ®,C0ggX). (7) is thus little hope that the experimental data could be prop-

erly analyzed with the exact solutions in an analytical way. A
simplification of the problem can be made by considering the
diffusion on a spatial scale short compared to the wavelength
M+(x,t)=2 |\/|+(x,w)e—iwt 8 of the modulation wave. In the context of INC structures,
w this is not an oversimplification of the problem as there ex-
ists a lot of evidence that the modulation wave has restricted
translational degrees of freedom and undergoes thermal fluc-
92 1 tuations in space only on a scale short compared to its wave-
D el M, (X,w)+{i[o—wicoqx)]— T_2 M, (X,w)=0. length. Clear evid_ence is the INC_broadened inhomogeneous
(9a) NMR and NQR line shapes, vyhlch—except very close to
T,—show the shape of a quasistatic modulation wavé.
Introducing a new variablep=qx/2, we can rewrite this large-scale fluctuations exist, they are slow on the time scales
equation in the form oMathieu’s equatiort® of NMR spin lattice(MHz) and line shapékHz) techniques
and have not been experimentally observed so far.
For a short-scale motion we make a Taylor series expan-
sion of the space-dependent frequeneogx) of Eq. (5)
around a certain point in spagg and keep the lowest-order

We seek the solutioM , (x,t) in the form

and get the equation favl , (X,w):

(92
g2 M+(:@)+ (b —hicoS )M . (4,0)=0, (%)

with terms only. Both problems of diffusion in a linédaand
1 paraboli¢**® potential have been solved exactly.
b =—— |i(0+w)— _} (109 The freq_uencyu(x) is expanded in Taylor series around a
q°D T2 general poinix, as
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(14

where the derivatives®’ =(dw/dx), and "= (d’w/Ix%)

are taken at the poing;. We find the solution of Eq(6) for
M (x,t) in the vicinity of x, as*

w(X)= 0(X) + 0’ (X—Xo) + 30" (X—Xg)?,

M+(x,t)=M+(x,O)exp{— TL‘F?](I)}—i w(Xg)t
2
(X=Xo) @”
+(X—Xp) w’+T)X(t) ] (15
with
1 .
7(t)= 5 Infcog (1-i)at]}
1 2 (1+i )
+§I o z—atar[(l—l)at]—t , (16a
14 )
X(t)—gtar[(l—l)at], (16b)
and
a=\Do". (160

We can get a simple physical insight into the solutions b
considering the limiting cas&t<1. This condition states that
either 0" is small or the expressions describe the short-time

behavior of the transverse magnetization only whenis
large. In this limit we get

2i
X(t)~t— = Dw"t3,

3 (179
7(t)=3Dw'?t%, (17
yielding the following expression fav . (x,t):
t 1
M, (x,t)=M,(x,0)exp — = (exp — = D| '?+ 20"

T, 3
1

X| o' (X—Xq)+ > w”(x—xo)z) }tS]

X exp{ —iw(x)t}. (18

We find now the spin-echo attenuation in a two-pulse se-
guence with the pulse separationAt time t=27, the phase
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the linear termVw~w’'. This approximation enables us to
obtain the variation of the echo attenuation at any peiof
the modulation wave as

_ 27 2 273
A(X,21) =ex —T—2 expy —Dw 3 (21

Here the dependence ararises from the spatial dependence
of the derivativew'=w'(x). Equation(21) is completely
analogous to the case of a linear magnetic-field gradEaqt
(1)]. This is not surprising as we have approximated the ac-
tual gradient ofw(x) at each point by a linear one. The
exponential” decay is a consequence of this linear approxi-
mation. It is valid for arbitrary long as long as the diffusive
motion takes place on a scale short enough that the linear
approximation is reasonable. For a larger-scale motion in a
nonlinear gradient, full expressions gft) and X(t) [Egs.
(163 and(16b)] no longer yield the exponentiaf decay for
long 7. The short-time part of the decay is, however, still
properly described by this form as for smalthe diffusion
distances are still small and the motion is effectively of a
short-scale type. The deviation from the exponentiatie-
pendence at long's provides a way to discriminate between
the short- and large-scale diffusion.
We analyze now separately the cases of linear and qua-
ydratic dependence a@f(x) on the factor cog{x).

1. Linear case

The derivative of Eqg. (7) is obtained as
o' (X)=—w,q sin(gx). We express the factor sigk) using
Eq. (7) as

sin(gx)=\/1— (22)

W — Wo
wq ’

so that we can convert the spatial dependence into the fre-
quency dependence. The echo attenuafién,27) now be-
comes

_ 27
A(w,2¢)—exp[ - T—z]

_ 2
xexp[ —D(wlq)z[l— ( @ wo)

(23)

factor refocuses and we get the echo amplitude attenuation \we consider now the variation of the diffusion-induced

factor A(x,27)=M L (x,27)/M . (x,0) as

decay over the INC NMR spectrum. The inhomogeneous
frequency distribution functiorf(w), which determines the

3
A(X,ZT)zexp{ — _Zr—T]exp{ —D(Vw)? ZTT] (190  INC spectrum shape, is in the linear case obtainéd as
2
where (Vw)? represents the square effective gradient at the 1
positionx: f(w)= == Z (24)
V1-[(0—wo)/wi]

(Vo)?=w'"?+20"[w’ (X—Xg) + 30" (X—Xg)?]. (20)

The spectrum shows two singularities @t wy*w; [Fig.

Equation(19) shows an exponential diffusive decay with the 1(a)] and the distance between the singularitiesds.2The

exponent proportional to the cube of time.

intensity of the singularities comes from the nuclei, which lie

In the diffusion on a short scale, we can approximate theclose to the extremagi~n) of the modulation wave,
effective gradient at each point of the modulation wave bywhere the resonance frequency changes slowly. The nuclei at
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Linear case distance spatial motion cannot be detected at the singularities
as there is no frequency change associated with that motion.
a) The true diffusion constarlD can be thus in principle ob-
tained by measuring the spin-echo decay in the center of the
f spectrum. It is, however, more accurate to determine experi-

mentally the variation oD, over the whole spectrum and
extractD from Eq.(25). To evaluate the actu@ll values, one
needs to know the parametarg andq. The w,; values are
obtained from the splitting of the spectrum’s singularities,
whereas the INC wave vectgris usually known from x-ray
and neutron scattering.

2. Quadratic case

We get the derivative of Eqg. (1) as
' (X)=—2w,q sin(gx)cos(gx). Using Eq.(11), we convert
the space dependence into the frequency dependence as

Sin(gx)cogqx) = \/ w;:)o)(l_ w;:)o) (26)

and obtain the echo attenuation as

]
2 —
N A(w,27-)=exp[—_r—7]exp{—D(wzq)24<w w")
(an) 2 w2
w—wq) 27°
X1 1— o T . (27)

We define the frequency-dependent diffusion constant for the
quadratic case as

w2

Do=D4 ™

and consider the variation of the diffusion-induced damping

over the NMR-NQR spectrum. The frequency distribution
FIG. 1. (a) Inhomogeneous frequency distribution functita) function determining the shape of the INC spectrum in the

determining the spectrum shape in the INC phase for the lineaguadratic case is given By

case.(b) Variation of the frequency-dependent diffusion constant

D, over the spectrum for the linear case. 1

f = .
) o wolwal L (o wglws]

positionsgx~(2n+1)w/2 give rise to the intensity in the |t exhibits two edge singularities ab=w, and w=wy+w,

middle of the spectrum, where the frequency change in spacgng splitting between the singularities equals a [Fig.

is the largest. _ 2(a)]. The intensity of the singularities here comes from the
The diffusion-induced decay of the spectrum is frequencyyclej at the positions corresponding to the extrema of the

dependent; i.e., different parts are affected by the dlffusmrbog(qx) term (qx=n/2), whereas the nuclei afx~(2n

motion to a different extent. In Fig. () we show the 4 1)7/4 contribute to the intensity in the middle of the spec-

frequency-dependent diffusion constant trum.

5 The true diffusion constant is again measured in the cen-
w—w
3

, (25) ter (w=wpt+w,/2) of the spectrum whereDy=D. The

diffusion-induced damping decreases on going away from
where the sub_scripl stands for the linear case. The decay isg:i a():oegtnedr jﬂio‘les{‘;;_azt(g‘f -ﬁ?gerezlggﬁ Igﬁﬁz?ﬁ;e
the strongest in the center' of t_he Spectrumwatw, where same as in the linear case; the resonance frequency does not
the fr_equency-dependent dlff_USlon constant equals to the tru@hange there with space in a short-scale motion.
diffusion constantD, =D. Going away from the centeD,
is getting smaller, reflecting the fact that the frequency
changes with space are smaller when the extrema of the sinu-
soidal modulation wave are approached. Exactly at the edge We have shown for a small-scale diffusion motion in a
singularities, the diffusion-induced damping vanists=0  sinusoidal EFG that simple analytical solutions can be de-
at v=wy*w,) as a consequence of the fact that the gradientived for the time dependence of the spin-echo attenuation.
of the resonance frequency at the extrema is zero. A shorfFhe solutions properly describe the situation where the mo-

(29

DL:D

C. Large-scale diffusion: A numerical solution
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The general problem of Eq30) is somewhat simplified as
the coefficientsa, do not depend on time.

Going into the discrete space, we calculate the values of
Cl) the variableu}1 for n time steps of incrememt andj-space
steps of incremenAy using the initial conditioru?= My.
Here My is the thermal equilibrium magnetization. We find
the recursion relation

Quadratic case

(Ay)?

+(a2)}‘u}‘}.
(32)

n+1__..n n
uj —uj+At (ag);

l Stable and convergent solutions are found when the condi-
-1 0 1 tion |ag(y)At/(Ay)?|<1 is fulfilled.!® The calculation pro-
Ww-Wo ceeds as follows. For every spatial pojnta set ofN time
_— valuesujn has been calculated for the given valuedfq,
andw,. Theu] values are complex due to the complex form
of a,. To mimic the complex phase factor refocusing in a
spin-echo experiment, the absolute valle§| were calcu-
lated. In this way numerical spin-echo attenuation curves
were obtained for every spatial point.

In order to obtain the spin-echo attenuation curves at dif-
ferent parts of the INC spectrum, the space dependence has
been converted into the frequency dependence using Eg.
(11). The spectrum has been cut into 25 portions along the
frequency axis, and the values ff| inside each portion
have been summed up by summing over the infgeXhis
summation has been used to mimic the determination of the
spin-echo decay curves in a real experiment where the spec-
tral intensity is integrated in small frequency intervals over
the spectrum. The integration is used to get the experimental
points less susceptible to the noise. The numerical decay
curves were compared to the exponentfatlecay by fitting
them with an approximate formula

FIG. 2. (a) Inhomogeneous frequency distribution functim)
determining the spectrum shape in the INC phase for the quadratic t3
case.(b) Variation of the frequency-dependent diffusion constant ||\/|+(w,t)|o<exp[ — D 0,0)? 5], (32
Dg over the spectrum for the quadratic case.

Qvhere an effective diffusion constalle; has been intro-

tions extend over a space of at most few percent of th .
modulation wavelength. For such a motion it is permissibleduced' This formula has been shown to be exact for the

to approximate the actual spatial change of the res:onancS(:,m":llI'SCale motioEq. (2.7)]’ Where.Deff:DQ‘ It describes
frequency at each point in space by a linear relation. properly also the short-time behavior for the large-scale mo-

For a large-scale motion, no simple analytical solutiongtion- The variation of the effective diffusion constabDi

exist. A spatial motion is considered to be on a large scal@V?I_rht:i :Iﬂeeitrgfmthlas :&%‘eﬁg eXtr:r(]:(tjed. o i the
when the mean diffusion lengtk,,= 2Dt in the time of . ne p » O “2

. . : numerical calculation have been taken from thél NQR
experiment is not small compared to the modulation wave- measurements in RBNCl,, shown later in the paper. The
lengthA\=27/q. In that case the diffusion-induced echo de- 4 Paper.

cay and the frequency dependence of the effective diffusioi\{alue 2.2¢10" cm * corresponds to a modulation wave-
constant can be studied by numerical methods. ength ofA=2.8 nm. The spectrum widtt,=2000 Hz and

. i ; the true diffusion constant valub=5x10"12 cn?/s have
The generalized diffusion equation been used. The echo attenuation curve has been calculated in
ou U au time increments ofAt=3x10"* s for 1500 points on the
E=a0(y,t) F+a1(y,t) (9—+a2(y,t)u (300  spectrum with a separation in space &§=/1500. The

y y “accuracy” factor Dg?At/(Ay)?~10"2 was small, assuring

has been numerically studied extensivEl\Comparing this good stability and convergence of the calculation. The varia-
equation to Torrey's equatiofEq. (6)], we findu=M_,, tion of the effective diffusion constaflt.; over the spectrum
a,;=0, a,=Dq?, andy=qx is a renormalized space coordi- is shown in Fig. 8). The dotted line represents the true
nate. TheT, term has been omitted. We will find the numeri- value of D. We see that for the above choice of parameters
cal solution for the quadratic case of E§l) wherefrom we D.x shows a close resemblance to the small-scale diffusion
geta,= —iw, cosy. The linear case is treated analogously constantDq [Fig. 2(b)]. The reason for that becomes clear
(a,= —iw4 cosy), and the solution is qualitatively the same. when one calculates the mean diffusion length in the time of



55 DIFFUSIONLIKE MOTION OF THE MODULATION WAVE . .. 12 167

around a certain point. The ¢ o vValue is measured at the
spatial point where the frequency gradient is the largest. In

a) <« the course of experiment, the nuclei have diffused in space

o sk and reached that point in the moment when the echo is
X 05+ ) formed. During the Brownian-like random walk motion, the

a | - \ nuclei visited a part of space where the local gradient was

0 . L ok N smaller than that at the point, where they are spectroscopi-

o
[=4
[3;]
-
o
—_
ol
(=3
o

cally observed. The accumulated diffusion-induced decay is
thus smaller than it would be if the gradient value were con-
stant and equal to the maximum value in the whole space,
visited by the nuclei during the experiment. The experimen-
tally determined diffusion constant thus appears smaller than
the true one. This effect is small in a short-scale motion, but
becomes pronounced in a large-scale motion.

In Fig. 3(c) we show the frequency dependenceéqf; for
a 10 times largerD=5x10"1? cn¥/s, corresponding to
X5=0.99 nm. This is now a considerable fraction of the
wavelength x,/A=0.35. The maximum value of the effec-
tive diffusion constant is here considerably smaller than the
true one D¢ ma/D=0.62, and the total variation is reduced,

D et maXD et min=06-1. The fit with Eq.(32)—showing the ex-
ponentialt® dependence—is good in the beginnifghort-
time) part [Fig. 3(d)]. The time dependence of the decay
curve at later times becomes less strong.

For a still largeD =5x 10! cn/s, we getx,,=3.15 nm,
which is already larger than the wavelengthx,/A=1.1.
Here we gefFig. 3(€)] DefmadD =0.21, and the total varia-

, i o o _ tion DegvmaJDeﬁymmzl.S becomes very small. The fit shows

FIG. 3. Numerical solution of the diffusion equation in a sinu- o, y_ {5\"gecay ‘only in the short-time limit, whereas the nu-
soidal EFG. The variation of the effective diffusion constng merical curve becomes of the dxit} type [linear on the

over the spectrum for the quadratic case and the spin-echo dec%’garithmic scale in Fig. @)] at later times. We see that the

curvesA(t) are shown. The tru® values are indicated by the large-scale motion in a sinusoidal potential averages out the
dotted lines. The decay curvésolid lineg are taken at the position g . P 9
variation of Doy over the spectrum. The measurBg max

on the spectrum whei@ is the largest. They are compared to the -
decay of the form exp-t% (dashed lings (a) Doy for the true value is also much smaller than the trDevalue. The total

diffusion constant valu® =5x10" 13 cm/s and(b) the correspond-  Variation of D over the spectrum serves as a criterion for a
ing decay curve. For this choice of parameters, the diffusive motiorfliSCrimination between the small- and large-scale diffusion.
is of a short-scale type and the decay is well described by the The above consideration of the small- and large-scale dif-
exp{—t3} form. () D for a 10 times largeD value(D=5x10"12  fusion in a sinusoidal EFG applies in exactly the same way
cm?/s) and (d) the corresponding decay curve. The motion is noalso to the diffusion in a sinusoidal magnetic-field gradient.
longer of a short-scale type, resulting in a deviation of the decayA pronounced difference is, however, found in the size of the
from the exg—t% form. The maximumD . value is also consid- measured diffusion constanB. The quantity determining
erably smaller tharD. (e) Do for a 100 times largeD value  the range of measurdd values is the magnitude of change
(D=5%10"** cn/s) and (f) the corresponding decay curve. The of the resonance frequency with space. In NMR one uses
diffusive motion takes place now on a scale large compared to thénear magnetic-field gradients of typical value 100 G/cm.
modulation wavelengthD ¢ shows small variation over the spec- The frequency change per unit length is found for, el_lg_,
trum, and its largest value is much smaller tianThe exg—t3} fit nuclei in this gradient to bey dH/9z) =2.7x 10° Hz/cm or
is good only in the short-time limit, whereas the decay at longerg.27 Hz/nm on the interatomic scale. The diffusion constants
times becomes of a ept} type. in the rangeD~10°-10"8 cn/s can be measured in that
way, where 10° cn/s is a typical order of magnitude found
the experiment, which is typically 1 ms. We ge},=0.31 in liquids. Recently, diffusion constants of the order 10
nm, which is small compared t%=2.8 nm, so that we deal cn?/s have been measured in ultrahigh magnetic-field gradi-
with a small-scale motion. The fit with E¢B2) [Fig. 3b)]is  ents of a superconducting magnet fringe figld.
excellent in the whole time range as expected for small-scale In an inhomogeneous electric-field gradient, the variation
motion. We notice, however, that the larg@si; value, ob-  of the resonance frequency with space is much larger, a di-
tained in the center of the spectrum, is already smaller tharect consequence of the fact that the nuclear electric quadru-
the true value oD, Dg4nm,/D=0.87. The total variation of pole interaction is orders of magnitude stronger than the
D¢ over the spectrum i® o oDt min=14. The fact that magnetic Zeeman interaction. The spectrum width determin-
Dt max IS smaller tharD can be easily understood. The con- ing constantsw; and w, are of the order 10-10F s The
tribution to the spin-echo intensity at a given frequency isSINC modulation wavelength is typically of the order of few
coming from the nuclei, which were at the beginning of thenm. For examplew,;=27x1 kHz and\=2.8 nm result in an
experiment located in a space region of approximateky,  effective gradieniv;q=1.4x10* Hz/nm, which is five orders

Deff/ D

Detf/ D
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of magnitude larger than in the magnetic case. As a conse-
guence, in an inhomogeneous EFG, diffusion constants many
orders of magnitude smallésuch as 10%° cn/s or even 80— o
lower) can be measured than in an inhomogeneous magnetic —, L °
field. N
Another point to mention is that such large spatial fre- § 40~ o °s a)
guency changes can be produced only by an intrinsic EFG of &5 ° o %
ionic and electronic charges. Externally applied inhomoge- § I o,
neous EFG’s, produced, e.g., by a suitable shape of a capaci- ; 0+ Q%%
tor, can not be made so large due to technical limitations. T o
Whereas such an external inhomogeneous EFG could be r | IL ° o
made linear in principle, the shape of the internal EFG is 0 20 30
determined by the structure and symmetry of the lattice. In T [°C]
modulated structures the periodicity of the inhomogeneous
EFG implies that at a certain resonance frequency one is not
observing ionic diffusion at a single point in space, but a N L0 °
diffusion of an ensemble of ions, which are distant in space = °
for an integer periodicity length of the resonance frequency. =X " o b)
The real space appears reduced or “folded” onto one such p o
periodicity length(\/2 in the linear or\/4 in the quadratic 20—
casg. The problem is somewhat similar to that of restricted
diffusion in geometries with barriers. o
In the detection of the diffusive motion via spin-echo de- Q%
cay, one observes the relative motion of the resonant nuclei 0 ' ' '
with respect to the spatially inhomogeneous EFG. It is not %0
possible to discriminate between the motion of a mobile T[ C]
nucleus in a static environment and the motion of the envi-
ronment, detected by a static nucleus.

wy/2

c)
1. COMPARISON TO EXPERIMENT

The diffusionlike motion of the incommensurate modula-
tion wave has been experimentally observed inZrIi€l, by |
CI NQR and in KSeQ, by *K NMR. _40  -20 0 20 40

v-Vo [kHz]

A. **CI NQR in Rb,ZnCl,

The *°Cl NQR spectrum of R}ZnCl, consists of three FIG. 4. (a) **CI(1) NQR frequencyy, as a function of tempera-
lines. The incommensurate effects are most clearly observedre in RgZnCl,. Below T,=29 °C the frequencies of the edge
on the high-frequency line, often referred to as thelQine.  singularities in the spectrum are displayéa). Temperature depen-
In the high-temperature paraelectric phase, th@)Qiuclei ~ dence of the parametes, as determined from the splitting of the
are located on the mirror plane, whereas belbw-29 °C edge singularities(c) 3*CI(1) NQR spectrum of R§ZnCl, in the
they are displaced from that plane in a perpendicular direc!NC phase aif =23 °C.
tion and form an INC modulation wave. Since(Ql nuclei . ) ) )
are located on the modulation wave, they represent the mo&gdition to the decaying behavior, slow beats with a fre-
sensitive probe to monitor the diffusive motion of the wave.duéncy of about 2 kHz. These oscillations could originate

The ¥Cl(1) NQR frequencyw is shown as a function of from _the_ stray field of a superconducting mag_net_ Iocatet_:l in
temperature in Fig. @). Here v, slowly increases when ap- the vicinity of th% NQR apparatus or from the indirect spin-
proachingT, from above. The temperature dependence ofPin mtera_lctloné. This effect is, however, |rr_elevant to our
the positions of the edge singularities in the INC phase reProblem, it can be accounted for by the fit procedure by
flects the quadratic dependence of the absorption frequend{Fing @ modified spin-echo attenuation factor
on cosx). Here one singularity is a continuation of the > 3

. - ) R T 27
paraphase line and the splitting of the singularities is propor- A(27)= exp( — _} exp[ — DQ(wzq)z _]
tional to w,xA%x(T,—T)%, with f~0.35. The quadratic T 3
erendence is a consequence of the mirror plane symthetry X[1—C sirf2(mA;)]. (33
in the paraphase of BBnCl,. The temperature dependence
of the parametemw, is displayed in Fig. %), whereas a HereC is a constarif of the order of 2 andy; is the fre-
35CI(1) NQR spectrum in the INC phase dt=23°C is quency of the slow beats.
shown in Fig. 4c). The experimental echo decay envelopes have been deter-

Spin-echo decay measurements were performed in the vinined from the spectra. At temperatures ab®yethe spec-
cinity of T, using a pulsed NQR technique. The echo enveira were single peaked and the envelopes were determined at
lope as a function of the interpulse spacing timghowed, in  the top of the spectra. In the INC phase the envelopes were
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M [arb. units]
N
S
5
S

. 0 21°C w V-V [ kHz]

21 “s] 34000 2T [ us] 3400 FIG. 6. Variation of the frequency-dependent diffusion constant
Dg over the®>CI(1) NQR spectrum in the INC phase of @nCl,
at T=23 °C. The dashed line is not a theoretical fit, but serves as a
c) 285°C guide for the eye only.
—_ \ The variation of the frequency-dependent diffusion con-
L Trwepeesstusnion | stantDq, over the INC spectrum at=23 °C is shown in Fig.
5 6. The values oD have been extracted using theg values
g 27°C from Fig. 4b) and the wave vector valieclose to T,
5, M q=2.2x10" cm™. We further assumed that, is constant
= over the region close td,. Here D5 shows a pronounced
255°C variation over the spectrum. At the high-frequency singular-
oy . ity its value is found to be vanishingly small,
300 Do=9.8x10"*® cn¥/s. Going towards the middle of the
2t [ us) spectrum, D, increases and reaches a maximum value

Do=2.6x10 * cnf/s close to the low-frequency singular-
ity. Going closer to that singularityp, drops again. The
large total variation ofDg over the spectrunfa factor of
2.6x10°), the smaliness of thB, values, and the eXpt’}

FIG. 5. (8) Temperature dependence of tfREI(1) spin-echo
decay curves in RiEZnCl, below and aboveT,. Below T, the

curves have been obtained at the high-frequency singularity of th ¢
NQR spectrum. Experimental pointsircles are shown together Shape of the spin-echo decay curves demonstrate that the

with the theoretical curvessolid lines, computed from Eq(33). diffusive motion of the INC r_nodulation wave takgs_place on
(b) Theoretical curves frona) with the oscillatory part subtracted. @ scale small compared to its wavelength; i.e., it is a short-
These curves show th'éz and diffusive decay on|y_ The exponen- Scale motion. The Val’iatiOI’l Of the diﬁusion‘induced decay
tial decay of the form exjp-27/T,} far above and below, changes  Over the spectrum resembles that of the pure quadratic case
into a diffusive one of the form exp-Do(w,q)?27%3} in the vi-  [Fig. 2b)]—Dq values are small at the singularities and
cinity of T, . (c) Echo decay curves at the position in the middle of reach a maximum between. The agreement is, however, only
the spectrum. qualitative as the maximum does not appear in the middle of
the spectrum, but is shifted away towards one singularity.
determined selectively in small stefigpically 25 over the  One of the reasons for that discrepancy is the omission of the
whole spectrum. The decay curves of the paraphase ardgher-order even terms in the expansion of Eg). For
those obtained at the high-frequency singularity of the INCinstance, the inclusion of the, cog(qx) term shifts the po-
spectrum are shown as a function of temperature in Fa. 5 sition of the maximum frequency change in spéite con-
Solid lines represent the fits with E(83). In Fig. 5b) only  dition (6%/9x%) w(x) =0] away from the center of the spec-
the fits are displayed with the oscillatory part subtracted. Irtrum (qx=m/4) towards one edge singularity to a position
Fig. 5(c) the curves at the position in the middle of the spec-determined by the solution of the equation
trum are shown. It is observed that far abdyethe decay is  cos(x) =—[w,/(w,+wy)]cos(4x). The inclusion of
well described by thd', term only. This demonstrates that higher-order terms increases that shift even more, and con-
molecular motions of the diffusive type are not dominantsequently the largedd, value is obtained somewhere be-
there.T, has been determined to be 788. In the vicinity of  tween the center of the spectrum and the singularity. The
T, a strong exponential® damping is observed, indicating second reason is a limited validity of the local
that the diffusive type of molecular motion is now dominant. approximatior®. In a more elaborate approach, one should
Deep in the INC phase, the spin-echo decay is once morieat the frequency-space relation of Etjl) in terms of the
described by th& , term only, yielding the same value &  nonlocal modef° The local model is strictly valid only when
as aboveT, . the wavelength of the modulation wave is large as compared
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rity pinning strength. Such a motion is described by a diffu-
sion constanD =12/, wherel is the elementary step of
the random walk anety is the transition time per step, which
is taken as thermally activated, = ™D, exdU(A)/kgT]. The
elementary sted is connected to the impurity density
n(W) asl(W)xn(W) Y3 where it is considered that de-
pends on the impurity pinning strengdfti. For simplicity, we
assume than(W) can be written in the fornrm(W)=bwW~”
and calculate the average diffusion constant as

(7 PW)
D—fon(W) ™

where \=vB(1—+/3). According to Eq.(34), D behaves
critically aroundT, and rapidly decreases on lowering the

dWee(T,—T) %, (34

FIG. 7. Temperature dependence of the true diffusion constardemperature, as observed also experimentally. Deep inside

D close toT, in Rb,ZnCl,. HereD behaves critically in the vicinity

of T, and the fit with Eq.(34) (dotted ling yields the exponent

A=1.31.

the INC phase, diffusional effects become insignificant. The-
oretical curve in Fig. 7 has been calculated with E2f),
and the fit yielded the exponert=1.31.

The present study reports to the author’'s knowledge the

with the radius of the region where the dominant contribu-first determination of the diffusion constant by the zero-field
tion to the EFG at a given lattice site is coming from. ThisNQR technique.

long-wavelength restriction is lifted in the more realistic

nonlocal model.

Since the diffusive motion of the modulation wave in

Rb,ZnCl, is of a short-scale type, the maximum valueDyf

B. 3%k NMR in K ,SeQ,
K,SeQ, undergoes a transition to an INC phase at

equals a good approximation to the true diffusion constanT,=128 K. The**k NMR spectrum in the paraphase consists

D. In Fig. 7,D is displayed as a function of temperatube.
is the largest very close b, . At T=28.5 °C, it is equal to
D=5.3x10 1 cm?/s. On lowering the temperaturB, drops
continuously in the range I1¢°-10* cnf/s. What is re-

of four lines at a general orientation, whereas for special
orientations(alL Hy, cLHgy) this number is reduced to 2.
Here we are using the same notation for the crystal axes as in
Ref. 24. The experiment has been performed at the orienta-

markable are the extremely lov values, which can be mea- tion al Hy, £c, Hy=60° in a 9-T magneﬁv0(39K):17.732
sured with this technique. These values are six orders dfiHz]. At this orientation the frequency-space relation of Eq.
magnitude smaller than those obtained in the standard NMFKS) is linear. This is evident from Fig.(8) where the posi-
pulsed magnetic-field gradient experiment and also three otions of the K1) and K(2) lines are shown as a function of
ders of magnitude smaller than those obtained in the fringetemperature. In the INC phase edge singularities of the spec-
field measurements. We can calculate the rms diffusionra are observed symmetrically with respect to the paraphase
length x,,= 2Dt during the time of experiment which is line positions. The splitting of the singularities equals to

typically 1 ms(Fig. 5. Close toT, we find, atT=28.5 °C,

2w, Ax(T,—T)#, with 8~0.33. In Fig. §b) the parameter

X4=0.3 nm, which is about 10% of the INC modulation w, is displayed as a function of temperature for th@Hine.
wavelength. Deeper into the INC phagedrops to the value The3% spectrum in the temperature interval 126<K<135

1.33x10 * cm/s at T=21°C, yielding x,,=0.05 nm,

K is shown in Fig. &c).

which is about 2% of the wavelength. This subnanometric Spin-echo decay measurements were performed from
resolution demonstrates the extreme sensitivity of this techT; =128 K down to 113 K. Below that temperaturél and

nigue to the random atomic spatial motions in solids.

K(2) lines start to overlap and a separate analysis of the

The temperature dependence of the diffusion constardiffusion effects on the two lines is no longer possible. The

shows thaD is large in the close vicinity oT, , whereas it

pulse sequence used was the usuat-d80-recho with the

diminishes rapidly on going deeper into the INC phase. Thiphase cycling of the 180 pulgecX) to eliminate the relaxed
result is consistent with the previously reported thermal flucimagnetization. The Cyclops quadrature-error-compensating

tuations of the modulation wave in EnCl, (Refs. 1 and 2
which were observed in a narrow temperature intetval

scheme has been superimposed on the phase cycle. Spin-
echo decay envelopes were determined in a frequency-

~0.4 K just belowT, . Such a behavior can be explained by selective manner in small steps over the entikespectrum.
considering the diffusive motion of the INC modulation A typical decay curve al=125 K is displayed in Fig. 9. It
wave to originate from a thermal depinning of the wave atis clearly evident that the decay is of the diffusional xp’}

the impurity pinning centers. In the strong pinning lifit,

type. The solid line represents the fit with Eg83), whereas

the random-walk-type motion of the modulation wave can behe dotted line shows a comparison to the puiredecay,

considered as activated over a bafiéf U(A)=2WA".
Here we made the conjecture thafA) depends on theth
power of the amplitudé\o(T,—T)# of the INC modulation

obtained by settind> =0 in Eq. (23). It is seen that thd,
term only cannot reproduce the decay curve. Theonstant
has been determined at several temperatures above and be-

wave andW is a coupling constant characterizing the impu-low T, . Its values have been found in the range 56—60 ms.
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FIG. 8. () Temperature dependence of i NMR frequencies in KSeQ, [1,(3%)=17.732 MHz,alL H,, £c, Hy=60°]. Below
T,=128 K, the frequencies of the edge singularities of two physically inequivaléht &d K(2) lines are displayed(b) Temperature
dependence of the parametey for the K(2) line as determined from the splitting of the edge singularities in the INC pk@s€K NMR
spectrum at the above orientation in the temperature interval X0K135 K.

For the determination of the diffusion constant, we used a
fixed predetermined valu€,=58 ms throughout the whole
temperature range.

It is interesting to compare the time scales of {ft€ T, in
K,SeQ, and the®*Cl T, in Rb,ZnCl, discussed in the previ-
ous sectionT, imposes a limitation on the size of the diffu-
sion constant, which can be observed in the spin-echo decay
measurement. Th&€CI T, amounts to 78(us, whereas the
3% T, is 58 ms. The much longéF, in the 3K case makes
it possible to trace the diffusion-induced decay longer in time =
so that much smaller diffusion constants already produce
measurable damping effects on the echo decay cifte.

units ]

[arb

NMR measurements in §6eQ, are thus more sensitive to 0 40 80 120 160

the diffusion motion for about two orders of magnitude than 21 [ms]

those of*®CI NQR in Rb,ZnCl,. One of the reasons for the

long 3% T, (narrow homogeneous line widtlis a small FIG. 9. ®¥(2) spin-echo decay curve in&eQ, at T=125 K

magnetic dip.ole.moment ofK nuclei which reduce_s the  obtained in the middle of the () line. The solid line represents the
dipolar contribution to the homogeneous broadening. Theit with Eq. (23), characteristic for the presence of diffusion. The
3% homogeneous linewidth in SeQ is extremely narrow pureT, decay fit(dotted ling is shown for comparison.
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FIG. 11. Temperature dependence of the true diffusion constant
D below T,=128 K in K;SeQ,. The dotted line represents the fit
with Eq. (34), yielding A\=0.52+0.03.
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I~
I

The exponential form of the spin-echo decay with the
exponent proportional to the cube of time and the variation
of the frequency-dependent diffusion constant over the spec-
trum indicate that the detected motion is of a diffusional
character in a sinusoidal potential. The extremely small true
diffusion constant values in the range 1 cné/s indicate,
however, that it is no longer appropriate to speak in terms of
translational diffusion of the modulation wave. What is in
fact observed are slow random EFG tensor fluctuations at the
3K lattice sites with sub-kHz frequencies which appear on
[full width at half maximum(FWHM) Av,;,=1/7T,~5 Hz],  the spatial scale comparable or smaller than the interatomic
whereas it is considerably broadékyr,,~410 H2 in the distances. These random walk fluctuations originate from
35CI NQR case in RZnCl,. both the thermal motion of the modulation wave and the

The variation of the frequency-dependent diffusion con-thermal motion of the rest of the lattice ions which contribute
stantD, over the spectrum is shown in Fig. 10. For theto the EFG at thé*K sites.
determination of D, , the wave vectorq=(3—)c*
~2.7x10" cm ! close toT, has been used. The agreement
with the theoretical prediction of Eg25) (solid lines in Fig.
10) is excellent.D, is the largest in the middle of the INC Slow random-walk-type maotion of the modulation wave
spectrum and falls off towards the singularities as predictedéh structurally incommensurate systems represents a collec-
for a short-scale diffusion motion. For the(X line D| ,ox  tive atomic self-diffusion in solids. The diffusion constdmnt
amounts to 1.510 18 cn?/s atT,=128 K [Fig. 10@] and  for the thermally induced modulation wave motion can be
the total variation over the spectrumiy ,/D_ nin=4. By  determined using a technique based on NMR and NQR in an
lowering the temperature this variation increases andnhomogeneous electric-field gradient which varies sinusoi-
amounts to a factor of 7.fig. 10b)] at T=125 K. Such an dally with space. The diffusion motion is detected via the
increase is consistent with the decrease of the true diffusionhanges of the quadrupole perturbed NMR or pure quadru-
constant on going away froff, into the INC phase, as dem- pole NQR resonance frequencies of a nucleus which moves
onstrated in Fig. 3. The true diffusion constahthas been relatively to the spatially inhomogeneous electric-field gradi-
determined from the maximum of the frequency-dependenént, produced by the lattice ions and electrons. The technique
diffusion constanD, at each temperatur® is displayed as is capable of measuring extremely low diffusion constants
a function of temperature in Fig. 11. In the vicinity ©f, D such as 10'° cn?/s or even lower, so that the spatial motion
behaves critically in a similar way as in RnCl,. The fit  is observed on the nanometric scale. The method is superior
with Eq. (34) yields the exponent=0.52+0.03. The values to the standard NMR technique in a pulsed-linear-magnetic-
of D are, however, much smaller than in ZbCl,. One of field gradient where diffusion constants smaller than 10
the reasons is the fact that the INC phase occurs,BeK) at  cn/s or atomic displacements smaller than 100 nm are not
a much lower temperatur€l, =128 K) than in RBzZnCl, easily detected. Thermally induced modulation wave motion
(T,=302 K). The thermally induced motional mechanism— in structurally incommensurate systems, on the other hand,
which requires the exchange of thermal energy with thdakes place on a much smaller scale and cannot be detected
lattice—is much less efficient at these low temperatures. with the standard NMR technique. In the method presented

V-Vo[kHZ]

FIG. 10. Variation of the frequency-dependent diffusion con-
stantD, over the®%K spectrum in KSeQ, at T=128 K (a) and
T=125 K. (b) Solid lines represent fits with E§25).

IV. CONCLUSIONS
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here, the resonance frequency variation with space originates *

from the electrostatic coupling of the nuclear electric quad- M, (p,w)=€? > a,ed"? (A1)
rupole moments with the local electric-field gradients, which n=-=

is orders of magnitude larger than the variation produced by

the magnetic coupling of nuclear magnetic dipole momentavith the unknowns,, ands. A three-term recursion formula
with the external magnetic-field gradients. This large spatialelates the parameteas ands to the parameters, andh, .
variation makes the slow collective atomic self-diffusion in The infinite series generally does not converge.

solids observable and represents currently the most sensitive When the coordinatep is a periodic one, returning on
method for such studies. The technique is generally appliitself as¢ is increased by 2 (as in our casg the solutions
cable to the study of the modulated superstructure motionare also periodic and are called Mathieu functions. Four
like the modulation wave motion in structurally incommen- types of solutions exist: (i) even solutions of periodr,
surate insulators and charge-density-wave and spin-densitg=€ven integer2m,

wave systems as well as the motion of the vortex flux lines in

type-ll superconductors. It should be noted that the appear- o

ance of the exponentiaf echo decay in a spatially inhomo- [M.(,0)]e, = 2 Bancog2n¢); (A23)
geneous EFG is not restricted to the modulated structures n=0

only, but can be found rather generally in quadrupolar sys-

tems with inhomogeneously broadened absorption lines. IGi) even solutions of period72 s=odd integer2m+1,
modulated systems, however, a well-defined resonance

frequency-space relation exists, so that the intrinsic fre- o

quency gradient is known and the diffusion constant can be [Mi(¢@)]le, ., =2 Baniic0og2n+1)¢; (AZb)
extracted from the spin-echo decay. This frequency gradient amtl =0

is not known in a general inhomogeneously broadened qua-

drupolar system so th@ cannot be determined. Modulated (jii) odd solutions of periodr, s=even integer2m,
structures are thus favored in this sense.
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APPENDIX
The coefficient8 depend on the valuds, , h, , m, andn.

A general solution of Mathieu’s equatiditg. (9b)] can  Recursion formulas relating these quantities exist. The cal-
be written in the form of an infinite seriés: culation ofB’s is, however, a rather lengthy calculation.
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