
PHYSICAL REVIEW B 1 MAY 1997-IIVOLUME 55, NUMBER 18
Diffusionlike motion of the modulation wave in incommensurate solids
studied by NMR and NQR in a sinusoidal-electric-field gradient
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Slow random-walk-type motion of the modulation wave in structurally incommensurate systems represents
a collective atomic self-diffusion in solids. The diffusion constantD for the thermally induced modulation
wave motion has been determined using a technique based on NMR and nuclear quadrupole resonance~NQR!
in an inhomogeneous electric-field gradient which varies sinusoidally with space. This technique is generally
applicable to solids with a modulated superstructure. It is capable of measuring extremely lowD values such
as 10215 cm2/s, so that spatial motion is observed on a nanometric scale. The diffusive motion is discussed
analytically on a scale small compared to the wavelength of the modulation wave, whereas large-scale diffu-
sion is treated numerically. For small-scale motion, spin-echo decay curves in a NMR/NQR experiment show
an exponential decay with the exponent proportional to the cube of time and the decay strongly varies over the
incommensurate spectrum. For large-scale motion, the spin-echo decay is less strong and the variation over the
spectrum vanishes. The diffusion constant has been determined experimentally in Rb2ZnCl4 by

35Cl NQR and
in K2SeO4 by

39K NMR. In both cases,D behaves critically in the vicinity of the para-to-incommensurate
transition and rapidly decreases on going deeper into the incommensurate phase. This can be explained by the
mechanism of thermally induced depinning of the modulation wave at the impurity pinning centers.
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I. INTRODUCTION

Slow collective self-diffusion of atomic ensembles in so
ids with modulated structures has recently become a sub
of intense research. Examples are the modulation wave
tion in structurally incommensurate1–4 ~INC! and charge-
density-wave~CDW! systems5 and the superlattice motion i
quantum flux lattices. These systems are characterized b
existence of a superstructure, the periodicity of which is g
erally incommensurately related to that of the underlying
tice; i.e., one periodicity is not a multiple of the other.

The dynamics of the superstructures is one of the o
questions in condensed matter physics. Elementary ex
tions of the frozen-in modulation wave in structurally IN
and CDW systems are harmonic oscillations6 of the ampli-
tude ~amplitudon mode! and phase~phason mode! around
the time-average values. Whereas the amplitude fluctuat
are always small—except in the close vicinity of the pa
INC transition temperatureTI—the phase fluctuations can b
quite large. The theory of an ideal defect-free INC pha
predicts the existence of a low-frequency translational p
son mode ~Goldstone mode!, which moves frictionless
throughout the crystal and induces transport phenomena
as superfluidity and superconductivity. These phenom
were in reality not observed in INC systems as the disc
lattice effects and impurities in real structures pin the mo
lation wave and restrict its translational degrees of freed
The random spatial distribution of pinning centers and r
dom pinning strength destroy the harmonic character of
thermally induced motion of the free modulation wave. T
wave can overcome the pinning potential and stay loc
550163-1829/97/55~18!/12161~14!/$10.00
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depinned for a certain time by borrowing the thermal ene
from the lattice, whereas it becomes pinned again after
energy is emitted back. Since thermal depinning is a rand
stochastic process, the resulting modulation wave motio
of a random-diffusion-like character. Similar depinning e
fects can be produced also by external forces like an ac e
tric field in CDW systems.

Thermal fluctuations of the modulation wave in the clo
vicinity of TI have been reported recently in the INC phas
of Rb2ZnCl4 ~Refs. 1 and 2! and K2SeO4 ~Ref. 2! in NMR
line shape and spin lattice relaxation studies. Here we pre
evidence that the thermally induced modulation wave mot
in INC systems is of a diffusional character. The diffusio
coefficient D for the collective self-diffusion motion ha
been determined in a broad temperature interval. The va
of D were found to be many orders of magnitude sma
from those characteristic for liquids. The smallness of th
coefficients indicates that the effective diffusing particl
have a large effective mass and can be associated with
ensembles of atoms lying on the modulation wave betw
pinning centers.

We present a method for the determination of extrem
low diffusion coefficients which is based on the high-fie
NMR and zero-field nuclear quadrupole resonance~NQR!
techniques in a spatially inhomogeneous electric-field gra
ent ~EFG!. The spatially inhomogeneous EFG is an intrins
feature of a solid system without a perfect translational p
odicity. It is produced by the displacements of electrica
charged ions from their positions in a perfect lattice as
result of the presence of impurities or the existence o
modulated superstructure. The necessary condition for
12 161 © 1997 The American Physical Society
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12 162 55G. PAPAVASSILIOUet al.
diffusion coefficient determination is a known spatial var
tion of the intrinsic inhomogeneous EFG, the situation wh
is found in modulated structures only. The use of the intr
sic EFG makes the method easily applicable in practice.
method is capable of measuring coefficientsD as small as
10216 cm2/s and is under the above conditions superior to
standard method of high-field NMR in a linear magnet
field gradient. A short account of a part of the theory p
sented here has been published in a recent Letter.3

II. DIFFUSION IN A SPATIALLY INHOMOGENEOUS
ELECTRIC-FIELD GRADIENT

The standard method for the observation of diffusio
effects in liquids and solids is the high-field NMR techniq
in the presence of a spatial magnetic-field gradient. The
cay of the transverse magnetization is measured in the p
ence of a steady7 or pulse8 gradient. In case of a stead
gradient, the spin-echo attenuation at time 2t ~t is the spac-
ing between the rf pulses in a two-pulse experiment! is given
by

M ~2t!

M0
5expH 2

2t

T2
J expH 2DS g

]H

]z D 2 2t3

3 J . ~1!

HereT2 represents the transverse~spin-spin! relaxation time,
g the gyromagnetic ratio, and]H/]z the linear magnetic-
field gradient, assumed to have cylindrical symmetry arou
the z axis. The diffusion-induced damping is exponent
with the exponent proportional to the cube of time.

The basic idea of detecting diffusional motions uses
fact that the nuclear resonance frequency varies in space
controlled way; i.e., there exists a well-defined frequen
space relation. In case of a linear magnetic-field gradi
this relation takes a linear form

v~z!5v01S g
]H

]z D z ~2!

and every point in space along thez axis has a uniquely
defined resonance frequency. The motion of molecules
space is observed via the changes of their resonance freq
cies during the time of experiment.

The frequency-space relation in the above case is a
sequence of a magnetic coupling between the nuclear m
netic dipole moments and the space-varying magnetic fi
An analogous frequency-space relation can be obtained f
the electrostatic coupling of nuclear electric quadrupole m
ments of nuclei with spinsI.1/2 to the spatially varying
electric-field gradients. If the EFG variation in space
known, one can determine the frequency-space relation
the quadrupole-perturbed Zeeman frequency~in high-field
NMR! or pure quadrupole frequency~in zero-field NQR!.
The diffusional motion can be than observed in a similar w
as in the magnetic case by measuring the quadrupole
decay as a function of time. Here it is worth mentioning th
the diffusion constant determination in a spatially varyi
EFG is possible also in the zero-field NQR technique and
only in the high-field NMR, as in the case of a spatia
varying magnetic field.

In solids the frequency-space relation originates from
electrostatic interaction between the nuclei and the neigh
-
h
-
e

e
-
-

l

e-
s-

d
l

e
a
-
t,

in
en-

n-
g-
d.
m
-

or

y
ho
t

ot

e
r-

ing ions and is thus an intrinsic feature of a solid system. T
necessary condition for the diffusion constant determinat
is a known spatial variation of the intrinsic EFG. Such
situation is generally seldom found. In perfect lattices t
EFG repeats exactly at each physically equivalent site in
periodic unit cells and does not depend on space. Impur
destroy locally the translational periodicity and impose
spatial variation on the EFG. Due to the random spatial d
tribution of impurities, the variation of the EFG is also sp
tially random and a defined relation between space and r
nance frequency cannot be derived. The same situatio
encountered in solids with a glassy type of disorder.

There exists, however, a class of solids in which a we
defined frequency-space relation exists. These are the
tems with a modulated structure like structurally INC sy
tems. There, some local atomic property~e.g., atomic
positions in the unit cell! is modulated in space in a sinu
soidal manner and forms the modulation wave, the wa
length of which is usually large compared to the hig
temperature unit cell length. A one-dimensional wave
atomic displacements can be described in the continuum
proximation by a displacement field9 u:

u~x,t !5A~ t !cosw~x,t !. ~3!

The wave is characterized by the amplitudeA and the phase
w, which in the plane wave regime9 varies in the directionx
of the wave propagation asw5qx. Hereq is the wave vector
of the modulation wave. BothA andw undergo thermal fluc-
tuations in timet.

The EFG tensor at a given lattice site reflects the dis
bution of surrounding ionic and electronic electric charg
In the modulated phase the atomic displacements from
paraelectric positions affect the EFG tensor elementsVi j and
change their paraphase values. The changes are, how
small, and each element can be expanded in powers of
displacementsu. In the local approximation,9 Vi j depends on
the displacementu(x) at the positionx only. This approxi-
mation is valid in the long-wavelength limit where the co
tribution to the EFG at a particular lattice site is coming fro
charges in a region of dimension small compared to the
tance where the modulation displacementu(x) changes ap-
preciably. In that case we can write

Vi j ~x!5Vi j
01S ]Vi j

]u Du1
1

2 S ]2Vi j

]u2 Du21••• , ~4!

whereV i j
0 is the paraphase value. The quadrupole-pertur

NMR and pure quadrupole NQR frequencies can be writ
as a linear combination of the EFG tensor elements. Us
Eqs.~3! and~4!, we can write the resonance frequency in t
form9

v~x!5v01v1cos~qx!1v2cos
2~qx!1v3cos

3~qx!1••• .
~5!

This equation represents a frequency-space relation in m
lated structures and is basic for the observation of diffusio
motions in a spatially inhomogeneous EFG. In contrast to
linear magnetic-field gradients, the space labeling is here
unique due to the periodicity ofv(x). Since the displace-
mentsu are small, the series of Eq.~5! converges rapidly and
the leading behavior is given by the lowest-order terms. U
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55 12 163DIFFUSIONLIKE MOTION OF THE MODULATION WAVE . . .
less forbidden by symmetry, this is the linear term. The c
where the odd powers of cos(qx) are forbidden is found,
e.g., in pure NQR of theA2BX4 family crystals~Rb2ZnCl4,
Rb2ZnBr4, . . .! because of the paraphase mirror pla
symmetry.10 The leading behavior is there given by the qu
dratic term. In high-field NMR the linear or quadratic depe
dence is determined by the orientation of the crystal in
magnetic field, i.e., by the relative orientation of the EF
tensor eigenframe with respect to the external magnetic fi
The symmetry of the EFG tensor elements in the EFG eig
frame, which determine theVzz element in the laboratory
frame, determine the linear, quadratic, or mixed line
quadratic dependence of the resonance frequency.

We calculate now the quadrupolar spin-echo attenua
in an inhomogeneous EFG in the presence of diffusion.
use the classical description of NMR with the followin
Bloch-like ~Torrey! equation11 for the transverse
M15Mx1 iM y magnetization in the frame rotating with th
frequencyv0 around thez axis:

]M1

]t
52 i @v~x!2v0#M12

M1

T2
1D¹2M1 . ~6!

The same equation follows from the semiclassical desc
tion of NQR.12 The solution depends on the particular for
of v(x) and is generally different for the cases when line
or quadratic terms dominate the expansion of Eq.~5!. We
will first look for the exact solution of the problem.

A. Exact solution

The diffusional Bloch equation in a sinusoidal EFG c
be mathematically solved exactly. We will consider sep
rately the cases of linear and quadratic frequency-space
tions.

1. Linear case

The frequency-space relation in the linear case takes
form

v~x!5v01v1cos~qx!. ~7!

We seek the solutionM1(x,t) in the form

M1~x,t !5(
v

M1~x,v!e2 ivt ~8!

and get the equation forM1(x,v):

D
]2

]x2
M1~x,v!1H i @v2v1cos~qx!#2

1

T2
JM1~x,v!50.

~9a!

Introducing a new variablef5qx/2, we can rewrite this
equation in the form ofMathieu’s equation:13

]2

]f2 M1~f,v!1~bL2hL
2cos2f!M1~f,v!50, ~9b!

with

bL5
4

q2D F i ~v1v1!2
1

T2
G ~10a!
e

-
-
e

d.
n-

-

n
e

-

r

-
la-

he

and

hL
25

i8v1

q2D
. ~10b!

Here the subscriptL indicates the linear case. Mathieu
equation represents a mathematically exactly solvable p
lem. The solutions for the case wheref is a periodic variable
are calledMathieu functionsand represent infinite series o
sine and cosine terms which generally do not converge.
Mathieu functions are shown in the Appendix.

2. Quadratic case

The frequency-space relation here takes the form

v~x!5v01v2cos
2~qx!. ~11!

We again seek the solution forM1(x,t) in the form of Eq.
~8!. Introducing a new variablec5qx, we get the following
equation forM1~c,v!:

]2

]c2 M1~c,v!1~bQ2hQ
2 cos2c!M1~c,v!50, ~12!

with

bQ5
1

q2D S iv2
1

T2
D , ~13a!

hQ
2 5

iv2

q2D
. ~13b!

This is again Mathieu’s equation with the solutions in t
form of Mathieu functions.

B. Solution for a short-spatial-scale diffusion

The problem of diffusion in a sinusoidal EFG is mat
ematically exactly solvable, but the solutions in the form
Mathieu functions do not converge and the calculation
coefficientsB ~see the Appendix! is also complicated. There
is thus little hope that the experimental data could be pr
erly analyzed with the exact solutions in an analytical way
simplification of the problem can be made by considering
diffusion on a spatial scale short compared to the wavelen
of the modulation wave. In the context of INC structure
this is not an oversimplification of the problem as there e
ists a lot of evidence that the modulation wave has restric
translational degrees of freedom and undergoes thermal
tuations in space only on a scale short compared to its wa
length. Clear evidence is the INC broadened inhomogene
NMR and NQR line shapes, which—except very close
TI—show the shape of a quasistatic modulation wave.2,9 If
large-scale fluctuations exist, they are slow on the time sc
of NMR spin lattice~MHz! and line shape~kHz! techniques
and have not been experimentally observed so far.

For a short-scale motion we make a Taylor series exp
sion of the space-dependent frequencyv(x) of Eq. ~5!
around a certain point in spacex0 and keep the lowest-orde
terms only. Both problems of diffusion in a linear7 and
parabolic14,15 potential have been solved exactly.

The frequencyv(x) is expanded in Taylor series around
general pointx0 as
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12 164 55G. PAPAVASSILIOUet al.
v~x!5v~x0!1v8~x2x0!1 1
2v9~x2x0!

2, ~14!

where the derivativesv85(]v/]x)x0 andv95(]2v/]x2)x0
are taken at the pointx0. We find the solution of Eq.~6! for
M1(x,t) in the vicinity of x0 as

14

M1~x,t !5M1~x,0!expH 2F tT2 1h~ t !G2 i Fv~x0!t

1~x2x0!S v81
~x2x0!v9

2 DX~ t !G J , ~15!

with

h~ t !5
1

2
ln$cos@~12 i !at#%

1
1

2
i

v82

v9 H 11 i

2a
tan@~12 i !at#2tJ , ~16a!

X~ t !5
11 i

2a
tan@~12 i !at#, ~16b!

and

a5ADv9. ~16c!

We can get a simple physical insight into the solutions
considering the limiting caseat,1. This condition states tha
eitherv9 is small or the expressions describe the short-ti
behavior of the transverse magnetization only whenv9 is
large. In this limit we get

X~ t !'t2
2i

3
Dv9t3, ~17a!

h~ t !5 1
3Dv82t3, ~17b!

yielding the following expression forM1(x,t):

M1~x,t !5M1~x,0!expH 2
t

T2
J expH 2

1

3
DFv8212v9

3S v8~x2x0!1
1

2
v9~x2x0!

2D G t3J
3exp$2 iv~x!t%. ~18!

We find now the spin-echo attenuation in a two-pulse
quence with the pulse separationt. At time t52t, the phase
factor refocuses and we get the echo amplitude attenua
factorA(x,2t)5M1(x,2t)/M1(x,0) as

A~x,2t!5expH 2
2t

T2
J expH 2D~¹v!2

2t3

3 J , ~19!

where ~¹v!2 represents the square effective gradient at
positionx:

~¹v!25v8212v9@v8~x2x0!1 1
2v9~x2x0!

2#. ~20!

Equation~19! shows an exponential diffusive decay with th
exponent proportional to the cube of time.

In the diffusion on a short scale, we can approximate
effective gradient at each point of the modulation wave
y

e

-

on

e

e
y

the linear term¹v'v8. This approximation enables us t
obtain the variation of the echo attenuation at any pointx of
the modulation wave as

A~x,2t!5expH 2
2t

T2
J expH 2Dv82

2t3

3 J . ~21!

Here the dependence onx arises from the spatial dependen
of the derivativev85v8(x). Equation ~21! is completely
analogous to the case of a linear magnetic-field gradient@Eq.
~1!#. This is not surprising as we have approximated the
tual gradient ofv(x) at each point by a linear one. Th
exponentialt3 decay is a consequence of this linear appro
mation. It is valid for arbitrary longt as long as the diffusive
motion takes place on a scale short enough that the lin
approximation is reasonable. For a larger-scale motion i
nonlinear gradient, full expressions ofh(t) andX(t) @Eqs.
~16a! and~16b!# no longer yield the exponentialt3 decay for
long t. The short-time part of the decay is, however, s
properly described by this form as for smallt the diffusion
distances are still small and the motion is effectively of
short-scale type. The deviation from the exponentialt3 de-
pendence at longt’s provides a way to discriminate betwee
the short- and large-scale diffusion.

We analyze now separately the cases of linear and q
dratic dependence ofv(x) on the factor cos(qx).

1. Linear case

The derivative of Eq. ~7! is obtained as
v8(x)52v1q sin(qx). We express the factor sin(qx) using
Eq. ~7! as

sin~qx!5A12S v2v0

v1
D 2, ~22!

so that we can convert the spatial dependence into the
quency dependence. The echo attenuationA~v,2t! now be-
comes

A~v,2t!5expH 2
2t

T2
J

3expH 2D~v1q!2F12S v2v0

v1
D 2G 2t3

3 J .
~23!

We consider now the variation of the diffusion-induce
decay over the INC NMR spectrum. The inhomogeneo
frequency distribution functionf ~v!, which determines the
INC spectrum shape, is in the linear case obtained as9

f ~v!5
1

A12@~v2v0!/v1#
2
. ~24!

The spectrum shows two singularities atv5v06v1 @Fig.
1~a!# and the distance between the singularities is 2v1. The
intensity of the singularities comes from the nuclei, which
close to the extrema (qx'np) of the modulation wave,
where the resonance frequency changes slowly. The nucl
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55 12 165DIFFUSIONLIKE MOTION OF THE MODULATION WAVE . . .
positionsqx'(2n11)p/2 give rise to the intensity in the
middle of the spectrum, where the frequency change in sp
is the largest.

The diffusion-induced decay of the spectrum is frequen
dependent; i.e., different parts are affected by the diffus
motion to a different extent. In Fig. 1~b! we show the
frequency-dependent diffusion constant

DL5DF12S v2v0

v1
D 2G , ~25!

where the subscriptL stands for the linear case. The decay
the strongest in the center of the spectrum atv'v0 where
the frequency-dependent diffusion constant equals to the
diffusion constant,DL5D. Going away from the center,DL
is getting smaller, reflecting the fact that the frequen
changes with space are smaller when the extrema of the s
soidal modulation wave are approached. Exactly at the e
singularities, the diffusion-induced damping vanishes~DL50
at v5v06v1! as a consequence of the fact that the grad
of the resonance frequency at the extrema is zero. A sh

FIG. 1. ~a! Inhomogeneous frequency distribution functionf ~v!
determining the spectrum shape in the INC phase for the lin
case.~b! Variation of the frequency-dependent diffusion consta
DL over the spectrum for the linear case.
ce

y
n

ue

y
u-
ge

t
rt-

distance spatial motion cannot be detected at the singular
as there is no frequency change associated with that mo
The true diffusion constantD can be thus in principle ob
tained by measuring the spin-echo decay in the center of
spectrum. It is, however, more accurate to determine exp
mentally the variation ofDL over the whole spectrum an
extractD from Eq.~25!. To evaluate the actualD values, one
needs to know the parametersv1 andq. Thev1 values are
obtained from the splitting of the spectrum’s singularitie
whereas the INC wave vectorq is usually known from x-ray
and neutron scattering.

2. Quadratic case

We get the derivative of Eq. ~11! as
v8(x)522v2q sin(qx)cos(qx). Using Eq.~11!, we convert
the space dependence into the frequency dependence a

sin~qx!cos~qx!5AS v2v0

v2
D S 12

v2v0

v2
D ~26!

and obtain the echo attenuation as

A~v,2t!5expH 2
2t

T2
J expH 2D~v2q!24S v2v0

v2
D

3S 12
v2v0

v2
D 2t3

3 J . ~27!

We define the frequency-dependent diffusion constant for
quadratic case as

DQ5D4S v2v0

v2
D S 12

v2v0

v2
D ~28!

and consider the variation of the diffusion-induced damp
over the NMR-NQR spectrum. The frequency distributi
function determining the shape of the INC spectrum in
quadratic case is given by9

f ~v!5
1

A@~v2v0!/v2#@12~v2v0!/v2#
. ~29!

It exhibits two edge singularities atv5v0 and v5v01v2
and splitting between the singularities equals tov2 @Fig.
2~a!#. The intensity of the singularities here comes from t
nuclei at the positions corresponding to the extrema of
cos2(qx) term (qx5np/2), whereas the nuclei atqx'(2n
11)p/4 contribute to the intensity in the middle of the spe
trum.

The true diffusion constant is again measured in the c
ter ~v5v01v2/2! of the spectrum whereDQ5D. The
diffusion-induced damping decreases on going away fr
the center and vanishes at the edge singularities,DQ50 at
v5v0 andv5v01v2 @Fig. 2~b!#. The reason for that is the
same as in the linear case; the resonance frequency doe
change there with space in a short-scale motion.

C. Large-scale diffusion: A numerical solution

We have shown for a small-scale diffusion motion in
sinusoidal EFG that simple analytical solutions can be
rived for the time dependence of the spin-echo attenuat
The solutions properly describe the situation where the m

ar
t
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12 166 55G. PAPAVASSILIOUet al.
tions extend over a space of at most few percent of
modulation wavelength. For such a motion it is permissi
to approximate the actual spatial change of the resona
frequency at each point in space by a linear relation.

For a large-scale motion, no simple analytical solutio
exist. A spatial motion is considered to be on a large sc
when the mean diffusion lengthxav5A2Dt in the time of
experimentt is not small compared to the modulation wav
lengthl52p/q. In that case the diffusion-induced echo d
cay and the frequency dependence of the effective diffus
constant can be studied by numerical methods.

The generalized diffusion equation

]u

]t
5a0~y,t !

]2u

]y2
1a1~y,t !

]u

]y
1a2~y,t !u ~30!

has been numerically studied extensively.16 Comparing this
equation to Torrey’s equation@Eq. ~6!#, we find u5M1 ,
a150, a05Dq2, andy5qx is a renormalized space coord
nate. TheT2 term has been omitted. We will find the nume
cal solution for the quadratic case of Eq.~11! wherefrom we
geta252 iv2 cos

2 y. The linear case is treated analogous
~a252 iv1 cosy!, and the solution is qualitatively the sam

FIG. 2. ~a! Inhomogeneous frequency distribution functionf ~v!
determining the spectrum shape in the INC phase for the quad
case.~b! Variation of the frequency-dependent diffusion consta
DQ over the spectrum for the quadratic case.
e
e
ce

s
le

-
n

The general problem of Eq.~30! is somewhat simplified as
the coefficientsan do not depend on time.

Going into the discrete space, we calculate the value
the variableu j

n for n time steps of incrementDt and j -space
steps of incrementDy using the initial conditionu j

05M0 .
HereM0 is the thermal equilibrium magnetization. We fin
the recursion relation

uj
n115uj

n1DtF ~a0! j
n

~uj11
n 22uj

n1uj21
n !

~Dy!2
1~a2! j

nuj
nG .

~31!

Stable and convergent solutions are found when the co
tion ua0(y)Dt/(Dy)

2u!1 is fulfilled.16 The calculation pro-
ceeds as follows. For every spatial pointj , a set ofN time
valuesu j

n has been calculated for the given values ofD, q,
andv2. Theu j

n values are complex due to the complex for
of a2. To mimic the complex phase factor refocusing in
spin-echo experiment, the absolute valuesuu j

nu were calcu-
lated. In this way numerical spin-echo attenuation curv
were obtained for every spatial point.

In order to obtain the spin-echo attenuation curves at
ferent parts of the INC spectrum, the space dependence
been converted into the frequency dependence using
~11!. The spectrum has been cut into 25 portions along
frequency axis, and the values ofuu j

nu inside each portion
have been summed up by summing over the indexj . This
summation has been used to mimic the determination of
spin-echo decay curves in a real experiment where the s
tral intensity is integrated in small frequency intervals ov
the spectrum. The integration is used to get the experime
points less susceptible to the noise. The numerical de
curves were compared to the exponentialt3 decay by fitting
them with an approximate formula

uM1~v,t !u}expH 2Deff~v2q!2
t3

3 J , ~32!

where an effective diffusion constantDeff has been intro-
duced. This formula has been shown to be exact for
small-scale motion@Eq. ~27!#, whereDeff5DQ . It describes
properly also the short-time behavior for the large-scale m
tion. The variation of the effective diffusion constantDeff
over the spectrum has been then extracted.

The values of the parameters,D, q, andv2 used in the
numerical calculation have been taken from the35Cl NQR
measurements in Rb2ZnCl4, shown later in the paper. Theq
value 2.23107 cm21 corresponds to a modulation wave
length ofl52.8 nm. The spectrum widthv252000 Hz and
the true diffusion constant valueD55310213 cm2/s have
been used. The echo attenuation curve has been calculat
time increments ofDt53310211 s for 1500 points on the
spectrum with a separation in space ofDy5p/1500. The
‘‘accuracy’’ factorDq2Dt/(Dy)2'1023 was small, assuring
good stability and convergence of the calculation. The va
tion of the effective diffusion constantDeff over the spectrum
is shown in Fig. 3~a!. The dotted line represents the tru
value ofD. We see that for the above choice of paramet
Deff shows a close resemblance to the small-scale diffus
constantDQ @Fig. 2~b!#. The reason for that becomes cle
when one calculates the mean diffusion length in the time
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55 12 167DIFFUSIONLIKE MOTION OF THE MODULATION WAVE . . .
the experiment, which is typically 1 ms. We getxav50.31
nm, which is small compared tol52.8 nm, so that we dea
with a small-scale motion. The fit with Eq.~32! @Fig. 3~b!# is
excellent in the whole time range as expected for small-s
motion. We notice, however, that the largestDeff value, ob-
tained in the center of the spectrum, is already smaller t
the true value ofD, Deff,max/D50.87. The total variation of
Deff over the spectrum isDeff,max/Deff,min514. The fact that
Deff,max is smaller thanD can be easily understood. The co
tribution to the spin-echo intensity at a given frequency
coming from the nuclei, which were at the beginning of t
experiment located in a space region of approximately6xav

FIG. 3. Numerical solution of the diffusion equation in a sin
soidal EFG. The variation of the effective diffusion constantDeff
over the spectrum for the quadratic case and the spin-echo d
curvesA(t) are shown. The trueD values are indicated by th
dotted lines. The decay curves~solid lines! are taken at the position
on the spectrum whereDeff is the largest. They are compared to t
decay of the form exp$2t3% ~dashed lines!. ~a! Deff for the true
diffusion constant valueD55310213 cm2/s and~b! the correspond-
ing decay curve. For this choice of parameters, the diffusive mo
is of a short-scale type and the decay is well described by
exp$2t3% form. ~c! Deff for a 10 times largerD value~D55310212

cm2/s! and ~d! the corresponding decay curve. The motion is
longer of a short-scale type, resulting in a deviation of the de
from the exp$2t3% form. The maximumDeff value is also consid-
erably smaller thanD. ~e! Deff for a 100 times largerD value
~D55310211 cm2/s! and ~f! the corresponding decay curve. Th
diffusive motion takes place now on a scale large compared to
modulation wavelength.Deff shows small variation over the spe
trum, and its largest value is much smaller thanD. The exp$2t3% fit
is good only in the short-time limit, whereas the decay at lon
times becomes of a exp$2t% type.
le

n

s

around a certain point. TheDeff,max value is measured at th
spatial point where the frequency gradient is the largest
the course of experiment, the nuclei have diffused in sp
and reached that point in the moment when the echo
formed. During the Brownian-like random walk motion, th
nuclei visited a part of space where the local gradient w
smaller than that at the point, where they are spectrosc
cally observed. The accumulated diffusion-induced deca
thus smaller than it would be if the gradient value were co
stant and equal to the maximum value in the whole spa
visited by the nuclei during the experiment. The experime
tally determined diffusion constant thus appears smaller t
the true one. This effect is small in a short-scale motion,
becomes pronounced in a large-scale motion.

In Fig. 3~c! we show the frequency dependence ofDeff for
a 10 times largerD55310212 cm2/s, corresponding to
xav50.99 nm. This is now a considerable fraction of t
wavelength,xav/l50.35. The maximum value of the effec
tive diffusion constant is here considerably smaller than
true one,Deff,max/D50.62, and the total variation is reduce
Deff,max/Deff,min56.1. The fit with Eq.~32!—showing the ex-
ponential t3 dependence—is good in the beginning~short-
time! part @Fig. 3~d!#. The time dependence of the deca
curve at later times becomes less strong.

For a still largerD55310211 cm2/s, we getxav53.15 nm,
which is already larger than the wavelengthl, xav/l51.1.
Here we get@Fig. 3~e!# Deff,max/D50.21, and the total varia
tion Deff,max/Deff,min51.8 becomes very small. The fit show
exp$2t3% decay only in the short-time limit, whereas the n
merical curve becomes of the exp$2t% type @linear on the
logarithmic scale in Fig. 3~f!# at later times. We see that th
large-scale motion in a sinusoidal potential averages out
variation ofDeff over the spectrum. The measuredDeff,max
value is also much smaller than the trueD value. The total
variation ofDeff over the spectrum serves as a criterion fo
discrimination between the small- and large-scale diffusio

The above consideration of the small- and large-scale
fusion in a sinusoidal EFG applies in exactly the same w
also to the diffusion in a sinusoidal magnetic-field gradie
A pronounced difference is, however, found in the size of
measured diffusion constantsD. The quantity determining
the range of measuredD values is the magnitude of chang
of the resonance frequency with space. In NMR one u
linear magnetic-field gradients of typical value 100 G/c
The frequency change per unit length is found for, e.g.,1H
nuclei in this gradient to be (g ]H/]z)52.73106 Hz/cm or
0.27 Hz/nm on the interatomic scale. The diffusion consta
in the rangeD'1025–1028 cm2/s can be measured in tha
way, where 1025 cm2/s is a typical order of magnitude foun
in liquids. Recently, diffusion constants of the order 10211

cm2/s have been measured in ultrahigh magnetic-field gra
ents of a superconducting magnet fringe field.17

In an inhomogeneous electric-field gradient, the variat
of the resonance frequency with space is much larger, a
rect consequence of the fact that the nuclear electric qua
pole interaction is orders of magnitude stronger than
magnetic Zeeman interaction. The spectrum width determ
ing constantsv1 andv2 are of the order 104–105 s21. The
INC modulation wavelength is typically of the order of fe
nm. For example,v152p31 kHz andl52.8 nm result in an
effective gradientv1q51.43104 Hz/nm, which is five orders
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12 168 55G. PAPAVASSILIOUet al.
of magnitude larger than in the magnetic case. As a con
quence, in an inhomogeneous EFG, diffusion constants m
orders of magnitude smaller~such as 10215 cm2/s or even
lower! can be measured than in an inhomogeneous magn
field.

Another point to mention is that such large spatial f
quency changes can be produced only by an intrinsic EFG
ionic and electronic charges. Externally applied inhomo
neous EFG’s, produced, e.g., by a suitable shape of a ca
tor, can not be made so large due to technical limitatio
Whereas such an external inhomogeneous EFG could
made linear in principle, the shape of the internal EFG
determined by the structure and symmetry of the lattice
modulated structures the periodicity of the inhomogene
EFG implies that at a certain resonance frequency one is
observing ionic diffusion at a single point in space, bu
diffusion of an ensemble of ions, which are distant in spa
for an integer periodicity length of the resonance frequen
The real space appears reduced or ‘‘folded’’ onto one s
periodicity length~l/2 in the linear orl/4 in the quadratic
case!. The problem is somewhat similar to that of restrict
diffusion in geometries with barriers.

In the detection of the diffusive motion via spin-echo d
cay, one observes the relative motion of the resonant nu
with respect to the spatially inhomogeneous EFG. It is
possible to discriminate between the motion of a mob
nucleus in a static environment and the motion of the en
ronment, detected by a static nucleus.

III. COMPARISON TO EXPERIMENT

The diffusionlike motion of the incommensurate modu
tion wave has been experimentally observed in Rb2ZnCl4 by
35Cl NQR and in K2SeO4 by

39K NMR.

A. 35Cl NQR in Rb2ZnCl4

The 35Cl NQR spectrum of Rb2ZnCl4 consists of three
lines. The incommensurate effects are most clearly obse
on the high-frequency line, often referred to as the Cl~1! line.
In the high-temperature paraelectric phase, the Cl~1! nuclei
are located on the mirror plane, whereas belowTI529 °C
they are displaced from that plane in a perpendicular dir
tion and form an INC modulation wave. Since Cl~1! nuclei
are located on the modulation wave, they represent the m
sensitive probe to monitor the diffusive motion of the wav

The 35Cl~1! NQR frequencynQ is shown as a function o
temperature in Fig. 4~a!. HerenQ slowly increases when ap
proachingTI from above. The temperature dependence
the positions of the edge singularities in the INC phase
flects the quadratic dependence of the absorption freque
on cos(qx). Here one singularity is a continuation of th
paraphase line and the splitting of the singularities is prop
tional to v2}A

2}(TI2T)2b, with b'0.35. The quadratic
dependence is a consequence of the mirror plane symme10

in the paraphase of Rb2ZnCl4. The temperature dependen
of the parameterv2 is displayed in Fig. 4~b!, whereas a
35Cl~1! NQR spectrum in the INC phase atT523 °C is
shown in Fig. 4~c!.

Spin-echo decay measurements were performed in the
cinity of TI using a pulsed NQR technique. The echo en
lope as a function of the interpulse spacing timet showed, in
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addition to the decaying behavior, slow beats with a f
quency of about 2 kHz. These oscillations could origina
from the stray field of a superconducting magnet located
the vicinity of the NQR apparatus or from the indirect spi
spin interactions.18 This effect is, however, irrelevant to ou
problem, it can be accounted for by the fit procedure
using a modified spin-echo attenuation factor

A~2t!5expH 2
2t

T2
J expH 2DQ~v2q!2

2t3

3 J
3@12C sin2~pD it!#. ~33!

HereC is a constant19 of the order of 2 andDi is the fre-
quency of the slow beats.

The experimental echo decay envelopes have been d
mined from the spectra. At temperatures aboveTI , the spec-
tra were single peaked and the envelopes were determin
the top of the spectra. In the INC phase the envelopes w

FIG. 4. ~a! 35Cl~1! NQR frequencynQ as a function of tempera
ture in Rb2ZnCl4. Below TI529 °C the frequencies of the edg
singularities in the spectrum are displayed.~b! Temperature depen
dence of the parameterv2 as determined from the splitting of th
edge singularities.~c! 35Cl~1! NQR spectrum of Rb2ZnCl4 in the
INC phase atT523 °C.
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55 12 169DIFFUSIONLIKE MOTION OF THE MODULATION WAVE . . .
determined selectively in small steps~typically 25! over the
whole spectrum. The decay curves of the paraphase
those obtained at the high-frequency singularity of the IN
spectrum are shown as a function of temperature in Fig. 5~a!.
Solid lines represent the fits with Eq.~33!. In Fig. 5~b! only
the fits are displayed with the oscillatory part subtracted
Fig. 5~c! the curves at the position in the middle of the spe
trum are shown. It is observed that far aboveTI the decay is
well described by theT2 term only. This demonstrates tha
molecular motions of the diffusive type are not domina
there.T2 has been determined to be 780ms. In the vicinity of
TI a strong exponentialt3 damping is observed, indicatin
that the diffusive type of molecular motion is now domina
Deep in the INC phase, the spin-echo decay is once m
described by theT2 term only, yielding the same value ofT2
as aboveTI .

FIG. 5. ~a! Temperature dependence of the35Cl~1! spin-echo
decay curves in Rb2ZnCl4 below and aboveTI . Below TI the
curves have been obtained at the high-frequency singularity of
NQR spectrum. Experimental points~circles! are shown togethe
with the theoretical curves~solid lines!, computed from Eq.~33!.
~b! Theoretical curves from~a! with the oscillatory part subtracted
These curves show theT2 and diffusive decay only. The exponen
tial decay of the form exp$22t/T2% far above and belowTI changes
into a diffusive one of the form exp$2DQ(v2q)

22t3/3% in the vi-
cinity of TI . ~c! Echo decay curves at the position in the middle
the spectrum.
nd

n
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The variation of the frequency-dependent diffusion co
stantDQ over the INC spectrum atT523 °C is shown in Fig.
6. The values ofDQ have been extracted using thev2 values
from Fig. 4~b! and the wave vector value9 close to TI
q52.23107 cm21. We further assumed thatT2 is constant
over the region close toTI . HereDQ shows a pronounced
variation over the spectrum. At the high-frequency singul
ity its value is found to be vanishingly smal
DQ59.8310218 cm2/s. Going towards the middle of th
spectrum,DQ increases and reaches a maximum va
DQ52.6310214 cm2/s close to the low-frequency singula
ity. Going closer to that singularity,DQ drops again. The
large total variation ofDQ over the spectrum~a factor of
2.63103!, the smallness of theDQ values, and the exp$2t3%
shape of the spin-echo decay curves demonstrate tha
diffusive motion of the INC modulation wave takes place
a scale small compared to its wavelength; i.e., it is a sh
scale motion. The variation of the diffusion-induced dec
over the spectrum resembles that of the pure quadratic
@Fig. 2~b!#—DQ values are small at the singularities an
reach a maximum between. The agreement is, however,
qualitative as the maximum does not appear in the middle
the spectrum, but is shifted away towards one singular
One of the reasons for that discrepancy is the omission of
higher-order even terms in the expansion of Eq.~5!. For
instance, the inclusion of thev4 cos

4(qx) term shifts the po-
sition of the maximum frequency change in space@the con-
dition (]2/]x2)v(x)50# away from the center of the spec
trum ~qx5p/4! towards one edge singularity to a positio
determined by the solution of the equatio
cos(2qx)52@v4/~v21v4!#cos(4qx). The inclusion of
higher-order terms increases that shift even more, and c
sequently the largestDQ value is obtained somewhere b
tween the center of the spectrum and the singularity. T
second reason is a limited validity of the loc
approximation.9 In a more elaborate approach, one shou
treat the frequency-space relation of Eq.~11! in terms of the
nonlocal model.20 The local model is strictly valid only when
the wavelength of the modulation wave is large as compa

e

f

FIG. 6. Variation of the frequency-dependent diffusion const
DQ over the35Cl~1! NQR spectrum in the INC phase of Rb2ZnCl4
at T523 °C. The dashed line is not a theoretical fit, but serves a
guide for the eye only.
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12 170 55G. PAPAVASSILIOUet al.
with the radius of the region where the dominant contrib
tion to the EFG at a given lattice site is coming from. Th
long-wavelength restriction is lifted in the more realis
nonlocal model.

Since the diffusive motion of the modulation wave
Rb2ZnCl4 is of a short-scale type, the maximum value ofDQ
equals a good approximation to the true diffusion const
D. In Fig. 7,D is displayed as a function of temperature.D
is the largest very close toTI . At T528.5 °C, it is equal to
D55.3310213 cm2/s. On lowering the temperature,D drops
continuously in the range 10213–10214 cm2/s. What is re-
markable are the extremely lowD values, which can be mea
sured with this technique. These values are six orders
magnitude smaller than those obtained in the standard N
pulsed magnetic-field gradient experiment and also three
ders of magnitude smaller than those obtained in the frin
field measurements. We can calculate the rms diffus
length xav5A2Dt during the time of experiment which i
typically 1 ms~Fig. 5!. Close toTI we find, atT528.5 °C,
xav50.3 nm, which is about 10% of the INC modulatio
wavelength. Deeper into the INC phase,D drops to the value
1.33310214 cm2/s at T521 °C, yielding xav50.05 nm,
which is about 2% of the wavelength. This subnanome
resolution demonstrates the extreme sensitivity of this te
nique to the random atomic spatial motions in solids.

The temperature dependence of the diffusion cons
shows thatD is large in the close vicinity ofTI , whereas it
diminishes rapidly on going deeper into the INC phase. T
result is consistent with the previously reported thermal fl
tuations of the modulation wave in Rb2ZnCl4 ~Refs. 1 and 2!,
which were observed in a narrow temperature intervalDT
'0.4 K just belowTI . Such a behavior can be explained
considering the diffusive motion of the INC modulatio
wave to originate from a thermal depinning of the wave
the impurity pinning centers. In the strong pinning limit,21

the random-walk-type motion of the modulation wave can
considered as activated over a barrier22,23 U(A)52WAn.
Here we made the conjecture thatU(A) depends on thenth
power of the amplitudeA}(TI2T)b of the INC modulation
wave andW is a coupling constant characterizing the imp

FIG. 7. Temperature dependence of the true diffusion cons
D close toTI in Rb2ZnCl4. HereD behaves critically in the vicinity
of TI and the fit with Eq.~34! ~dotted line! yields the exponent
l51.31.
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rity pinning strength. Such a motion is described by a dif
sion constantD5 l 2/tD , where l is the elementary step o
the random walk andtD is the transition time per step, whic
is taken as thermally activated,tD5tD0

exp@U(A)/kBT#. The
elementary stepl is connected to the impurity density22

n(W) as l (W)}n(W)21/3, where it is considered thatn de-
pends on the impurity pinning strengthW. For simplicity, we
assume thatn(W) can be written in the formn(W)5bW2g

and calculate the average diffusion constant as

D5E
0

`

n~W!
l 2~W!

tD
dW}~TI2T!2l, ~34!

where l5nb~12g/3!. According to Eq.~34!, D behaves
critically aroundTI and rapidly decreases on lowering th
temperature, as observed also experimentally. Deep in
the INC phase, diffusional effects become insignificant. T
oretical curve in Fig. 7 has been calculated with Eq.~34!,
and the fit yielded the exponentl51.31.

The present study reports to the author’s knowledge
first determination of the diffusion constant by the zero-fie
NQR technique.

B. 39K NMR in K 2SeO4

K2SeO4 undergoes a transition to an INC phase
TI5128 K. The39K NMR spectrum in the paraphase consis
of four lines24 at a general orientation, whereas for spec
orientations~a'H0 , c'H0! this number is reduced to 2
Here we are using the same notation for the crystal axes a
Ref. 24. The experiment has been performed at the orie
tion a'H0 , /c, H0560° in a 9-T magnet@n0~

39K!517.732
MHz#. At this orientation the frequency-space relation of E
~5! is linear. This is evident from Fig. 8~a! where the posi-
tions of the K~1! and K~2! lines are shown as a function o
temperature. In the INC phase edge singularities of the sp
tra are observed symmetrically with respect to the paraph
line positions. The splitting of the singularities equals
2v1}A}(TI2T)b, with b'0.33. In Fig. 8~b! the parameter
v1 is displayed as a function of temperature for the K~2! line.
The39K spectrum in the temperature interval 120 K<T<135
K is shown in Fig. 8~c!.

Spin-echo decay measurements were performed f
TI5128 K down to 113 K. Below that temperature K~1! and
K~2! lines start to overlap and a separate analysis of
diffusion effects on the two lines is no longer possible. T
pulse sequence used was the usual 90-t-180-t-echo with the
phase cycling of the 180 pulse~6X! to eliminate the relaxed
magnetization. The Cyclops quadrature-error-compensa
scheme has been superimposed on the phase cycle.
echo decay envelopes were determined in a frequen
selective manner in small steps over the entire39K spectrum.
A typical decay curve atT5125 K is displayed in Fig. 9. It
is clearly evident that the decay is of the diffusional exp$2t3%
type. The solid line represents the fit with Eq.~23!, whereas
the dotted line shows a comparison to the pureT2 decay,
obtained by settingD50 in Eq. ~23!. It is seen that theT2
term only cannot reproduce the decay curve. TheT2 constant
has been determined at several temperatures above an
low TI . Its values have been found in the range 56–60

nt
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FIG. 8. ~a! Temperature dependence of the39K NMR frequencies in K2SeO4 @n0~
39K!517.732 MHz,a'H0, /c, H0560°#. Below

TI5128 K, the frequencies of the edge singularities of two physically inequivalent K~1! and K~2! lines are displayed.~b! Temperature
dependence of the parameterv1 for the K~2! line as determined from the splitting of the edge singularities in the INC phase.~c! 39K NMR
spectrum at the above orientation in the temperature interval 120 K<T<135 K.
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For the determination of the diffusion constant, we use
fixed predetermined valueT2558 ms throughout the whole
temperature range.

It is interesting to compare the time scales of the39K T2 in
K2SeO4 and the35Cl T2 in Rb2ZnCl4 discussed in the previ
ous section.T2 imposes a limitation on the size of the diffu
sion constant, which can be observed in the spin-echo de
measurement. The35Cl T2 amounts to 780ms, whereas the
39K T2 is 58 ms. The much longerT2 in the

39K case makes
it possible to trace the diffusion-induced decay longer in ti
so that much smaller diffusion constants already prod
measurable damping effects on the echo decay curve.39K
NMR measurements in K2SeO4 are thus more sensitive t
the diffusion motion for about two orders of magnitude th
those of35Cl NQR in Rb2ZnCl4. One of the reasons for th
long 39K T2 ~narrow homogeneous line width! is a small
magnetic dipole moment of39K nuclei which reduces the
dipolar contribution to the homogeneous broadening. T
39K homogeneous linewidth in K2SeO4 is extremely narrow
a

ay

e
e

e

FIG. 9. 39K~2! spin-echo decay curve in K2SeO4 at T5125 K
obtained in the middle of the K~2! line. The solid line represents the
fit with Eq. ~23!, characteristic for the presence of diffusion. Th
pureT2 decay fit~dotted line! is shown for comparison.
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12 172 55G. PAPAVASSILIOUet al.
@full width at half maximum~FWHM! Dn1/251/pT2'5 Hz#,
whereas it is considerably broader~Dn1/2'410 Hz! in the
35Cl NQR case in Rb2ZnCl4.

The variation of the frequency-dependent diffusion co
stantDL over the spectrum is shown in Fig. 10. For th
determination of DL , the wave vector q5( 132d)c*
'2.73107 cm21 close toTI has been used.

25 The agreement
with the theoretical prediction of Eq.~25! ~solid lines in Fig.
10! is excellent.DL is the largest in the middle of the INC
spectrum and falls off towards the singularities as predict
for a short-scale diffusion motion. For the K~2! line DL,max
amounts to 1.5310218 cm2/s atTI5128 K @Fig. 10~a!# and
the total variation over the spectrum isDL,max/DL,min'4. By
lowering the temperature this variation increases a
amounts to a factor of 7.5@Fig. 10~b!# at T5125 K. Such an
increase is consistent with the decrease of the true diffus
constant on going away fromTI into the INC phase, as dem-
onstrated in Fig. 3. The true diffusion constantD has been
determined from the maximum of the frequency-depende
diffusion constantDL at each temperature.D is displayed as
a function of temperature in Fig. 11. In the vicinity ofTI , D
behaves critically in a similar way as in Rb2ZnCl4. The fit
with Eq. ~34! yields the exponentl50.5260.03. The values
of D are, however, much smaller than in Rb2ZnCl4. One of
the reasons is the fact that the INC phase occurs in K2SeO4 at
a much lower temperature~TI5128 K! than in Rb2ZnCl4
~TI5302 K!. The thermally induced motional mechanism—
which requires the exchange of thermal energy with t
lattice—is much less efficient at these low temperatures.

FIG. 10. Variation of the frequency-dependent diffusion con
stantDL over the39K spectrum in K2SeO4 at T5128 K ~a! and
T5125 K. ~b! Solid lines represent fits with Eq.~25!.
-
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The exponential form of the spin-echo decay with t
exponent proportional to the cube of time and the variat
of the frequency-dependent diffusion constant over the sp
trum indicate that the detected motion is of a diffusion
character in a sinusoidal potential. The extremely small t
diffusion constant values in the range 10218 cm2/s indicate,
however, that it is no longer appropriate to speak in terms
translational diffusion of the modulation wave. What is
fact observed are slow random EFG tensor fluctuations at
39K lattice sites with sub-kHz frequencies which appear
the spatial scale comparable or smaller than the interato
distances. These random walk fluctuations originate fr
both the thermal motion of the modulation wave and t
thermal motion of the rest of the lattice ions which contribu
to the EFG at the39K sites.

IV. CONCLUSIONS

Slow random-walk-type motion of the modulation wav
in structurally incommensurate systems represents a co
tive atomic self-diffusion in solids. The diffusion constantD
for the thermally induced modulation wave motion can
determined using a technique based on NMR and NQR in
inhomogeneous electric-field gradient which varies sinus
dally with space. The diffusion motion is detected via th
changes of the quadrupole perturbed NMR or pure quad
pole NQR resonance frequencies of a nucleus which mo
relatively to the spatially inhomogeneous electric-field gra
ent, produced by the lattice ions and electrons. The techni
is capable of measuring extremely low diffusion consta
such as 10215 cm2/s or even lower, so that the spatial motio
is observed on the nanometric scale. The method is supe
to the standard NMR technique in a pulsed-linear-magne
field gradient where diffusion constants smaller than 1029

cm2/s or atomic displacements smaller than 100 nm are
easily detected. Thermally induced modulation wave mot
in structurally incommensurate systems, on the other ha
takes place on a much smaller scale and cannot be dete
with the standard NMR technique. In the method presen

-

FIG. 11. Temperature dependence of the true diffusion cons
D below TI5128 K in K2SeO4. The dotted line represents the fi
with Eq. ~34!, yielding l50.5260.03.
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here, the resonance frequency variation with space origin
from the electrostatic coupling of the nuclear electric qu
rupole moments with the local electric-field gradients, wh
is orders of magnitude larger than the variation produced
the magnetic coupling of nuclear magnetic dipole mome
with the external magnetic-field gradients. This large spa
variation makes the slow collective atomic self-diffusion
solids observable and represents currently the most sens
method for such studies. The technique is generally ap
cable to the study of the modulated superstructure mot
like the modulation wave motion in structurally incomme
surate insulators and charge-density-wave and spin-den
wave systems as well as the motion of the vortex flux lines
type-II superconductors. It should be noted that the app
ance of the exponentialt3 echo decay in a spatially inhomo
geneous EFG is not restricted to the modulated struct
only, but can be found rather generally in quadrupolar s
tems with inhomogeneously broadened absorption lines
modulated systems, however, a well-defined resona
frequency-space relation exists, so that the intrinsic
quency gradient is known and the diffusion constant can
extracted from the spin-echo decay. This frequency grad
is not known in a general inhomogeneously broadened q
drupolar system so thatD cannot be determined. Modulate
structures are thus favored in this sense.
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APPENDIX

A general solution of Mathieu’s equation@Eq. ~9b!# can
be written in the form of an infinite series:13
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M1~f,v!5eisf (
n52`

`

ane
2inf, ~A1!

with the unknownsan ands. A three-term recursion formula
relates the parametersan ands to the parametersbL andhL .
The infinite series generally does not converge.

When the coordinatef is a periodic one, returning on
itself asf is increased by 2p ~as in our case!, the solutions
are also periodic and are called Mathieu functions. F
types of solutions exist: ~i! even solutions of periodp,
s5even integer52m,

@M1~f,v!#e2m5 (
n50

`

B2ncos~2nf!; ~A2a!

~ii ! even solutions of period 2p, s5odd integer52m11,

@M1~f,v!#e2m11
5 (

n50

`

B2n11cos~2n11!f; ~A2b!

~iii ! odd solutions of periodp, s5even integer52m,

@M1~f,v!#o2m5 (
n51

`

B2nsin~2nf!; ~A2c!

~iv! odd solutions of period 2p, s5odd integer52m11,

@M1~f,v!#o2m11
5 (

n50

`

B2n11sin~2n11!f. ~A2d!

The coefficientsB depend on the valuesbL , hL , m, andn.
Recursion formulas relating these quantities exist. The
culation ofB’s is, however, a rather lengthy calculation.
s
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