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Dissolution of precipitates heated above the solubility line: A Monte Carlo simulation
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The use of precipitate hardened alloys at high temperatures is often limited by the thermal stability of the
precipitates. To improve the understanding of precipitate dissolution after a rapid increase of temperature, we
used computer simulation to study a bindy5 at. %B model alloy. The system consistedAfandB atoms
on a quadratic lattice with nearest-neighbor attractive interactions between like atoms. The dynamics was
provided by a single vacancy moving across the lattice by exchanges with neighboring atoms. The evolution of
the precipitates was studied as a function of time at various temperdatyrestarting from a given initial
configuration, which was prepared by “annealing” a random mixturéd @ndB atoms at a low temperature
inside the miscibility gap of the alloy. Depending on the new temperafijre different processes were
observed. Fol , inside the miscibility gap, the precipitates stayed compact and dissolved partially at first, but
afterwards their average size increased again by a coarsening proce$s.deside the miscibility gap, but
below the critical temperaturg;, the precipitates stayed compact and dissolved completely by evaporation of
atoms from their surfaces. Abovie,, they decomposed rapidly into many smaller particles in a process that
resembles an explosion. A theoretical description of these various processes, based on a phase field model, is
presented[S0163-182607)03018-X]

[. INTRODUCTION phase to form. Then the temperature is raised to a new value
and the behavior of the precipitates is studied.

The kinetics of nucleation and growth of precipitates in  We find that two quite different dissolution mechanisms
alloys has been very extensively studied in recent yé&ars can operate, depending on the final temperature. If the final
both because it is an interesting case of nonequlibrium thetemperature is below the critical temperatlitg the precipi-
modynamics and because it corresponds to a technologicalftes stay compact and dissolve mostly by evaporation at
important process Whereby the hardness of an a”oy may b eir Surfaces, eventua”y disappearing altogether if the final
considerably increased. The inverse process where precigihase point is outside the misciblity gap of the phase dia-
tates dissolve after an increase in temperature has attract8fem. On the other hand, if the final temperature is above
much less attention, even though this inverse process is alsa:, the precipitates “explode” almost immediately into a
very important technologically. Indeed, the fact that the prelarge number of small pieces which then drift apart by dif-
cipitates may dissolve again during service of the material igusion. We show, using quantitative data from the simula-
often the crucial limitation for the use of precipitate- tions, how these two different mechanisms can be under-
hardened alloys at high temperatures. Consequently, whilgtood in terms of the interdiffusion of the alloy atoms and the
knowledge about the nucleation and growth of precipitates igroperties of the interfaces at the boundaries of the precipi-
important for the preparation of precipitate-hardened alloystates, which continue to exist if the temperature is below
knowledge about the dissolution processes of precipitates i but disappear if it is above.
equally essential for understanding their stability.

Only a sm_aII number of experiments have been carri_ed Il. DESCRIPTION OF THE SIMULATION
out to study dissolution in alloy systems. In some cases, like
Al-Zn,®-5 the average precipitate radius was found to in- The simulation was performed on a 54812 square lat-
crease continuously during dissolution, whereas in other sydice, using periodic boundary conditions so as to diminish the
tems, like Al-Li® it decreased. A tentative explanation for finite-size effects. The Hamiltonian is
the increasing radius in Al-Zn has been given in terms of a
Zn-rich shell surrounding the precipitates which dissolves by
diffusion.”® H=—-32 oio;. (1)

The purpose of the present work is to get a better under- (0
standing of these phenomena by means of a computer sim|=||-1h
lation. The general principles for using simulations in suchai takes the value 1—1, or 0. if there is anA atom, aB

9,10 ;
work are well understooti:'®We use an Ising model on a atom, or a vacancy at site respectively. The positive num-

plang square Iatticg with neargst—neighbor in_teractipn, the dyﬁerJ is the interaction energy between neighboring sites, and
namics being provided by a single vacant site which travel%etermines the critical temperatiie; ’

through the lattice by exchanging places with the occupants
of neighboring site$! The alloy is first quenched to a point
inside the misciblity gap of the phase diagram and left there J _ Eln(lJr \/f) ©
long enough for well-defined precipitates of the minority kgT, 2 ’

e summation is taken over all nearest-neighbor pairs and
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In this model, the vacancy does not interact directly with then provides our second measure of the size of the precipi-

or B atoms and it has no preference for therich or the tates.

B-rich phase. It is, however, attracted to the interface be- This definition of(l) requires a knowledge af", the

tweenA-rich andB-rich phases? distribution of clusters in the matrix. To obtain this, we made
At each simulation step the vacancy attempts to changthe assumption that the distribution of these clusters is the

place with one of the neighboring atoms chosen at randonmsame as it would be at thermal equilibrium with the same

The Metropolis rule is used to determine the exchange probeoncentration of monomesslusters withl =1). If this con-

ability centration were very small, we could obtain the equilibrium
concentrationc; of clusters ofl minority atoms from the
W= min[l,exp( - AE/kT)], (3) formu|a14

where AE denotes the increase in energy if the exchange eq_ A Al 7

takes place. C=Qics. @)
The concentration oB atoms was taken to be 5 at.%. HereQ, is the “cluster partition function” defined by

Two sets of simulations were made. In the first set, the simu-

lated alloys were first quenched from infinitely high tempera-

ture and aged for 30 000 MC@ICS = Monte Carlo steps Q= > e EKAKT 8

= attempted interchanges per $ite different temperatures K:#(K)=1

in and outside the miscibility gap. The purpose of theseyhere the sum goes over all translationally inequivalent

simulations was to test that the model reproduced knowmparticle clustersk and the symbol #{) means the number

growth laws for the precipitates. For the second set of simupf sjtes in clusteik. Some of theQ, (for <10) have been

lations, the alloy was first quenched from infinite tempera-cajculated for nearest-neighbor interactions by SyRes.

ture to T/T,=0.5 where it was aged for a time of 10000  uynfortunately, the concentrations in our simulation are

MCS to prepare the initial configuration. Then the temperanot small enough for Eq7) to be accurate. A better approxi-

ture was changed to a neffinal) value and the simulation mation than Eq(7) is given by the semiempirical formuta
proceeded for a further 30 000 MCS. The final temperatures

used for both types of runs weféT.=0.5, 0.65, 0.75, 0.85, o= Q|C'1(1—p)2_2' (1=2), 9
0.95, 1.05, 1.15, and 2.0. All the simulations were repeated
five times to improve their statistical reliability. where p=23lc, is the overall density of minority atoms. A

At the chosen concentration & atoms,c=5%, the similar approximation for the simple cubic lattice, namely,
boundary of the miscibility gafy can be computed from c¢®=Q,c}(1-p)*~3 (I=2), has been fourld to agree
Yang’s formuld?® for the spontaneous magnetizatiorf of  quite well with computer simulations for<l<10 at tem-

the Ising ferromagnet, peratures 0.5B;, 0.81T., and 0.89; and minority atom
. _ s concentrations 0.015, 0.075, and 0.127, respectively. We
m* =[1—(sinh2J/kT) "], (4 compared Eq(9) with the simulation data at different tem-

peratures, and found that for cluster size40 the discrep-
ancy was typically below 10%. There were only two cases
where this approximation deviated from the data. First, for
the thermal equilibrium at 0.9% (just outside the miscibility
gap the matrix contained at significant number of clusters
larger than ten atoms, and since we used @g.only for
IIl. MEASURING PRECIPITATE SIZES | <10, the part of the distribution with larger precipitates was

We used two different measures of the sizes of the preP©t accounted for. The second case was the times immedi-
cipitates. One, denoted bRy, is the first zero of the pair ately after the temperature change. In this case, th_e_ d!strlbu-
correlation function. It corresponds to a picture in which thellon of very small clusters was too far from equilibrium.
precipitates are thought of as fluctuations in the density of "€S€ data points were d|scardN(|ed for further analysis.
minority atoms. The second measure corresponds to a picture 10 Use Eq(6), we calculated” from Eq.(9) in the form
in which the precipitates are thought of as large clusters of S |
minority atoms connected by nearest-neighbor bonds, sur- v | INA=p) T Qi[n(D] (1<10),
rounded by a matrix of the majority phase. The constitution ()= 0 (1>10), (10
of the matrix also includes clusters of minority atoms, but
nearly all of these are much smaller. The total number ofvhere N is the total number of lattice sites, and we then
[-atom clusters, which we shall denote flyy, is the sum of a obtainednlp from Eq. (5).

to beT,,/T,=0.8954. It follows(see Fig. % that the phase

points withT/T.=0.5-0.85 are all inside the miscibility gap,
while the one withT/T.=0.95 is outside, though still below
the critical temperature.

contribution from the precipitates and from the matrix, To check whether the definition dfcontained in Eqs(6)
and (10) does provide a reasonable measure of the average
n = n,P+ n,'V' , (5) precipitate size, we have plotted the corresponding linear di-
] o mension(|)Y? against our other measure of precipitate size,
and the average size of the precipitate clusters, R, during the phase separation process that follows a quench
from infinite temperaturdFig. 1) to a temperature below
<|>:2| |an>/2| nIF” 6) T.. In agreement with our expectations from dynamical

scaling®’the approximate relatioR=1.4(1)*'? holds at all
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FIG. 1. The first zero of the correlation functidR plotted FIG. 3. More detailed view of the fraction & atoms in large

against the average linear dimension of the clustgrs” at tem-  clusters. The solid symbols describe the evolution after quench
peraturesT/T,=0.5, 0.65, and 0.75 after a quench from infinite from infinite temperaturégrowth and coarsening of precipitates
temperature. The solid line is a linear regression to the entire dat@pen symbols(and plusses fofT/T,=0.95) show the process
set. which occurs with a starting configuration prepared AI.=0.5.

the times and all the temperatures considered, which sugstill inside the misciblity gap of the phase diagraFig. 5);

ports our interpretation thdt) is a reasonable representation for the secondT/T,=0.95, the phase point is outside the

of precipitate volume. misciblity gap but is still below the lin& =T ; for the third,
T/T,=1.15,T is above the critical temperature.

IV. RESULTS The top Ieft-han_d diagram in F_ig. 2 and _also the more
detailed diagram Fig. 3 show the time evolution of the frac-
The results of the dissolution experiments, for various fi-tion of atoms that are in precipitates, defined as
nal temperatures, are shown in Figs. 2 and 3. For the first

temperature in Fig. 2J/T.=0.65, the new phase point is
P J ¢ phase b v="> InPIN. (12)
|

During the first 1¢ or so MCS after the temperature jump,
0.65 v decreases to a value quite close to its equilibrium value as

& 3 predicted by the lever rule. This is visible in Fig. 3 where at
2, the temperatures 0.85, 0.75T ., and 0.89 different initial
0.95 conditions lead to the same values wfafter a time in the
! '2_00 order of 1d MCS. Immediately after the temperature jump
0 the average cluster size, as measuredlbyalso decreases,
though the decrease is hardly noticeable if the final phase
47 point is inside the miscibility gajgsee Fig. 2, top right If

the new phase point is inside the miscibility gap, tH&h
eventually begins to increase again; if it is outside, thien
does not change any more, apart from fluctuations.
Surprisingly, the behavior of our other measure of pre-
cipitate size, the first zero of the pair correlation function
(Fig. 2, bottom righ, is quite different from that ofl )2 If
after the temperature jump the phase point is still inside the
miscibility gap (e.g., T/T,=0.65), R increases slowly but

FIG. 2. Time dependence of various quantities during the disso-Stead'Iy' If the temperature jump takes the phase point out-

lution of precipitates formed at the temperatdi .= 0.5, after a Z'de thg mfISﬁlbILI-ty lgap, the |n|t|all |n<t:)rease & |sh more
jump to a higher temperatur&/T.= 0.65(open circleg 0.95(plus- ramatic. If the final temperature is aboVe (see the case

ses, and 2.0(open hexagons The quantities plotted are the frac- 1/ Tc=2.0in Fig. 3, Rrises rapidly to as much as 3 times its
tion v of B atoms that are in large clustef®p left, the concen-  Original value and then falls quickly, stabilizing at a very low
tration y of large clusters(bottom lef), the square root of the value which seems to correspond to equilibrium at the final
average cluster sizg)= v/ (top righ, andR, the smallest zero of ~temperature, but if the final temperature is bel®w (case
the pair correlation functiorbottom righy. The solid lines are T/T.=0.95 in Fig. 3, the peak irR is lower and the subse-
guides to the eye. quent decay oR slower, lasting for at least 2000 MCS.
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FIG. 5. The phase diagram of the Ising model on the square
v _ % N lattice. The solid line is the Yang formul&q. (4)]. The symbols
. j3 : g N show the phase points where computer experiments were per-
SN A formed.
more or less compact form until they disappear altogether. In

e d"95' — 50 ' the third case, that of final temperatures abdygcase(c)]
0.65 . . the precipitates “explode” immediately into a large number
FIG. 4. Snapshot picture of the evolution of the model alloy atOf very ;mall pieces, Whi(.:h stgy close to each other for qu.ite
temperature¢a) T/T,=0.65, (b) 0.95, and(c) 2.0. The initial con- & long time. Each precipitate is replaced by a concentration
figuration, obtained after 1000 MCS &T,=0.5, is shown on the fluctuation which then diffuses away slowly. The reason for
top. The numbers give the time in MCS starting from the initial th® strong initial increase oR, unaccompanied by an in-
configuration. crease ofl) (see Fig. 2, is thatR measures the size of these
large-scale concentration fluctuations, wher@aslecreases
The behavior of the number of precipitates divided by thePecause it measures the sizes of the small connected pieces
number of lattice sites, given by into which the original cluster has broken. Later on, as the
correlated regions become larger, the density in them de-
creases; eventually they are no longer distinguishable from
v= Z n,P/N, (12 normal fluctuations an®& drops back to a normal value.

is shown in the bottom left-hand diagram of Fig. 2. This V. A THEORETICAL MODEL
?/ia:/t%_ |T:Orre ltaetr?w(:)etrzltg;g;ewgl tl?((:lot;s ti\;v?eggigr]]rsags_ by We use a phase-field kinetic moqel which treats the_IocaI
proximately constant during the first 1000 MCS, indicatingconcemrat'on QB atoms as a function of space and time,
that the temperature change does not create or destroy aH{/+t); S&, which is continuous except at the phase bound-
precipitates: afterwardsy decreases slowly, apparently be- aries. At a phase boundary, if we neglect the effeqt of bound-
cause the smaller precipitates shrink and eventually disaf®’y curvature,u takes the valuec(T) on one side and
pear in a coarsening process. For the higher temperaturds C(T) on the other, where(T) and 1-¢(T) are the con-
(outside the miscibility gap there is an unexpected increase Centrations o8 atoms of the two phases in equilibrium at
in the number of large clusters at first. This appears to b&&mperaturer. The functionsc(T) and 1-c(T) are shown
connected with the opposite behaviorRand(1)12 As the graph|cally on the phasg (_:hagram, Fig. 5, _and_some possible
material in the precipitate spreads out, the large clusters terff©filés ofu near a precipitate are shown in Fig. 6.
to break up into two or even more large pieces which makes N the following we give a qualitative theoretical picture
R increase andl)2 decrease. Later ony falls to a value of the dissolution process, in three Q|men5|ons SO thgt the
close to zero, as is to be expected if the precipitates dissolv810del can be compared with experimental data. A simple
The different regimes we have noted are also evident ifva to relateu to our measurgl) of cluster size is to assume
the snapshot pictures of Fig. 4. For a final phase point insidghat in Bthe regions wherel is less than the percolation
the misciblity gafcase(@], all the precipitates shrink at first de_nsltyL there are no large clusters3 but that in regions w_here
and the small ones dissolve altogether, until the concentra! iS greater than this value a certain fraction of the particles
tion in the matrix reaches its nefighen equilibrium value. ~ (depending on the densjtyorm a large cluster, this fraction
After this the largest clusters grow again by a slow coarsenP€ing the same as it would be for an infinite system at that
ing process. Outside the misciblity gap, but below the criticalfjens'ty- Since our main interest here is in qualitative pehav-
temperaturdcase(b)], the precipitates shrink initially as in i0f, We take the fraction of large clusters to be zero in the
case(a), but now they all continue to shrink, remaining in a region whereu< 3, whereas ifu> 3, we assume that all the



55 DISSOLUTION OF PRECIPITATES HEATED ABOE. .. 12 125

2
=]
2 g(r)*uO(r)*uO(—r)=VUo(r)*uO(—r)—yz(f ud3r) :
1 i
------ SR S and so, ifR<3 b, it is the smallest value where the average
distance of ug(r)*ug(—r) over the spherelr|=R is equal to

y(Sud®)?2. For example, ifu, is a constant inside a sphere
of radiusa and zero outside, and<<b/4, thenR is a little
less than 2, becoming equal to 2 when y is very small.

We use the sharp interface approximation to treat the
problem and we also neglect the boundary curvature. Ac-
cording to this approximation, the value of jumps from
1—¢(T) inside toc(T) outside. Away from the interfaagis
a continuous function of the position vectoand obeys the
FIG. 6. Schematics of the dissolution process of precipitateéj,ifoSion equation. The velocity of the interface in the direc-

after a jump to higher temperatures. The dotted line indicates théon of its own normal is given by
average compositiop of the alloy, and the open and solid circles

the equilibrium compositions of precipitates and matrix, respec- V=—D[aug/dn]/[uc], (18)
tively, at the temperaturé.

T,<T<T, T.<T

where D is the diffusivity of B atoms relative to a back-

) . . ground ofA atoms,[ug] or [dug/dn] denotes the disconti-
particles present are in large clusters. Thysis equal to the nuity in U, Or AU,/ dn across the interface, amdiy/an is the

integral ofu over the region where it is greater thanWe gjirectional derivative ofl, along the normal direction.

shall assume further that the regions where; are spheres, We denote the temperature just before the temperature
all having the same radius (which may depend on time  jump by T, so that the equilibrium concentration Bfatoms

and that the value ofi inside each sphere is uniformly in the A-rich phase is them(T,). Each precipitate will be

1—c(T). Then the above recipe fdt) gives approximated as a spherical region. Taking the origin of
space at the center of a precipitate whose radias &nd the
47ad origin of time at the moment when the temperature is in-
H=[1-cMl—5— (13 creased, we have
. - 1—c(Ty) (r<a),
To relateu to R, we think of the sytem as consisting of a Uo(r,0) = 0 (19

matrix where the density @ atoms is uniform together with

identical precipitates centered at poimtsr, ... so thatu ) ) _ o N
can be written (see Fig. 6, top This formula gives the initial condition for

the subsequent time evolution, but this takes place at a dif-
ferent temperature, so that the valuesighearr =a change
u(r,t)=c0(t)+2 Ug(r—r;,t), (14 immediately.
: Consider first the case where the new temperafureay,
is less than the critical temperatufe. The interface sur-
vives the jump, but the new values of on the two sides
will be closer together than before. Calliagt) the radius at
E’Eime t, the evolution ofa will be governed by

c(Ty) (r>a)

where cy(t) is independent of position andy(r,t) is the
local density ofB atoms for a single cluster centered at the
origin. The pair correlation function, defined as the spac
average (with respect tor’) of [u(r’,t)—u]fu(r+r’,t)
—u] whereu is the space average of(r,t), is then the
convolution of the pair correlation functiog for the points
ri,f5, ... with ug(r)*ug(—r), where the asterisk denotes a where
convolution. A simple approximation fay is*®

da/dt=—D[dug/arJ/[1—2¢(T)], (20)

ug(a(t)—0t)=1—c(T), uga(t)+0,t)=c(T),

A2
g(r)= gé(r) Y (r<b), (15)  with c(T) greater tharc(To), though still less tharg. Ini-

(r>b), tially the gradient ofu, is the same on both sides of the
interface, so thatla/dt=0: The interface does not move.
Here B particles are lost from the cluster by diffusion but,
initially at least, its radius does not change. Indeed, sBice
particles move away from the center of the cluster, we may
47h® expect the pair correlation function f@& atoms to become
y =1, (16) P pair cf o e
3 more spread out in space, so that the position of its first zero,
which is our measurR of size, will increase initially. On the
so that the space average gfis zero. If the range of other hand(l)¥? decreases initially because particles are lost
Uo(r)*uo(—r) is less thanz b, then Eq.(15) gives (for  from the cluster. This initial behavior fa® and(1)Y can be
r<sb) seen in Fig. 2.

wherevy is the number of clusters per site ands the radius
defined by
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As time proceeds, the initial antisymmetry of % about O increase linearly with time until the expanded precipitates
the interface will be lost. The gradient af just inside the ~Merge into one another, that is, urllk-b. After this time
the interface will begin to be affected by the condition thatth® approximation olR by the mean square radius is no
the gradient has to be zerorat 0, and so the gradient will longer valid. The obervations do indeed sh&wincreasing
be closer to zero just inside the phase boundary than judgPidly with time, falling back later on to a value close to
outside, and the interface will move inwards. Soon a longWhat it would be if there were no precipitates. On the other
lived regime will be reached in which the time derivatives in1and, the average cluster si@ga” decreases almost im-
the diffusion equatior(though not in the equation for the Mediately to a low value because the expansion of the pre-
velocity of the interfacecan be neglecte®. The concentra-  CiPitate soon reduces the local density to a value where large
tion field near a precipitate is then given by Clusters are very unlikely.

Uo=1-c(T) [r<a(], VI. DISCUSSION

Up=¢(r) [r>a(t)], (21) Our interpretations of the observed precipitate dissolution

where ¢ is the solution of Laplace’s equation which equalsProcess are illustrated in Fig. 6 which shows the spatial
1—¢(T) for r=a and satisfies the additional condition that variation of u under various conditions. The solid circles
the overall concentration & atoms isp. Equationg20) and represent values of(T), the equilibrium concentration of

(21) may be solved to estimate the time dependence of thB atoms in the matrix at the new temperature, and the open
precipitate radiug (see the Appendix circles represent values of-Ic(T), the equilibrium concen-

tration of B atoms in the precipitates. The dotted line repre-
a 3 sentsp, the overall concentration @& atoms. The height of
aa=K(a)[p—c(T)—Ma IP (220 the curve at the edge of the diagram corresponds approxi-
mately to the composition of the matrix. The left side of Fig.
whereK andM are positive quantities defined in the Appen- 6 shows the case where the final phase point is inside the
dix, M being independent cd. Equation(22) shows thata  miscibility gap. Since the solid circle in this figure is below
will decrease until eithea or the right-hand side of the equa- the average composition of the whole alloy, the dissolution
tion becomes zero. Which of these two happens depends @jf some of the clusters will eventually lead to a sufficient
the final temperature. If the final phase point is inside thencrease in matrix concentration to stop the shrinking of the
miscibility gap, thernp—c(T) is positive and there is a posi- precipitates and allow some of them to grow again. Before
tive value ofa®(l) [see Eq(13)] that makes the right-hand this can happer(l) has to decrease in order to allow the
side of the equation zero. In the simplified treatment giverconcentration in the matrix to increase to its equilibrium
here,(l) remains at this value forever, but in practice it will valye.
now increase slowly because of coarsening, which depends The case where the new phase point is outside the misci-
on an effect we have ignored, namely, the curvature deperbility gap but the temperature is still beloW, is illustrated
dence of the values af at the interface. in the middle of Fig. 6. Since the solid circle &ovethe
If the final phase point is outside the miscibility gap, how- dotted line, symbolizing the average composition of the al-
ever,p—c(T) is negative and so the right-hand side of Eq.|oy, the equilibrium level can never be reached and all the
(22) is always negative: The mean cluster radiudecreases precipitates have to dissolve eventually.
until the clusters disappear altogether. A very similar picture has been used by Okuetaal®” to
Finally, we consider the case where the final temperaturexplain the observed increase Rfin the case of the disso-
is above the critical temperature. In this case there is nqution of precipitates in Al-Zn. In the alloy Al-Li, however,
interface after the temperature jump; to find out what hapno increase oR was founcf This latter effect might be due
pens to a precipitate we use the diffusion equation to the fact that the precipitates in Al-Li consist of the ordered
intermetallic phase AjLi, and ordering was not taken into
dUo/3t=DV?uq, (23 account in the present simulations. Moreover, the simula-
with initial condition (19) and the boundary condition tions show that, for the cask,<T<T,, the increase oR
dug/ar =0 forr=b. As a rough estimate d®, the first zero  is followed by a gradual decreassee Fig. 2 in which the
of the pair correlation function, we use the mean square raconcentration shell around the dissolving precipitate shrinks
dius of the precipitate. According to E(R3) we have by diffusion at the same time as the precipitate itself. Possi-
bly, the experimental data for Al-Li might also be connected
with this phenomenon.
The most spectacular effect occurs when the final tem-
(24) perature is abové&, . In this case, the density of the precipi-
d I 22 13 tate can decrease freely, the only limitation being diffusion
afr upd r=f Drevauedr (see Fig. 6, right This leads to a rapid disintegraticor
“explosion”) of the precipitate and the formation of a con-
centration fluctuation that increases in size and decreases in
ZGDJ ugd®r —47Db?%ugy(b,t), density, in agreement with the observations in Fig. 4.
Our reason for using vacancy dynamics in these simula-
so that the mean square radius increases linearly with timgons, rather than the more common Kawasaki dynamics,
until ug(b,t) becomes appreciable. Thus we exp@étalso  was that in most alloys the vacancy mechanism is much

d
a Uodsr: f DVZUOdSr:O,
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more important than the exchange mecharfiSiowever, if u,(n

we had used Kawasakeéxchanggdynamics instead, we be-

lieve that the results would have been essentially the same, 1-¢(T)
since in other types of simulation vacancy and Kawasaki

dynamics do not give very different results until the tempera-

ture is below about half the critical temperatdte.
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FIG. 7. Sketch of the local density(r) for a single precipitate
APPENDIX centered ar=0. The integral of 4rr2uq(r) between 0 and is
supposed fixed and equal pdy [see Eq.(25)] and ¢(r) is a solu-
To get an estimate for the time dependence of the meation of Laplace’s equatiofisee Eq.(21)].
precipitate radiusa, we start by computing the function

¢(r) under the condition that the overall concentration ofThe changing size of the precipitate can then be calculated
B atoms isp. We require that the average numbeBoftoms by substituting Eq(A2) into Eq.(21) and then Eq(20), to

in a sphere of volume 3/ wherey is the number of precipi- get an equation which after multiplication layreads
tates per site, should h@y (see sketch in Fig.)7 In three

dimensions this condition giveg=A/r + 5 where

da
c(T)=Ala+B, aaZ—m=K(a)[p—C(T)—Ma3],
(A3)
47as b/ A )
ply=[1-c(T)] 3 +Ja T+B Aqredr, (Al) where
with a andb defined by Eqs(13) and(16). Solving for.4 we
find K(a)=2D/{% my(b—a)(2b?—ba—a?)[1—2¢(T)]},
B [p—c(T)]b*~[1-2¢(T)]a®
A= -2 T 2h?—ab-a?) (A2) M=% my[1—2¢(T)]. (A4)
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