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Dissolution of precipitates heated above the solubility line: A Monte Carlo simulation

I. Žižak, P. Fratzl, and O. Penrose*
Institut für Materialphysik der Universita¨t Wien, Boltzmanngasse 5, A-1090 Wien, Austria

~Received 10 January 1997!

The use of precipitate hardened alloys at high temperatures is often limited by the thermal stability of the
precipitates. To improve the understanding of precipitate dissolution after a rapid increase of temperature, we
used computer simulation to study a binaryA–5 at.%B model alloy. The system consisted ofA andB atoms
on a quadratic lattice with nearest-neighbor attractive interactions between like atoms. The dynamics was
provided by a single vacancy moving across the lattice by exchanges with neighboring atoms. The evolution of
the precipitates was studied as a function of time at various temperaturesTa , starting from a given initial
configuration, which was prepared by ‘‘annealing’’ a random mixture ofA andB atoms at a low temperature
inside the miscibility gap of the alloy. Depending on the new temperatureTa , different processes were
observed. ForTa inside the miscibility gap, the precipitates stayed compact and dissolved partially at first, but
afterwards their average size increased again by a coarsening process. ForTa outside the miscibility gap, but
below the critical temperatureTc , the precipitates stayed compact and dissolved completely by evaporation of
atoms from their surfaces. AboveTc , they decomposed rapidly into many smaller particles in a process that
resembles an explosion. A theoretical description of these various processes, based on a phase field model, is
presented.@S0163-1829~97!03018-X#
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I. INTRODUCTION

The kinetics of nucleation and growth of precipitates
alloys has been very extensively studied in recent yea1,2

both because it is an interesting case of nonequlibrium t
modynamics and because it corresponds to a technologi
important process whereby the hardness of an alloy ma
considerably increased. The inverse process where pre
tates dissolve after an increase in temperature has attra
much less attention, even though this inverse process is
very important technologically. Indeed, the fact that the p
cipitates may dissolve again during service of the materia
often the crucial limitation for the use of precipitat
hardened alloys at high temperatures. Consequently, w
knowledge about the nucleation and growth of precipitate
important for the preparation of precipitate-hardened allo
knowledge about the dissolution processes of precipitate
equally essential for understanding their stability.

Only a small number of experiments have been carr
out to study dissolution in alloy systems. In some cases,
Al-Zn,3–5 the average precipitate radius was found to
crease continuously during dissolution, whereas in other
tems, like Al-Li,6 it decreased. A tentative explanation f
the increasing radius in Al-Zn has been given in terms o
Zn-rich shell surrounding the precipitates which dissolves
diffusion.7,8

The purpose of the present work is to get a better und
standing of these phenomena by means of a computer s
lation. The general principles for using simulations in su
work are well understood.1,9,10We use an Ising model on
plane square lattice with nearest-neighbor interaction, the
namics being provided by a single vacant site which trav
through the lattice by exchanging places with the occupa
of neighboring sites.11 The alloy is first quenched to a poin
inside the misciblity gap of the phase diagram and left th
long enough for well-defined precipitates of the minor
550163-1829/97/55~18!/12121~7!/$10.00
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phase to form. Then the temperature is raised to a new v
and the behavior of the precipitates is studied.

We find that two quite different dissolution mechanism
can operate, depending on the final temperature. If the fi
temperature is below the critical temperatureTc , the precipi-
tates stay compact and dissolve mostly by evaporation
their surfaces, eventually disappearing altogether if the fi
phase point is outside the misciblity gap of the phase d
gram. On the other hand, if the final temperature is ab
Tc , the precipitates ‘‘explode’’ almost immediately into
large number of small pieces which then drift apart by d
fusion. We show, using quantitative data from the simu
tions, how these two different mechanisms can be und
stood in terms of the interdiffusion of the alloy atoms and t
properties of the interfaces at the boundaries of the prec
tates, which continue to exist if the temperature is bel
Tc but disappear if it is above.

II. DESCRIPTION OF THE SIMULATION

The simulation was performed on a 5123512 square lat-
tice, using periodic boundary conditions so as to diminish
finite-size effects. The Hamiltonian is

H52J(
^ i , j &

s is j . ~1!

The summation is taken over all nearest-neighbor pairs
s i takes the value 1,21, or 0, if there is anA atom, aB
atom, or a vacancy at sitei , respectively. The positive num
berJ is the interaction energy between neighboring sites,
determines the critical temperature:12

J

kBTc
5
1

2
ln~11A2!. ~2!
12 121 © 1997 The American Physical Society
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In this model, the vacancy does not interact directly withA
or B atoms and it has no preference for theA-rich or the
B-rich phase. It is, however, attracted to the interface
tweenA-rich andB-rich phases.11

At each simulation step the vacancy attempts to cha
place with one of the neighboring atoms chosen at rand
The Metropolis rule is used to determine the exchange p
ability

W5min@1,exp~2DE/kT!#, ~3!

whereDE denotes the increase in energy if the exchan
takes place.

The concentration ofB atoms was taken to be 5 at.%
Two sets of simulations were made. In the first set, the sim
lated alloys were first quenched from infinitely high tempe
ture and aged for 30 000 MCS~MCS 5 Monte Carlo steps
5 attempted interchanges per site! at different temperature
in and outside the miscibility gap. The purpose of the
simulations was to test that the model reproduced kno
growth laws for the precipitates. For the second set of sim
lations, the alloy was first quenched from infinite tempe
ture to T/Tc50.5 where it was aged for a time of 10 00
MCS to prepare the initial configuration. Then the tempe
ture was changed to a new~final! value and the simulation
proceeded for a further 30 000 MCS. The final temperatu
used for both types of runs wereT/Tc50.5, 0.65, 0.75, 0.85
0.95, 1.05, 1.15, and 2.0. All the simulations were repea
five times to improve their statistical reliability.

At the chosen concentration ofB atoms, c55%, the
boundary of the miscibility gapTM can be computed from
Yang’s formula13 for the spontaneous magnetizationm* of
the Ising ferromagnet,

m*5@12~sinh2J/kT!24#1/8, ~4!

to beTM /Tc50.8954. It follows~see Fig. 5! that the phase
points withT/Tc50.5–0.85 are all inside the miscibility gap
while the one withT/Tc50.95 is outside, though still below
the critical temperature.

III. MEASURING PRECIPITATE SIZES

We used two different measures of the sizes of the p
cipitates. One, denoted byR, is the first zero of the pair
correlation function. It corresponds to a picture in which t
precipitates are thought of as fluctuations in the density
minority atoms. The second measure corresponds to a pic
in which the precipitates are thought of as large clusters
minority atoms connected by nearest-neighbor bonds,
rounded by a matrix of the majority phase. The constitut
of the matrix also includes clusters of minority atoms, b
nearly all of these are much smaller. The total number
l -atom clusters, which we shall denote bynl , is the sum of a
contribution from the precipitates and from the matrix,

nl5nl
P1nl

M , ~5!

and the average size of the precipitate clusters,

^ l &5(
l
ln l

P/(
l
nl
P , ~6!
-
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then provides our second measure of the size of the pre
tates.

This definition of ^ l & requires a knowledge ofnl
M , the

distribution of clusters in the matrix. To obtain this, we ma
the assumption that the distribution of these clusters is
same as it would be at thermal equilibrium with the sa
concentration of monomers~clusters withl51). If this con-
centration were very small, we could obtain the equilibriu
concentrationcl

eq of clusters ofl minority atoms from the
formula14

cl
eq'Qlc1

l . ~7!

HereQl is the ‘‘cluster partition function’’ defined by

Ql5 (
K:#~K !5 l

e2E~K !/kT, ~8!

where the sum goes over all translationally inequivalenl -
particle clustersK and the symbol #(K) means the numbe
of sites in clusterK. Some of theQl ~for l<10) have been
calculated for nearest-neighbor interactions by Sykes.15

Unfortunately, the concentrations in our simulation a
not small enough for Eq.~7! to be accurate. A better approx
mation than Eq.~7! is given by the semiempirical formula14

cl
eq5Qlc1

l ~12r!222l ~ l>2!, ~9!

wherer5( lc l is the overall density of minority atoms. A
similar approximation for the simple cubic lattice, name
cl
eq5Qlc1

l (12r)423l ( l>2), has been found14 to agree
quite well with computer simulations for 2< l<10 at tem-
peratures 0.59Tc , 0.81Tc , and 0.89Tc and minority atom
concentrations 0.015, 0.075, and 0.127, respectively.
compared Eq.~9! with the simulation data at different tem
peratures, and found that for cluster sizes<10 the discrep-
ancy was typically below 10%. There were only two cas
where this approximation deviated from the data. First,
the thermal equilibrium at 0.95Tc ~just outside the miscibility
gap! the matrix contained at significant number of cluste
larger than ten atoms, and since we used Eq.~9! only for
l<10, the part of the distribution with larger precipitates w
not accounted for. The second case was the times imm
ately after the temperature change. In this case, the distr
tion of very small clusters was too far from equilibrium
These data points were discarded for further analysis.

To use Eq.~6!, we calculatednl
M from Eq.~9! in the form

nl
M~ t !5H @N~12r!2#12 lQl@n1~ t !#

l ~ l<10!,

0 ~ l.10!,
~10!

whereN is the total number of lattice sites, and we th
obtainednl

P from Eq. ~5!.
To check whether the definition ofl contained in Eqs.~6!

and ~10! does provide a reasonable measure of the ave
precipitate size, we have plotted the corresponding linear
mension^ l &1/2 against our other measure of precipitate si
R, during the phase separation process that follows a que
from infinite temperature~Fig. 1! to a temperature below
Tc . In agreement with our expectations from dynamic
scaling16,17 the approximate relationR51.4̂ l &1/2 holds at all
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55 12 123DISSOLUTION OF PRECIPITATES HEATED ABOVE . . .
the times and all the temperatures considered, which s
ports our interpretation that^ l & is a reasonable representatio
of precipitate volume.

IV. RESULTS

The results of the dissolution experiments, for various
nal temperatures, are shown in Figs. 2 and 3. For the
temperature in Fig. 2,T/Tc50.65, the new phase point i

FIG. 1. The first zero of the correlation functionR plotted
against the average linear dimension of the clusters^ l &1/2 at tem-
peraturesT/Tc50.5, 0.65, and 0.75 after a quench from infini
temperature. The solid line is a linear regression to the entire
set.

FIG. 2. Time dependence of various quantities during the dis
lution of precipitates formed at the temperatureT/Tc50.5, after a
jump to a higher temperature,T/Tc50.65~open circles!, 0.95~plus-
ses!, and 2.0~open hexagons!. The quantities plotted are the frac
tion n of B atoms that are in large clusters~top left!, the concen-
tration g of large clusters~bottom left!, the square root of the
average cluster sizêl &5n/g ~top right!, andR, the smallest zero of
the pair correlation function~bottom right!. The solid lines are
guides to the eye.
p-

-
st

still inside the misciblity gap of the phase diagram~Fig. 5!;
for the second,T/Tc50.95, the phase point is outside th
misciblity gap but is still below the lineT5Tc ; for the third,
T/Tc51.15,T is above the critical temperature.

The top left-hand diagram in Fig. 2 and also the mo
detailed diagram Fig. 3 show the time evolution of the fra
tion of atoms that are in precipitates, defined as

n5(
l
ln l

P/N. ~11!

During the first 104 or so MCS after the temperature jum
n decreases to a value quite close to its equilibrium value
predicted by the lever rule. This is visible in Fig. 3 where
the temperatures 0.65Tc , 0.75Tc , and 0.85Tc different initial
conditions lead to the same values ofn after a time in the
order of 104 MCS. Immediately after the temperature jum
the average cluster size, as measured by^ l &, also decreases
though the decrease is hardly noticeable if the final ph
point is inside the miscibility gap~see Fig. 2, top right!. If
the new phase point is inside the miscibility gap, then^ l &
eventually begins to increase again; if it is outside, then^ l &
does not change any more, apart from fluctuations.

Surprisingly, the behavior of our other measure of p
cipitate size, the first zero of the pair correlation functi
~Fig. 2, bottom right!, is quite different from that of̂l &1/2. If
after the temperature jump the phase point is still inside
miscibility gap ~e.g., T/Tc50.65), R increases slowly but
steadily. If the temperature jump takes the phase point o
side the miscibility gap, the initial increase ofR is more
dramatic. If the final temperature is aboveTc ~see the case
T/Tc52.0 in Fig. 2!, R rises rapidly to as much as 3 times i
original value and then falls quickly, stabilizing at a very lo
value which seems to correspond to equilibrium at the fi
temperature, but if the final temperature is belowTc ~case
T/Tc50.95 in Fig. 2!, the peak inR is lower and the subse
quent decay ofR slower, lasting for at least 2000 MCS.

ta

o-

FIG. 3. More detailed view of the fraction ofB atoms in large
clusters. The solid symbols describe the evolution after que
from infinite temperature~growth and coarsening of precipitates!.
Open symbols~and plusses forT/Tc50.95) show the process
which occurs with a starting configuration prepared atT/Tc50.5.
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12 124 55I. ŽIŽAK, P. FRATZL, AND O. PENROSE
The behavior of the number of precipitates divided by
number of lattice sites, given by

g5(
l
nl
P/N, ~12!

is shown in the bottom left-hand diagram of Fig. 2. Th
quantity is related to those in the top two diagrams
g5n/^ l &. For temperatures well belowTc , it remains ap-
proximately constant during the first 1000 MCS, indicati
that the temperature change does not create or destroy
precipitates; afterwards,g decreases slowly, apparently b
cause the smaller precipitates shrink and eventually dis
pear in a coarsening process. For the higher temperat
~outside the miscibility gap!, there is an unexpected increa
in the number of large clusters at first. This appears to
connected with the opposite behavior ofR and^ l &1/2: As the
material in the precipitate spreads out, the large clusters
to break up into two or even more large pieces which ma
R increase and̂ l &1/2 decrease. Later on,g falls to a value
close to zero, as is to be expected if the precipitates disso

The different regimes we have noted are also eviden
the snapshot pictures of Fig. 4. For a final phase point ins
the misciblity gap@case~a!#, all the precipitates shrink at firs
and the small ones dissolve altogether, until the concen
tion in the matrix reaches its new~higher! equilibrium value.
After this the largest clusters grow again by a slow coars
ing process. Outside the misciblity gap, but below the criti
temperature@case~b!#, the precipitates shrink initially as in
case~a!, but now they all continue to shrink, remaining in

FIG. 4. Snapshot picture of the evolution of the model alloy
temperatures~a! T/Tc50.65, ~b! 0.95, and~c! 2.0. The initial con-
figuration, obtained after 1000 MCS atT/Tc50.5, is shown on the
top. The numbers give the time in MCS starting from the init
configuration.
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more or less compact form until they disappear altogether
the third case, that of final temperatures aboveTc @case~c!#
the precipitates ‘‘explode’’ immediately into a large numb
of very small pieces, which stay close to each other for qu
a long time. Each precipitate is replaced by a concentra
fluctuation which then diffuses away slowly. The reason
the strong initial increase ofR, unaccompanied by an in
crease of̂ l & ~see Fig. 2! , is thatRmeasures the size of thes
large-scale concentration fluctuations, whereas^ l & decreases
because it measures the sizes of the small connected p
into which the original cluster has broken. Later on, as
correlated regions become larger, the density in them
creases; eventually they are no longer distinguishable f
normal fluctuations andR drops back to a normal value.

V. A THEORETICAL MODEL

We use a phase-field kinetic model which treats the lo
concentration ofB atoms as a function of space and tim
u(r ,t), say, which is continuous except at the phase bou
aries. At a phase boundary, if we neglect the effect of bou
ary curvature,u takes the valuec(T) on one side and
12c(T) on the other, wherec(T) and 12c(T) are the con-
centrations ofB atoms of the two phases in equilibrium
temperatureT. The functionsc(T) and 12c(T) are shown
graphically on the phase diagram, Fig. 5, and some poss
profiles ofu near a precipitate are shown in Fig. 6.

In the following we give a qualitative theoretical pictur
of the dissolution process, in three dimensions so that
model can be compared with experimental data. A sim
way to relateu to our measurêl & of cluster size is to assum
that in the regions whereu is less than the percolatio
density18 there are no large clusters, but that in regions wh
u is greater than this value a certain fraction of the partic
~depending on the density! form a large cluster, this fraction
being the same as it would be for an infinite system at t
density. Since our main interest here is in qualitative beh
ior, we take the fraction of large clusters to be zero in t

region whereu, 1
2 , whereas ifu. 1

2 , we assume that all the

t

l

FIG. 5. The phase diagram of the Ising model on the squ
lattice. The solid line is the Yang formula@Eq. ~4!#. The symbols
show the phase points where computer experiments were
formed.
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55 12 125DISSOLUTION OF PRECIPITATES HEATED ABOVE . . .
particles present are in large clusters. Thus^ l & is equal to the
integral ofu over the region where it is greater than12 . We

shall assume further that the regions whereu. 1
2 are spheres

all having the same radiusa ~which may depend on time!,
and that the value ofu inside each sphere is uniforml
12c(T). Then the above recipe for^ l & gives

^ l &5@12c~T!#
4pa3

3
. ~13!

To relateu to R, we think of the sytem as consisting of
matrix where the density ofB atoms is uniform together with
identical precipitates centered at pointsr1 ,r2 . . . so thatu
can be written

u~r ,t !5c0~ t !1(
i
u0~r2r i ,t !, ~14!

where c0(t) is independent of position andu0(r ,t) is the
local density ofB atoms for a single cluster centered at t
origin. The pair correlation function, defined as the spa
average ~with respect to r 8) of @u(r 8,t)2ū#@u(r1r 8,t)
2ū# where ū is the space average ofu(r ,t), is then the
convolution of the pair correlation functiong for the points
r1 ,r2 , . . . with u0(r )* u0(2r ), where the asterisk denotes
convolution. A simple approximation forg is19

g~r !5H gd~r !2g2 ~r,b!,

0 ~r.b!,
~15!

whereg is the number of clusters per site andb is the radius
defined by

g
4pb3

3
51, ~16!

so that the space average ofg is zero. If the range of
u0(r )* u0(2r ) is less than1

2 b, then Eq. ~15! gives ~for

r, 1
2 b)

FIG. 6. Schematics of the dissolution process of precipita
after a jump to higher temperatures. The dotted line indicates
average compositionr of the alloy, and the open and solid circle
the equilibrium compositions of precipitates and matrix, resp
tively, at the temperatureT.
e

g~r !* u0~r !* u0~2r !5gu0~r !* u0~2r !2g2S E ud3r D 2,
~17!

and so, ifR, 1
2 b, it is the smallest value where the avera

of u0(r )* u0(2r ) over the sphereur u5R is equal to
g(*ud3r )2. For example, ifu0 is a constant inside a spher
of radiusa and zero outside, anda,b/4, thenR is a little
less than 2a, becoming equal to 2a wheng is very small.

We use the sharp interface approximation to treat
problem and we also neglect the boundary curvature.
cording to this approximation, the value ofu0 jumps from
12c(T) inside toc(T) outside. Away from the interfaceu is
a continuous function of the position vectorr and obeys the
diffusion equation. The velocity of the interface in the dire
tion of its own normal is given by

V52D@]u0 /]n#/@u0#, ~18!

whereD is the diffusivity of B atoms relative to a back
ground ofA atoms,@u0# or @]u0 /]n# denotes the disconti
nuity in u0 or ]u0 /]n across the interface, and]u0 /]n is the
directional derivative ofu0 along the normal direction.

We denote the temperature just before the tempera
jump byT0 so that the equilibrium concentration ofB atoms
in the A-rich phase is thenc(T0). Each precipitate will be
approximated as a spherical region. Taking the origin
space at the center of a precipitate whose radius isa, and the
origin of time at the moment when the temperature is
creased, we have

u0~r ,0!5H 12c~T0! ~r,a!,

c~T0! ~r.a!
~19!

~see Fig. 6, top!. This formula gives the initial condition for
the subsequent time evolution, but this takes place at a
ferent temperature, so that the values ofu0 nearr5a change
immediately.

Consider first the case where the new temperature,T, say,
is less than the critical temperatureTc . The interface sur-
vives the jump, but the new values ofu0 on the two sides
will be closer together than before. Callinga(t) the radius at
time t, the evolution ofa will be governed by

da/dt52D@]u0 /]r #/@122c~T!#, ~20!

where

u0„a~ t !20,t…512c~T!, u0„a~ t !10,t…5c~T!,

with c(T) greater thanc(T0), though still less than12 . Ini-
tially the gradient ofu0 is the same on both sides of th
interface, so thatda/dt50: The interface does not move
HereB particles are lost from the cluster by diffusion bu
initially at least, its radius does not change. Indeed, sincB
particles move away from the center of the cluster, we m
expect the pair correlation function forB atoms to become
more spread out in space, so that the position of its first z
which is our measureR of size, will increase initially. On the
other hand,̂ l &1/2 decreases initially because particles are l
from the cluster. This initial behavior forR and^ l &1/2 can be
seen in Fig. 2.

s
e

-



a
l
ju
ng
in
e

ls
at

th

n-

-
s
th
i-
d
e
ill
n
e

w-
q

tu
n
ap

r

tim

tes

o

to
er
-
pre-
rge

ion
tial
s
f
pen

re-

oxi-
ig.
the
w
ion
nt
the
ore
e
m

isci-

al-
the

-
,

ed

la-

nks
ssi-
ed

m-
i-
on

n-
s in

la-
ics,
uch
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As time proceeds, the initial antisymmetry ofc2 1
2 about

the interface will be lost. The gradient ofu0 just inside the
the interface will begin to be affected by the condition th
the gradient has to be zero atr50, and so the gradient wil
be closer to zero just inside the phase boundary than
outside, and the interface will move inwards. Soon a lo
lived regime will be reached in which the time derivatives
the diffusion equation~though not in the equation for th
velocity of the interface! can be neglected.20 The concentra-
tion field near a precipitate is then given by

u0512c~T! @r,a~ t !#,

u05f~r ! @r.a~ t !#, ~21!

wheref is the solution of Laplace’s equation which equa
12c(T) for r5a and satisfies the additional condition th
the overall concentration ofB atoms isr. Equations~20! and
~21! may be solved to estimate the time dependence of
precipitate radiusa ~see the Appendix!:

a
da

dt
5K~a!@r2c~T!2Ma3#, ~22!

whereK andM are positive quantities defined in the Appe
dix, M being independent ofa. Equation~22! shows thata
will decrease until eithera or the right-hand side of the equa
tion becomes zero. Which of these two happens depend
the final temperature. If the final phase point is inside
miscibility gap, thenr2c(T) is positive and there is a pos
tive value ofa3}^ l & @see Eq.~13!# that makes the right-han
side of the equation zero. In the simplified treatment giv
here,^ l & remains at this value forever, but in practice it w
now increase slowly because of coarsening, which depe
on an effect we have ignored, namely, the curvature dep
dence of the values ofu at the interface.

If the final phase point is outside the miscibility gap, ho
ever,r2c(T) is negative and so the right-hand side of E
~22! is always negative: The mean cluster radiusa decreases
until the clusters disappear altogether.

Finally, we consider the case where the final tempera
is above the critical temperature. In this case there is
interface after the temperature jump; to find out what h
pens to a precipitate we use the diffusion equation

]u0 /]t5D¹2u0 , ~23!

with initial condition ~19! and the boundary condition
]u0 /]r50 for r5b. As a rough estimate ofR, the first zero
of the pair correlation function, we use the mean square
dius of the precipitate. According to Eq.~23! we have

d

dtE u0d
3r5E D¹2u0d

3r50,
~24!

d

dtE r 2u0d
3r5E Dr 2¹2u0d

3r

56DE u0d
3r24pDb2u0~b,t !,

so that the mean square radius increases linearly with
until u0(b,t) becomes appreciable. Thus we expectR2 also
t

st
-

e

on
e

n

ds
n-

.

re
o
-

a-

e

to increase linearly with time until the expanded precipita
merge into one another, that is, untilR;b. After this time
the approximation ofR by the mean square radius is n
longer valid. The obervations do indeed showR increasing
rapidly with time, falling back later on to a value close
what it would be if there were no precipitates. On the oth
hand, the average cluster size^ l &}a3 decreases almost im
mediately to a low value because the expansion of the
cipitate soon reduces the local density to a value where la
clusters are very unlikely.

VI. DISCUSSION

Our interpretations of the observed precipitate dissolut
process are illustrated in Fig. 6 which shows the spa
variation of u under various conditions. The solid circle
represent values ofc(T), the equilibrium concentration o
B atoms in the matrix at the new temperature, and the o
circles represent values of 12c(T), the equilibrium concen-
tration ofB atoms in the precipitates. The dotted line rep
sentsr, the overall concentration ofB atoms. The height of
the curve at the edge of the diagram corresponds appr
mately to the composition of the matrix. The left side of F
6 shows the case where the final phase point is inside
miscibility gap. Since the solid circle in this figure is belo
the average composition of the whole alloy, the dissolut
of some of the clusters will eventually lead to a sufficie
increase in matrix concentration to stop the shrinking of
precipitates and allow some of them to grow again. Bef
this can happen,̂l & has to decrease in order to allow th
concentration in the matrix to increase to its equilibriu
value.

The case where the new phase point is outside the m
bility gap but the temperature is still belowTc is illustrated
in the middle of Fig. 6. Since the solid circle isabovethe
dotted line, symbolizing the average composition of the
loy, the equilibrium level can never be reached and all
precipitates have to dissolve eventually.

A very similar picture has been used by Okudaet al.5,7 to
explain the observed increase ofR in the case of the disso
lution of precipitates in Al-Zn. In the alloy Al-Li, however
no increase ofR was found.6 This latter effect might be due
to the fact that the precipitates in Al-Li consist of the order
intermetallic phase Al3Li, and ordering was not taken into
account in the present simulations. Moreover, the simu
tions show that, for the caseTM,T,Tc , the increase ofR
is followed by a gradual decrease~see Fig. 2! in which the
concentration shell around the dissolving precipitate shri
by diffusion at the same time as the precipitate itself. Po
bly, the experimental data for Al-Li might also be connect
with this phenomenon.

The most spectacular effect occurs when the final te
perature is aboveTc . In this case, the density of the precip
tate can decrease freely, the only limitation being diffusi
~see Fig. 6, right!. This leads to a rapid disintegration~or
‘‘explosion’’ ! of the precipitate and the formation of a co
centration fluctuation that increases in size and decrease
density, in agreement with the observations in Fig. 4.

Our reason for using vacancy dynamics in these simu
tions, rather than the more common Kawasaki dynam
was that in most alloys the vacancy mechanism is m
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more important than the exchange mechanism.21 However, if
we had used Kawasaki~exchange! dynamics instead, we be
lieve that the results would have been essentially the sa
since in other types of simulation vacancy and Kawas
dynamics do not give very different results until the tempe
ture is below about half the critical temperature.11

ACKNOWLEDGMENTS

This work was supported in part by the FWF~Project No.
S5601!. We thank O. Paris, G. Vogl, and R. Weinkamer f
discussions.

APPENDIX

To get an estimate for the time dependence of the m
precipitate radiusa, we start by computing the functio
f(r ) under the condition that the overall concentration
B atoms isr. We require that the average number ofB atoms
in a sphere of volume 1/g, whereg is the number of precipi-
tates per site, should ber/g ~see sketch in Fig. 7!. In three
dimensions this condition givesf5A/r1B where

c~T!5A/a1B,

r/g5@12c~T!#
4pa3

3
1E

a

bSAr 1BD4pr 2dr, ~A1!

with a andb defined by Eqs.~13! and~16!. Solving forA we
find

A522a
@r2c~T!#b32@122c~T!#a3

~b2a!~2b22ab2a2!
. ~A2!
n

J.

R

p

ta

et

et

s.
e,
i
-

n

fThe changing size of the precipitate can then be calcula
by substituting Eq.~A2! into Eq. ~21! and then Eq.~20!, to
get an equation which after multiplication bya reads

a
da

dt
52

DA
a@122c~T!#

5K~a!@r2c~T!2Ma3#,

~A3!

where

K~a!52D/$ 4
3 pg~b2a!~2b22ba2a2!@122c~T!#%,

M5 4
3 pg@122c~T!#. ~A4!

FIG. 7. Sketch of the local densityu0(r ) for a single precipitate
centered atr50. The integral of 4pr 2u0(r ) between 0 andb is
supposed fixed and equal tor/g @see Eq.~25!# andf(r ) is a solu-
tion of Laplace’s equation@see Eq.~21!#.
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