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Comparative study of structure determination schemes: Application to liquid alkali metals
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The ionic structure of liquid alkali metals at their melting point is investigated with molecular dynamics, an
optimized random phase approximati@@RPA), and a soft-core mean-spherical approximatiBMSA) as
representative of, respectively, simulation, perturbation, and integral methods. The valence electron screening
densities and the interionic pair potentials are derived from Shaw’s optimized model of potential and are free
of adjustable parameter. We take advantage of the central place of molecular dynamics to analyze the results
and point out that the interionic potentials issued from Shaw’s potential provide a correct description of the
interactions in the whole set of alkali metals. By comparing simulation results to ORPA and SMSA predic-
tions, it appears that the use of the last two methods has to be restricted to fluids with packing fractions of less
than about 0.55. The results of the analytical methods are in rather good agreement with simulation and
experimental data, except with lithium that turns out to have a remarkably high packing fraction. Taking
advantage of the calculation of the structure and the screening charge, the electron-ion pair distribution func-
tions are investigated and features characteristic of alkali metals are ob4&S0&63-18207)04917-3

I. INTRODUCTION under investigation(Richardson and Ashcroft, Moroni
et al,19 reflecting the unsettled status @{q), and different
The prediction of the structure of metallic liquids remainstractable expressions have been proposed. We use the ex-
a topical subject that combines two difficultie®) the de-  pressions of3(q) proposed by Ichimaru and Utsuthi(IU)
scription of the interactions between the components of thand by Vashishta and Sing#i(VS), which are representa-
metal and(ii) the deduction of the ionic arrangement in thetive of two characteristic trends, with or without a hump at
electron gas. Consequently, any attempt to calculate th2kr, and we use the effective pair potentials to predict the
structure of a real metallic fluid first requires one to modelstructure of alkali metals from Li to Cs. Three main kinds of
the interactions and, second, to deduce the structure factor lapproaches have been developed and applied to the predic-
using the most appropriate theories. It is then often difficulttion of the structure of liquid metals.
to make allowance for the uncertainties resulting from each (i) Thermodynamic perturbations: they were historically
step. first to be applied extensively to metallic liquids. Among
So, the choice of a model potential as a starting point tdhem the optimized random phase approximati@RPA)
study the structure of liquid metals is of prime importance.seems to be best suited for an analysis of these elements.
The optimized model potenti#@OMP, Shaw) is anab initio (ii) Integral equations, which are more or less suitable to
model since it is not fitted on any macroscopic property. It isdeal with metallic interactions. For instance, the soft-core
as old as Ashcroft’s, but has been less used because of theean-spherical approximatig@MSA) has already provided
complexity induced by its nonlocality and its energy depen-promising results(Jakse and Bretonnét, Bretonnet and
dence. The OMP can be used to describe many properties daksé?).
simple metals and it has already given good results for the (iii) Numerical simulation methods such as Monte Carlo
polyvalent metals by allowing one to reproduce the shouldeand molecular dynamic$MD) (cf. Heermanf? for a re-
on the first peak of the structure factor of Ga and?Ge. view).
Nevertheless, no study of the whole set of alkali metals has The first two approaches mentioned here are based on
ever been published to date with this potential. approximate relations between the interionic potential and
Alkali metals are generally considered as the simplesthe structure factor. The uncertainties of the potential are
metals since they possess a single electron in their externalorsened by those arising from these approximations. On the
shell. Nevertheless, they are still the object of great interestontrary, MD simulation suffers limitations in its accuracy
(Gonzalezet al,* Matsudaet al®) for different reasons. only in the numerical algorithm used to integrate the equa-
Their chemical reactivity makes them valuable for researchtions of motion and in the finite number of particles in the
ers. For theoreticians, they constitute a set with ionic coresample. Nevertheless, we have good knowledge of these pa-
ranging from very simpléLi) to more compleXCs), and are  rameters so that the MD results can be considered as experi-
well adapted to test the field of application of an approachmental ones for a modeled or hypothetic fluid.
This is reinforced by the fact that lithium exhibits a marginal In this paper, we first take advantage of the great reliabil-
behavior that often requires a specific treatmé@das and ity of MD simulations to test the validity of the interionic
Joardef, Gonzalezet al,’ Hoshino and Your@. potentials by comparing MD results of structure with the
In this work, we call on the second-order perturbationexperimental ones. We also try to determine the incidence of
theory and the local-field correctidb(q) to get the effective  the electron gas screening on the pair potential by comparing
ion-ion pair potential. The behavior of the electron gas is stilllU and VS local-field corrections. Second, we test the effi-
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ciency of two analytical methods for prediction of the struc- TABLE I. Our values of the parameters of Shaw's model of
ture, ORPA and SMSA, as representative of, respectivelypotential and of the effective valen@ =Z—\ as defined in the
perturbation methods and integral equations. The former wai€xt. These values agree with those available in the literjaee,
selected because the above-mentioned predisposition to dé@l instance, CowleyRef. 40]. Let us notice that there is n&,

with metal-like interactions, and the latter because it hagarameter for alkali metals. Whilg<2 for Li, Na, and K, it ap-
been developed specifically for dense fluids at low temperaR€ars that experimental spectral energies cannot be fitted for Rb and

ture (Chihara!® Madden and Ric¥) and does not require ©S:
any adjustable parameter. Moreover, SMSA has already .
proved its ability to predict the structure of Rb and Cs near L Na K Rb Cs
the critical point(Bretonnet and Jak&®. To test these meth-
ods, we compare their results with those of MD for the A0) 0293 0263 0.189 0.173  0.150
model fluid. Since the potential is the same in both cases, the-g ga,/dE -0.183 —0.229 —0.312 —0.348 —0.389
differences that might appear stem from the only approxi- Ao(Er) 0342 0319 0255 0243 0.224
mate schemes used. Third, we consider the electron-ion pair
distribution function and structure factor. They can be ob-
tained experimentally from x-ray and neutron-scattering ex- AL(0) . 0343 0228 0198 0170
periments(Egelstaffet al!®) and have recently been the ob- 1 dAl/dE 0.097 —0.166 —0187 —0.915
ject of a great interes{Takeka et al,'® Hoshino and 1 - - - s
Watabe?® for instance. However, though an experimental Aa(Br) o 0367 0262 0234 0209
assessment of these quantities is impaired by the uncertain-
ties proper to experiments on scattering, it can easily be .
implemented on the basis of the ionic structure factor and the z 1082 1081 1117 1128 1151
screening charge density. We can derive benefit of this ad-
vantage to investigate the spatial distribution of the screening
cloud around an ion for the whole set of alkali metals. A/(E)=A(0)+ EX%

After this introductory part, we describe, in Sec. I, the : ! dE "~

implementing of the effective potential with Shaw’'s OMP
and the structure with the three methods ORPA, SMSA, an
MD. Then, in Sec. lll, we present our results that we analyz
following the directions previously defined. Finally, we sum
up and conclude in Sec. IV.

e have calculated the free ion parameters and extrapolated

em at the Fermi level of an electron in the metal following
the prescriptions of Ballentine and GuptaOur results are
presented in Table I; they are in good agreement with those
available in the literature.

The main advantage of using pseudo- or model potentials
Il. LIQUID STATE THEORY is allowing an estimation of the energy of the electron gas,
A. Shaw’s model of potential calling on a second-order perturbation development. The
h doootential th I to determine th electron-electron interactions are accounted for by a screen-
The pseudopotential theory allows one to determine ?ng method, which requires the charge density to be known,

;ffeenitlgftr:rgzaerﬁg:g); o?etaléeg;tte\tllv?olﬁﬁes Stgégl:]%ho%gregflggﬁgut a difficulty appears considering that the potential is en-
turbations(Harrisorft}). This is a well-known approach for ergy dependent. The pseudo-wave function is no more nor-

: . o maliz nity an rrection, call letion hole, h
local and energy-independent potentials, but it is a mor alized to unity and a correction, called a depletion hole, has

. ; & intr :
complex task in the case of potentials such as Shaw’s. FoP be introduced

these reasons, we remind the reader of the main steps in this _dw . .
calculation. _ _ A=— >, f XE(r)EXg(r)dr,
It was demonstrated that the real electron-ion potential k=kg J core

should be replaced by a pseudointeraction p_rovi_ded the ei/'vhere)(,g stands for the pseudo-wave function. This charge is
genvalues of the energy of the system are maintained. Sha

d L= 9 ¢ th del of Hei dVfbcated in the core, but its spatial distribution is unknown
grt:)posi \;?g opltlmlzdaplonho the mg N ho . ene arr; and we have assumed it to be uniform. Then, starting with
arenkov* developed In that sense. For the free ion, they,o harge density, Poisson’s equation allows one to get the

expression  of ~ Shaw's — model  potential IS goreening potential. The expression is made more complex
(e=h=m=a,=1) by the nonlocality of the potential, but we can write the
7 7 screened form factor in an abridged form as follows:
Wo(f)=——~2> 6(R—1)| A(E)——|P),
T r w(k @) =wo(K. )+ — “G(q))
AT @ T (@

whereZ is the valence of the iorlg is the highest orbital
momentum present among the core electréhis the func- x{g*(Q)+vg(@)+[1—ex(@]v(q)}, (D)
tion of Heaviside,P, is the projector on thé-momentum .. Lo

core orbitals responsible for the nonlocality, andWhere wo(k,q)=v(a)+f(k,q) is the bare form factor,
A|(E)=2Z/R, are the parameters that reproduce the spectral(q) is its local part, f(k,q) is its nonlocal part,
lines of the free ion. Their energy dependence is assumed () =AQoM(q) is the correction introduced because of
be linear the depletion holeM (q) is a modulation function depending
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on the spatial distribution oh, e4(q) is the Lindhard- 1. Molecular dynamics
Hartree dielectric functionG(q) is the local-field correction Deducing the structure of a fluid from the interactions
taking in_to account exchange and correlation effects betweeganyeen the particles can be undertaken following several
conduction electrons, and €(q)  methods. The easiest one in its principle is molecular dynam-
=1-[1-G(@)[1-&n(a)]; g*(q) follows from the jcg in which the equations of motion of a finite number of
screening of the nonlocal part of the potential, interacting particles can be numerically integrated when the
Lo interaction forces are known. It allows one to get the micro-
g*(q) = j 2J f(kﬁ'ql K scopic desc_:ription of a small _sar_nple _of I_iqu_id ir_nmersed_in a
T Jkskek®— ||k + q]|? macroscopic one. Thus, the ionic-pair distribution function
Once we have obtained the screened form factor, the ex- gi(r)=h;(r)—1

pression of the energy of the electron gas follows and th% obtained by computing the probabilityP(r)-dr

total energy of the metal can thus be written as the sum of %p4ﬂ-rzg“(r)dr of finding a particle at a distance between

volume-dependent part a_nd a structure-depende_nt part. TrPeandH—dr from a particle taken as origin and by averaging
latter can be expressed in terms of the normalized energ

. 4 ver independent configurations of the simulated system.
wave number characteristféy(q) (Shav) This kind of approach is also applicable to analytical or tabu-

1-G lated potentials such as metallic ones. Our calculations were
——[g*+v+uvgl®+]j carried out with a large cubic cell containing 4394 particles
€ subject to the standard periodic boundary conditions. A
G e phase-space trajectory of this system was produced in the
+2—v(g* +v+uvg)—(v+vg)’— —v?|, microcanonical ensemble by using Verlet's algorithm in the
€ & velocity form. After an equilibration time in which the tem-
(2) perature was constrainted periodically to the desired value,
an averaged(r) over 300 configurations separated by 100
jteration steps ofAt (At typically from 107 to 10714 s)
was calculated.
4 £2(k.) In addition to the MD simulations, there exist analytical
, 2] an K. methods that are less time-consuming and usually founded
79 Jk=kek?— || k+q]|? on a special separation of the potential. Weedtsal®®

, ) . (WCA) proposed to split up the pair potential into two con-
The other notations have already been defined with the fo”ﬂibutions: a short-range pauy(r), that is purely repulsive,

factor. Finally, the effective pair potential consists of a direct
part and an indirect part, collected in the form

z*2 2 (= sigR
uR)= [1_Efo Fa(a) dq],

q2 VZ

FN(q): _(47TZ* N

where theq dependence has been omitted for typing conve
nience and where

i(a)=

and an attractive long-range paut,(r), such as

u(r)=Vmin If r<rnin,
Y=g if r>r,

5
Vmin if r<rmin,
u(r) if r>rmin,

where Z* =Z—\. Though they are obtained through the
same approach as for local and energy-independent poten-
tials, relations(1) and(2) do appear more complex.

Ul(r):[

wherer ., and V,,,;, stand for the coordinates of the first
minimum ofu(r). The repulsive pantiy(r) is considered as
predominant to determine the structure, whenegds) is re-

In this paragraphe;i(r) andh;;(r) are, respectively, the sponsible for the liquid cohesion and governs its thermody-
direct and total ionic correlation functions bound by thenamical properties.
Ornstein-Zernicke relation

B. The ionic structure determination schemes

2. Integral equations

hii(f)ZCii(f)JFPf Cii(lF_ F’|)h”(F’)dF’, 3 Integral equations are based on approximate closure rela-
v tions connecting structure and interaction. In the case of the
SMSA, this closure relation igChihara® Madden and

wherep is the density of the fluid. The Fourier transform of Rice""

this relation introduces the ionic structure factor

Csmsa(l) =Co(r)+cq(r)

1
S T i@ = {1-exd Buo(N) Bg() ~ Bus(), ()
with where 8=1/kgT. It is obtained by splitting up(r) follow-
ing Eq.(5). Whenug(r) is taken as the hard-sphere potential,
Si(q)=1+ph;i(q) the SMSA becomes equivalent to the mean-spherical ap-
4m (o proximation(MSA, Lebowitz and Percd$):
=1+ — J rh;;(r)sin(gr)dr. 4
q p 0 II( ) n(q ) ( ) CMSA(I’)ch(r)Z—Bul(I’).
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Consequently, SMSA is a generalization of the MSA to soft-is the so-called blip function and wheeeis defined such as
core potentials, and has already provided better results than

HNC and PY in the case of metallic potentials and of B (1di=0

Lennard-Jones fluid at its triple poifMadden and Ric¥). o(r)dr=0.

The main difficulty in setting up the integral equations lies in _. .
solving the set of equations formed by E§) and Eq.(6). Finally, the ionic structure factor reads
Because of the integral expression of E@), a self- S,(q)

consistent approach of this problem with classical algo- SORPAq) = g R pB,(Q).
rithms, such as Picard’s, converges very slowly and appears 1-pS,(q)pui(q)

_tiresome. In order to reduce the time of caI(_:uIation and Quhen the ORPA procedure is used after that of WCA, the
'mp“;)’e the accuracy, we useq the algonthm .Of .Lab'kvalue of the hard-sphere diameter is modified so that the
et aI._ to deduce the pair correlation functigyr) of liquid WCA procedure has to be repeated in a self-consistent way
alkali metals. until the stability ofo is reached. In the case of our poten-
tials for alkali metals, the convergence was quite rapid ex-
cept for Li.

The perturbation methods apply the WCA prescription to
define an unperturbed system associated to the short-range C. The electron-ion structure factor
potentialug(r), and a perturbing potential,(r). Since the o ) , )
exact description of the unperturbed system is very complex, A liquid metal can be conS|dere<118as an electron-ion mix-
it is first replaced by a hard-sphere reference system, witfHre and, according to Egelstat al,™ the electron-ion cor-
diametero, which has been extensively studied especially by'€lation can be estimated from the difference between struc-
computer simulatiorfVerlet and Wei&). This amounts sub- turé factors determined by x-ray and neutron diffraction
stituting a trial system for the true or@ndersenet al,? experiments. T_h(_a accuracy of the_se technl_qut_as is still far
Kahl and Hafner® Bretonnet and Regndytthat is charac- from being sufficient to give a precise quantlltgltwe electron-
terized by the potentialy(r)=u,(r)+uy(r). Following the 0N structure factoS¢(q) even if Takedzet al*® have car-

random phase approximatiaiRPA), when applied to the ried out some experiments on polyvalent liquid metals. pr-
trial  system, the total correlation function is ever,S(q) can also be calculated by a procedure described

cr(r)=c,(r)+c,(r) [wherec,(r)=—Bus(r)] so that the by Chihara®! Petrillo and Sachetf? and more recently by
ionic structure factor is given by Hoshino and Watab®. According to these authors, the
electron-ion structure factor can readily be expressed as

3. Perturbation theories

Sy(a)

) 1
Ss(ad)Bus(q) Sei(q)= Ensc(q)sn(q), (7

S =1=,

Since the trial system has a hard-sphere core, it requires

gr(r)=0 if r<c. The condition, which is not met by the \yhere s, (q) is the ionic structure factor and(q) is the
RPA, is fulfilled by the ORPA whem,(r) is replaced by an  gjectron screening density. For Shaw’s nonlocal OMP,

optimized potentialij (r): n.{q) is written as follows, in terms of the quantities defined

uf(n=uy(r) if r>o previously:

_ 9% {v(@[1-en(@]+en(a@)g* (@) +va(a)}
nsc(Q)_ A S(C{)

) In this expression, the nonlocality and the energy depen-
r 1) dence are taken into account. If they had been omitted, we
g

=Uy(0)+Vop(r) if r<o,

where

+

r
E_l would have found the standard expression related to local
energy-independent potentials. As will be seen later, the fact

! (2r 1)] that ng{q) is the Fourier transform of the pseudoelectron
n - .

Vopt(r)=—%><[kl+k2

density of the conduction electrons rather than the true one,
has an incidence on the pair-correlation functigpér). We
In this relation,P,, stands for thenth Legendre polynomial used our MD results 08;(q) to calculate the electron-ion
and k,, for the parameters calculated requirigg(r) =0 if structure.
r<o. This condition was fulfilled witH =2.

Having described the trial system, we now need to link it
up to the real fluid. Using a perturbation development of the
free energy, Weekst al?® established that A. Test of the potentials

WCA, ~\ _ We now test the effective pair potentials obtained with
= —+ X N
So (@) =S,(q)+pB,(q), Shaw's OMP. Before dealing with our results of structure,
where we would like to investigate directly the pecularities of the
effective pair potential curves. Data relative to the thermo-
Ug(r) —Uo(r) dynamical states of alkali metals near their melting tempera-
exp ————1 ; )
kgT tures are summarized in Table II.

Ill. RESULTS AND DISCUSSION

Bo(r)=9g4(r)
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TABLE II. Physical properties characteristic of the thermody-  TABLE Ill. Estimation of the hardness of the pair potentials.
namical states under stud, is the atomic volume anBys is the
Wigner-Seitz radius. U VS

d (a.u) d/r min d (a.u) d’r min

Element T (K) Qo (a.u)® Rws (a.u)

Li 5.643 0.888 5.681 0.888
Li 463 152.068 3.311 Na 6.366 0.890 6.432 0.887
Na 378 277.623 4.047 K 7.700 0.890 7.776 0.889
K 343 530.432 5.022 Rb 8.184 0.889 8.270 0.889
Rb 313 661.388 5.405 Cs 8.837 0.888 8.918 0.892
Cs 303 810.227 5.783

] ] . _ tical in that range. The differences between both screenings
The first feature of the pair potentials that we look at isare noticeable only in the range between first and second
the assumption of universality of the shape for alkali metalspeighpors. This confirms the idea according to which the

Figure 1 shows the potentials for the five alkali metals onstrycture is rather conditioned by the short-range repulsive
reduced scales, with the local-field correction of VS. If Weinteractions. Such differences, which are perceptible exclu-

consider the short-range part, we observe that, except for Lijyely in the medium range, are specific to alkali metals.
the curves are almost identical. Differences only appear aftefith polyvalent metals, larger differences between VS and

d 1 Mmin

the first maximum, but the amplitude of oscillations is rather appear in the repulsive part ai(r) (Bretonnet and
small. In order to compare the hardness of the repulsive paﬁegnauﬁ), responsible for the shoulder at the right side of
of the potentials, we consider the following quantity e principal peak o8(q) for Ga and Ge.
(Tanaka’): We now compare the curves @f(r) obtained by MD
simulations and the experimental ones. The experiments by
1—exp( — M) dr. (8) Wasedd are taken into account since they were carried out
Fmin 'minJo kgT with the same experimental protocols for the whole set of
: _ alkali metals. No general trend emerges when going from the
The values oij/.rmin co_rre_sp_ondmg to our potentia{Sable _ lighter to the heavier elemenf&igs. 3a)—3(e)]. It appears
lll) show a str|k|r_lg S|m_|lar|ty for the whole set_of alkal,' that MD calculations yield a good prediction of the pair dis-
metals and the universality of the shape of the pair potentialg;, ;tion function of Na and Cs. Two main discrepancies can
(Singh and HolZ* Gonzalezet al) seems rather confirmed ¢ pointed out for the other elements. For Li, it appears that
by our calculations, indicating that liquid alkali metals are e hredicted oscillations are fuller than the experimental
scaled versions of each other. _ ones. Nevertheless, the position of the first two peaks coin-
The second feature we examine is the influence of th@;qje exactly. In the cases of K and Rb, we observe leading
screening. MD results of the pair distribution function are jc.iations of MD compared with experiments, but the am-
insensitive to whatever local-field correction is used, Whereaﬁlitudes are of the same order.
the potentials appear to be rather affected, especially in the yye \youid like to point out that Shaw’s model of potential
first minimum region. This insensitivity was already 0b- s a4 ap initio one and has to be distinguished from those
serv_ed for liquid a!kall met_al; by Bretonnet and Jéﬂmth. with adjustable parameters. With the latter, some authors
the integral equation hybridized mean-spherical approximag pieved excellent agreement between simulation and ex-
tion. A study of the interatomic forcgs-du(r)/dr]forboth  heiment. Gonzalez Miranda and Tcftabtained very good
local-field corrections showFig. 2) that they are quite iden- oqits for Na with Ashcroft's empty core model potential.

0.010 ——

— 0.003
Potentials

o U - 0.002
Forces
0.005

0.000

7
5
d
4

|

1y

\ ok

- du/dr (a.u)

-0.005 4

position of the first neighbor E ’ - -0.002

i
T -0.010 — T T -0.003
1 2 3

x=r/r . r(a.u)

FIG. 1. Pair potentials for alkali metals, in reduced units, for VS FIG. 2. Pair potentials and forces for Na with both IU and VS
screening. The curve of lithium is slightly shifted from the others screenings. The position of the first neighbors is indicated. In the
that are indiscernible in the short distance region. With IU screen+egion of the first neighbors, potentials show differences and the
ing, the differences between the set of curves are smaller. forces are quite identical.
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iy . DM e MD
Lithium Rubidium
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25 2.5

2.0 2.0-]

g(r)
8

0.5+ 0.5+
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(a) r(au) (d) T (au)

. —MD .
Sodium Cesium
3.0 °  EXP 3.0 °  EXP
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Potassium MD
3.0 o EXP
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8(r)
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0.0

0
(c) T (a.u.)

FIG. 3. Pair distribution functions. Circles represent experimental results of WéRetl&85. Full curves show our MD results with 1U
local-field corrections.

Some others were not so lucky, though having adjustablenined with the nonlocaab initio model potential of Shaw
parameters at their disposal: Matsuetaal® for Na, K, and  are very realistic and appropriate to describe the structure of
Rb with the model potential of Hasegawnal 3>’ and Gonza-  liquid alkali metals.

lez et al® for the whole set of alkali metals with Ashcroft's
model. In our case, it is worth noting that K and Rb are the
elements that raise the most problems with the shift of
g(r) oscillations towards small distances. It is found that
g(r) of Liis very acceptable when calculated with the OMP  In this subsection, we compare the curvesg¢f) ob-
and does not require the kind of special treatment that isained by MD with those obtained by SMSA and ORPA in
usually devoted to it. Consequently, the pair potentials detererder to test their ability to predict the structure of liquid

B. Comparison of the analytical approaches
with molecular dynamics
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metals. Whereas Na, K, Rb, and Cs are similarly well de- 4

scribed by each method, Li displays a completely different  SMSA
pattern. We discuss separately the case of Li and take Rbas | Lithium | .. ORPA
representative of the remaining four elements. sl !

Figure 4 shows simultaneously the curvesgyof) for Rb
obtained with the three different methods. A striking feature
is the very good concordance between the predictions of E *f
ORPA and of SMSA, even though the repulsive part of
u(r) is treated differently. Only little deviations appear in the
position of the first peak of(r). When compared with MD
results, both methods underestimate the height of the first
peak. Analytical methods present a slight packing down of 0 L
the left side of the second peak. So, both methods show a °

similar and suitable ability in deducing the structure of Na, r(@u)
K, Rb, and Cs from the interactions obtained with Shaw's o ) )
OMP. FIG. 5. Pair distribution function of Li.

On the contrary, as shown in Fig. 5, lithium is an excep-

tion. The results of SMSA and ORPA are not in agreemenP&tween MD, ORPA, and SMSA for values gfinferior to
with MD predictions, as the oscillations of(r) are ampli- about 0.55. The differences only appeared with greater val-

fied. Besides, considering the two analytical methods, a sut}€S ©f 7. When increasing; with the potential of Na, we

stantial difference exists between both curveg@f) in the drew the same conclusions. Thus, we have pointed out that

region of the first two peaks, i.e(i) a shift of the principal thg use'of the ORPA and' the SMSA has to be restricted to

peak, (i) a severely distorted second peak given by orpAfluids W|th_ a packing fraction of less than abOL_Jt _0.55.

and marked by an original triangular shape. _ A(_:co_rdlng to our MD results, we hpld the opinion that the
interionic pair potentials calculated with Shaw’s OMP can be

This situation reveals an interesting feature of the analyti- . . . .
cal methods and a criterion to use them. If we define a pacléJSGd for a_II alkall meFaIs, .mcludl.ng Li. We only have to use
ing fraction the analytical approximations with the utmost care to deter-

mine the structure because they do not apply properly when

d \3 the packing fraction is greater than 0.55.
B ( ZRWS) !

C. Electron-ion correlation function
where d is a core radius given by the prescription of
Tanaka® [Eq. (8)], this quantity is much higher for Li than
for the other alkali metal§0.631 for Li, 0.502 for Na, 0.464

for K, 0.448 for Rb and 0.458 for ¢sThis specificity of Li S : . s
; i(a/kg) (Fig. 6), which are conditioned by,{q) and

was already observed by Kummaravadivel and E¥aasd el —_ :
. ) . . S;i(q) [Eq. (7)], show rather similar features, name(i), an
it could be responsible for the above-mentioned difficulties : . :
encountered b)F/) the ORPA and the SMSA. In order to tes b_rupt dip at the posm__orq/kpzz.z_correspondmg o the
this assumption, we can calculate the structﬁre of a fluid wit rincipal peglz_91)$ii((:1l), (i) sma_LII OSC'"at.']?nj a;)round zero at

: P : . large g, and (iii) a low-q region specified by a positive
2; %ﬂigztiblekgscilﬂng{r:;agtflfzgﬁ\\,/ze g?éilt?;;duiléﬁgnhyp? tlhet'électron-ion structure factor. These features are in accor-

d4) and g v fing the den it{,arl?d R When de- dance with the experimental results of Takexal,'® even

i?ea)siﬁgn w)i/th ?h{a gote?]tia? O‘? Li weszbévesz\./e q aen ageiee— if the dip deduced from the ionic-structure factors measured

ment of the same quality as that presented in Fig. 4 for Rb

In this subsection, we present our results of the electron-
ion correlation in showing first the electron-ion structure fac-
tor plotted vsg/ke for all alkali metals. The curves of

0.25 . , . . ,
3 Li
D ——SMsaA Na
Rubidium | ... ORPA o
2
g Rb
\':")' 5090909005,
)
=
<
= 0.00 eeresreagy, S
1F ‘,
-0.05 —y
o
-0.10 ' . .
0 2 4 6 8
0

r(a.u.)

FIG. 6. Electron-ion structure factors ggkr obtained with VS
FIG. 4. Pair distribution functions of Rb with IU screening. Rb screening. From Cs to Li, the successive curves are vertically
is representative of the other alkali metals, except Li. shifted by an amount of 0.05.
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2.25 — : : with Ashcroft’s potential(Fig. 7). In contrast to our results

] .\ Li®, =292 a.) ] obtained on the basis of Shaw's OMP and also to the rather
2,00 e jagged outline of(r) in the ionic core obtained by Gonza-

. / NaR =283au) | lez et al,* using the neutral pseudoatom method, the curve
175 / A smoothly slopes down to zero. Moreover, if the value of the

M \ K (R,=3.84 a.u) T depletion holex is artificially set to zero, the discontinuity

g ; e disappears.

o M %k Rb(R,=423au) | The behavior ofg(r) inside the ionic core should be
125 i = regarded with caution. Outside the core, it is interesting to
w0 ; . N Cs(R,=4.70a..) note that the first peak af.i(r) is located at half the distance
T e — of the first peak ofg;(r), which coincides with the first
075' S - minimum of gei(r). This was qualitatively observed from

0 10 20 experimental data with alkali metals but not with polyvalent
 (atomic units) ones. Thus, as expected, the first peak of the electron-ion pair

. S . distribution function corresponds to the maximum position
FIG. 7. Electron-ion pair distribution function®, stands for  of the screening valence electron density around an ion and

the core-radius within which the depletion hole is confined. Fromthe successive peaks to the next maxima of the Charge den-
Cs to Li the curves are shifted by an amout of 0.25. The dashedjty of the valence electron cloud.

curve has been obtained for Na with Ashcroft’s potential to point
out the influence of the depletion hole.
IV. SUMMARY

by x ray and neutron scattering is substantially deeper. There .
is not much more to be done, given the uncertainties of dif- Wwe applled the nc_JnIocaI and energy dependent Shaw

. . OMP, using the atomic number as the only input data, to
fraction experiments.

. . . derive an effective interionic pair potential with all alkali
In Fig. 7, we also compare the electron-ion pair correla-

tion functionsge(r) drawn fromSg(q) by the Fourier trans- mhetals.fWe I:‘oEnd }Ealt. thesel par ?05‘?”“""'.3 show a universal
form shape for all the alkali metals, including Li.

Then, the evaluation of the ionic structure was carried out
VZ 1 L by calling on MD, ORPA, and SMSA techniques. We have
Oei(r)=1+— —gJ Sei(Q)exp(ig-r)dag. proved the reliability of the analytical theories of the liquid
p 8w state by comparing the corresponding predictions with the
For all elements under study, small oscillations gf(r) results obtained for the structure with the MD method.
around unity at large distances can be pointed out. The mo&RPA and SMSA results are of the same quality and are in
striking feature of our results is the discontinuity that occursgood agreement with those of MD provided that the packing
at a position ranging from 3 a.u. for Li to 5 a.u. for Cs. Thesefraction is less than about 0.55.
positions coincide with the radius of the sphere containing Finally, we performed the calculations of the electron-ion
the depletion hole at each ionic site. It is worth bearing incorrelation function applying a consistent approach, without
mind that, when replacing the true potential by a pseudo oneny fitted parameter, starting from the sophisticated Shaw
the true wave function is replaced by a pseudo one too. CoPMP to determine the screening valence electron density
sequentlyge(r) does not describe the true electron-ion pairand the ionic structure factor via the interionic pair potential.
distribution function inside the ionic cores, but rather theVarious results are given and discussed in connection with
pseudo one. When dealing with energy-dependent pseudopg&haw’s OMP.
tentials, the pseudo-wave function has to be kept normalized.
This is achieved by i_ntroducing the dep!etipn holgs into each ACKNOWLEDGMENTS
core. We assumed it to be uniformly distributed in the core
volume; this accounts for the discontinuity observed. In or- The CIRIL (Centre Interuniversitaire de Ressources Infor-
der to check that it is really related to the energy dependencmatiques de Lorraineas gratefully acknowledged for provid-
of Shaw’s OMP, we performed a calculationgy(r) for Na  ing us with computer time.
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