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Comparative study of structure determination schemes: Application to liquid alkali metals

J.-F. Wax, N. Jakse, and J.-L. Bretonnet
Institut de Physique, Universite´ de Metz 1, bd Arago 57078 METZ Cedex 3, France

~Received 23 September 1996!

The ionic structure of liquid alkali metals at their melting point is investigated with molecular dynamics, an
optimized random phase approximation~ORPA!, and a soft-core mean-spherical approximation~SMSA! as
representative of, respectively, simulation, perturbation, and integral methods. The valence electron screening
densities and the interionic pair potentials are derived from Shaw’s optimized model of potential and are free
of adjustable parameter. We take advantage of the central place of molecular dynamics to analyze the results
and point out that the interionic potentials issued from Shaw’s potential provide a correct description of the
interactions in the whole set of alkali metals. By comparing simulation results to ORPA and SMSA predic-
tions, it appears that the use of the last two methods has to be restricted to fluids with packing fractions of less
than about 0.55. The results of the analytical methods are in rather good agreement with simulation and
experimental data, except with lithium that turns out to have a remarkably high packing fraction. Taking
advantage of the calculation of the structure and the screening charge, the electron-ion pair distribution func-
tions are investigated and features characteristic of alkali metals are observed.@S0163-1829~97!04917-5#
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I. INTRODUCTION

The prediction of the structure of metallic liquids remai
a topical subject that combines two difficulties:~i! the de-
scription of the interactions between the components of
metal and~ii ! the deduction of the ionic arrangement in t
electron gas. Consequently, any attempt to calculate
structure of a real metallic fluid first requires one to mod
the interactions and, second, to deduce the structure facto
using the most appropriate theories. It is then often diffic
to make allowance for the uncertainties resulting from e
step.

So, the choice of a model potential as a starting poin
study the structure of liquid metals is of prime importanc
The optimized model potential~OMP, Shaw1! is anab initio
model since it is not fitted on any macroscopic property. I
as old as Ashcroft’s, but has been less used because o
complexity induced by its nonlocality and its energy depe
dence. The OMP can be used to describe many propertie
simple metals and it has already given good results for
polyvalent metals by allowing one to reproduce the shoul
on the first peak of the structure factor of Ga and Ge2,3

Nevertheless, no study of the whole set of alkali metals
ever been published to date with this potential.

Alkali metals are generally considered as the simp
metals since they possess a single electron in their exte
shell. Nevertheless, they are still the object of great inte
~Gonzalezet al.,4 Matsuda et al.5! for different reasons.
Their chemical reactivity makes them valuable for resear
ers. For theoreticians, they constitute a set with ionic co
ranging from very simple~Li ! to more complex~Cs!, and are
well adapted to test the field of application of an approa
This is reinforced by the fact that lithium exhibits a margin
behavior that often requires a specific treatment~Das and
Joarder,6 Gonzalezet al.,7 Hoshino and Young8!.

In this work, we call on the second-order perturbati
theory and the local-field correctionG(q) to get the effective
ion-ion pair potential. The behavior of the electron gas is s
550163-1829/97/55~18!/12099~9!/$10.00
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under investigation~Richardson and Ashcroft,9 Moroni
et al.,10! reflecting the unsettled status ofG(q), and different
tractable expressions have been proposed. We use the
pressions ofG(q) proposed by Ichimaru and Utsumi11 ~IU!
and by Vashishta and Singwi12 ~VS!, which are representa
tive of two characteristic trends, with or without a hump
2kF , and we use the effective pair potentials to predict
structure of alkali metals from Li to Cs. Three main kinds
approaches have been developed and applied to the pr
tion of the structure of liquid metals.

~i! Thermodynamic perturbations: they were historica
first to be applied extensively to metallic liquids. Amon
them the optimized random phase approximation~ORPA!
seems to be best suited for an analysis of these elemen

~ii ! Integral equations, which are more or less suitable
deal with metallic interactions. For instance, the soft-co
mean-spherical approximation~SMSA! has already provided
promising results~Jakse and Bretonnet,13 Bretonnet and
Jakse14!.

~iii ! Numerical simulation methods such as Monte Ca
and molecular dynamics~MD! ~cf. Heermann15 for a re-
view!.

The first two approaches mentioned here are based
approximate relations between the interionic potential a
the structure factor. The uncertainties of the potential
worsened by those arising from these approximations. On
contrary, MD simulation suffers limitations in its accurac
only in the numerical algorithm used to integrate the eq
tions of motion and in the finite number of particles in th
sample. Nevertheless, we have good knowledge of these
rameters so that the MD results can be considered as ex
mental ones for a modeled or hypothetic fluid.

In this paper, we first take advantage of the great relia
ity of MD simulations to test the validity of the interioni
potentials by comparing MD results of structure with t
experimental ones. We also try to determine the incidenc
the electron gas screening on the pair potential by compa
IU and VS local-field corrections. Second, we test the e
12 099 © 1997 The American Physical Society
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12 100 55J.-F. WAX, N. JAKSE, AND J.-L. BRETONNET
ciency of two analytical methods for prediction of the stru
ture, ORPA and SMSA, as representative of, respectiv
perturbation methods and integral equations. The former
selected because the above-mentioned predisposition to
with metal-like interactions, and the latter because it h
been developed specifically for dense fluids at low tempe
ture ~Chihara,16 Madden and Rice17! and does not require
any adjustable parameter. Moreover, SMSA has alre
proved its ability to predict the structure of Rb and Cs n
the critical point~Bretonnet and Jakse14!. To test these meth
ods, we compare their results with those of MD for t
model fluid. Since the potential is the same in both cases
differences that might appear stem from the only appro
mate schemes used. Third, we consider the electron-ion
distribution function and structure factor. They can be o
tained experimentally from x-ray and neutron-scattering
periments~Egelstaffet al.18! and have recently been the o
ject of a great interest~Takeka et al.,19 Hoshino and
Watabe,20 for instance!. However, though an experiment
assessment of these quantities is impaired by the uncer
ties proper to experiments on scattering, it can easily
implemented on the basis of the ionic structure factor and
screening charge density. We can derive benefit of this
vantage to investigate the spatial distribution of the screen
cloud around an ion for the whole set of alkali metals.

After this introductory part, we describe, in Sec. II, th
implementing of the effective potential with Shaw’s OM
and the structure with the three methods ORPA, SMSA,
MD. Then, in Sec. III, we present our results that we anal
following the directions previously defined. Finally, we su
up and conclude in Sec. IV.

II. LIQUID STATE THEORY

A. Shaw’s model of potential

The pseudopotential theory allows one to determine
effective interaction between two ions through a devel
ment of the energy of the metal to the second order of p
turbations~Harrison21!. This is a well-known approach fo
local and energy-independent potentials, but it is a m
complex task in the case of potentials such as Shaw’s.
these reasons, we remind the reader of the main steps in
calculation.

It was demonstrated that the real electron-ion poten
should be replaced by a pseudointeraction provided the
genvalues of the energy of the system are maintained. Sh1

proposed an optimization of the model of Heine a
Abarenkov22 developed in that sense. For the free ion,
expression of Shaw’s model potential
(e5\5m5a051)

ŵ0~rW !52
Z

r
2(

l50

l0

u~Rl2r !SAl~E!2
Z

r D P̂l ,

whereZ is the valence of the ion,l 0 is the highest orbital
momentum present among the core electrons,u is the func-
tion of Heaviside,P̂l is the projector on thel -momentum
core orbitals responsible for the nonlocality, a
Al(E)5Z/Rl are the parameters that reproduce the spec
lines of the free ion. Their energy dependence is assume
be linear
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.

We have calculated the free ion parameters and extrapol
them at the Fermi level of an electron in the metal followi
the prescriptions of Ballentine and Gupta.23 Our results are
presented in Table I; they are in good agreement with th
available in the literature.

The main advantage of using pseudo- or model potent
is allowing an estimation of the energy of the electron g
calling on a second-order perturbation development. T
electron-electron interactions are accounted for by a scre
ing method, which requires the charge density to be kno
but a difficulty appears considering that the potential is
ergy dependent. The pseudo-wave function is no more n
malized to unity and a correction, called a depletion hole,
to be introduced:

l52 (
k<kF

E
core

xkW
* ~rW !

dw

dE
xkW~rW !drW,

wherexkW stands for the pseudo-wave function. This charge
located in the core, but its spatial distribution is unknow
and we have assumed it to be uniform. Then, starting w
the charge density, Poisson’s equation allows one to get
screening potential. The expression is made more com
by the nonlocality of the potential, but we can write th
screened form factor in an abridged form as follows:

w~kW ,qW !5w0~kW ,qW !1
1

«H~q! S 12
G~q!

«~q! D
3$g* ~q!1vd~q!1@12«H~q!#v~q!%, ~1!

where w0(kW ,qW )5v(q)1 f (kW ,qW ) is the bare form factor,

v(q) is its local part, f (kW ,qW ) is its nonlocal part,
vd(q)5lV0M (q) is the correction introduced because
the depletion hole,M (q) is a modulation function dependin

TABLE I. Our values of the parameters of Shaw’s model
potential and of the effective valenceZ*5Z2l as defined in the
text. These values agree with those available in the literature@see,
for instance, Cowley~Ref. 40!#. Let us notice that there is noA2

parameter for alkali metals. Whilel 0,2 for Li, Na, and K, it ap-
pears that experimental spectral energies cannot be fitted for Rb
Cs.

Li Na K Rb Cs

A0(0) 0.293 0.263 0.189 0.173 0.150
l50 dA0 /dE 20.183 20.229 20.312 20.348 20.389

A0(EF) 0.342 0.319 0.255 0.243 0.224

A1(0) — 0.343 0.228 0.198 0.170
l51 dA1 /dE — 20.097 20.166 20.187 20.215

A1(EF) — 0.367 0.262 0.234 0.209

Z* 1.082 1.081 1.117 1.128 1.151
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55 12 101COMPARATIVE STUDY OF STRUCTURE . . .
on the spatial distribution ofl, «H(q) is the Lindhard-
Hartree dielectric function,G(q) is the local-field correction
taking into account exchange and correlation effects betw
conduction electrons, and «(q)
512@12G(q)#@12«H(q)#; g* (q) follows from the
screening of the nonlocal part of the potential,

g* ~q!5
4

p2q2Ek<kF

f ~kW ,qW !

k22ikW1qW i2
dkW .

Once we have obtained the screened form factor, the
pression of the energy of the electron gas follows and
total energy of the metal can thus be written as the sum
volume-dependent part and a structure-dependent part.
latter can be expressed in terms of the normalized ene
wave number characteristicFN(q) ~Shaw24!

FN~q!52S q2

4pZ*
V

ND 2H 12G

«
@g*1v1vd#

21 j

12
G

«
v~g*1v1vd!2~v1vd!

22
«HG

«
v2J ,

~2!

where theq dependence has been omitted for typing con
nience and where

j ~q!5
4

p2q2Ek<kF

f 2~kW ,qW !

k22ikW1qW i2
dkW .

The other notations have already been defined with the f
factor. Finally, the effective pair potential consists of a dire
part and an indirect part, collected in the form

u~R!5
Z* 2

R H 12
2

pE0
`

FN~q!
sinqR

q
dqJ ,

where Z*5Z2l. Though they are obtained through th
same approach as for local and energy-independent po
tials, relations~1! and ~2! do appear more complex.

B. The ionic structure determination schemes

In this paragraph,cii (r ) andhii (r ) are, respectively, the
direct and total ionic correlation functions bound by t
Ornstein-Zernicke relation

hii ~r !5cii ~r !1rE
V
cii ~ urW2rW8u!hii ~rW8!drW8, ~3!

wherer is the density of the fluid. The Fourier transform
this relation introduces the ionic structure factor

Sii ~q!5
1

12rcii ~q!

with

Sii ~q!511rhii ~q!

511
4p

q
rE

0

`

rhii ~r !sin~qr !dr. ~4!
en
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1. Molecular dynamics

Deducing the structure of a fluid from the interactio
between the particles can be undertaken following sev
methods. The easiest one in its principle is molecular dyna
ics in which the equations of motion of a finite number
interacting particles can be numerically integrated when
interaction forces are known. It allows one to get the mic
scopic description of a small sample of liquid immersed in
macroscopic one. Thus, the ionic-pair distribution functio

gii ~r !5hii ~r !21

is obtained by computing the probabilityP(r )•dr
5r4pr 2gii (r )dr of finding a particle at a distance betwee
r andr1dr from a particle taken as origin and by averagi
over independent configurations of the simulated syst
This kind of approach is also applicable to analytical or tab
lated potentials such as metallic ones. Our calculations w
carried out with a large cubic cell containing 4394 partic
subject to the standard periodic boundary conditions.
phase-space trajectory of this system was produced in
microcanonical ensemble by using Verlet’s algorithm in t
velocity form. After an equilibration time in which the tem
perature was constrainted periodically to the desired va
an averagedg(r ) over 300 configurations separated by 1
iteration steps ofDt (Dt typically from 10215 to 10214 s!
was calculated.

In addition to the MD simulations, there exist analytic
methods that are less time-consuming and usually foun
on a special separation of the potential. Weekset al.25

~WCA! proposed to split up the pair potential into two co
tributions: a short-range part,u0(r ), that is purely repulsive,
and an attractive long-range part,u1(r ), such as

u0~r !5H u~r !2Vmin if r,rmin ,

0 if r.rmin , ~5!

u1~r !5HVmin if r,rmin ,

u~r ! if r.rmin ,

where rmin and Vmin stand for the coordinates of the firs
minimum ofu(r ). The repulsive partu0(r ) is considered as
predominant to determine the structure, whereasu1(r ) is re-
sponsible for the liquid cohesion and governs its thermo
namical properties.

2. Integral equations

Integral equations are based on approximate closure r
tions connecting structure and interaction. In the case of
SMSA, this closure relation is~Chihara,16 Madden and
Rice17!

cSMSA~r !5c0~r !1c1~r !

5$12exp@bu0~r !#%g~r !2bu1~r !, ~6!

whereb51/kBT. It is obtained by splitting upu(r ) follow-
ing Eq.~5!. Whenu0(r ) is taken as the hard-sphere potenti
the SMSA becomes equivalent to the mean-spherical
proximation~MSA, Lebowitz and Percus26!:

cMSA~r !5c1~r !52bu1~r !.
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Consequently, SMSA is a generalization of the MSA to so
core potentials, and has already provided better results
HNC and PY in the case of metallic potentials and
Lennard-Jones fluid at its triple point~Madden and Rice17!.
The main difficulty in setting up the integral equations lies
solving the set of equations formed by Eq.~3! and Eq.~6!.
Because of the integral expression of Eq.~3!, a self-
consistent approach of this problem with classical al
rithms, such as Picard’s, converges very slowly and app
tiresome. In order to reduce the time of calculation and
improve the accuracy, we used the algorithm of Lab
et al.27 to deduce the pair correlation functiong(r ) of liquid
alkali metals.

3. Perturbation theories

The perturbation methods apply the WCA prescription
define an unperturbed system associated to the short-r
potentialu0(r ), and a perturbing potentialu1(r ). Since the
exact description of the unperturbed system is very comp
it is first replaced by a hard-sphere reference system, w
diameters, which has been extensively studied especially
computer simulation~Verlet and Weis28!. This amounts sub-
stituting a trial system for the true one~Andersenet al.,29

Kahl and Hafner,30 Bretonnet and Regnaut2! that is charac-
terized by the potentialuT(r )5us(r )1u1(r ). Following the
random phase approximation~RPA!, when applied to the
trial system, the total correlation function
cT(r )5cs(r )1c1(r ) @where c1(r )52bu1(r )# so that the
ionic structure factor is given by

ST
RPA~q!5

Ss~q!

12rSs~q!bu1~q!
.

Since the trial system has a hard-sphere core, it requ
gT(r )50 if r,s. The condition, which is not met by th
RPA, is fulfilled by the ORPA whenu1(r ) is replaced by an
optimized potentialu1* (r ):

u1* ~r !5u1~r ! if r.s

5u1~s!1Vopt~r ! if r,s,

where

Vopt~r !52
1

b
3H k11k2S rs 21D 1S rs 21D 2

3 (
n50

l

kn13PnS 2rs 21D J .
In this relation,Pn stands for thenth Legendre polynomia
and kn for the parameters calculated requiringgT(r )50 if
r,s. This condition was fulfilled withl52.

Having described the trial system, we now need to link
up to the real fluid. Using a perturbation development of
free energy, Weekset al.25 established that

S0
WCA~q!5Ss~q!1rBs~q!,

where

Bs~r !5gs~r !FexpH us~r !2u0~r !

kBT
J 21G
-
an
f

-
rs
o

ge

x,
th
y

es

t
e

is the so-called blip function and wheres is defined such as

E Bs~r !drW50.

Finally, the ionic structure factor reads

Sii
ORPA~q!5

Ss~q!

12rSs~q!bu1* ~q!
1rBs~q!.

When the ORPA procedure is used after that of WCA,
value of the hard-sphere diameter is modified so that
WCA procedure has to be repeated in a self-consistent
until the stability ofs is reached. In the case of our pote
tials for alkali metals, the convergence was quite rapid
cept for Li.

C. The electron-ion structure factor

A liquid metal can be considered as an electron-ion m
ture and, according to Egelstaffet al.,18 the electron-ion cor-
relation can be estimated from the difference between st
ture factors determined by x-ray and neutron diffracti
experiments. The accuracy of these techniques is still
from being sufficient to give a precise quantitative electro
ion structure factorSei(q) even if Takedaet al.19 have car-
ried out some experiments on polyvalent liquid metals. Ho
ever,Sei(q) can also be calculated by a procedure descri
by Chihara,31 Petrillo and Sachetti,32 and more recently by
Hoshino and Watabe.20 According to these authors, th
electron-ion structure factor can readily be expressed as

Sei~q!5
1

AZ
nsc~q!Sii ~q!, ~7!

whereSii (q) is the ionic structure factor andnsc(q) is the
electron screening density. For Shaw’s nonlocal OM
nsc(q) is written as follows, in terms of the quantities define
previously:

nsc~q!5
q2

4p

$v~q!@12«H~q!#1«H~q!g* ~q!1vd~q!%

«~q!
.

In this expression, the nonlocality and the energy dep
dence are taken into account. If they had been omitted,
would have found the standard expression related to lo
energy-independent potentials. As will be seen later, the
that nsc(q) is the Fourier transform of the pseudoelectr
density of the conduction electrons rather than the true o
has an incidence on the pair-correlation functionsgei(r ). We
used our MD results ofSii (q) to calculate the electron-ion
structure.

III. RESULTS AND DISCUSSION

A. Test of the potentials

We now test the effective pair potentials obtained w
Shaw’s OMP. Before dealing with our results of structu
we would like to investigate directly the pecularities of th
effective pair potential curves. Data relative to the therm
dynamical states of alkali metals near their melting tempe
tures are summarized in Table II.
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The first feature of the pair potentials that we look at
the assumption of universality of the shape for alkali meta
Figure 1 shows the potentials for the five alkali metals
reduced scales, with the local-field correction of VS. If w
consider the short-range part, we observe that, except fo
the curves are almost identical. Differences only appear a
the first maximum, but the amplitude of oscillations is rath
small. In order to compare the hardness of the repulsive
of the potentials, we consider the following quanti
~Tanaka33!:

d

rmin
5

1

rmin
E
0

rminF12expS 2
u0~r !

kBT
D Gdr. ~8!

The values ofd/rmin corresponding to our potentials~Table
III ! show a striking similarity for the whole set of alka
metals and the universality of the shape of the pair poten
~Singh and Holz,34 Gonzalezet al.4! seems rather confirme
by our calculations, indicating that liquid alkali metals a
scaled versions of each other.

The second feature we examine is the influence of
screening. MD results of the pair distribution function a
insensitive to whatever local-field correction is used, wher
the potentials appear to be rather affected, especially in
first minimum region. This insensitivity was already o
served for liquid alkali metals by Bretonnet and Jakse14 with
the integral equation hybridized mean-spherical approxim
tion. A study of the interatomic forces@2du(r )/dr# for both
local-field corrections show~Fig. 2! that they are quite iden

TABLE II. Physical properties characteristic of the thermod
namical states under study.V0 is the atomic volume andRWS is the
Wigner-Seitz radius.

Element T ~K! V0 ~a.u.!3 RWS ~a.u.!

Li 463 152.068 3.311
Na 378 277.623 4.047
K 343 530.432 5.022
Rb 313 661.388 5.405
Cs 303 810.227 5.783

FIG. 1. Pair potentials for alkali metals, in reduced units, for V
screening. The curve of lithium is slightly shifted from the othe
that are indiscernible in the short distance region. With IU scre
ing, the differences between the set of curves are smaller.
.
n

i,
er
r
rt

ls

e

s
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tical in that range. The differences between both screen
are noticeable only in the range between first and sec
neighbors. This confirms the idea according to which
structure is rather conditioned by the short-range repuls
interactions. Such differences, which are perceptible ex
sively in the medium range, are specific to alkali meta
With polyvalent metals, larger differences between VS a
IU appear in the repulsive part ofu(r ) ~Bretonnet and
Regnaut2!, responsible for the shoulder at the right side
the principal peak ofS(q) for Ga and Ge.

We now compare the curves ofg(r ) obtained by MD
simulations and the experimental ones. The experiments
Waseda35 are taken into account since they were carried
with the same experimental protocols for the whole set
alkali metals. No general trend emerges when going from
lighter to the heavier elements@Figs. 3~a!–3~e!#. It appears
that MD calculations yield a good prediction of the pair d
tribution function of Na and Cs. Two main discrepancies c
be pointed out for the other elements. For Li, it appears t
the predicted oscillations are fuller than the experimen
ones. Nevertheless, the position of the first two peaks c
cide exactly. In the cases of K and Rb, we observe lead
oscillations of MD compared with experiments, but the a
plitudes are of the same order.

We would like to point out that Shaw’s model of potenti
is an ab initio one and has to be distinguished from tho
with adjustable parameters. With the latter, some auth
achieved excellent agreement between simulation and
periment. Gonzalez Miranda and Torra36 obtained very good
results for Na with Ashcroft’s empty core model potentia

TABLE III. Estimation of the hardness of the pair potentials.

IU VS
d ~a.u.! d/rmin d ~a.u.! d/rmin

Li 5.643 0.888 5.681 0.888
Na 6.366 0.890 6.432 0.887
K 7.700 0.890 7.776 0.889
Rb 8.184 0.889 8.270 0.889
Cs 8.837 0.888 8.918 0.892

-

FIG. 2. Pair potentials and forces for Na with both IU and V
screenings. The position of the first neighbors is indicated. In
region of the first neighbors, potentials show differences and
forces are quite identical.
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FIG. 3. Pair distribution functions. Circles represent experimental results of Waseda~Ref. 35!. Full curves show our MD results with IU
local-field corrections.
b

s
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o
a
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Some others were not so lucky, though having adjusta
parameters at their disposal: Matsudaet al.5 for Na, K, and
Rb with the model potential of Hasegawaet al.37 and Gonza-
lez et al.38 for the whole set of alkali metals with Ashcroft’
model. In our case, it is worth noting that K and Rb are
elements that raise the most problems with the shift
g(r ) oscillations towards small distances. It is found th
g(r ) of Li is very acceptable when calculated with the OM
and does not require the kind of special treatment tha
usually devoted to it. Consequently, the pair potentials de
le

e
f
t

is
r-

mined with the nonlocalab initio model potential of Shaw
are very realistic and appropriate to describe the structur
liquid alkali metals.

B. Comparison of the analytical approaches
with molecular dynamics

In this subsection, we compare the curves ofg(r ) ob-
tained by MD with those obtained by SMSA and ORPA
order to test their ability to predict the structure of liqu
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metals. Whereas Na, K, Rb, and Cs are similarly well
scribed by each method, Li displays a completely differ
pattern. We discuss separately the case of Li and take R
representative of the remaining four elements.

Figure 4 shows simultaneously the curves ofg(r ) for Rb
obtained with the three different methods. A striking featu
is the very good concordance between the predictions
ORPA and of SMSA, even though the repulsive part
u(r ) is treated differently. Only little deviations appear in th
position of the first peak ofg(r ). When compared with MD
results, both methods underestimate the height of the
peak. Analytical methods present a slight packing down
the left side of the second peak. So, both methods sho
similar and suitable ability in deducing the structure of N
K, Rb, and Cs from the interactions obtained with Shaw
OMP.

On the contrary, as shown in Fig. 5, lithium is an exce
tion. The results of SMSA and ORPA are not in agreem
with MD predictions, as the oscillations ofg(r ) are ampli-
fied. Besides, considering the two analytical methods, a s
stantial difference exists between both curves ofg(r ) in the
region of the first two peaks, i.e.,~i! a shift of the principal
peak,~ii ! a severely distorted second peak given by OR
and marked by an original triangular shape.

This situation reveals an interesting feature of the anal
cal methods and a criterion to use them. If we define a pa
ing fraction

h5S d

2RWS
D 3,

where d is a core radius given by the prescription
Tanaka33 @Eq. ~8!#, this quantity is much higher for Li than
for the other alkali metals~0.631 for Li, 0.502 for Na, 0.464
for K, 0.448 for Rb and 0.458 for Cs!. This specificity of Li
was already observed by Kummaravadivel and Evans39 and
it could be responsible for the above-mentioned difficult
encountered by the ORPA and the SMSA. In order to t
this assumption, we can calculate the structure of a fluid w
an adjustable packing fraction. We obtained such hypoth
cal fluids by keeping the effective potential unchanged~and
so d) and by varying the density~and soRWS). When de-
creasingh with the potential of Li, we observed an agre
ment of the same quality as that presented in Fig. 4 for

FIG. 4. Pair distribution functions of Rb with IU screening. R
is representative of the other alkali metals, except Li.
-
t
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between MD, ORPA, and SMSA for values ofh inferior to
about 0.55. The differences only appeared with greater
ues ofh. When increasingh with the potential of Na, we
drew the same conclusions. Thus, we have pointed out
the use of the ORPA and the SMSA has to be restricted
fluids with a packing fraction of less than about 0.55.

According to our MD results, we hold the opinion that th
interionic pair potentials calculated with Shaw’s OMP can
used for all alkali metals, including Li. We only have to u
the analytical approximations with the utmost care to de
mine the structure because they do not apply properly w
the packing fraction is greater than 0.55.

C. Electron-ion correlation function

In this subsection, we present our results of the electr
ion correlation in showing first the electron-ion structure fa
tor plotted vs q/kF for all alkali metals. The curves o
Sei(q/kF) ~Fig. 6!, which are conditioned bynsc(q) and
Sii (q) @Eq. ~7!#, show rather similar features, namely,~i! an
abrupt dip at the positionq/kF.2.2 corresponding to the
principal peak ofSii (q), ~ii ! small oscillations around zero a
large q, and ~iii ! a low-q region specified by a positive
electron-ion structure factor. These features are in ac
dance with the experimental results of Takedaet al.,19 even
if the dip deduced from the ionic-structure factors measu

FIG. 5. Pair distribution function of Li.

FIG. 6. Electron-ion structure factors vsq/kF obtained with VS
screening. From Cs to Li, the successive curves are vertic
shifted by an amount of 0.05.



e
di

la

o
ur
s
in
in
n
o
ai
he
op
ze
ac
r
or
n

ther
-
rve
he

e
to
e

nt
pair
on
and
den-

aw
to
li
rsal

out
ve
id
the
d.
in

ing

on
out
aw
sity
al.
ith

or-
-

om
he
in

12 106 55J.-F. WAX, N. JAKSE, AND J.-L. BRETONNET
by x ray and neutron scattering is substantially deeper. Th
is not much more to be done, given the uncertainties of
fraction experiments.

In Fig. 7, we also compare the electron-ion pair corre
tion functionsgei(r ) drawn fromSei(q) by the Fourier trans-
form

gei~r !511
AZ
r

1

8p3E Sei~q!exp~ iqW •rW !dqW .

For all elements under study, small oscillations ofgei(r )
around unity at large distances can be pointed out. The m
striking feature of our results is the discontinuity that occ
at a position ranging from 3 a.u. for Li to 5 a.u. for Cs. The
positions coincide with the radius of the sphere contain
the depletion hole at each ionic site. It is worth bearing
mind that, when replacing the true potential by a pseudo o
the true wave function is replaced by a pseudo one too. C
sequently,gei(r ) does not describe the true electron-ion p
distribution function inside the ionic cores, but rather t
pseudo one. When dealing with energy-dependent pseud
tentials, the pseudo-wave function has to be kept normali
This is achieved by introducing the depletion holes into e
core. We assumed it to be uniformly distributed in the co
volume; this accounts for the discontinuity observed. In
der to check that it is really related to the energy depende
of Shaw’s OMP, we performed a calculation ofgei(r ) for Na

FIG. 7. Electron-ion pair distribution functions.Rm stands for
the core-radius within which the depletion hole is confined. Fr
Cs to Li the curves are shifted by an amout of 0.25. The das
curve has been obtained for Na with Ashcroft’s potential to po
out the influence of the depletion hole.
on

n

, J
re
f-

-

st
s
e
g

e,
n-
r

o-
d.
h
e
-
ce

with Ashcroft’s potential~Fig. 7!. In contrast to our results
obtained on the basis of Shaw’s OMP and also to the ra
jagged outline ofgei(r ) in the ionic core obtained by Gonza
lez et al.,4 using the neutral pseudoatom method, the cu
smoothly slopes down to zero. Moreover, if the value of t
depletion holel is artificially set to zero, the discontinuity
disappears.

The behavior ofgei(r ) inside the ionic core should b
regarded with caution. Outside the core, it is interesting
note that the first peak ofgei(r ) is located at half the distanc
of the first peak ofgii (r ), which coincides with the first
minimum of gei(r ). This was qualitatively observed from
experimental data with alkali metals but not with polyvale
ones. Thus, as expected, the first peak of the electron-ion
distribution function corresponds to the maximum positi
of the screening valence electron density around an ion
the successive peaks to the next maxima of the charge
sity of the valence electron cloud.

IV. SUMMARY

We applied the nonlocal and energy-dependent Sh
OMP, using the atomic number as the only input data,
derive an effective interionic pair potential with all alka
metals. We found that these pair potentials show a unive
shape for all the alkali metals, including Li.

Then, the evaluation of the ionic structure was carried
by calling on MD, ORPA, and SMSA techniques. We ha
proved the reliability of the analytical theories of the liqu
state by comparing the corresponding predictions with
results obtained for the structure with the MD metho
ORPA and SMSA results are of the same quality and are
good agreement with those of MD provided that the pack
fraction is less than about 0.55.

Finally, we performed the calculations of the electron-i
correlation function applying a consistent approach, with
any fitted parameter, starting from the sophisticated Sh
OMP to determine the screening valence electron den
and the ionic structure factor via the interionic pair potenti
Various results are given and discussed in connection w
Shaw’s OMP.
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