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Diffuse phase transition in ferroelectrics with mesoscopic heterogeneity: Mean-field theory
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The diffuse phase transition in ferroelectrics with mesoscopic heterogeneity has been discussed within the
context of a superparaelectric model by using the Ginzburg-Landau formalism. In the Curie region ferroelec-
trics with mesoscopic heterogeneity are treated as “superparaelectrics” consisting of a mass of polar clusters,
each of which has Ising character. Based on the mean-field theory, the influence of the finite-size effects of
polar clusters on their structural instability has been discussed by considering a coherent lattice coupling
between two structurally different regions. In particular, we have analytically derived the explicit solutions of
the distribution of local polarizations. In turn, the processes of polar nanophase precipitation and coarsening
have been also discussed in conjunction with the local chemical or structural inhomogeneity. Moreover, we
have also analyzed the relationship between the local polarization distribution and the static dielectric suscep-
tibility in ferroelectrics with the nanometric scale heterogeneity. The width of the Curie region is dependent
upon the distribution of the sum of localized correlation length, which reflects the size distribution of hetero-
geneity. The presented analysis reveals that the diffuse phase transition is closely associated with the existence
of nanometric polar clusters and their physical size distribution. Intriguingly, our theoretical results bear a very
close resemblance to most experimental observat|{@l63-18207)03518-2

I. INTRODUCTION rather than the usual Curie-Weiss law obeyed by normal fer-
roelectrics. The coefficienk in Eq. (1) increases when the
The dielectric response in ferroelectrics is mainly deter4ransition becomes more diffused.

mined by the characteristics of transverse-optic phonons or In general, the common feature shared by all ferroelec-
soft modes, which virtually reflect the relative movementtrics with the DPT is that they possess compositional varia-
between cations and anions. Usually the dielectric constantsons, structural inhomogeneities, or phase heterogeneities in
in ferroelectrics can be estimated by the Lyddane-Sachghe physical scale from micron or submicron range to the
Teller (LST) relation, or their phase transition behavior canatomic level. In fact, physically the inhomogeneity within
be quite accurately described by mean-field theories, such derroelectrics influences the manner in which the materials
the Landau theory.In normal ferroelectrics, as a rule, the exhibit ferroelectricity.
dielectric coefficient peaks at the transition temperaflye Experimentally it has been substantially reported
showing a typical Landau behavior. However, a variety ofthat a variety of complex mixed perovskite ferroelectrics

ferroelectrics, such as dielectric compositescomplex per- With  DPT behavior, such as g, NbO; (PMN),
ovskite ferroelectricd® disorder or random dipole (PP, La(Zr, T)O; (PLZT), or (Sr, BAND,Os, have a truly

ferroelectricsﬁ,’7 ferroelectrics with graded compositioﬁ%, nanometer scale heterogeneity in composition. These types

and even nanostructured ferroelectrics and ceramics with upf ferroelectrics are also called ferroelectric relaxors because

trafine graind®2exhibit a very broad peak near their Curie they also exhibit a significant dispersion of dielectric re-

. . g sponse near the Curie range, giving rise to sizable nonlinear
temperatures, whose dielectric coefficients often are larger: . ;
dielectric and electromechanical phenomena.

:_han t_hotshe suggetste_dlby the L"S-I;j rela;[;wonafl];fhe pherl]se tr?nsr The nature of the diffuse phase transition in ferroelectric
lons 1n these matenals are catled as e dilfuse pnase apg,y qrs has been a long standing puzzle since their detection
S_'t'on(DPT) bgcausg they are charactenzedl t_’y broad anomEh'early four decades ago. The high interest in the phase-
lies in the dielectric response near transition temperaturgansition behavior of ferroelectric relaxors not only resides
regions, resulting in an exceeding enhancement of dielectrigy theijr fundamental significance, but also it is due to their
pyroelectric, - elastic-electric, and optoelectric properties) actical importance because ferroelectric relaxors have the

within a wide temperature range. More precisely, the pr_i”Ci'Iargest intrinsic dielectric constants among all materials on
pal signature of the DPT is based on the fact that the dielecs4ip

tric sus%(elgtli?ility near the Curie region is governed by the Forty years ago Smolenskii and co-workéré-18 pro-
relatiort*** vided an intuitive picture of the diffuse phase transition in
complex ferroelectrics. Through the assumption of a local
distribution of phase-transition points and the concept of mi-
£:£+ (T—-To“ l<g<-2 (1) croregion (Kanzig region, they empirically estimated the
x M N ' s broadening of the phase transition, although they could not
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FIG. 1. Schematic representation of the distri-
bution of local order parameters in an inhomoge-
neous system.

-b1 b1 2a4 +b1 2(31 +b2)+b1 2(an+bn)-b1 2(an+bn+1 )-b1

offer a solid physical ground about their assumption. Follow-features of diffuse phase transition of ferroelectric relaxors,
ing Smolenskii's pioneer work, many important researchesn which we discuss the relationship between the behavior of
about ferroelectric relaxors were carried out in the 1960’s-ocal polarization and overall dielectric response. We calcu-
1990’s, and a number of models have been proposed fdate the temperature variation of order parameters along with
interpreting the dielectric response of the relaxors. Here wéhe responses to a weak external field, and we show how the
do not attempt to review the enormously voluminous experi-overall phase transition is controlled through mesoscopic
mental and theoretical literature in this area. However, itheterogeneities. Finally our conclusions are summarized in
should be emphasized that Crbgsroposed a superparaelec- Sec. V.
tric model which suggested that the DPT in the relaxors is
generated by their mesoscopic heterogeneity.

Nevertheless so far the detailed physical process of the Il. THEORETICAL ANALYSIS: FREE-ENERGY
diffuse phase transition in these materials has not been un- EQUATION IN A COHERENT SYSTEM
derstood completely yet. Unresolved questions include, the . )
exact nature of the diffuse phase transition and the intrinsic 1€ €ssence of the present work, as will emerge below, is

connection between the heterogeneity and their dielectric re2n €ffort to quantitatively analyze the dielectric response and
sponse. Particularly interesting is the phase-transition widt he phase stability of polar clusters in relaxors in connection

or the diffuseness of the phase transition, which ianuenceg\’r']tgséhﬁgnzmg']ca(l)r?ézif tﬁgd rt'it:ﬁa];eaéﬁ;iiItci);str::?)l:]ct];fnuiﬁe
practical applications. An intriguing question here is: doe : P M 9

the width of the Curie redion reallv. as expected before. de. PT in relaxors is to describe spatial inhomogeneities in the
d the dinole-di ? int yt b EN lust ' “~system analytically. For simplicity let us first envisage an
pend on he dipole-dipole Interaction between clusters, 0fnhomogeneous system consisting of two different chemical

rI‘Pegions. One is subsystefas the matrix phase and another

itself govern the diffuseness of the phase transition? As & Genoted as subsysteBas illustrated in Fig. 1, each of
matter of fact, @ more profound fundamental issue is: is i{yhich behaves as a “Devonshire ferroelectric.” In reality,
possible to artificially engineer and manipulate ferroelectricy,q subsystemA andB are interconnected with one another
phase transition by controlling the mesoscopic heterogeneitys 5 0-3 nanocomposite. To constructing an analytic expres-
in order to tailor and design dielectric properties of ferroelecjon of total free energy, we introduce two local order pa-
tric dielectrics? rametersP,(r) andPy(r), corresponding to the polarization

It is the thesis of this paper that the origin of the diffuse of subsystem#\ andB. Both localized order parameters to-
phase transition in ferroelectric relaxors lies in a size effecyether can describe the polarization behavior in a medium,
and ties up with their heterogeneity and relevant physicaj.e., an ensemble of clusters within a matrix, on the mesos-
scale. In this work, we attempt to quantify the correlationcopic scale, over which there are enough atoms present so
between the diffuse phase transition in relaxors and theithat the order parameters have thermodynamic meaning, and
mesoscopic heterogeneity, although experimentally enorthey can be described in the approximation of a continuous
mous evidence has strongly suggested that the formation ofiedium. In the following analysis, we restrict ourselves to
polar clusters with nanometer size, on a scale significantlyhe following conditions(i) Two local scale order param-
larger than the lattice constant, is responsible for their diffuse@ters correspond to a one-component representation, such as
phase transitiof. the case of thg111) direction in PMN system. The two

In light of the complexity of the topic, we have organized order parameters have their intrinsic bulk Curie points when
this paper as follows. In Sec. Il, we present an extendedhe physical sizes of two subsystems are infinitely large; and
Ginzburg-Landau model for the case of the inhomogeneou§i) there is a direct coherent coupling between two order
system by constructing a simple but rather realistic freeparameters at interfaces and the phase transition in each sub-
energy equation for such a system. In Sec. Ill, we evaluatsystem is of the second order. By following the free-energy
the shift of local phase-transition points, and the explicit so-expressions in the literatuf&;2®the thermodynamic poten-
lutions of polarization distribution are given by a continuumtial of an inhomogeneous system can be constructed in a
theory. Section IV contains a quantitative analysis of theLandau-Ginzburg form,
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where®,, and ®,, denote the thermodynamic potential of dP,
subsystem#\ andB in the paraelectric phase state.s, v, [51 ar T lea} oP4
A, B, andC are coefficients in the thermodynamic expan-

sion, and especiallyp=ao(T—T;), and A=Ay(T—T,).

T, andT, are the bulk phase transition temperatures in each dP,

subsystem, respectivelf,>T; is defined in the following [51 W‘lea} 6Pa
discussioné; andé, are the coefficients of gradient terms of

order parameters. The Ginzburg teg(VP;) reflects the

=0, (43

r=3.2(a,+b,)—by

=0, (4b)

r=3%.2(a,+b,,1)—by

presence of polarization inhomogeneities in the material. b

S(r) is a delta function which describes the coordinates of {52 WJFQZPb}éPb =0, (40
the interface between two subsystems. Théunction is 1= 202(@n+0ns 1)~y
commonly used to represent the coupling terms at the inter-

face in ferroelectric media?3~2° Although, in principle, the ap, b |sp ~0 4
general conclusion of our theoretical results will not be af- &2 dr Q2P 0Py e (4d)

fected by choosing thé function as a connection function, it =02t o)~y
simplifies the analytical and numerical calculations. Equations(3) and (4) are obtained by functional differentia-
The integral of Eq/(2) is over all space since the order tion of Eq. (2). If there does not exist a mutual coupling at
parameters vary spatially. Thus, the local order parametefgterfaces between two subsystems, the thermodynamic be-
Pa(r) and Py(r) are the functions of space coordinatas.  havior of each subsystem will become independent of each
and b, are the radius of domains of subsystems in one obther. And then these equations would be exactly identical
their polar axes. More precisell, is defined as the size of jth those in the model of Tilley and ZeKs**for describing
subsystenB, representing high-temperature ordered clustershe behavior of finite ferroelectric systems.
within ferroelectric relaxors, which is on a mesosopic scale, By considering the interactions between two subsystems,
i.e., bp=2-30nm. The matrix phase is in fact a three-a coherent interface state is assumed to be present at the
dimensional network, and the dimensional scale of the mapoundaries of two subsystems. The coherency is defined by
trix phaseA, a, essentially stands for the minimum distance the requirement that the local order parameters from one sub-
between two clusters, which ranges around 2 to 80 nm, frongystem to another subsystem are continuous across all inter-
a nanometer size up to a submicron level. In reality the avfaces. In this case, the order parameter in one subsystem will
erage size oh, is relatively larger tharb,. The two order appear as the exact same as the order parameter of the sec-
parameters which appear in the invariant free-energy funcond subsystem at interfaces, i.e.,
tion can possess different sequences of irreducible represen-
tations of symmetry groups in the certain temperature range. _ = _ B
Q, andQ, are defined as the coherent coupling coefficients, PalOl =222yt 0.0, = PolTlr =3 2ta ey -0y (5a)
which characterize the coherent coupling at the interfaces
between different regions. Physically the coupling terms can

be related to the stored elastic and electrostatic energy Pa(r)lr=x 2@y by b, = Po(Mlr=3 203, 1+, by

caused by coherency coupling. The coefficieQtsand Q. (Sb)
structurally allow the polar cluster to coherently conjugate to ccordinaly Eas.(5) become
the other local order parameter. The spatial distribution ofA\ ingly Eds.(5)
the polarization can be obtained by solving the Euler- dp. P
Lagrange equations b b =0, (6)
drd, r=3,2(a,+by)—b;
d*P, 3 5\ _
&1 gz~ (aPat P+ yP) =0, (33 ﬁJr Py L .
dr ~ d; r=3,2(a,+bps )by 7
d’Py, 5 5
& ?—(APb+BPb+CPb)=O, (3b)
f dPy Py o ®
dr d; ’

with associated periodic boundary conditions r=3p2(ap+bpiq)—by
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dP, P, From the coherent boundary conditions of E@S, the spe-
W+ a. =0, ) cial solutions for Eq(11) can be approximately written as
1 r=3p2(ap, 1401 1) by
Pp=Ppocogksor), Pe(—b,,by,), (129
with the condition d=-d;=d,. (10
_ I:)bOCOS( K2bn) K . b
HereQ,=¢,/d; andQ,=¢,/d,. d; andd, are defined & coshka,) Costl[r =(an+bn) 1},
as the extrapolation lengths, which reflect the strength of the
coherent coupling at interfaces. Conceptuallis similar to P.e (b,y2a,+b,), (12b

the extrapolation length in the case of an isolated small .
particle?* measuring the strength of the surface effect. we!
will discuss this aspect in detail later on. ao(T—T))
One of the implications in Eq$5)—(10) is that localized K§:¥,
phonon modes in adjacent chemically different regions can &1
be coupled to one another via an interface coupling. The 1o
polar clusters might create highly nonlocalized electric and P+l _ E 1— \/1_ o~ T
strain fields at interfaces, and these fields might be conju- b0 = 2C B2 ( 2¢) ’
gated to the other local order parameter in the vicinity of
interfaces. Two points should be stressed h@eThe co- an
herent coupling resulting in a mutual interaction at interfaces
is arising from matching the cluster phase with the parent Tao=To= (£263/A0), (12d

phase at interfaces, which leads to minimizing the interfaciajyhere «, and «, are defined as the characteristic lengths,
energy. Interfacial energy can be elastic or electrostatic ifyhich reflect the correlation radius of the order parameters
nature.(b) In reality, the interfaces between two chemically ang describe the breath of polarization fluctuation in each

different regions are quite fuzzy. In the continuous-mediumsypsystem. Inserting E¢12b) into Egs.(8) or (9), one ob-
approximation it is difficult to describe the immediate vicin- {zins

ity of the interface boundary between two structurally differ-
ent regions explicitly. However, the main concern regarding

th

(129

the imposed boundary conditions is only to ensure that the rytanf(xaan) = 5. (13
order parameters match exactly at the interface, other than
the exact location of the interface. SinceT>T, and thusk;a,>1, one further has
Ill. LOCAL POLARIZATION AND LOCAL _1
K1=7- (14)
PHASE TRANSITION d
A. Local polarization distribution Equation(14) implies that the extrapolation length dfin

Gl;his case is associated with the physical properties of the
adjacent phase and temperature as well. On the contrary, in
the situation of free surface@ir-solid interfacg the ex-
ftrapolation length of an isolated nanometric particle can be
mainly considered as a constaht? This argument in fact
makes sense by considering the fact that the coherent cou-
pling strength at solid-solid interfaces should be closely as-
analytically. Focusing attention on the temperature regio ociated with .the s_urro.undlr)g mterfaqal envwonmem or Fhe
from T,<T, we consider that the induced local polarization.e"’ltur.e of lattice ylbratlons in the adjacent phase. Likewise,
P.(r) in subsystemA is small, while in subsysterB the inserting Eq.(129 into Egs.(6) or (7), one has

polarization P, deviates fromP,, i.e., P,=(Ppo—APy). 1

Pyo is the polarization at the coordinate origihPy, is the tan( k,b,)=—. (15)
polarization variant, primarily due to the size effect and in- K2d

terface interactions. By assumidgP, /Pyo<<1 if the physi-  \yhen the physical size of polar clustey is small, the term
cal dimension ob is small enough, Eq$3) can be approxi-  ane,b,) in Eq. (15) can be expanded as a Taylor series. By

We next examine the influence of heterogeneity on th
distribution of local polarizations. The explicit nontrivial so-
lutions of Egs.(3), i.e., spatial distribution of polarization
P.(r) andPy(r), can be obtained precisely with the help o
Egs. (5)—(10), although, in general, they are quite
cumbersomé&® Specifying a chosen area—p,,2a,+b,),
we now find the space profile of the local order paramete

mately written as neglecting the higher-order terms of40,,) in Eq. (15) and
using Eq.(14), Eq. (12d) will become
£,V2Py=(A+BP3,+CP,)Py, Ppe(—by,by); 9 Eq{14, Eq.(129
(113 Toc=To— (é2\]al/ VébyAo). (163
£V2P,=aP,, P,e(b,2a,+b,). (11  Equation(163 can approximately estimate the shift of the

Curie point in the cluster phag Clearly, the original Curie
Note that the validity of the solution of Eq11g can be transition points are modified by the physical size and the
inspected by integrating E¢3a) with additional symmetric coherent coupling strength. Figure 2 shows the transition
boundary conditionsdP,/dr—0 and P,—Pg, asr—0. temperature dependence of the physical bizef nanomet-
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FIG. 2. The physical sizes of polar clusters as a function of their
size-induced phase transition point. The free-energy parameters fi
this calculation can be found in Tables | and Il, which have the cgs
unit unless specified.

ric clusters. Essentially the phonon modes of one region ca
couple to the soft mode in the adjacent region locally to
perturb the stability of polar phase and soft-mode transition
giving rise to a disturbance of the correlation of dipoles, anc
thus leading to a shift of the Curie temperature.

On the other hand, when temperature is below or near t
T,, the polarization varianA P, in the cluster domain be-
comes negligibly small. And then from E¢8) and(10), the
shift of the Curie point of the matrix phagenear interfaces
can be also estimated by

Tie=Ta+ (& VAlVEaap). (16b)

The underlying physics here is that two local order param:
eters are reconciled by a coherent interface boundary cond
tion. The coherent coupling between these order paramete
influences the softening of local phonon modes, leading to .
shifting of the Curie temperatures of both the nanometric
cluster phase and the matrix phase, respectively.
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FIG. 4. Different views of the induced polarization at the inter-

The variations of polarization in polar clusters are plottedface. The normalized distance stands for-6,)/b,. b, is the
as the functions of temperature and their physical size in FigPhysical size of polar clusters and we taie=5nm here for the
3. The induced polarizatioP, in subsystemA is also nu- calculation.(a) The spatial profile of induced polarization in the
merically plotted as the funaCtiOI’]S of both the normalizedmatrix as a function of temperature and the normalized distdbge.
The local transition temperature is defined as one at which the in-

Polarization

duced polarization approaches zero, i,=0. The distribution of

the local Curie temperatures in subsyst&mmear the interface is
illustrated here.

coordinate and temperature in Figs. 4. It can be seen that the
polarization in polar clusterd®, decreases at interfaces,
while induced polarizatiof®, increases near interfaces. Sev-
eral important features are apparei): The cluster phase

B can induce the polarization in the periphery of subsystem
A, even though the temperature is above the original local
Curie temperature of subsystei In other words, a polar-
ization P,(r) occurring in subsysten\ is caused by the
coherent coupling from subsysteBn (ii) The initial size of a

polarized cluster is determined by the spatial inhomogeneity.
As the temperature decreases, the size of the polarized re-
gions will grow, forming a polar nanodomain with a size

FIG. 3. Calculated polarization of a polar cluster as functions ofalmost twice as largéB—10 nm as the initial ong4—-5 nm)
both temperature and its physical size.

at low temperature. The temperature evolution of the spatial
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systemA, the size of polarized region increases. If we define
the local Curie temperature as the point at which the local
spontaneous polarization just approaches zero, one can find
in Fig. 4(b) that the local Curie temperature will drop rapidly

T <Tg<Tp<Te<T, from the periphery of subsysted to the interior of sub-
systemA where the chemical composition favors an unpo-
larized state in this temperature range. Quite clearly, at the

Ta exact interface, the local Curie point is the transition tem-

perature of polar clusters, and then it decreases quickly as a

function of the space coordinat&sThe essential point here

Te is that the coupling-induced polar structure in a paraelectric

matrix phase can exist even above its intrinsic Curie tem-

perature. The local Gibbs free energy in subsysteras a
j \ \ J function of space-polarization coordinate can be obtained by
) i

Ty

Spontaneous polarization

(b +r) substituting Eq.(12b into Eq. (2), as illustrated in Fig. 6.
The evolution of potential wells represents the magnitude of
Subsystem A Subsystem B induced polarization in subsystefm
Lastly, we close this section by making some comments
FIG. 5. lllustration of the growth pattern of polar clusters by the ON the coherent coupling and the range of applicability of the
polarization spatial profile at different temperatures. Landau theory. The so-called coherent coupling between two
localized order parameters means that discontinuities in the

profile of a cluster polarization is schematically depicted indistribution of order parameters are not permitted along in-

Fig. 5. It is clear that upon cooling the region near theterfaces. The I_att|ce coupling plays an important role_ in the

boundary between two subsystems can no longer sustain@@herent coexistence of two phases with slightly different

structure with zero polarization, even within subsystam lattice parameters and symmetry. There are two f_undamental
As expected, the ferroelectric phase transition can be nuclé€asons why the coherent coupling would occur in real sys-
ated in this region, even though this region is intrinsically thet®ms. Since incoherent interfaces usually have higher inter-
paraelectric phase. The polarization occurring in subsysterﬁ’]‘c'al energies than co_herent interfaces, the cohgrent equ_|I|b-
A is extrinsic in nature at this temperature stage. ExperimenflUm at the interfaces |ssactually the stable state if the lattice
tally the growth of polar microregions in PLZT and other Match is close enougﬁ: , _ o

relaxors has been observed as temperature decrdages,  On the other hand, in its main approximation, the Landau

which is quite consistent with our theoretical description.th€ory of phase transitions ignores long-wave fluctuations of
From the lattice vibration point of view, the two subsystemsOrder parameters. However, it is important to realize that one
have different characteristics of phonon modes because GAn calculate contributions from the long-wave fluctuations

differences in composition. The coherent coupling can link2S long as the contributions are small enotigh: The entr

two local order parameters coherently and influences th€al range is proven to be very narrow in ferroelectics

softening of the local phonon modes upon one another ipecause the smoothly varying Coulomb force is responsible
some degree. for establishing the polar phase. In fact, the logarithmic cor-

rections have been proven to be difficult to detect experimen-
tally. In experiments, the observed phase-transition behavior
generally appears in agreement with the results of Landau

We now look at the distribution of local Curie tempera- theory. Practically, in most of cases, one can use the Landau
tures at interfaces. Figureg(@ shows that as the boundary theory to describe the phase transition for the entire phase-
between polar cluster and nonpolar matrix moves into subtransition region. Therefore, it appears safe to assume that

-(bj+r;

B. Local phase transition

\G

/P( | l
FIG. 6. The local Gibbs free energy in sub-
systemA as a function of the distance away from
the interface at 40 K. The scale af is in range
o of 1 nm.

—

P

FREE ENERGY

<\

———




55 DIFFUSE PHASE TRANSITION IN FERROELECTRIE. . . 12 073

Landau theory will describe the principal physical features oflaxors is their mean static susceptibilig{T) near the Curie

polarization processes in this study. range. The static susceptibility of ferroelectrics is defined as
2 -1
IV. DIFFUSE PHASE TRANSITION Pl | i—ab 1
Xi 2 (I a, ) ( 7)
JE[._, | 9P;

Next we explore the connection between the nature of
diffuse phase transformation and the compositional inhomoVarying the total free energy of Eq2) with respect toP,
geneity. One of the important properties for ferroelectric re-one can obtain a variation equation,

~ Mn ~ ~
ob=3, ! {[AP,+BPE+CPy+ Q,Pyd(r +11,)]16Py+ £2(VP,) 8(VPy) Mdr

~Tin
f2n A ~
+ f {laPat P+ YPIHQua(r £120)]0Ps +£1(VPa) (VP T, (18
—'2n
where
Fn=bpi1+22(ay+bpi1) —by+byig andry=an:1+22(ap+byia) —by+ans.

With the help of the integral formula
Tin lin A .

- [ tacwpyswPan (-1.2 19

—Tin ~Tin

f [&(VP)S(VP)}Hdr=&(VP;) 6P,

Eq. (18) gives

" r1n ~
30=3, | " [ £,(V2Py)+ APy +BP3+ CPS+ [+ &x(VPy) + QuPy] 8(r 11, 1 8P,dr

~Tin

+ f (= E1(VPP,) + Pyt AP+ yPS+ [ £1(VP ) + QP ] 8(r =151} 5Pdr (20)

T2n

Therefore, the average local inverse susceptibilities of polar

clusters and the nearby matrix phase can be expressed as (Xon= 5=+ T>T, (230
Ao(T—Tye)
b= —— [ ™ [A+3BP2BCPA+Qua(r =1y, ldr ! n
Xbn 26y Jor, b pT Q20 =l ; (xbn) = oA T-TL) T<TS, (230
21 ¢
(213 with
1 r . —
(Xat)= 50 | . {a+3BP2+5YPL+Qua(r = z)dr, Tin=Ta* (6x A VEzaan),
zan —Ion
(21b) T3e=To— (é]all VEAby). (23¢9
respectively. The identical equation Herea, is the average minimum distance between clusters.
Note that when the physical sizeg andb,, of cluster do-
mains and matrix phase become very large, E2f3. degen-
f dr{#?(VP;)?/9P?}=0, (220 erate into expressions of susceptibility for normal
ferroelectrics’’ -8
is used for derivation of Eq$21). As a straightforward con-  Generally the dielectric properties of dielectric compos-
sequence of Eqg21), the averagesusceptibility of matrix  ites could be estimated by an empirical relationship
and local susceptibilities of clusters can be written as ei‘otZXG'i—(l—x)eg, (24)

1 where €, is the dielectric constant of an entire multiphase
(xa)~ wo(T=To) T>Tye, (238 system. Essentially Eq24) is too crude to assess the dielec-

0 le tric response in ferroelectric relaxors because it neglects the

fact that the impedance of polar clusters is relatively larger

Xa)~—5—==— T<Ti, (23p  than that of the matrix and overlooks the microstructure de-

2ao(T—Tye) tails. In order to obtain a realistic dielectric response of ferro-
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electric relaxors, according to a simple Maxwell-Wagner cal-

. . 35000
culation from Eq.(A2) (see the Appendixfor multiphase
dielectric systems, the effective mean static dielectric suscep- 2 30000
tibility of the entire system can be written as 8§ 25000
v
=
2 g 20000
aAnoy bnfan
(=2 {_b } f1n(Xan) + 2 (Xbn), (253 © 15000 y
n nOb n an .2
35 10000
with 2 N
= 5000
Q p— ——
a, b, 0
f =, andf = 25b -150 -100 -50 0 50 100
07F 2(a,+ by) =S 2(a,tby) 2

. . . Temperature(’C)
Here f,,, is the volume fraction of the local matrix phase

with a minimum distancea,, between two clusters, while
f,, is the volume fraction of cluster domains with a specific
sizeb,,. For simplicity, by assuming,=a,. 1, a conserva-

tive estimation of Eqs(25) can be approximately obtained ] ) o ]
from Eq. (A3) as presented in this section is straightforward: the polar phase

transition tends to be confined in many localized cluster re-
gions, ranging from a few nanometers up to more than ten

FIG. 7. The calculated temperature dependence of the mean
susceptibility in a PiMg,Nb) crystal.

(X)=T10(xa) + 2 Kfan{Xon), (260 nanometers, and the localized Curie points are virtually re-
" lated to their physical sizes as well as the associated coherent

with coupling at interfaces, leading to the localized polarization
fluctuation spreading over a broad temperature range. As a

2na, _ bho,)? result, the overall phase transition will be no longer a single
flzm: k=(antby)/by, andh= a_n(fb) Curie temperature point but a continuum temperature range

when the physical sizes of the polar phases form a con-

Here f, is the total volume fraction of the matrih is a  tinuum distribution.
constant about 0.01-0.1, akdis a constant of 3—-10, de- On the other hand, the correlation lengths of localized
pending upon the ratio o&,/b, and o,/0,. The actual order parameters are limited by the physical sizes of hetero-
information aboutf,,,, f,,, a,, andb,, can be estimated geneities. The local soft modes will not propagate beyond
directly from the microstructure characterization done bythe physical scale of the clusters. There exist a distribution of
transmission-electron microscofEEM).2/~29:40-50 the localized correlation volumes covering a broad tempera-

Now we consider a PMN crystal consisting of a mass ofture range. It can be seen that the sum of the localized cor-
clusters within a matrix. Based on E(6), the overall di- relation volume(or length is a function of temperature, as
electric response of a PMN system is calculated and is illusshown in Fig. 9, which determines the difussness of the Cu-
trated in Fig. 7. The calculatedldata yielded an excellent fit rie range in the dielectric response. In fact, a giant dielectric
to the experimental datd;®* showing a typical smeared di- (pyroelectrid response is created by a set of localized dielec-
electric response over a broad temperature range. The thdric singularities in a broad range of temperature.
modynamic parameters used for our calculation are listed in Figure 10 shows the mean polarization of ferroelectric
Tables | and Il. A salient feature demonstrated in Fig. 7 isnanocomposite, significantly deviating from the normal
that the overall dielectric behavior of the PMN is controlled ferroelectric behavior. It is found that the calculated polar-
by its heterogeneity. A set of localized phase transitionsjzation is gradually weakening and depressing, exhibiting a
arising from an intrinsic size effect, superpose together antiypical characteristic of diffuse phase-transition behavior.
coherently form a giant dielectric response over a very broauite obviously, the local polarization exists well above the
temperature range. The overall dielectric coefficient in thisemperature, at which the dielectric constant exhibits its
case is exceedingly larger than that suggested by the LSmaximum. This helps explain the experimental results that
relation. The distribution of physical sizes of heterogeneitythe polar regions exist well above the transition temperature,
used in our calculation was roughly estimated from the mitogether with the absence of any evidence from x rays or
crostructure information offered by the TEM characteriza-neutron diffraction for a sudden structural change in going to
tion, and it is plotted in Fig. 8. The basic physical picture the low-temperature phase.

TABLE |. Parameters of the free-energy expression for the polar cluste(SIggENby 5O in
PMN. Since currently there are no free-energy parameters f@vdih)O; available, the free-energy
parameters of RErysTiy5)O5 are adopted for our calculatidd00] (cgs unit unless specifigd

Tac Ao B C & (cm)y?

250°C  3x10°° (Ref. 52 0.738<10 2 (Ref. 52 2.3x10 23 (Ref. 52  5x10 ¢ (Ref. 53

T, here is set without reference.
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TABLE Il. Parameters of the free-energy expression for the matrix phase in the PMN. Since currently
there are no free-energy parameters for the matrix phase(Md?INb)O; available, the free-energy param-
eters of SrTiQ are adopted for our calculation.

Teo ag B 04 £ (cm)?
35 K 1.57x10°% 4.73(T+15.6)x 10 12 2.96x 10" 5x10°16
(Ref. 59 (Ref. 55 (Ref. 59 (Ref. 59 (Ref. 53

Equation(23e is exactly identical with EqS(16). Appar-  parameters in an inhomogeneous medium, we have pre-
ently T, and T, are not only related to the physical sizes sented a straightforward thermodynamic approach to diffuse
a, and b, of heterogeneities, but also they are associateghhase transitions in ferroelectrics with mesoscopic inhomo-
with the elastic coefficients, and therefore their values argeneities. In our view, this approach provides important in-
dependent upon a driving frequency. Qualitatively it can besights into the basic physics of the DPT in ferroelectric re-
seen in Eq(23e that T, will become larger wheifa| gets  laxors, and it contributes to the understanding of the
smaller in the case of a higher driving frequency. In otherstructural instabilities in inhomogeneous ferroic materials.
words, the whole Curie range will consequently shift towardsDespite a number of simplifications, the presented analysis
a higher temperature range under a higher driving frequencyan still explain the principal characteristics of phase trans-
Therefore it may be reasonably believed that significant disformation in ferroelectrics relaxors. Moreover, the model can
persion of dielectric response near the Curie range is origiaccount well for a number of the electrical, thermal, and
nated from the microstructure effect. More detailed discusmicrostructural observations in relaxor ferroelectrics. Next
sions about the dynamic behavior and other aspects ofe summarize our main results.
ferroelectric relaxors will be discussed in several other sepa- (i) A determined effort has been made to study the dielec-
rate papers. tric behavior of a system with mesoscopic heterogeneity. The

In closing, we would like to make a final remark about evolution of the polarization process of the coherent polar
this approach. Basically, relaxor ferroelectrics exhibit an un{phase within a paraelectric medium has been discussed based
usual variety and richness of phase-transition features. Then coherent lattice coupling and its heterogeneity. The pro-
present approach is a quite general one, which might natess includes coherent precipitation and nanopolar cluster
explain all experimental results for all kinds of material sys-coarsening in an inhomogeneous medium. According to our
tems in details. Nevertheless, generally, our main calculatethodel, the coherent lattice coupling between different phases
results are consistent with the principal experimental resultsnposes a critical constraint on the characteristics of local
for some typical relaxor systems, such as P(&®65/35 or  soft-mode phonons and the behavior of the phase transition
Pb(Mg1/3Nb,/3)Os. in inhomogeneous media with nanopolar clusters. The local
paraelectric-ferroelectric transition can be thought of as a
perturbing influence of localized chemistry on localized soft-
mode phonons. The unique feature in this approach is that

Beginning from a basic formulation of the Ginzburg- coherent coupling is maintained across interfaces between
Landau free-energy equation with physically allowed ordertwo chemically different ordering regions.

(i) On the basis of the spatial heterogeneity, we have

V. SUMMARY
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FIG. 8. The volume fraction distribution of polar clusters with FIG. 9. The sum of the local correlation volume as a function of
different physical sizes. temperature.
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FIG. 10. The calculated temperature dependence of the mean
polarization of a PMN crystal.

derived both the overall dielectric response and the local po-
larization distributions. We consider that each localized clus-
ter has a mean-field character and it can be described by the
Ginzburg-Landau formalism at its own “fixed point.” We
connect all these localized clusters, which have size- FiG. 11. Equivalent circuit diagram of a cluster with its sur-
dependent phase-transition points, to their matrix phase t@unding matrix phase.
describe the overall dielectric response of the entire system
over a wide temperature region. Based on this approach, th&ry. It follows that the matrix must be a Mg-rich region and
diffuse phase transition in the relaxors could be understoogositively charged.
as an inhomogeneous condensation of localized soft modes. Clusters and the matrix phase can be considered as accep-
The analysis presented here, we believe, is the first teor and donor-type semiconductors, respectively. The result-
demonstrate how the gradual crossover characteristics of theht pure Schottky barriers at interface boundaries between
relaxors evolve, which is inherently consistent with most ofthe matrix and clusters can reduce the effective conductivity
the experimental observations, and explains well the generaf clustersdrastically, quite analogous to the situation of a
principle of diffuse phase transition in relaxor ferroelectrics,doped BaTiQ ceramic®=® It should be noticed that this
thereby deepening our understanding of the spectacular propnterface effect does not essentially affect the conductivity of

erties of these industrially important materials. the matrix because its geometry connection is three-
dimensional in character.
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DMR 9223847. Here(x1n) is the localized susceptibility aral, is the aver-
age minimum size between two clusters. By considering that
APPENDIX the effective conductivity of the cluster phase is much
smaller than that of the matrix phasg,<< o, near the cluster
The localized dielectric susceptibility of a cluster with a phase transition, the static localized susceptibility in whole
surrounding matrix layer can be estimated by a Maxwell-temperature range can be written as
Wagner formalism®®” Here we take a PMN crystal as a
typical example of ferroelectric relaxors with a 0—3 micro- (a,+bp)
structural connection. In the cluster phase of the PMN, the <X1n>5b— (Xon) +
Mg?* and NB™" ion order is in fact in a 1:1 ratio on the "
B-site sublattice of the PMN. Since the Mg/Nb ratio is 1:1 Equation(A2) shows an interesting reverse effect of the bar-
within the ordered domain@s opposed to 1:2 for the aver- rier layer capacitors, similar to that of the well-known con-
age compositionthe clusters have a net negative charge withventional interfacial capacitofS;*®leading to significant en-
respect to the matrix phase in order to preserve stoichiomhancement of local effective dielectric properties. A quite

(bno'a+an0'b)2 A

bhoa

2
a,0p <Xan>- (A2)
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conservative estimation of EgA2) can be obtained by as- (an+bp)(xan) (an+bn){(xpn)
Summgan%bn and 10a=0p, i€, <X1n B (an+bn<Xan>/<an>) (bn+an<an>/<Xan>).
(X1n)~2(Xpn) +0.0& xap)- (A3)

Equation(A4) implies that the dielectric constant of ferro-
electric relaxors will be reduced at least as much as 50%

At the optical frequency, the localized susceptibility in the when the driving frequency increases to an optical frequency

whole temperature range can be written as

level.
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