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Diffuse phase transition in ferroelectrics with mesoscopic heterogeneity: Mean-field theory
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The diffuse phase transition in ferroelectrics with mesoscopic heterogeneity has been discussed within the
context of a superparaelectric model by using the Ginzburg-Landau formalism. In the Curie region ferroelec-
trics with mesoscopic heterogeneity are treated as ‘‘superparaelectrics’’ consisting of a mass of polar clusters,
each of which has Ising character. Based on the mean-field theory, the influence of the finite-size effects of
polar clusters on their structural instability has been discussed by considering a coherent lattice coupling
between two structurally different regions. In particular, we have analytically derived the explicit solutions of
the distribution of local polarizations. In turn, the processes of polar nanophase precipitation and coarsening
have been also discussed in conjunction with the local chemical or structural inhomogeneity. Moreover, we
have also analyzed the relationship between the local polarization distribution and the static dielectric suscep-
tibility in ferroelectrics with the nanometric scale heterogeneity. The width of the Curie region is dependent
upon the distribution of the sum of localized correlation length, which reflects the size distribution of hetero-
geneity. The presented analysis reveals that the diffuse phase transition is closely associated with the existence
of nanometric polar clusters and their physical size distribution. Intriguingly, our theoretical results bear a very
close resemblance to most experimental observations.@S0163-1829~97!03518-2#
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I. INTRODUCTION

The dielectric response in ferroelectrics is mainly det
mined by the characteristics of transverse-optic phonon
soft modes, which virtually reflect the relative moveme
between cations and anions. Usually the dielectric const
in ferroelectrics can be estimated by the Lyddane-Sac
Teller ~LST! relation, or their phase transition behavior c
be quite accurately described by mean-field theories, suc
the Landau theory.1 In normal ferroelectrics, as a rule, th
dielectric coefficient peaks at the transition temperatureTc
showing a typical Landau behavior. However, a variety
ferroelectrics, such as dielectric composites,1–3 complex per-
ovskite ferroelectrics,4,5 disorder or random dipole
ferroelectrics,6,7 ferroelectrics with graded compositions,8,9

and even nanostructured ferroelectrics and ceramics with
trafine grains,10–12exhibit a very broad peak near their Cur
temperatures, whose dielectric coefficients often are la
than those suggested by the LST relation. The phase tra
tions in these materials are called as the diffuse phase
sition ~DPT! because they are characterized by broad ano
lies in the dielectric response near transition tempera
regions, resulting in an exceeding enhancement of dielec
pyroelectric, elastic-electric, and optoelectric propert
within a wide temperature range. More precisely, the prin
pal signature of the DPT is based on the fact that the die
tric susceptibility near the Curie region is governed by
relation10,13,14
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rather than the usual Curie-Weiss law obeyed by normal
roelectrics. The coefficienta in Eq. ~1! increases when the
transition becomes more diffused.

In general, the common feature shared by all ferroel
trics with the DPT is that they possess compositional va
tions, structural inhomogeneities, or phase heterogeneitie
the physical scale from micron or submicron range to
atomic level. In fact, physically the inhomogeneity with
ferroelectrics influences the manner in which the mater
exhibit ferroelectricity.

Experimentally it has been substantially report
that a variety of complex mixed perovskite ferroelectri
with DPT behavior, such as Pb~Mg, Nb!O3 ~PMN!,
~Pb, La!~Zr, Ti!O3 ~PLZT!, or ~Sr, Ba!Nb2O6, have a truly
nanometer scale heterogeneity in composition. These ty
of ferroelectrics are also called ferroelectric relaxors beca
they also exhibit a significant dispersion of dielectric r
sponse near the Curie range, giving rise to sizable nonlin
dielectric and electromechanical phenomena.

The nature of the diffuse phase transition in ferroelec
relaxors has been a long standing puzzle since their detec
nearly four decades ago. The high interest in the pha
transition behavior of ferroelectric relaxors not only resid
in their fundamental significance, but also it is due to th
practical importance15 because ferroelectric relaxors have t
largest intrinsic dielectric constants among all materials
earth.

Forty years ago Smolenskii and co-workers13,16–18 pro-
vided an intuitive picture of the diffuse phase transition
complex ferroelectrics. Through the assumption of a lo
distribution of phase-transition points and the concept of
croregion ~Kanzig region!, they empirically estimated the
broadening of the phase transition, although they could
12 067 © 1997 The American Physical Society
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FIG. 1. Schematic representation of the dist
bution of local order parameters in an inhomog
neous system.
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offer a solid physical ground about their assumption. Follo
ing Smolenskii’s pioneer work, many important research
about ferroelectric relaxors were carried out in the 1960
1990’s, and a number of models have been proposed
interpreting the dielectric response of the relaxors. Here
do not attempt to review the enormously voluminous exp
mental and theoretical literature in this area. However
should be emphasized that Cross19 proposed a superparaele
tric model which suggested that the DPT in the relaxors
generated by their mesoscopic heterogeneity.

Nevertheless so far the detailed physical process of
diffuse phase transition in these materials has not been
derstood completely yet. Unresolved questions include,
exact nature of the diffuse phase transition and the intrin
connection between the heterogeneity and their dielectric
sponse. Particularly interesting is the phase-transition w
or the diffuseness of the phase transition, which influen
practical applications. An intriguing question here is: do
the width of the Curie region really, as expected before,
pend on the dipole-dipole interaction between clusters
does another generic cause related with the microstruc
itself govern the diffuseness of the phase transition? A
matter of fact, a more profound fundamental issue is: i
possible to artificially engineer and manipulate ferroelec
phase transition by controlling the mesoscopic heterogen
in order to tailor and design dielectric properties of ferroel
tric dielectrics?

It is the thesis of this paper that the origin of the diffu
phase transition in ferroelectric relaxors lies in a size eff
and ties up with their heterogeneity and relevant phys
scale. In this work, we attempt to quantify the correlati
between the diffuse phase transition in relaxors and t
mesoscopic heterogeneity, although experimentally en
mous evidence has strongly suggested that the formatio
polar clusters with nanometer size, on a scale significa
larger than the lattice constant, is responsible for their diff
phase transition.1

In light of the complexity of the topic, we have organize
this paper as follows. In Sec. II, we present an exten
Ginzburg-Landau model for the case of the inhomogene
system by constructing a simple but rather realistic fr
energy equation for such a system. In Sec. III, we evalu
the shift of local phase-transition points, and the explicit
lutions of polarization distribution are given by a continuu
theory. Section IV contains a quantitative analysis of
-
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features of diffuse phase transition of ferroelectric relaxo
in which we discuss the relationship between the behavio
local polarization and overall dielectric response. We cal
late the temperature variation of order parameters along w
the responses to a weak external field, and we show how
overall phase transition is controlled through mesosco
heterogeneities. Finally our conclusions are summarized
Sec. V.

II. THEORETICAL ANALYSIS: FREE-ENERGY
EQUATION IN A COHERENT SYSTEM

The essence of the present work, as will emerge below
an effort to quantitatively analyze the dielectric response
the phase stability of polar clusters in relaxors in connect
with their physical sizes and the features of their diffu
phase transition. One of the primary difficulties concerni
DPT in relaxors is to describe spatial inhomogeneities in
system analytically. For simplicity let us first envisage
inhomogeneous system consisting of two different chem
regions. One is subsystemA as the matrix phase and anoth
is denoted as subsystemB as illustrated in Fig. 1, each o
which behaves as a ‘‘Devonshire ferroelectric.’’ In realit
the subsystemsA andB are interconnected with one anoth
as a 0-3 nanocomposite. To constructing an analytic exp
sion of total free energy, we introduce two local order p
rameters,Pa(r ) andPb(r ), corresponding to the polarizatio
of subsystemsA andB. Both localized order parameters to
gether can describe the polarization behavior in a medi
i.e., an ensemble of clusters within a matrix, on the mes
copic scale, over which there are enough atoms presen
that the order parameters have thermodynamic meaning,
they can be described in the approximation of a continu
medium. In the following analysis, we restrict ourselves
the following conditions.~i! Two local scale order param
eters correspond to a one-component representation, su
the case of thê111& direction in PMN system. The two
order parameters have their intrinsic bulk Curie points wh
the physical sizes of two subsystems are infinitely large;
~ii ! there is a direct coherent coupling between two or
parameters at interfaces and the phase transition in each
system is of the second order. By following the free-ene
expressions in the literature,20–23 the thermodynamic poten
tial of an inhomogeneous system can be constructed
Landau-Ginzburg form,
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whereFa0 andFb0 denote the thermodynamic potential
subsystemsA andB in the paraelectric phase state.a, b, g,
A, B, andC are coefficients in the thermodynamic expa
sion, and especiallya5a0(T2T1), and A5A0(T2T2).
T1 andT2 are the bulk phase transition temperatures in e
subsystem, respectively.T2.T1 is defined in the following
discussion.j1 andj2 are the coefficients of gradient terms
order parameters. The Ginzburg termj i(¹Pi) reflects the
presence of polarization inhomogeneities in the mater
d(r ) is a delta function which describes the coordinates
the interface between two subsystems. Thed function is
commonly used to represent the coupling terms at the in
face in ferroelectric media.7,23–25Although, in principle, the
general conclusion of our theoretical results will not be
fected by choosing thed function as a connection function,
simplifies the analytical and numerical calculations.

The integral of Eq.~2! is over all space since the orde
parameters vary spatially. Thus, the local order parame
Pa(r ) andPb(r ) are the functions of space coordinates.an
and bn are the radius of domains of subsystems in one
their polar axes. More precisely,bn is defined as the size o
subsystemB, representing high-temperature ordered clust
within ferroelectric relaxors, which is on a mesosopic sca
i.e., bn52–30 nm. The matrix phase is in fact a thre
dimensional network, and the dimensional scale of the m
trix phaseA, an essentially stands for the minimum distan
between two clusters, which ranges around 2 to 80 nm, f
a nanometer size up to a submicron level. In reality the
erage size ofan is relatively larger thanbn . The two order
parameters which appear in the invariant free-energy fu
tion can possess different sequences of irreducible repre
tations of symmetry groups in the certain temperature ran
Q1 andQ2 are defined as the coherent coupling coefficien
which characterize the coherent coupling at the interfa
between different regions. Physically the coupling terms
be related to the stored elastic and electrostatic ene
caused by coherency coupling. The coefficientsQ1 andQ2
structurally allow the polar cluster to coherently conjugate
the other local order parameter. The spatial distribution
the polarization can be obtained by solving the Eul
Lagrange equations

j1
d2Pa

dr2
2~aPa1bPa

31gPa
5!50, ~3a!

j2
d2Pb

dr2
2~APb1BPb

31CPb
5!50, ~3b!
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Fj1 dPadr
1Q1PaGdPaU

r5Sn2~an1bn!2b1

50, ~4a!

Fj1 dPadr
2Q1PaGdPaU

r5Sn2~an1bn11!2b1

50, ~4b!

Fj2 dPbdr
1Q2PbGdPbU

r5Sn2~an1bn11!2b1

50, ~4c!

Fj2 dPbdr
2Q2PbGdPbU

r5Sn2~an1bn!2b1

50. ~4d!

Equations~3! and ~4! are obtained by functional differentia
tion of Eq. ~2!. If there does not exist a mutual coupling
interfaces between two subsystems, the thermodynamic
havior of each subsystem will become independent of e
other. And then these equations would be exactly ident
with those in the model of Tilley and Zeks21,22for describing
the behavior of finite ferroelectric systems.

By considering the interactions between two subsyste
a coherent interface state is assumed to be present a
boundaries of two subsystems. The coherency is defined
the requirement that the local order parameters from one
system to another subsystem are continuous across all i
faces. In this case, the order parameter in one subsystem
appear as the exact same as the order parameter of the
ond subsystem at interfaces, i.e.,

Pa~r !ur5Sn2~an1bn11!2b1
5Pb~r !ur5Sn2~an1bn11!2b1

,
~5a!

Pa~r !ur5Sn2~an1bn!2b1
5Pb~r !ur5Sn2~an111bn11!2b1

.
~5b!

Accordingly Eqs.~5! become

dPb
dr

2
Pb

d2
U
r5Sn2~an1bn!2b1

50, ~6!

dPb
dr

1
Pb

d2
U
r5Sn2~an1bn11!2b1

50, ~7!

dPa
dr

2
Pa

d1
U
r5Sn2~an1bn11!2b1

50, ~8!
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dPa
dr

1
Pa

d1
U
r5Sn2~an111bn11!2b1

50, ~9!

with the condition d52d15d2 . ~10!

HereQ15j1 /d1 andQ25j2 /d2 . d1 andd2 are defined
as the extrapolation lengths, which reflect the strength of
coherent coupling at interfaces. Conceptuallyd is similar to
the extrapolation length in the case of an isolated sm
particle,21 measuring the strength of the surface effect. W
will discuss this aspect in detail later on.

One of the implications in Eqs.~5!–~10! is that localized
phonon modes in adjacent chemically different regions
be coupled to one another via an interface coupling. T
polar clusters might create highly nonlocalized electric a
strain fields at interfaces, and these fields might be co
gated to the other local order parameter in the vicinity
interfaces. Two points should be stressed here.~a! The co-
herent coupling resulting in a mutual interaction at interfa
is arising from matching the cluster phase with the par
phase at interfaces, which leads to minimizing the interfa
energy. Interfacial energy can be elastic or electrostatic
nature.~b! In reality, the interfaces between two chemica
different regions are quite fuzzy. In the continuous-medi
approximation it is difficult to describe the immediate vici
ity of the interface boundary between two structurally diffe
ent regions explicitly. However, the main concern regard
the imposed boundary conditions is only to ensure that
order parameters match exactly at the interface, other
the exact location of the interface.

III. LOCAL POLARIZATION AND LOCAL
PHASE TRANSITION

A. Local polarization distribution

We next examine the influence of heterogeneity on
distribution of local polarizations. The explicit nontrivial so
lutions of Eqs.~3!, i.e., spatial distribution of polarization
Pa(r ) andPb(r ), can be obtained precisely with the help
Eqs. ~5!–~10!, although, in general, they are qui
cumbersome.26 Specifying a chosen area (2bn,2an1bn),
we now find the space profile of the local order parame
analytically. Focusing attention on the temperature reg
from T1!T, we consider that the induced local polarizati
Pa(r ) in subsystemA is small, while in subsystemB the
polarizationPb deviates fromP0b , i.e., Pb5(Pb02DPb).
Pb0 is the polarization at the coordinate origin.DPb is the
polarization variant, primarily due to the size effect and
terface interactions. By assumingDPb /Pb0,1 if the physi-
cal dimension ofb is small enough, Eqs.~3! can be approxi-
mately written as

j2¹
2Pb5~A1BP0b

2 1CP0b
4 !Pb , PbP~2bn ,bn!;

~11a!

j1¹
2Pa5aPa , PaP~bn,2an1bn!. ~11b!

Note that the validity of the solution of Eq.~11a! can be
inspected by integrating Eq.~3a! with additional symmetric
boundary conditionsdPb /dr→0 and Pb→P0b as r→0.
e
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From the coherent boundary conditions of Eqs.~5!, the spe-
cial solutions for Eq.~11! can be approximately written as

Pb5Pb0cos~k2r !, PP~2bn ,bn!, ~12a!

Pa5
Pb0cos~k2bn!

cosh~k1an!
cosh$k1@r2~an1bn!#%,

PaP~bn,2an1bn!, ~12b!

with

k1
25

a0~T2T1!

j1
, ~12c!

Pb06H 2
B

2C F12A12
4A0C

B2 ~T2T2c!G J 1/2,
and

T2c5T22~j2k2
2/A0!, ~12d!

wherek1 and k2 are defined as the characteristic length
which reflect the correlation radius of the order paramet
and describe the breath of polarization fluctuation in ea
subsystem. Inserting Eq.~12b! into Eqs.~8! or ~9!, one ob-
tains

k1tanh~k1an!5
1

d
. ~13!

SinceT@T1 and thusk1an@1, one further has

k15
1

d
. ~14!

Equation~14! implies that the extrapolation length ofd in
this case is associated with the physical properties of
adjacent phase and temperature as well. On the contrar
the situation of free surfaces~air-solid interface!, the ex-
trapolation length of an isolated nanometric particle can
mainly considered as a constant.21,22 This argument in fact
makes sense by considering the fact that the coherent
pling strength at solid-solid interfaces should be closely
sociated with the surrounding interfacial environment or
feature of lattice vibrations in the adjacent phase. Likewi
inserting Eq.~12a! into Eqs.~6! or ~7!, one has

tan~k2bn!5
1

k2d
. ~15!

When the physical size of polar clusterbn is small, the term
tan(k2bn) in Eq. ~15! can be expanded as a Taylor series.
neglecting the higher-order terms of (k2bn) in Eq. ~15! and
using Eq.~14!, Eq. ~12d! will become

T2c5T22~j2Auau/Aj1bnA0!. ~16a!

Equation~16a! can approximately estimate the shift of th
Curie point in the cluster phaseB. Clearly, the original Curie
transition points are modified by the physical size and
coherent coupling strength. Figure 2 shows the transit
temperature dependence of the physical sizebn of nanomet-
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ric clusters. Essentially the phonon modes of one region
couple to the soft mode in the adjacent region locally
perturb the stability of polar phase and soft-mode transiti
giving rise to a disturbance of the correlation of dipoles, a
thus leading to a shift of the Curie temperature.

On the other hand, when temperature is below or nea
T1 , the polarization variantDPb in the cluster domain be
comes negligibly small. And then from Eqs.~3! and~10!, the
shift of the Curie point of the matrix phaseA near interfaces
can be also estimated by

T1c5T11~j1AuAu/Aj2ana0!. ~16b!

The underlying physics here is that two local order para
eters are reconciled by a coherent interface boundary co
tion. The coherent coupling between these order parame
influences the softening of local phonon modes, leading
shifting of the Curie temperatures of both the nanome
cluster phase and the matrix phase, respectively.

The variations of polarization in polar clusters are plott
as the functions of temperature and their physical size in
3. The induced polarizationPa in subsystemA is also nu-
merically plotted as the functions of both the normaliz

FIG. 2. The physical sizes of polar clusters as a function of th
size-induced phase transition point. The free-energy parameter
this calculation can be found in Tables I and II, which have the
unit unless specified.

FIG. 3. Calculated polarization of a polar cluster as functions
both temperature and its physical size.
n

,
d

to

-
di-
rs
a
c

g.

coordinate and temperature in Figs. 4. It can be seen that
polarization in polar clustersPb decreases at interfaces
while induced polarizationPa increases near interfaces. Sev
eral important features are apparent:~i! The cluster phase
B can induce the polarization in the periphery of subsyste
A, even though the temperature is above the original loc
Curie temperature of subsystemA. In other words, a polar-
ization Pa(r ) occurring in subsystemA is caused by the
coherent coupling from subsystemB. ~ii ! The initial size of a
polarized cluster is determined by the spatial inhomogenei
As the temperature decreases, the size of the polarized
gions will grow, forming a polar nanodomain with a size
almost twice as large~8–10 nm! as the initial one~4–5 nm!
at low temperature. The temperature evolution of the spat

ir
for
s

f

FIG. 4. Different views of the induced polarization at the inter
face. The normalized distance stands for (r2bn)/bn . bn is the
physical size of polar clusters and we takebn55 nm here for the
calculation.~a! The spatial profile of induced polarization in the
matrix as a function of temperature and the normalized distance.~b!
The local transition temperature is defined as one at which the
duced polarization approaches zero, i.e.,Pa50. The distribution of
the local Curie temperatures in subsystemA near the interface is
illustrated here.
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profile of a cluster polarization is schematically depicted i
Fig. 5. It is clear that upon cooling the region near th
boundary between two subsystems can no longer sustai
structure with zero polarization, even within subsystemA.
As expected, the ferroelectric phase transition can be nuc
ated in this region, even though this region is intrinsically th
paraelectric phase. The polarization occurring in subsyste
A is extrinsic in nature at this temperature stage. Experime
tally the growth of polar microregions in PLZT and othe
relaxors has been observed as temperature decreases,27–29

which is quite consistent with our theoretical description
From the lattice vibration point of view, the two subsystem
have different characteristics of phonon modes because
differences in composition. The coherent coupling can lin
two local order parameters coherently and influences t
softening of the local phonon modes upon one another
some degree.

B. Local phase transition

We now look at the distribution of local Curie tempera
tures at interfaces. Figure 4~a! shows that as the boundary
between polar cluster and nonpolar matrix moves into su

FIG. 5. Illustration of the growth pattern of polar clusters by th
polarization spatial profile at different temperatures.
a

le-
e
m
n-

.
s
of
k
e
in

-

systemA, the size of polarized region increases. If we defi
the local Curie temperature as the point at which the lo
spontaneous polarization just approaches zero, one can
in Fig. 4~b! that the local Curie temperature will drop rapid
from the periphery of subsystemA to the interior of sub-
systemA where the chemical composition favors an unp
larized state in this temperature range. Quite clearly, at
exact interface, the local Curie point is the transition te
perature of polar clusters, and then it decreases quickly
function of the space coordinates.19 The essential point here
is that the coupling-induced polar structure in a paraelec
matrix phase can exist even above its intrinsic Curie te
perature. The local Gibbs free energy in subsystemA as a
function of space-polarization coordinate can be obtained
substituting Eq.~12b! into Eq. ~2!, as illustrated in Fig. 6.
The evolution of potential wells represents the magnitude
induced polarization in subsystemA.

Lastly, we close this section by making some comme
on the coherent coupling and the range of applicability of
Landau theory. The so-called coherent coupling between
localized order parameters means that discontinuities in
distribution of order parameters are not permitted along
terfaces. The lattice coupling plays an important role in
coherent coexistence of two phases with slightly differe
lattice parameters and symmetry. There are two fundame
reasons why the coherent coupling would occur in real s
tems. Since incoherent interfaces usually have higher in
facial energies than coherent interfaces, the coherent equ
rium at the interfaces is actually the stable state if the lat
match is close enough.30,31

On the other hand, in its main approximation, the Land
theory of phase transitions ignores long-wave fluctuations
order parameters. However, it is important to realize that
can calculate contributions from the long-wave fluctuatio
as long as the contributions are small enough.32–36The criti-
cal range is proven to be very narrow in ferroelectrics32–34

because the smoothly varying Coulomb force is respons
for establishing the polar phase. In fact, the logarithmic c
rections have been proven to be difficult to detect experim
tally. In experiments, the observed phase-transition beha
generally appears in agreement with the results of Lan
theory. Practically, in most of cases, one can use the Lan
theory to describe the phase transition for the entire pha
transition region. Therefore, it appears safe to assume
-
FIG. 6. The local Gibbs free energy in sub
systemA as a function of the distance away from
the interface at 40 K. The scale ofa0 is in range
of 1 nm.
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Landau theory will describe the principal physical features
polarization processes in this study.

IV. DIFFUSE PHASE TRANSITION

Next we explore the connection between the nature
diffuse phase transformation and the compositional inhom
geneity. One of the important properties for ferroelectric
ol
as
f

f
-
-

laxors is their mean static susceptibilityx(T) near the Curie
range. The static susceptibility of ferroelectrics is defined

x i5
]Pi

]E U
E50

5F]2F

]Pi
2 G21

~ i5a,b!. ~17!

Varying the total free energy of Eq.~2! with respect toP,
one can obtain a variation equation,
d̂F5SnE
2r1n

r1n
$@APb1BPb

31CPb
51Q2Pbd~r6r 1n!#d̂Pb1j2~¹Pb!d̂~¹Pb!%dr

1E
2r2n

r2n
$@aPa1bPa

31gPa
51Q1d~r6r 2n!#d̂Pa1j1~¹Pa!d̂~¹Pa!%dr, ~18!

where

r 1n5bn111S2~an1bn11!2b11bn11 and r 2n5an111S2~an1bn11!2b11an11 .

With the help of the integral formula

E
2r in

r in
$j i~¹Pi !d̂~¹Pi !%dr5j i~¹Pi !d̂PiU

2r in

r in
2E

2r in

r in
$j i~¹Pi !d̂~¹Pi !%dr, ~ i51,2! ~19!

Eq. ~18! gives

d̂F5SnE
2r1n

r1n
$2j2~¹2Pb!1APb1BPb

31CPb
51@6j2~¹Pb!1Q2Pb#d~r6r 1n!#%d̂Pbdr

1E
2r2n

r2n
$2j1~¹2Pa!1aPa1bPa

31gPa
51@6j1~¹Pa!1Q1Pa#d~r6r 2n!#%d̂Padr. ~20!
rs.

al

s-

se
c-
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Therefore, the average local inverse susceptibilities of p
clusters and the nearby matrix phase can be expressed

^xbn
21&5

1

2bn
E

2r1n

r1n
$A13BPb

215CPb
41Q2d~r6r 1n!%dr,

~21a!

^xan
21&5

1

2an
E

2r2n

r2n
$a13bPa

215gPa
41Q1d~r6r 2n!%dr,

~21b!

respectively. The identical equation

E dr$]2~¹Pi !
2/]Pi

2%[0, ~22!

is used for derivation of Eqs.~21!. As a straightforward con-
sequence of Eqs.~21!, the averagesusceptibility of matrix
and local susceptibilities of clusters can be written as

^x ān
&'

1

a0~T2T1c!
T.T1c , ~23a!

^x ān
&'

1

22a0~T2T1c!
T,T1c , ~23b!
ar
^xbn&5

1

A0~T2T2c
n !

T.T2c
n , ~23c!

^xbn&5
1

22A0~T2T2c
n !

T,T2c
n , ~23d!

with

T1n5T11~j1AuAu/Aj2a0ān!,

T2c
n 5T22~j2Auau/Aj1A0bn!. ~23e!

Here ān is the average minimum distance between cluste
Note that when the physical sizesan andbn of cluster do-
mains and matrix phase become very large, Eqs.~23! degen-
erate into expressions of susceptibility for norm
ferroelectrics.37,38

Generally the dielectric properties of dielectric compo
ites could be estimated by an empirical relationship39

e tot
k 5xe1

k2~12x!e2
k , ~24!

wheree tot is the dielectric constant of an entire multipha
system. Essentially Eq.~24! is too crude to assess the diele
tric response in ferroelectric relaxors because it neglects
fact that the impedance of polar clusters is relatively lar
than that of the matrix and overlooks the microstructure
tails. In order to obtain a realistic dielectric response of fer
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electric relaxors, according to a simple Maxwell-Wagner c
culation from Eq.~A2! ~see the Appendix! for multiphase
dielectric systems, the effective mean static dielectric susc
tibility of the entire system can be written as

^x&>(
n

Fansa

bnsb
G2f 1n^xan&1(

n

bnf 2n
an

^xbn&, ~25a!

with

f 1n5
an

Sn2~an1bn!
, and f 2n5

bn
Sn2~an1bn!

. ~25b!

Here f 1n is the volume fraction of the local matrix phas
with a minimum distancean between two clusters, while
f 2n is the volume fraction of cluster domains with a speci
sizebn . For simplicity, by assumingan[an11 , a conserva-
tive estimation of Eqs.~25! can be approximately obtaine
from Eq. ~A3! as

^x&' f 1h^x ān
&1(

n
k f2n^xbn&, ~26!

with

f 15
2nān

Sn2~ ān1bn!
, k5~ ān1bn!/bn, and h5S bnsa

ānsb
D 2.

Here f 1 is the total volume fraction of the matrix,h is a
constant about 0.01–0.1, andk is a constant of 3–10, de
pending upon the ratio ofān /bn and sa /sb . The actual
information aboutf 1n , f 2n , ān , and bn can be estimated
directly from the microstructure characterization done
transmission-electron microscope~TEM!.27–29,40–50

Now we consider a PMN crystal consisting of a mass
clusters within a matrix. Based on Eq.~26!, the overall di-
electric response of a PMN system is calculated and is il
trated in Fig. 7. The calculatede data yielded an excellent fi
to the experimental data,13,51 showing a typical smeared d
electric response over a broad temperature range. The
modynamic parameters used for our calculation are liste
Tables I and II. A salient feature demonstrated in Fig. 7
that the overall dielectric behavior of the PMN is controll
by its heterogeneity. A set of localized phase transitio
arising from an intrinsic size effect, superpose together
coherently form a giant dielectric response over a very br
temperature range. The overall dielectric coefficient in t
case is exceedingly larger than that suggested by the
relation. The distribution of physical sizes of heterogene
used in our calculation was roughly estimated from the
crostructure information offered by the TEM characteriz
tion, and it is plotted in Fig. 8. The basic physical pictu
l-
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presented in this section is straightforward: the polar ph
transition tends to be confined in many localized cluster
gions, ranging from a few nanometers up to more than
nanometers, and the localized Curie points are virtually
lated to their physical sizes as well as the associated cohe
coupling at interfaces, leading to the localized polarizat
fluctuation spreading over a broad temperature range. A
result, the overall phase transition will be no longer a sin
Curie temperature point but a continuum temperature ra
when the physical sizes of the polar phases form a c
tinuum distribution.

On the other hand, the correlation lengths of localiz
order parameters are limited by the physical sizes of het
geneities. The local soft modes will not propagate beyo
the physical scale of the clusters. There exist a distribution
the localized correlation volumes covering a broad tempe
ture range. It can be seen that the sum of the localized
relation volume~or length! is a function of temperature, a
shown in Fig. 9, which determines the difussness of the
rie range in the dielectric response. In fact, a giant dielec
~pyroelectric! response is created by a set of localized diel
tric singularities in a broad range of temperature.

Figure 10 shows the mean polarization of ferroelect
nanocomposite, significantly deviating from the norm
ferroelectric behavior. It is found that the calculated pol
ization is gradually weakening and depressing, exhibitin
typical characteristic of diffuse phase-transition behavi
Quite obviously, the local polarization exists well above t
temperature, at which the dielectric constant exhibits
maximum. This helps explain the experimental results t
the polar regions exist well above the transition temperatu
together with the absence of any evidence from x rays
neutron diffraction for a sudden structural change in going
the low-temperature phase.1

FIG. 7. The calculated temperature dependence of the m
susceptibility in a Pb~Mg,Nb! crystal.
TABLE I. Parameters of the free-energy expression for the polar clusters Pb~Mg0.5Nb0.5!O3 in
PMN. Since currently there are no free-energy parameters for Pb~MgNb!O3 available, the free-energy
parameters of Pb~Zr0.5Ti0.5!O3 are adopted for our calculation@100# ~cgs unit unless specified!.

T2c A0 B C j2 (cm)
2

250 °Ca 331025 ~Ref. 52! 0.738310212 ~Ref. 52! 2.3310223 ~Ref. 52! 5310216 ~Ref. 53!

aT2c here is set without reference.
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TABLE II. Parameters of the free-energy expression for the matrix phase in the PMN. Since cur
there are no free-energy parameters for the matrix phase of Pb~Mg, Nb!O3 available, the free-energy param
eters of SrTiO3 are adopted for our calculation.

Tc0 a0 b g j1 (cm)
2

35 K
~Ref. 54!

1.5731024

~Ref. 55!
4.73(T115.6)310212

~Ref. 54!
2.96310221

~Ref. 54!
5310216

~Ref. 53!
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Equation~23e! is exactly identical with Eqs.~16!. Appar-
ently T1c andT2c are not only related to the physical sizes
an and bn of heterogeneities, but also they are associate
with the elastic coefficients, and therefore their values a
dependent upon a driving frequency. Qualitatively it can b
seen in Eq.~23e! thatT2c will become larger whenuau gets
smaller in the case of a higher driving frequency. In othe
words, the whole Curie range will consequently shift toward
a higher temperature range under a higher driving frequen
Therefore it may be reasonably believed that significant di
persion of dielectric response near the Curie range is orig
nated from the microstructure effect. More detailed discu
sions about the dynamic behavior and other aspects
ferroelectric relaxors will be discussed in several other sep
rate papers.

In closing, we would like to make a final remark abou
this approach. Basically, relaxor ferroelectrics exhibit an un
usual variety and richness of phase-transition features. T
present approach is a quite general one, which might n
explain all experimental results for all kinds of material sys
tems in details. Nevertheless, generally, our main calculat
results are consistent with the principal experimental resu
for some typical relaxor systems, such as PLZT~8/65/35! or
Pb~Mg1/3Nb2/3!O3.

V. SUMMARY

Beginning from a basic formulation of the Ginzburg-
Landau free-energy equation with physically allowed orde

FIG. 8. The volume fraction distribution of polar clusters with
different physical sizes.
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parameters in an inhomogeneous medium, we have
sented a straightforward thermodynamic approach to diff
phase transitions in ferroelectrics with mesoscopic inhom
geneities. In our view, this approach provides important
sights into the basic physics of the DPT in ferroelectric
laxors, and it contributes to the understanding of t
structural instabilities in inhomogeneous ferroic materia
Despite a number of simplifications, the presented anal
can still explain the principal characteristics of phase tra
formation in ferroelectrics relaxors. Moreover, the model c
account well for a number of the electrical, thermal, a
microstructural observations in relaxor ferroelectrics. Ne
we summarize our main results.

~i! A determined effort has been made to study the diel
tric behavior of a system with mesoscopic heterogeneity. T
evolution of the polarization process of the coherent po
phase within a paraelectric medium has been discussed b
on coherent lattice coupling and its heterogeneity. The p
cess includes coherent precipitation and nanopolar clu
coarsening in an inhomogeneous medium. According to
model, the coherent lattice coupling between different pha
imposes a critical constraint on the characteristics of lo
soft-mode phonons and the behavior of the phase trans
in inhomogeneous media with nanopolar clusters. The lo
paraelectric-ferroelectric transition can be thought of a
perturbing influence of localized chemistry on localized so
mode phonons. The unique feature in this approach is
coherent coupling is maintained across interfaces betw
two chemically different ordering regions.

~ii ! On the basis of the spatial heterogeneity, we ha

FIG. 9. The sum of the local correlation volume as a function
temperature.
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derived both the overall dielectric response and the local
larization distributions. We consider that each localized cl
ter has a mean-field character and it can be described by
Ginzburg-Landau formalism at its own ‘‘fixed point.’’ We
connect all these localized clusters, which have si
dependent phase-transition points, to their matrix phas
describe the overall dielectric response of the entire sys
over a wide temperature region. Based on this approach
diffuse phase transition in the relaxors could be underst
as an inhomogeneous condensation of localized soft mo

The analysis presented here, we believe, is the firs
demonstrate how the gradual crossover characteristics o
relaxors evolve, which is inherently consistent with most
the experimental observations, and explains well the gen
principle of diffuse phase transition in relaxor ferroelectric
thereby deepening our understanding of the spectacular p
erties of these industrially important materials.
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APPENDIX

The localized dielectric susceptibility of a cluster with
surrounding matrix layer can be estimated by a Maxw
Wagner formalism.56,57 Here we take a PMN crystal as
typical example of ferroelectric relaxors with a 0–3 micr
structural connection. In the cluster phase of the PMN,
Mg21 and Nb51 ion order is in fact in a 1:1 ratio on th
B-site sublattice of the PMN. Since the Mg/Nb ratio is 1
within the ordered domains~as opposed to 1:2 for the ave
age composition! the clusters have a net negative charge w
respect to the matrix phase in order to preserve stoichi

FIG. 10. The calculated temperature dependence of the m
polarization of a PMN crystal.
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etry. It follows that the matrix must be a Mg-rich region an
positively charged.

Clusters and the matrix phase can be considered as ac
tor and donor-type semiconductors, respectively. The res
ant pure Schottky barriers at interface boundaries betwe
the matrix and clusters can reduce the effective conductiv
of clustersdrastically, quite analogous to the situation of
doped BaTiO3 ceramic.

58–60 It should be noticed that this
interface effect does not essentially affect the conductivity
the matrix because its geometry connection is thre
dimensional in character.

A cluster with its surrounding matrix phase can be d
scribed by an equivalent circuit as shown in Fig. 11.61,62

According to the equivalent circuit diagram, the local stat
susceptibility can be written as63,64

^x1n&5
~bn^xbn&sa

21an^xan&sb
2!~bn1an!

~bnsa1ansb!
2 . ~A1!

Here^x1n& is the localized susceptibility andān is the aver-
age minimum size between two clusters. By considering th
the effective conductivity of the cluster phase is muc
smaller than that of the matrix phase,sb!sa near the cluster
phase transition, the static localized susceptibility in who
temperature range can be written as

^x1n&>
~an1bn!

bn
^xbn&1S bnsa

ansb
D 2^xan&. ~A2!

Equation~A2! shows an interesting reverse effect of the ba
rier layer capacitors, similar to that of the well-known con
ventional interfacial capacitors,65,66 leading to significant en-
hancement of local effective dielectric properties. A qui

an

FIG. 11. Equivalent circuit diagram of a cluster with its sur
rounding matrix phase.
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conservative estimation of Eq.~A2! can be obtained by as
sumingān'bn and 10sa5sb , i.e.,

^x1n&'2^xbn&10.04̂ xan&. ~A3!

At the optical frequency, the localized susceptibility in t
whole temperature range can be written as
.

e

ys
.

ro

N.

m
r.

a

^x1n&5
~an1bn!^xan&

~an1bn^xan&/^xbn&!
1

~an1bn!^xbn&
~bn1an^xbn&/^xan&!

.

~A4!

Equation~A4! implies that the dielectric constant of ferro
electric relaxors will be reduced at least as much as 5
when the driving frequency increases to an optical freque
level.
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