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Effects of interlayer interaction on the superconducting state in YBa2Cu3O72d

C. O’Donovan* and J. P. Carbotte
Department of Physics & Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1

~Received 2 January 1996!

For a two-layer system in a weak-coupling BCS formalism any interlayer interaction, regardless of its sign,
enhances the critical temperature. The sign has an effect upon the relative phase of the order parameter in each
of the two planes but not upon its magnitude. When one of the planes has a dispersion consistent with CuO
chains and no intrinsic pairing interaction there is both an enhancement of the critical temperature and an
s1d mixing in both layers as the interlayer interaction is increased. The magnetic penetration depth,c-axis
Josephson tunneling, density of states, and Knight shift are calculated for several sets of model parameters.
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I. INTRODUCTION

The search for the mechanism which causes supercon
tivity in the copper oxide materials is an ongoing effo
which has yet to reach a consensus. One factor which
model should account for is that the critical temperat
tends to be higher in systems with multiple adjacent Cu2
layers, and even in systems, such as YBa2Cu3O72d

~YBCO!, in which a CuO layer is adjacent to the CuO2
layers,Tc seems to be enhanced.

It is generally believed that the superconducting cond
sate resides in the CuO2 planes, although one interpretatio
of the observed largex-y anisotropy of the zero temperatu
magnetic penetration depth~a factor of;1.6) in YBCO in-
dicates that there is as much condensate in the CuO chai
in the CuO2 planes~i.e., the condensate in the chains on
contributes to the penetration depth for current in the dir
tion parallel to the chains, i.e., theb direction!.1 Since it is
believed that whatever mechanism is responsible for su
conductivity in the copper oxides is intrinsic to the CuO2

planes, some other mechanism for creating the supercond
ing condensate on the CuO chains is required.

In this paper we derive a Hamiltonian for a layered s
tem and, making a simplifying assumption that there is
pairing between electrons which reside in different laye
derive a pair of coupled BCS equations for a system of t
layers, each with possibly different dispersion and pair
interactions. In this model Cooper pairs can scatter betw
the layers so that, as in a two-band model,2 even if there is no
pairing interaction in one of the layers, there will still be
condensate in that layer due to the interlayer interaction.

Although we make a particular choice for the pairing i
teraction~which is motivated by the nearly antiferromagne
Fermi liquid model which leads naturally to ad-wave gap
for single CuO2 planes

3!, ad-wave solution is also found fo
other types of nonisotropic pairing interactions.4 One result
of having gap nodes cross the Fermi surface is a lo
temperature linear behavior of the magnetic penetra
depthl i i

22 , as is observed in YBCO.1,5–7Here we only try to
model the low-temperature behavior and relative magnitu1

in the x andy directions of the magnetic penetration dep
The T;Tc behavior is only reproduced for values
550163-1829/97/55~2!/1200~9!/$10.00
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2Dmax/Tc about 1.5 times higher8 than the value of 4.4
found in the BCS weak-coupling approximation. In the tw
layer model that we study here a higher value of 2Dmax/Tc is
obtained which is closer to that observed in experiments s
as angle-resolved photoemission spectroscopy~ARPES!
~Ref. 9! or CITS ~Ref. 10! that measure the absolute magn
tude of the order parameter.

We find that the presence of the chains destroys the
tragonal symmetry of the CuO2 planes and shifts the
d-wave gap nodes in the CuO2 plane off the diagonals in
agreement with an earlier model.11 In this case the gap con
tains an admixture ofs- andd-wave symmetry. Calculations
of thec-axis Josephson tunneling current show that the p
tive and negative parts of the order parameter do not can
as for d-wave pairing in a tetragonal system, and that t
Josephson junction resistance-tunneling current prod
RJ(T50), are in the range of 0.1–3.0 meV, in agreeme
with the experiments of Sunet al.12 We also calculate both
the normal and superconducting density of states~DOS! for
the CuO2 planes and CuO chains separately since some
face probes, such as current-imaging tunneling spectrosc
~CITS!,10 can measure them separately. Finally the Knig
shift is calculated separately for both the planes and
chains.

In Sec. II we introduce our Hamiltonian and derive a s
of coupled BCS equations for planes and chains and o
necessary formulas, particularly the expression for the m
netic penetration depth in this model. In Sec. III we pres
the the solutions of these BCS equations as well as the
sults of calculations of the magnetic penetration depth, e
tronic density of states,c-axis Josephson tunneling, an
Knight shift. Section IV contains a short discussion and co
clusion.

II. FORMALISM

In this section we will present a Hamiltonian in whic
multiple layers are coupled through the pairing interactio
between adjacent layers. We will then make the assump
that there is no interlayer pairs~i.e., that each Cooper pai
resides in only one of the layers! and that there is no single
particle interlayer hopping. The Hamiltonian of this spec
case is then diagonalized and coupled BCS equations
rived. We then give expressions for the magnetic penetra
1200 © 1997 The American Physical Society
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55 1201EFFECTS OF INTERLAYER INTERACTION ON THE . . .
depth in this model, the Knight shift, the quasiparticle de
sity of states, and the dc Josephson junction resista
tunneling current product for ac-axis tunnel junction.

The general Hamiltonian is

H5 (
k,ab

«k,ab~ak↑,a
† ak↑,b1ak↓,b

† ak↓,a!

2
1

V k,q,abgd
( Vk,q,abgdak↑,a

† a2k↓,b
† aq↑,ga2q↓,d , ~1!

where the greek indices enumerate the layers, theak,a
†

(ak,a) create~destroy! electrons of momentumk in layera
~k is in units of a21 where a is the lattice parameter!,
«k,ab is the electron dispersion, andVk,q,abgd is the pairing
interaction.

Performing a mean field analysis, we get

H5 (
k,ab

«k,ab~ak↑,a
† ak↑,b1ak↓,b

† ak↓,a!

2 (
k,ab

~Dk,abak↑,a
† a2k↓,b

† 1 H.c.!1C,

whereC is a constant, H.c. indicates the Hermitian con
gate,Dk,ab[V21(q,gdVk,q,abgdxq,gd are the order param
eters, andxq,gd[^aq↑,ga2q↓,d& are the pair susceptibilities.

Writing this in Nambu spinor notation, we get

H5 (
k,ab

Ak,a
† Ĥk,abAk,b ,

whereAk,a
† [@ak↑,a

† a2k↓,a # and

Ĥk,ab[F «k,ab Dk,ab

Dk,ab
† 2«k,ab

G . ~2!

In this model the magnetic penetration depth is given
the expression13

l i j
225

8pe2

\2c2
1

V (
k,ab

ĝk,ab
~ i ! ĝk,ba

~ j ! ~Ĝk,abuD502Ĝk,ab!,

~3!

where

Ĝk,ab[
] f ~Ek,a!

]Ek,a
dab1

f ~Ek,a!2 f ~Ek,b!

Ek,a2Ek,b
~12dab!,

ĝk,ab
~ i ! [(

gd
Ûk,ag
† ]«k,gd

]ki
Ûk,db ,

6Ek,a are the eigenvalues of Eq.~2!, f (x) is the Fermi func-
tion, dab is a Kronecker delta, andÛk,ab is the unitary ma-
trix which diagonalizes Eq.~2!. The quantitiese, \, andc
are the electron charge, Planck’s constant, and the spee
light, respectively.

We now make the following simplification
Vk,q,ag[Vk,q,aagg5Vk,q,abgddabdgd and «k,a[«k,aa
5«k,abdab . This means that there is only intralayer pairin
and no interlayer pairing ~i.e., Dk,a[Dk,abdab and
xq,g[xq,gddab are both diagonal in the greek indices! and
-
e-

-

y

of

there is no single-particle interlayer hopping. This Hamil
tonian has the same form as that for a two-band model stu
ied by one of us3 in an earlier publication and is similar to
that studied by others.14–16 Interlayer pairing16–18 has also
been studied.

The Hamiltonian has eigenvalues given by
Ek,a56A«k,a

2 1Dk,a
2 and is diagonalized by the unitary ma-

trix

Ûk,a5F uk,a vk,a
2vk,a uk,a

G , ~4!

where

uk,a[A1

2 S 11
«k,a
Ek,a

D ,
vk,a[A1

2 S 12
«k,a
Ek,a

D
are the usual BCS coherence factors. Using this unita
transformation~4! we can evaluate the pair susceptibilities to
get

xq,a[^aq↑,aa2q↓,a&5
Dq,a

2Eq,a
tanhS Eq,a

2kBT
D , ~5!

whereT is the temperature andkB is Boltzmann’s constant.
Note that if we had included the interlayer pairing from Eq
~1! we would have susceptibilities of the form
^aq↑,aa2q↓,b& with aÞb and both the eigenvalues and the
unitary matrix~4! would be much more complicated.

For a bilayer system~i.e.,a51,2) the BCS equations are

Dk,15
1

V(
q

~Vk,q,11xq,11Vk,q,12xq,2!,

Dk,25
1

V(
q

~Vk,q,12xq,11Vk,q,22xq,2!, ~6!

where we have takenVk,q,125Vk,q,21, although in general
only Vk,q,125Vk,q,21

† is required.
Noting thatxq,2 changes sign@see Eq.~5!# with Dk,2 we

see that this set of equations~6! is unchanged by the substi-
tution $Dk,2 ,Vk,q,12%→$2Dk,2 ,2Vk,q,12% which means that
the overall sign ofVk,q,12 only affects the relative sign of the
order parameters in the two layers and not their magnitude
This is interesting because it means that the effect onTc of
having an interlayer interaction is independent of whethe
this interaction is attractive or repulsive, although some ca
culated properties~e.g.,c-axis Josephson tunneling current!
still depend upon the relative sign of the interlayer interac
tion. It is important to emphasize that any interlayer inter-
action, either attractive or repulsive, tends to enhance Tc
and that this is consistent with the observation that Tc is
higher in materials with multiple adjacent CuO layers.This
well known result can be easily shown by examining th
coupled BCS equations~6! nearT;Tc . In this limit we can
write
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1202 55C. O’DONOVAN AND J. P. CARBOTTE
Dk,a5Dahk ,

Vk,q,ab5Vabhkhq ,

whereDa andVab are numbers andhk is a normalized func-
tion which could be taken to bed wave and corresponds t
the highestTc . The coupled BCS equations~6! can then be
written as

D15D1V11

1

V(
q

~hq!
2

«q,1
tanhS «q,1

2kBTc
D

1D2V12

1

V(
q

~hq!
2

«q,2
tanhS «q,2

2kBTc
D , ~7a!

D25D1V12

1

V(
q

~hq!
2

«q,1
tanhS «q,1

2kBTc
D

1D2V22

1

V(
q

~hq!
2

«q,2
tanhS «q,2

2kBTc
D . ~7b!

We now assume thatD1 is the dominant superconductin
channel whenV125V2150 and obtain, assuming an infinit
band with cutoffvC ,

D15~D1l111D2l12!lnS 1.13vC

Tc
D , ~8a!

D25~D1l211D2l22!lnS 1.13vC

Tc
D , ~8b!

wherel i j[Vi j3 the density of electronic states at the Fer
surface. Substitution of Eq.~8b! into Eq. ~8a! leads to a
quadratic in ln(1.13vC /Tc) with the solution

Tc51.13e1/l̃, ~9!

with

l̃5
1

2
@l111l221A~l112l22!

214l12l21#. ~10!

This result is well known and is given by Eq.~6.3! on p.
105 of Ref. 23. It is also found as Eq.~40! of Chi and
Carbotte.3 We note thatl12, whatever its sign, increasesl̃
and so increasesTc .

If we had takenVk,q,12 as complex, the symmetry woul
be $Dk,2 ,Vk,q,12%→$Dk,2e

2ıf,Vk,q,12e
ıf% where Vk,q,12

5uVk,q,12ueıf, and the relative phase between the lay
would no longer be61.

We note that by performing the unitary transformati
Ŝ†ĤŜ where

Ŝ[
1

A2 F 1 1 0 0

1 21 0 0

0 0 1 1

0 0 1 21

G ,
i

s

and making the substitutions V115V225Vi1V' ,
V125Vi2V' , «15«1t, and «25«2t we obtain both the
Hamiltonian and BCS equations used by Liuet al.19 Our
work differs from theirs in that we allow both the dispersio
and the interaction to be different in the two layers. This
important not only because we are able to model syste
such as YBCO in which there are CuO2 planes and CuO
chains, but also because the order parameter in each o
layers may differ in sign even in two identical layers.16 Other
workers have studied models in which the electrons in
pairs reside in different layers17 ~i.e., in which onlyxk,12 is
nonzero! as well as models in which there is no intralay
interaction16,18 ~i.e., in which onlyVk,q,12 is nonzero!.

After solving the set of coupled BCS equations~6! at
T50 using a fast Fourier transform~FFT! technique4,11,20we
approximate the order parametersDk,1 andDk,2 with

Dk,a5~Da
~s0!hk

~s0!
1Da

~sx!hk
~sx!

1Da
~d!hk

~d!!tanh~1.74ATc /T21!, ~11!

where thehk
(•) are the three lowest harmonics given by

hk
~s0!

51,

hk
~sx!

5cos~kx!1cos~ky!,

hk
~d!5cos~kx!2cos~ky!,

and theDa
(•) are their amplitudes. The amplitudes of th

higher harmonics are all very much smaller in magnitude a
the gap nodes and the maximum magnitude of the g
which are the most important features of the order parame
are essentially unchanged by this approximation. We a
calculate the magnetic penetration depth which in this s
tem, since theĝk,ab

( i ) are diagonal in the greek indices,
given by the simplified expression

l i j
225

4pe2

\2c2
1

V(
k,a

]«k,a
]ki

]«k,a
]kj

S ] f ~«k,a!

]«k,a
2

] f ~Ek,a!

]Ek,a
D ,
~12!

which is the usual expression20 summed over the layers.
The curvature of the penetration depth curve,l i i

22(T)
~and also its low-temperature slope!, is governed by the ratio
2Dmax/Tc , whereDmax is the maximum value of the orde
parameter in the first Brillouin zone, and is close to a strai
line for thed-wave BCS value of 2Dmax/Tc54.4. The pres-
ence of the interlayer interaction increases this ratio a
makes thel i i

22(T) curve have a downward curvature. E
perimental measurements of both the ratio 2Dmax/Tc ~Refs.
10 and 21! as well as the penetration depth in high qual
crystals of both YBCO~Ref. 1! and BSCO~Ref. 22! indicate
that this ratio is quite high in the HTC~high-Tc! materials —
on the order of 6 or 7.

Other quantities calculated are the Knight shift which
given by
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K~T!}
1

V(
k

] f ~Ek!

]Ek
, ~13!

the normal state electronic DOS which is given by

N~v!5
1

V(
k

d~«k2v!5 lim
G→0

1

pV(
k

G

~«k2v!21G2 ,

~14!

the superconducting electronic DOS which is given by

N~v!5
1

V(
k

d~Ek2v!5 lim
G→0

1

pV(
k

G

~Ek2v!21G2 ,

~15!

and thec-axis Josephson junction resistance-tunneling c
rent product RJ(T) through a superconductor-insulato
superconductor junction for incoherentc-axis tunneling is
given by the relation:24

RJ~T!5
2pT

NL~0!NR~0!p2(
n

AL~vn!A
R~vn!, ~16!

where

AL~R!~vn![
1

V(
k

Dk
L~R!

~«k
L~R!!21~Dk

L~R!!21~vn!
2 ,

in which the superscriptL(R) indicates on which side of the
junction the dispersion and order parameter are on, the
overvn[pT(2n21) is for all Matsubara frequencies,R is
the resistance of the junction, andNL(R)(0) is the normal
state electronic DOS given by Eq.~14!. If the tunneling were
coherent, the matrix element~which is incorporated intoR)
would have a (k2k8) dependence, and the sums overk
space would not be separable.

III. RESULTS

In this section we make an explicit choice for the disp
sions and interactions and then present the results of
numerical solutions to the coupled BCS equations~6! as well
as the results of our calculations of the magnetic penetra
depth, densities of states, Knight shift, and Josephson
rent. As we wish to model YBCO we will want to accou
for both the CuO2 planes as well as the CuO chains. Furth
we will assume that we do not have a pairing interaction
the chains, but only in the planes as well as an interla
interaction. This means that all of the order parameter in
chains is due to the interlayer interaction. We note that
though our solution technique4 allows the order parameter
to be complex and to have a relative phase between la
we find that in the models studied here, to within an ove
phase, the order parameters are all real with a relative p
of 61.

For the dispersions,«k,a , we use

«k,a522ta@~11ea!cos~kx!1cos~ky!22Bacos~kx!cos~ky!

2~222Ba2ma!#, ~17!

where the parameters$ta ,ea ,Ba ,ma% are chosen so that th
r-

m

-
ur

n
r-

,
n
r
e
l-

rs
ll
se

Fermi surface and bandwidth are close approximations
those observed experimentally25 ~see Fig. 1!. In order to
model YBCO we chose$100,0,0.45,0.51% for the planes and
$250,20.9,0,1.2% for the chains. In both dispersionsta ,
which sets the overall energy scale, is in units of meV. F
the interactions,Vk,q,ab , we chose the form of Milliset al.2

~MMP form!

Vk,q,ab5gab

2x0

11j0
2uk2q2Qu2

,

wherex0 is a constant that sets the scale of the susceptibi
j0 is the magnetic coherence length,Q[(p,p) is the com-
mensurate nesting vector, andgab is the coupling to the
conduction electrons, the size of which can be fixed to ge
desired value of the critical temperature and can be con
ered to containx0. The remaining parameterj0, is given in
Ref. 2 and will not be varied in this work. In this paper w
set g2250; i.e., there is no intrinsic pairing in the chain
This means that any superconductivity in the chains is
duced by the interlayer interactiong12, since we have set the
hopping between layers to zero. The effect of an interla
hopping has been extensively studied in works by Atkins
and Carbotte13 as well as others.14,15,17–19

We solve the coupled BCS equations~6! using a FFT
technique.4 In Fig. 2 we plot the lowest three Fourier com
ponents~11! of the zero-temperature order parameter a
function of the interlayer interaction~higher Fourier compo-
nents are all much smaller in magnitude! for two different
intralayer interactions~upper and lower frames! in the planes
~left frames! and chains~right frames!. The values plotted in
Fig. 2 are the amplitudesDa

(s0) , Da
(sx) , andDa

(d) given by Eq.

FIG. 1. Model of YBCO Fermi surfaces for chains~long dashed
curve! and planes~closed short dashed curve! in the first Brillouin
zone. The (p,p) point is at the center of the figure. For the chai
the parameters$ta ,ea ,Ba ,ma% in Eq. ~17! are $250,20.9,0,1.2%
and for the planes they are$100,0,0.45,0.51%.
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1204 55C. O’DONOVAN AND J. P. CARBOTTE
~11! with a51 for the plane layers~right frames! and
a52 for the chain layers~left frames!. For the orthorhombic
system studied here all three of these harmonics belon
the same irreducible representation of the crystal point gr
except forg1250 when the tetragonal CuO2 layer is decou-
pled from the orthorhombic CuO layer. Recent CIT
measurements26 show that the gap has a magnitude of;20
meV in the chains and;30 meV in the planes which would
indicate thatg12 is large.

FIG. 2. Calculation of the zero-temperature order parameter
a function of the interlayer interactiong12 for two fixed values of
the interlayer interactiong11 ~upper and lower frames! presented for
the planes~right frames! and chains~left frames! separately. In all
frames the solid curve is thed-wave component of the order pa
rameter, the short dashed curve is the extendeds-wave component,
and the long dashed curve is the isotropics-wave component. In the
upper framesg11526.2 and forg12510,Tc5100 K. At g1250 the
order parameter is zero in the chains and is pured wave in the
planes. As the interlayer interaction is increased the order param
becomes present in the chains and there is a mixing ofs-wave
components. In the lower framesg1159.18 and for g12520,
Tc5100 K. At g1250 the order parameter is zero in both the cha
and the planes. As the interlayer interaction is increased the o
parameter becomes present in both the chains and planes and
is a mixing ofs-wave components with the isotropics-wave com-
ponent eventually becoming dominant. The feature atg12;25 oc-
curs when the gap node leaves the Brillouin zone. As discusse
the text there is ag12↔2g12 symmetry. Bothg11 and g12 are in
units of t1; g22, the coupling in the chains, is set equal to zero.
to
p

For the first choice of intralayer interaction~upper
frames!, g11526.2, and there is no order parameter in t
chains when there is no interlayer interaction~i.e., g1250)
and the order parameter in the planes is pured wave. As the
interlayer interaction is increased from zero,s-wave compo-
nents appear in the planes and all three components appe
the chains. This ‘‘s1d mixing’’ is caused by the breaking o
the tetragonal symmetry upon the introduction of the cha
there is no relative phase between thes- andd-wave com-
ponents within either the planes or chains but there can b
relative phase between the order parameter in the planes
chains. In the range ofg12 explored here thed-wave compo-
nent in the plane remains dominant but for sufficiently stro
interlayer interaction the isotropics-wave component even
tually dominates27 ~i.e., the gap nodes disappear!. For inter-
action parameters$g11,g12,g22%5$26.2,10,0% the critical
temperature is 100 K and the maximum value of the gap
the Brillouin zone is 27.5 meV in the planes and 8.0 meV
the chains, while the maximum values on the Fermi surfa
are approximately 22 and 7 meV, respectively. The ra
2Dmax/Tc is 6.4 in the planes and 1.9 in the chains.

For the second choice of intralayer interaction~lower
frames!, g1159.18, there is no order parameter in either t
chains or the planes when there is no interlayer interac
~i.e., g1250). As the interlayer interaction is increase
d-wave and thens-wave components of the order parame
appear in both the planes and chains. Again, there is no r
tive phase between thes- and d-wave components within
either the planes or chains but there can be a relative p
between the order parameter in the planes and chains. In
range ofg12 explored here, thed-wave component is domi
nant. At approximatelyg12515 the gap nodes no longe
cross the Fermi surface in the chains; the feature
g12;25 coincides with the gap nodes leaving the Brillou
zone and the isotropics wave becoming dominant. For in
teraction parameters$g11,g12,g22%5$9.18,20,0% the critical
temperature is again 100 K and the maximum value of
gap in the Brillouin zone is now 32.8 meV in the planes a
20.1 meV in the chains, while the maximum values on
Fermi surfaces are approximately 27 and 17 meV, resp
tively. The ratio 2Dmax/Tc is 7.6 in the planes and 4.7 in th
chains.

Note that forg12.0 all of thes-wave components of the
order parameters in both the planes and chains have the
relative sign and thed-wave components have opposi
signs, while forg12,0 all of the relative signs are reverse
but that the magnitudes of the components are insensitiv
the sign ofg12 as noted after Eq.~6!.

In Fig. 3 we plot the density of states~DOS! for the
planes~left frames! and chains~right frames! calculated us-
ing the lowest three harmonics~11! of the solution to the
BCS equations~6! with two sets of interaction parameter
The dotted curves are the normal state DOS~NSDOS! and
the solid curves are the superconducting DOS~SCDOS!. The
insets show the Fermi surface~dashed curves! and gap nodes
~solid curves! in the first Brillouin zone@with (p,p) at the
center#. The peak in the NSDOS~dotted curves! is the van
Hove singularity located at 2ta(22ma24Ba6ea) which is
at 262 meV in the plane layers~left frames! and at 10 and
2170 meV in the chain layers~right frames!. They are
caused by the saddle points in the electron dispersio
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FIG. 3. Calculation of the superconducting~solid curves! and normal~dotted curves! density of states~DOS! for two sets of interaction
parametersgab ~upper and lower frames! presented separately for the planes~left frames! and chains~right frames!. Some experiments are
surface probes and may probe either the planes or chains independently. The insets show the Fermi surface~dashed curve! and gap nodes
~solid curve! in the planes and chains for the two different parameter choices in the first Brillouin zone with (p,p) at the center. In the uppe
frames,~a! and~b!, we have chosen$g11,g12,g22%5$26.2,10,0% which givesTc5100 K. In the lower frames,~c! and~d!, we have chosen
$g11,g12,g22%5$9.18,20,0% which also givesTc5100 K. Note that for the second parameter choice the gap nodes do not cross the
surface in the chains@frame ~d!, inset# and that the DOS is gapped. Thec-axis Josephson resistance-tunneling current product fo
YBCO-Pb junction for a pured-wave order parameter is zero due to the equal parts of the order parameter with opposite signs. Her
not the case~insets! and thec-axis Josephson resistance-tunneling currents product for a YBCO-Pb junction are~a! 60.18 meV,~b! 2.35
meV, ~c! 60.25 meV, and~d! 2.17 meV. The relative sign is due to the relative sign of thes-wave components of the order parameter~i.e.,
the only part which contributes!.
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«k,a , at (0,6p) and (6p,0). These van Hove singularitie
are shifted by the presence of the superconducting order
rameter~solid curves! by an amount that depends upon t
value of the order parameter at the saddle points;28 in frame
~c! these values are very different and the van Hove sin
larity is split, and in frame~a! these values are almost th
same and no splitting is evident.

An interesting feature is that the low-energy behav
(v;0) of the SCDOS is governed by thesmallest local
maximaof the gap on the Fermi surface when the gap no
cross the Fermi surface and by theminimaof the gap on the
Fermi surface when there are no gap nodes which cross
Fermi surface. In Fig. 4 the magnitude of the gap along
Fermi surface is plotted. In Figs. 4~a!–4~c! one can see tha
there are two different local maxima of the gap on the Fe
surface and these maxima are~to first order28! manifested as
twin peaks in the SCDOS@Figs. 3~a!–3~c!#; these peaks are
distinct from the van Hove singularities which are al
a-

-
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present in the normal DOS~dotted curves in Fig. 3! and
which are slightly shifted in the superconducting state.28 In
frame~a! of Fig. 4 the local maxima of the gap on the Ferm
surface are 16 and 18 meV, in~b! they are 1 and 7 meV, and
in ~c! they are 25 and 3 meV. In~d! one can see that there a
no gap nodes which cross the Fermi surface; the maxim
and minimum values of the gap on the Fermi surface are
and 4 meV, respectively. In Fig. 3~d! the finite gap in the
SCDOS corresponds to the minimum of the gap on the Fe
surface and the peak to the maximum.

The Josephson junction resistance-tunneling current p
uctRJ(T50) for ac-axis YBCO-Pb junction, given by Eq
~16! with Dk

L and «k
L appropriate for Pb,11 is 60.25 and

62.2 meV for the planes and 2.2 meV and 3.4 meV for t
chains for the two choices ofgab made, in agreement with
earlier calculations.11 The relative sign is due to the relativ
sign of thes-wave components~i.e., the only part which
contributes! of the order parameters. The actualc-axis Jo-
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sephson junction resistance-tunneling current prod
RJ(T) for a junction made with untwinned YBCO would b
some weighted average of the plane and chainc-axis tunnel-
ing currents depending upon the relative abundance of ch
and planes in the top layer of the YBCO. For a twinn
sample with both twins equally abundant there would be z
net tunneling current, although there is evidence that
single crystals of YBCO there can be up to a 5:1 ratio in
relative abundance of the two twin orientations.29 We note
that due to the different magnitudes of the order parame
in the two layers the model presented here is consistent
the observedp shifts in corner junctions30–33for both attrac-
tive and repulsive interlayer interactionsg12.

In Fig. 5 we have plotted the magnetic penetration de
~left frames! and the Knight shift~right frames! calculated
with the lowest three harmonics~11! of the solutions of the
BCS equations~6! for the two choices of interaction param
eters. In the penetration depth frames~left! the solid curve is
for thex direction~along the chains! and the dashed curve i
for the y direction ~perpendicular to the chains!. The dotted
curve is 12(T/Tc)

2 and is plotted for comparison. The rat
lyy /lxx at zero temperature is 1.37 for both interaction p
rameter choices since the zero-temperature penetration d
is a normal state property@i.e., the second term in Eq.~12!
does not contribute at zero temperature#. The zero-
temperature penetration depth is largely governed by
bandwidth@i.e., 4ta(22ea)# — the larger the bandwidth, th
larger the zero-temperature penetration depth.

As pointed out above, the curvature of the penetrat
depth curve,l i i

22(T), is largely governed by the ratio
2Dmax/Tc and is a straight line for thed-wave BCS value of

FIG. 4. The magnitude of the gap on the Fermi surface a
function of angle for the four cases of Figs. 2 and 3. The angleu is
measured from the center or (p,p) point of the Brillouin zone with
they axis ~i.e., the vertical in the insets of Fig. 3! corresponding to
u50. Frames~b! and ~d! do not span all angles due to the Ferm
surface not being closed in the chain layer. For the first choice
interaction parameters,$g11,g12,g22%5$26.2,10,0%, the ratio
2Dmax(FS) /Tc , whereDmax(FS) is the maximum value of the gap o
the Fermi surface, is 4.3 and 1.6 for the planes and chain, res
tively; for the second,$g11,g12,g22%5$9.18,20,0%, they are 5.7 and
3.8.
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4.4. The presence of the chain layer and the interlayer in
action increases this ratio in the plane layer but it rema
low in the chain layer due to the absence of an interaction
this layer. It is this lower value that makeslyy

22(T) ~along the
chains! have upward curvature~solid curves!.

One can see@Figs. 5~a! and 5~c!# that the in-plane pen-
etration depth perpendicular to the chains~dashed curve!
closely resembles that observed experimentally in high q
ity crystals,1,22 and is largely determined by the presence
gap nodes crossing the Fermi surface, which cause the
temperature linear behavior, and the ratio 2Dmax/Tc which,
for values above;4.4, make the curve ofl i i

22(T) have
downward curvature. The penetration depth along the ch
~solid curves!, however, has an overall upward curvature d
to the low values of 2Dmax/Tc in the chains. It is the com-
ponent of the penetration depth due to the chains that ma
the overalllyy

22(T) have downward curvature. The comp
nent of the penetration depth due to the chains perpendic
to the chains does not contribute significantly to the ove
penetration depth in this direction,lyy

22 is due almost en-
tirely to the CuO2 layers. For a single plane model20 we
would have $g11,g12,g22%5$30,0,0%, 2Dmax/Tc would be
4.5, and the penetration depth would closely resemble
straight line 12(T/Tc).

20

The Knight shift@Figs. 5~b! and 5~d!#, which is calculated
independently for the planes~solid curves! and chains
~dashed curves!, has a low-temperature power law behavi
when the gap nodes cross the Fermi surface~planes, both
figures and chains in the upper figure! and an exponentia
behavior when the gap is finite over all the Fermi surfa
~chains, lower figure!. When these quantities are measure8

the distinction between a power law and exponential beh
ior rests upon the choice zero and so is not a reliable ind
tor of the presence of gap nodes on the Fermi surface.

IV. CONCLUSION AND DISCUSSION

We have derived a general expression for the Hamilton
in a multilayer system and then made a simplification a
have explicitly diagonalized the Hamiltonian. A set of tw
coupled BCS equations is then derived for this simplifi
system which is subsequently solved numerically by a F
technique. This technique, unlike others,18,16 makes no as-
sumptions about the functional form~and hence the symme
try! of the order parameter in either layer or any relations
between the order parameters in the different layers.

Using the three lowest harmonics~11! of the solutions
found for the coupled BCS equations~6! the magnetic pen-
etration depth~12!, normal and superconducting density
states~14! and~15!, Knight shift ~13!, andc-axis Josephson
resistance-tunneling current products~16! were calculated.

Our choice of electron dispersion relations was made
as to approximate the YBCO system in which there are l
ers consisting of CuO2 planes as well as layers which con
tain CuO chains. Our choice of interactions was made so
there is a pairing interaction in the CuO2 layer as well as an
interlayer interaction, but no pairing interaction in the Cu
layer.

The solution of the BCS equations is predominately o
d-wave character, but because the tetragonal symmetr
broken by the presence of the chains, there is some mix

a

f
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FIG. 5. Calculations of the
magnetic penetration depth~left
frames! and the Knight shift~right
frames! for the two sets of interac-
tion parameters. Frames~a! and
~c! show the magnetic penetratio
depth along~solid curve! and per-
pendicular ~dashed curve! to the
CuO chains. The dotted curve i
12(T/Tc)

2 and is shown for
comparison. The chains, due t
their Fermi surface, do not con
tribute appreciably to the penetra
tion depth perpendicular to the
chains~dashed curves!. The ratio
(lyy /lxx)

2 is 1.37 for both sets of
parameters since this is a norm
state property. Frames~b! and ~d!
show the Knight shift in the
planes ~solid curves! and chains
~dashed curves!; due to the cross-
ing of the gap nodes and th
Fermi surface in the chains in~b!,
the Knight shift in the chain is a
power law at low temperature
while due to the finite gap in~d!,
the Knight shift in the chain is ex-
ponential at low temperature.
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of s-wave order parameter with no relative phase betw
the components, although the relative sign of the order
rameter in the planes and chains may be61. Further, we
find that due to a symmetry in the set of coupled BCS eq
tions derived, the sign of the interlayer interaction affe
only the relative sign of the order parameter in the two lay
and not their absolute magnitudes~although some propertie
could be affected by this relative sign!. We also find that any
interlayer interaction strongly enhances the zero-tempera
order parameter and, hence, the critical temperature. Th
consistent with the observation thatTc is higher in materials
with multiple adjacent CuO2 layers.

Furthermore, we find that the presence of gap node
only one of the layers is enough to produce a lo
temperature linear behavior for the penetration depth,
though if the minimum gap in the chains is too large, t
lxx

22(T) andlyy
22(T) curves can cross. Our calculation of th

magnetic penetration depth gives a form that is similar
that measured experimentally perpendicular to the cha
but not along the chains due to the small value
2Dmax/Tc in the chains. This leads us to speculate that th
may be intrinsic pairing in the CuO chains of the same or
as in the CuO2 planes since the 2Dmax/Tc ratios must both
be large ~6 – 7! for the low-temperature slope of th
l i i

22(T) curves to be approximately equal as is observed
experiments.1,22 This would tend to support the simpl
single-band orthorhombic model previously proposed
us.11,20

Our calculation of the superconducting density of sta
n
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f
re
r

n

y

s

indicates that a surface probe may measure very diffe
results depending upon whether the top layer is CuO ch
or CuO2 planes. Depending upon the interlayer pairi
strength the CuO chain layer may have a very narr
‘‘ d-wave’’-type gap or a finite ‘‘isotropics-wave’’-type gap.

Our calculation of thec-axis Josephson resistanc
tunneling current productsRJ(T50) for a YBCO-Pb junc-
tion for several choices ofgab ranges from 0.18 to 0.50 meV
for the planes and from 2.35 to 3.06 meV for the chains, w
possibly a relative sign between the chain and plane lay
due to the relative sign of thes-wave components of the
order parameters. The actualc-axis Josephson resistanc
tunneling current product for a junction made with u
twinned YBCO would be some weighted average of t
plane and chain results depending upon the relative ab
dance of chains and planes in the top layer of the YBCO.
a twinned sample with both twins equally abundant th
would be zero net tunneling current although there is e
dence that for single crystals of YBCO there can be up t
5:1 ratio in the relative abundance of the two tw
orientations.29
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