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Paramagnetic Meissner effect from the self-consistent solution of the Ginzburg-Landau equations
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The paramagnetic Meissner eff§@ME), recently observed in highz materials and also in Nb, can be
successfully explained by the persistence of a giant vortex state with a fixed orbital quantum hurhbir
state is formed in superconductors in the field-cooled regime at the third critical field. The self-consistent
numerical solution of the Ginzburg-Landau equations clearly shows that the compression of the flux trapped
inside the giant vortex state can result in the PME. The PME is suppressed, and the normal diamagnetic
response is recovered, by increasing the applied field. A possible definition of the irreversibility line, as a
crossover between the giant vortex state and the Abrikosov flux line lattice, is discussed. The transition
between the two quantum staigés=0 andL =1) has been used to calculate the fielgl.,(T), corresponding
to the penetration of the first flux line into a cylindrical samp®0163-18287)03317-]

I. INTRODUCTION To check this “flux compression” model quantitatively,
the self-consistent solution of the full Ginzburg-Land@Ll.)

The most characteristic features of a superconductor arequations is necessary, though the phase bourtdgfT)
zero resistivity(infinite or “super” conductivity and strong  itself can be found just by solving the linearized GL equa-
diamagnetic responsévieissner-Ochsenfeld effécbelow  tion.
the superconducting transition temperatiife In supercon- In wh_at follows in Sec. Il, we first con;ider thg formation
ductors with a weak flux line pinning, a perfetiamagnetic ~ Of the giant vortex state af:3(T) by solving the linearized
state can be reached in the so-called field-cogi@) re-  first GL equation for a long cylinder in a parallel field. Then,
gime, when a superconductor is cooled down in a certaifn Sec. Ill, we proceed to the numerical self-consistent solu-

applied magnetic field. Recently, an enigmatavamagnetic  tion of the two GL equations below thid5(T) boundary.
Meissnher effec’(PME) has been found in h|g'fh'é granu'ar We demonstrate that the PME can indeed be obtained in the

materia'S, such as ﬁrz(:acléo,l_7 and then in a few FC model if the orbital momenturh is kept constant. The

YBa,Cw,0; single crystal® for the FC magnetization mea- Stability of the giant vortex statie=const with respect to its
surements. A detailed systematic study of this effect has beefecay into conventional Abrikosov vortex latti¢eith one:
carried out by the Wohlleben group in Cologne, and afterflux quantum®, per vortey is also briefly discussed in this
Wards the PME has Often been referred to as the “Woh"ebeﬁection. In Sec. IV we describe another intel’esting case: the
effect.”® The PME is usually observed as a very strgng ~ zero-field-cooled(ZFC) regime of the magnetization mea-
to 60% of 1/47) paramagnetic FC response in relatively low surements. We show that the magnetic response in this case
fields of the order of 0.1-1 G. Later on, the anomalous PMEcan be found assuming that the order parameter, correspond-
has been interpreted in the framework of different modelsing to the state with. =0, is realized. Along similar line, in
Such as Spontaneous currents due to the presence of Sec. IV, we will calculate the first critical erchl(T), if to
contact£1%-12 yortex pair fluctuations combined with interpret it, in its literal sense, as a temperature-dependent
pinning? d-wave superconductivity orbital glass:® and Jo-  transition fieldHq_,(T) between the.=0 andL=1 quan-
sephson junction¥: f[um states. Finally, we conclude with a summary of the ma-
The recent observation of the PME in niobium disks byjor new results.
Thompsonet al. and Kosticet al,*> however, indicates that
the PME can also occur in conventional IGw-supercon-
ductors and it may be related to flux trapping. In 1992 one of
the authors of the present paffesuggested that the PME The nucleation of the superconducting phase is usually
can be caused by the persistence of the giant vortex statmalyzed in the framework of the linearized GL equation for
with the fixed orbital quantum numbér>0. This state is the superconducting order paramefer®
formed in any finite-size superconductor in the FC regime at
the third (surface critical field H.;. The superconducting 1
order parameteW =|¥|e"?, nucleated at the sample surface, -
traps then inside, in the sample interior, a giant vortex, 2m
carrying fluxL®, where®, is the flux quantum. Crossing
the H-T plane by lowering the temperature at constant fieldwhich is identical to the Schdinger equation for a particle
the order parameter at the sample boundary, correspondingth chargee* =2e_in a uniform magnetic field given via
toL>1, grows and it compresses the flu$p, trapped inside the vector potentiaH =V X A with E=—a. The parameter
the sample al .5(T). This flux compression may eventually —« in the GL equation thus plays the role of enefgyn the
lead to the onset of the paramagnetic response. Schralinger equation:

IIl. NUCLEATION OF THE SUPERCONDUCTING PHASE

— e* 2
—iﬁV—FK) V=—aV¥, 1
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K2 W2 Te—T adequate system of coordinates. Apparently, the sample sym-
E=-a= = . 2 metry implies the choice of the cylindrical coordinates
2méX(T)  2mé(0) T y 1mp . _the CyIndx
¢ ¢(0) €0 (r,¢,2) and the gaugé = (Hr/2)e,, wheree,, is the tangen-
Here &T) is the temperature-dependent coherence leAgth, tial unit vector. The solution of the Hamiltonid&g. (1)] in
is the actual temperature, afig, is the critical temperature cylindrical coordinates has the foffh
at zero magnetic field. )
In finite superconducting samples the order paraniéter _atilépL (L+1)/2 o _ 2
obeys the boundary condition for a superconductor—insulatorqj(r"ﬁ)_e -y ex 2 M(=N,L+1r7).
interface’® (6)

*A\ Here y=e*H/(2#c) and the energf, of the motion in the
)qf|n:o_ ©) plane perpendicular tbl is determined by the orbital quan-
¢ tum numberL and parametel, which is not necessarily an

This boundary condition is quite different from the normal intéger number, as we shall see later:
boundary condition in the quantum mechanical problem “hH
“particle in a box,” where the densityyP* is zero at the _€
boundary. * 2mc
As a result of the relation betwedhand « [Eq. (2)], we
have to follow a simple rule: solve the Schinger equa-

o — e
(-IﬁV—

(2N*=L+L+1). (7)

The functionM is the Kummer function defined as

tion with proper boundary conditiori€q. (3)] and take the a a(a+l)y? a(a+l)(a+2)ys
lowest energyE(H) which gives the highest in Eq. (2), M(a,c,y)=1+—-y+ 1 §+ T (cv2) 31
coinciding with the phase boundaily.;(H) for the nucle- ¢ clc+1) 2t~ c(e+1)(c+2) 3!
ation of the superconducting state. oo, (8

The important point here is the role of the boundary con- ) ) .
ditions [Eq. (3)]. In large bulk samples the lowest Landau Wherea=—N, c=L+1, andy=yr~. Introducing the di-
level with E=%w/2 (herew is the cyclotron frequengygives ~ mensionless radiuR= Jyr, the superconducting order pa-

the upper critical fielcdH .,: rameter can be written in the form
Heo(T)= TeomT__ o (4) ¥, (R,¢)=e"L4R" exp{—R—z)M(—N L+1R?. (9
PUTER0) T 2wf(T) | 2 -

In small samples, however, the surface-to-volume ratio is The representation of the order parameter> c, ¥, as
large and boundary conditioi&q. (3)] must be taken into @n expansion over s.tates with differénfor infinite samples
account. The crucial question is, what is a small sample? THas been analyzed in Ref. 21, whevO L +1R?) =1 has
answer this question we may refer again to the analogy beeen taken. Undtzer these conditions, the functiding have
tween the Schidinger equation for normal electrons and the their maxima aR“=L; i.e., the area enclosed by the circle
linearized GL equation for the superconducting order paramwith the radius corresponding to th# | maximum is al-
eter®. The former was used by Dindféin connection with ~Ways penetrated by an integer number of the flux
the analysis of quantum oscillations in small metallic quanta: ®/dy=L. Here in this paper we shall analyze the
samples. Though Dingle took different boundary conditionscase offinite samples, where thdl value has to be found
we expect that his conclusions are also valid for the “superfrom the boundary conditiofEq. (3)]. It is very important to
conducting” boundary conditions. According to Dingle, the note that in the general forfiEgs. (6) and (7)] there are no

border between small and large samples can be found frofmitations on the paramete: It is not necessarily an in-
the estimate teger number. The only argument, which is usually given in

favor of taking integeiN, is a possibility to get a cut off in
HXro~5(G cm), (5)  the summatiorfEq. (8)]. Indeed, if we insert an integeN
o ) into the summation, then by adding 1NXbin each new term
based on the coincidence between the Larmor raditend e shall eventually come to the situation wher&l+N=0
the sample radius,. If the product of fieldH times disk  and all subsequent terms in the summation will be equal to
radiusr, is smaller than 5 G cnfor ro<r,), then boundary  zero. Thus by the cutoff we just use a finite number of terms
conditions essentially modify the solution of E[). It is  jn the summatiodEq. (8)], and of courseM is finite in this
evident that fieldsH<5 (G cm)/r, are not extremely low. case. But we should keep in mind that any converging row
Indeed, for a sample with dimensions, say, 1 mm, the fieldyiso gives a finite solution foM. Therefore, not only the
count is 50 G. In this context we use the word “small” in pegativeN values are possible. In finite-size samples lhe
this section. First, we shall analyze the onset of the supefzgjye, which we further denote AHL,R,), has to be found

allel field. The demagnetizing effects for this particular ge-the normalized disk radius:

ometry are negligible. The boundary conditidis. (3)] will
be taken into account explicitly. J|¥(R)|

The description of the superconducting state in long cyl- IR =0. (10
inders in a parallel field should be based on the choice of an R=Rg
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FIG. 1. EnergyE, vs normalized fluxp/®, for a superconduct- FIG. 2. Field dependence of the Abrikosov paramedgrfor

ing cylinder in a parallel magnetic field. The vertical dashed linesgitterent orbital quantum momenta
illustrate which orbital quantum numberis fixed atH 3(T) in the
FC mode; for examplel, =3 for ®/®,=5 andL =7 for ®/®y,=10.  than the well-known minimum possible valyg=1.16 for
the triangular Abrikosov vortex lattice.
Since we are looking for the lowest possible energy state, we To conclude this section, we note that in finite sames
should take the minus sign in the argument of the exponeris a bad “quantum number.” It is rather a parameter which
exp(—iL ¢) in the solution given by E(6). In this case-L has to be found from the boundary condition. A “good quan-
and +L in Eqg. (7) cancel, and for any. the energy levels tum number” for the problem i. By forming a supercon-
become ducting condensate with a proper finiteand N(L,R,) <O,
we conserve the rotational momentum and at the same time
E, =fiw(N+3), (1) reduce the energy belofw/2.
. : As shown above, because of the onset of the surface su-

wherew=e"H/mc is the cyclotron frequency. perconductivity atH(T), corresponding to negativid in
. T.h's result comc!des with the Well-knpwn L_andau quan-gq (11), the superconductivity can appear well above the
tization, but nowN is any real number, including neganve H.,(T) line (found for N=0). By changing the variabl&,
real number_whlch is to be calculated from E¢10). Using in Fig. 1 into T, we obtain the cusplike phase boundary
the expression H.3(T) as shown in Fig. 3, which is due to switching be-

a tween different orbital momenta. The phase boundary of
=—-M(a+1lc+1y) the superconducting dislFig. 3) has been observed experi-

c mentally by Buissonet al?® and by Moshchalkowet al®*
The linear component of the cusplikel 5(T) line is
1.699,, which is in good agreement with the calculations
of H3 in the L—oo limit. 8

dM(a,c,y)
dy
for the derivative of the Kummer function, we can find the

N(L,Ry) value, which obeys the boundary conditipig.
(10)], from the equation

. PARAMAGNETIC MEISSNER EFFECT

NRj
2 2 2
(L=RoM(=N,L+1Rp) = 77 M(=N+1L+2Rp) By cooling down a superconductor in a fixed applied field
(FC mode, we are crossing thel ;(T) boundary at a par-
=0. (12)  ticular point corresponding to a certain orbital quantum num-

ber L (see horizontal dashed lines in Fig). 3'he phase

The remarkable thing about the(L,R,) values, found boundaryH (T) is calculated in this case from the linear-
from the solutions of Eq(12), is that they are negative which jzed GL equation with boundary conditions being properly
immediately gives the energl, in Eq. (11) lower than  taken into account as shown above. Beldyy(T), however,
fiwl2. As a result of the confinement with the “superconduct-the solution of the full GL equations is necessary, since a
ing” boundary conditions, the energy levels in finite samplesnucleating superconducting condensate creates its own addi-
lie below the classical valuéw/2 for infinite sample3**®  tional magnetic field which should be treated self-
The whole energy level scheméFig. 1), found by consistently.
Saint-Jame$’ can be reconstructed by calculatifig vs Ry In the following, a similar cylindrical geometry as in the
for differentL values. From this diagram we can easily go tolast section will be considered. The starting point for our
the “field versus temperature” plot, using the relation calculation is the system of two coupled GL equations which
E, =—a. The corresponding values of the Abrikosov param-reads in dimensionless formZas
eter 85, giving an idea about the “flatness” df¥’|,% are 5
plotted in Fig. 2. It should be noted thgg for certainL and ( 1 4)

—vu_ — _ 2
H (see the levels below the dashed line in Figi2smaller i K VoA Y= (-], (13
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FIG. 3. Third critical fieldH.; and the bulk
sk upper critical fieldH, (dashed ling vs normal-

- ized temperaturé=T/T.. The cusplikeH3(T)
1l line is formed due to the change of the orbital
S 8f quantum numberL. In the three-dimensional

plots, |¥| is depicted as a function of the spatial
4F coordinates for severdl values.
oL
0.7

— — — 1 1 — 1 — dF/dr=0, de¢/dr=0 (18
VXVXA= i P* —V-A|V+¥| - —V-A|P*,

2 Ik Ik and, atr =0,
whereW, A, b, andr are in units of¥.., VZH A (0), v2H., ¢=0, F=0 for L#0, (193
and\(0), respectively, and=T/T. is the reduced tempera- B _
ture.¥,,, H., A(0), andk are the wave function in bulk, the dF/dr=0 for L=0. (19b)

thermodynamical critical field, the penetration depth at zeran the calculation given below, we have fixed the size of our
field and zero temperature, and the GL parameter, respegample ar ,=v3\(0).

tively. We use the simplifications. The magnetization per unit volumerM is defined as
. 1 1¢ 1 de 47M o
— iLo - _ _ = _ — _ =
W(r,¢)=F(r)e"? A=z Hr+z—, b=H+ . H. _2fo r(b—H)dr=o(ro). (20)
(15
H is the applied magnetic field which is in taedirection (in The difference of the Gibbs free energy between the su-

units of v2H,), while b is the local induction given by the Perconducting Gs) and normal Gy) states is
vector potentialV X A=b. The function¢ is to be deter-

mined. Inserting the above equations into H4S) and(1_4), Ag= @: E Jro[(b_ H)2—F4rdr. (20
taking into account the temperature dependenc# efhich HEV2m 2 Jo

is given by ¥?(t)=¥?(0)(1—t), we get the two coupled _ ,

equation&’ Using a numerical procedure, we have performed self-

consistent calculations of the radial dependence of the nor-
1 1lke L\? ) malized order paramet€&i(r) =|W|/|¥,| [Figs. 4a) and 3)],
5 kHr+5——— 7) F—kF(1-F9), the functione(r) [Figs. 4b) and §b)], and the local induc-
(16) tion b(r) [Figs. 4c) and 5a)] for fixed L and different nor-
malized temperatures=T/T., using the formalism de-
d?¢ 1de ) 2L\ _, scribed earlier in this section.
arZ -7 ar TIHr e 7) Fe. 17 Following Fink and Pressolf,we have assumed in these
calculations that the orbital quantum numberfound ac-
The corresponding boundary conditions for the above equacording to the location of the crossing point betwéen(T)
tions aret’ atr=r, andH=const(Figs. 1 and 3 is kept constant also below the

d’F  1dF
Az Trar
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FIG. 4. Radial-dependent part of the order paramete) [Eq.
(16)] (), function ¢(r) [Eqg. (15)] (b), and local inductiorb(r) (c),
calculated from Eqgs(16)—(19) for a superconductor withk=10,
fixed L=1 in a magnetic fieldd =0.1.

H¢3(T) line. The conservation of the orbital quantum num-
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FIG. 5. Local inductiorb(r) [Eq. (15)], radial-dependent part of
the order parametéef(r) [Eq. (16)] (a), and functiong(r) [Eg.
(15)] (b), calculated forlL =5, k=10, andH =0 for different nor-
malized temperatures=T/T. .

determined by the applied field. For sufficiently small fields,
the state with_=1 is realized. The normalized order param-
eterF(r), calculated for this particular value bf[Fig. 4(a)],

has a normal core penetrated by the flux line carrying one
flux quantum®,.

As temperature decreases, thér) value grows and the
London limit |¥|=const is recovered everywhere except in
the vortex core arepsee Fig. 4a)]. As a result of theF(r)
increase, the trappdd=const vortex is compressed and this
leads to an enhancement @fr) [Fig. 4b)] andb(r) [Fig.
4(c)] in the core area of the sample interior and to a reduction
of ¢(r) andb(r) at the sample periphery. Similar behavior
of ¢(r) andb(r) is found forL =5, as shown in Figs.(8)
and 8b). The crossover point,, separating the areas, where
b(r) is enhanced or reduced, lis dependent, for example,
for L=1 [see Fig. 4c)] r,~0.40,, whereas folL =5 [see
Fig. 5@)], re~0.75,.

From the calculated difference in Gibbs functionsy,

berL in the superconducting state can result from pinning ofbetween normal and superconducting stiféigs. §a) and
the giant vortex state, corresponding to a ringlike superconé(b)], it is evident that the conservation of the trapped orbital

ducting order parameter nucleated at the sample boundary
H.3(T) (Fig. 3. The sample boundary itself pins the giant
vortex state in this case. The conserved vdlueconst is

atomentum(L =cons} does not correspond to the lowest en-
ergy. At the same time, for superconductors with high
[compare Fig. @), k=10, with Fig. &b), x=5] the differ-
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FIG. 6. Difference in the Gibbs potentials between supercon- FIG. 7. Temperature dependence of the field cooled magnetiza-
ducting and normal statéEq. (21)] vs normalized temperature tion M"©[Eq. (20)] of a superconductor with GL parameter 10
t=T/T, in magnetic fieldH=0.1 for a superconductor with GL for different fixed orbital quantum momentain applied magnetic
parameterk=10 (a) and k=5 (b). field H=0.1 (a) andH=0.001(b).

ence between variouAg(L) becomes very small. Taking ates, a kind of a “peaceful coexistence” of the two antago-
this factor into account, as well as possible pinning of thenistic phenomena—magnetism and superconductivity—
giant vortex state itself, we can assume that in certain experbecomes possible.
mental conditions the tendency to consetvenay override By integrating the radial-dependent inductibfr), the
the lowest-energy condition. magnetizatiorM = (B—H)/4s can be easily calculate®. is

For L=5 [Fig. 5@)] the vortex core and the area, where here the macroscopic induction. In fdatee Eq.(20) and
additional fieldb(r) is generated due to the flux compres- Figs. 4b) and 3b)], the magnetization is given by(r) at
sion, are considerably larger than for=1 [Fig. 4(@)]. Ini- the sample boundary. In full agreement with the above-
tially, at L=5 andt=1, b(r) is constant through the sample mentioned expectation, the growth with decreasing tempera-
and|¥|=0. As the temperature goes down, the order paramture of the superconducting order parameter with a fixed or-
eter grows and pushes the magnetic field into the core. It ibital quantum numbeL results in the appearance of the
clearly seen from our calculatiofBigs. 4a), 4(c), and a)] PME [Figs. Ta) and 7b)].
that for the trapped =1 vortex the fieldo(r) is localized in The amplitude of the PME and the slopd™/dt [see
the area where the superconducting order parameter [ig. 7(b)] are dependent oh and are also very sensitive to
strongly reduced. This reflects a very general flux expulsiorthe variation of the applied field. Indeed, fef=0.1 [Fig.
property of a superconductor which causes either normal dia#(a)], only states with. =3 demonstrate PME, whereas for a
magnetic Meissner effect with complete flux expulsion forlower field H=0.001 all states witi.=3 exhibit the PME
the statel =0 without a core or flux compressidPME) in [Fig. 7(b)]. Fixing, for exampleL=2 or L=1, and increas-
the vortex core fot. =1. TopologicallyL =0 andL >0 states  ing the applied magnetic field frotd =0.001 toH =0.1, the
are qualitatively different, since for the latter flux is expelled sign of the magnetic response can be changed from anoma-
both inwards and outwards. When the former dominateslous paramagnetiflL =2, L=1 in Fig. Aa)] to conventional
PME can appear. By separating the areas where the fieldiamagnetidL=2,L=1 in Fig. Ab)]. This field suppression
penetrates from the ones where the order parameter nuclef the PME is in qualitative agreement with experiments
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which have demonstrated that the anomalous PME can hi#als for the Abrikosov vortex lattice and the giant vortex
observed only in weak fielé:® state. As was demonstrated by Fink and Presétme value
Another interesting feature of thd (T) curves related to for T, obtained from this equation, is very sensitivexto
the L=const states is a possibility to obtain tMT) sign  applied fieldH, and sample size,. For example, for large
inversion at temperatures very closeTg. Indeed, the en- samples andc>1.5 the temperaturg&g, corresponds to the
ergy level patterriFig. 1), used to find théd 5(T) boundary crossing point betweerd ,(T) and H=const lines. For
(Fig. 3), is such that in the FC mode the crossing point bessmaller samples the giant vortex state can be observed in
tweenH =const andH .3(T) always corresponds to a smaller fields even belovH .,(T), quite close to 0.84 ,(T).!’
L(H.g) than the one just calculated from the applied normal- Let us assume now that inside a superconductor there are
ized flux ®/®y=7r 3H/D,. For example, theH 5(T) seg- no pinning centers with the size comparable to the giant
ment, crossed by thel=const line ford/®,=5 (Fig. 1), is  vortex core. In this case a giant vortex state is stabilized only
given by theE(L=3H) level, for ®/®,=10, by theE(L by the sample surface and this state is reversible as long as
=7H) level, etc. The differencAL=®/d,—L(H.3) be- the orbital quantum numbdr is kept constant. But as the
tween the normalized applied fluk/®, and the particular temperature goes down, the multiquanta vortex state is as-
L(H.g) value resulting in the lowest-energy sublevel impliessumed to decay rather quickly int®, vortices once the con-
the diamagnetic response at temperatures just belgwT) servation ofL is violated. As soon as the Abrikosov vortex
line and very close to it. lattice is formed(T<Tg,), pinning centers, which are rela-
The “diamagnetic” difference between thekés has al-  tively small in comparison to the giant core, can be quite
ready been discussed by de la Cetzal?® who calculated efficient to pin thed, vortices, thus leading to the onset of
the sign inversion oM (T,H) in the vicinity of T, . For large irreversibility. The irreversibility should then be considered
L(H.3) values they found that as the consequence of the onset of the variatioh,dhiti-
ating the crossover between the giant vortex statecons)
and the Abrikosov vortex statgd. =1) which should occur
T L(Hea)~ 777, (22)  around theH,(T) line. In other words, in superconducting
@, &3(H) sam ¢ - - -
ples where the surface pinning plays the dominant role in
stabilizing the giant vortex state the irreversibility line
H,,(T) seems to lie in fact, quite close to the upper critical
field H(T).
On the other hand, if a superconducting sample contains
imperfections, impurities, etc., preventing the formation of

we have obtained a weak diamagnetic responsg-afl,.. the nghbnum_F(r) distribution f(_)und fro_m the self-

Taking into account previous calculatiolsye suggest that consistent SOIUt'On.Qf _the GL equatiofeee Elgs. @) and

the kink at theM™ (L =5) curve in Fig. Tb) at T— T, may 53], then the equilibriunt(r) andb(r) profiles can only

be an artifact, and therefore in reality tM"S(L=5,t) may be rea_ched after a certain relaxation time. This delay in the
L - fprmanon of the equilibriunb(r) andF(r) states for chang-

ing fields and/or temperatures may result in flux creep phe-

nomena. It is worth mentioning here that magnetization can

that the PME effect can be obtained from the self-consisterif!¢'€as€ or decrease, depending on the specific shape of the

solution of the GL equations assuming that orbital quanturr?qu“ibrium b(r) distribution, which the system tends to

numberL is conserved. In this case the PME effect and it reach. The unusual logarithmic increase of magnetization has

field dependence can be reproduced in the framework of QdeEd been observed experimentdlly.
very simple and natural approach without making any further
assumptions, related to the presence af janctiorP°-2or
d-wave superconductivity.From this point of view, the re- States with orbital quantum numbdrs-0 correspond to
cent observation of the PME in Nb didRds not very sur- the rotation of the superconducting condensate caused by the
prising. The reported sensitivity to the surface treatrfeAt  action of the Lorentz force, when an external magnetic field
may be caused by violation of theconservation and recov- is applied to a superconducting sample. If the sample is
ery of a normal diamagnetic response corresponding to eooled down througfi . in zero magnetic field, then it seems
transition from largd. values trapped di .5 to the state with  reasonable to expect that superconducting state b is
L=0. formed. Using the self-consistent solution of the GL equa-
The PME is saturated at a certain temperaifilyg which  tions for L=0, we can calculate the ZFC magnetization
decreases with applied fiefd:31° Below Ty, M(T,H)  MZ"YT,H) for different fieldsH applied already in the su-
curves are nearly temperature independent, thus forming geerconducting stat& <T. with L=0.
extended plateau. The crossover betwi&fT,H) growing The results of these calculations are shown in Fig. 8. We
with decreasing temperature in the interifa,<T<T. and  clearly see the dependence of magnetizaitii(T—0H)
the M(T,H) plateau atT<Tg, is very sharp in single upon applied magnetic field, which agrees qualitatively with
crystal$ and may be interpreted as a consequence of an “exmeasurements of the superconducting transition in the ZFC
plosion” of the giant vortex state with a core carrying flux mode in different fields.
Ld, into a collection of Abrikosov vortices, each carrying a  As a next step, we consider the onset of flux penetration
flux ®,. From this point of view, the characteristic crossoverinto a superconducting film as the transition between the two
temperatureTl ¢, can be found by equating the Gibbs poten-quantum stated: =0 andL =1. This transition defines actu-

where &; is the value ofg(T) at the crossing point between
the H.3(T) line and the lineH=const. The algorithm we
were using for numerical calculations of Eq&6) and (17)
was not very reliable for the calculation of th&™ with the
sign change at temperatures very closé to Nevertheless,

[see the dashed line in Figbj], analyzed earlier in Ref. 26.
Summarizing this section, we would like to emphasize,

IV. TRANSITION BETWEEN L =0 AND L=1 STATES
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FIG. 8. Temperature dependences of magnetizat6h® in the b FIG. glh Temperature dependencedof_the crossover figjd,
zero-field-cooled mode for different applied fields. etween the two quantum states-0 andL =1.

ally the lower critical fieldH,(T), if one treats the defini- Mental data on the PME. Instead, we have solved the GL
tion “the onset of penetration” really as a penetration of the€duations self-consistently for a fixed orbital quantum num-
first flux quantum into a sample. To avoid confusion, how-Per L and found that the PME can be caused by the com-
ever, we use the notatiod,_, instead of the conventional Pression of the flux., which is trapped inside a supercon-
H.,. The transition betweeh=0 andL =1 states occurs if ducting sample below the thirdsurface critical field
the Gibbs energy for the latter is lower than for the former.Hes(T), When the sample magnetization is measured in a
Using again numerical self-consistent solution of the cLfield-cooled mode. A similar flux compression mechanism of
equations, we have determined the fielg ., for different the PME has been recently considered by Koshelev and
temperaturesFig. 9. The Hy_4(T) curve shows linear de- Larkin.?® We have demonstrated that the amplitude of the
pendenceH,_,(T)=x1—T/T, for low temperatures and a PME is suppressed by applying a magnetic field. A possible
square-root behavidt,_,(T)(1—T/T )1/2 atT—T.. definition of the irreversibility line as a crossover line be-
We think that the fiad-|0 «(T) cancbe used to i:analyze tween the giant vortex state and Abrikosov flux lattice has
experimental data oil.,(T) if these data were measured P€en given. The transition between the two quantum states
with a superconducting quantum interference devicdL=0 andL=1) has been used to calculate the field corre-
(SQUID), having a very low threshold for the registration of sponding to the penetration of one flux line at different tem-
the onset of the flux penetration. We may also argue thaperatures. Finally, we would like to note that our explanation
linearH,, vs T dependence often seen in highcuprates at of the PME in terms of the conventlpnal GL equa_lt|on§1goes
low temperaturegsee, for example, Ref. 2&an be inter- Not exclude, of course, other possible explanat_i'o‘?w’é’.
preted simply as the intrinsic behavior Bf,_;(T), taking At the same time, our model should not be omitted before

into account the sensitive methods used in Ref. 28 to deteffa@king any final conclusion concerning the nature of the
mine theH,, values. PME in superconductors.
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