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Paramagnetic Meissner effect from the self-consistent solution of the Ginzburg-Landau equation

V. V. Moshchalkov, X. G. Qiu,* and V. Bruyndoncx
Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Be

~Received 1 March 1996!

The paramagnetic Meissner effect~PME!, recently observed in high-Tc materials and also in Nb, can be
successfully explained by the persistence of a giant vortex state with a fixed orbital quantum numberL. This
state is formed in superconductors in the field-cooled regime at the third critical field. The self-consistent
numerical solution of the Ginzburg-Landau equations clearly shows that the compression of the flux trapped
inside the giant vortex state can result in the PME. The PME is suppressed, and the normal diamagnetic
response is recovered, by increasing the applied field. A possible definition of the irreversibility line, as a
crossover between the giant vortex state and the Abrikosov flux line lattice, is discussed. The transition
between the two quantum states~L50 andL51! has been used to calculate the fieldH0→1(T), corresponding
to the penetration of the first flux line into a cylindrical sample.@S0163-1829~97!03317-1#
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I. INTRODUCTION

The most characteristic features of a superconductor
zero resistivity~infinite or ‘‘super’’ conductivity! and strong
diamagnetic response~Meissner-Ochsenfeld effect! below
the superconducting transition temperatureTc . In supercon-
ductors with a weak flux line pinning, a perfectdiamagnetic
state can be reached in the so-called field-cooled~FC! re-
gime, when a superconductor is cooled down in a cer
applied magnetic field. Recently, an enigmaticparamagnetic
Meissner effect~PME! has been found in high-Tc granular
materials, such as Bi2Sr2CaCu2O,

1–7 and then in a few
YBa2Cu3O7 single crystals8 for the FC magnetization mea
surements. A detailed systematic study of this effect has b
carried out by the Wohlleben group in Cologne, and aft
wards the PME has often been referred to as the ‘‘Wohlle
effect.’’9 The PME is usually observed as a very strong~up
to 60% of 1/4p! paramagnetic FC response in relatively lo
fields of the order of 0.1–1 G. Later on, the anomalous P
has been interpreted in the framework of different mode
such as spontaneous currents due to the presencep
contacts,6,10–12 vortex pair fluctuations combined wit
pinning,1 d-wave superconductivity,9 orbital glass,13 and Jo-
sephson junctions.14

The recent observation of the PME in niobium disks
Thompsonet al. and Kosticet al.,15 however, indicates tha
the PME can also occur in conventional low-Tc supercon-
ductors and it may be related to flux trapping. In 1992 one
the authors of the present paper16 suggested that the PME
can be caused by the persistence of the giant vortex s
with the fixed orbital quantum numberL.0. This state is
formed in any finite-size superconductor in the FC regime
the third ~surface! critical field Hc3. The superconducting
order parameterC5uCueLf, nucleated at the sample surfac
traps then inside, in the sample interior, a giant vortex17

carrying flux LF0 whereF0 is the flux quantum. Crossing
theH-T plane by lowering the temperature at constant fie
the order parameter at the sample boundary, correspon
to L.1, grows and it compresses the fluxLF0 trapped inside
the sample atHc3(T). This flux compression may eventual
lead to the onset of the paramagnetic response.
550163-1829/97/55~17!/11793~9!/$10.00
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To check this ‘‘flux compression’’ model quantitatively
the self-consistent solution of the full Ginzburg-Landau~GL!
equations is necessary, though the phase boundaryHc3(T)
itself can be found just by solving the linearized GL equ
tion.

In what follows in Sec. II, we first consider the formatio
of the giant vortex state atHc3(T) by solving the linearized
first GL equation for a long cylinder in a parallel field. The
in Sec. III, we proceed to the numerical self-consistent so
tion of the two GL equations below theHc3(T) boundary.
We demonstrate that the PME can indeed be obtained in
FC model if the orbital momentumL is kept constant. The
stability of the giant vortex stateL5const with respect to its
decay into conventional Abrikosov vortex lattice~with one
flux quantumF0 per vortex! is also briefly discussed in thi
section. In Sec. IV we describe another interesting case:
zero-field-cooled~ZFC! regime of the magnetization mea
surements. We show that the magnetic response in this
can be found assuming that the order parameter, corresp
ing to the state withL50, is realized. Along similar line, in
Sec. IV, we will calculate the first critical fieldHc1(T), if to
interpret it, in its literal sense, as a temperature-depend
transition fieldH0→1(T) between theL50 andL51 quan-
tum states. Finally, we conclude with a summary of the m
jor new results.

II. NUCLEATION OF THE SUPERCONDUCTING PHASE

The nucleation of the superconducting phase is usu
analyzed in the framework of the linearized GL equation
the superconducting order parameterC:18

1

2m S 2 i\¹̄2
e*

c
ĀD 2C52aC, ~1!

which is identical to the Schro¨dinger equation for a particle
with chargee*52e in a uniform magnetic field given via
the vector potentialH̄5¹̄3Ā with E52a. The parameter
2a in the GL equation thus plays the role of energyE in the
Schrödinger equation:
11 793 © 1997 The American Physical Society
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E52a5
\2

2mj2~T!
5

\2

2mj2~0!

Tc02T

Tc0
. ~2!

Herej(T) is the temperature-dependent coherence lengtT
is the actual temperature, andTc0 is the critical temperature
at zero magnetic field.

In finite superconducting samples the order parameteC
obeys the boundary condition for a superconductor-insul
interface:18

S 2 i\¹̄2
e* Ā
c DCun50. ~3!

This boundary condition is quite different from the norm
boundary condition in the quantum mechanical probl
‘‘particle in a box,’’ where the densityCC* is zero at the
boundary.

As a result of the relation betweenE anda @Eq. ~2!#, we
have to follow a simple rule: solve the Schro¨dinger equa-
tion with proper boundary conditions@Eq. ~3!# and take the
lowest energyE(H) which gives the highestT in Eq. ~2!,
coinciding with the phase boundaryTc3(H) for the nucle-
ation of the superconducting state.

The important point here is the role of the boundary co
ditions @Eq. ~3!#. In large bulk samples the lowest Landa
level withE5\v/2 ~herev is the cyclotron frequency! gives
the upper critical fieldHc2:

Hc2~T!5
\c

e* j2~0!

Tc02T

Tc0
5

F0

2pj2~T!
. ~4!

In small samples, however, the surface-to-volume ratio
large and boundary conditions@Eq. ~3!# must be taken into
account. The crucial question is, what is a small sample?
answer this question we may refer again to the analogy
tween the Schro¨dinger equation for normal electrons and t
linearized GL equation for the superconducting order para
eterC. The former was used by Dingle19 in connection with
the analysis of quantum oscillations in small metal
samples. Though Dingle took different boundary conditio
we expect that his conclusions are also valid for the ‘‘sup
conducting’’ boundary conditions. According to Dingle, th
border between small and large samples can be found f
the estimate

H3r 0'5~G cm!, ~5!

based on the coincidence between the Larmor radiusr L and
the sample radiusr 0. If the product of fieldH times disk
radiusr 0 is smaller than 5 G cm~or r 0,r L!, then boundary
conditions essentially modify the solution of Eq.~1!. It is
evident that fieldsH,5 ~G cm!/r 0 are not extremely low.
Indeed, for a sample with dimensions, say, 1 mm, the fi
below which boundary conditions should be taken into
count is 50 G. In this context we use the word ‘‘small’’ i
this section. First, we shall analyze the onset of the su
conducting state in small long cylindrical samples in a p
allel field. The demagnetizing effects for this particular g
ometry are negligible. The boundary conditions@Eq. ~3!# will
be taken into account explicitly.

The description of the superconducting state in long c
inders in a parallel field should be based on the choice o
or
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adequate system of coordinates. Apparently, the sample s
metry implies the choice of the cylindrical coordinat
~r ,f,z! and the gaugeĀ5(Hr /2)ēf , whereēf is the tangen-
tial unit vector. The solution of the Hamiltonian@Eq. ~1!# in
cylindrical coordinates has the form20

C~r ,f!5e6 iLfr Lg~L11!/2 expS 2
gr 2

2 DM ~2N,L11,gr 2!.

~6!

Hereg5e*H/(2\c) and the energyE' of the motion in the
plane perpendicular toH is determined by the orbital quan
tum numberL and parameterN, which is not necessarily an
integer number, as we shall see later:

E'5
e* \H

2mc
~2N6L1L11!. ~7!

The functionM is the Kummer function defined as

M ~a,c,y!511
a

c
y1

a~a11!

c~c11!

y2

2!
1
a~a11!~a12!

c~c11!~c12!

y3

3!

1••• , ~8!

where a52N, c5L11, and y5gr 2. Introducing the di-
mensionless radiusR5Agr , the superconducting order pa
rameter can be written in the form

CL~R,f!5e6 iLfRL expS 2
R2

2 DM ~2N,L11,R2!. ~9!

The representation of the order parameterC5(LcLCL as
an expansion over states with differentL for infinite samples
has been analyzed in Ref. 21, whereM (0,L11,R2)51 has
been taken. Under these conditions, the functionsuCLu have
their maxima atR25L; i.e., the area enclosed by the circ
with the radius corresponding to theuCLu maximum is al-
ways penetrated by an integer numberL of the flux
quanta: F/F05L. Here in this paper we shall analyze th
case offinite samples, where theN value has to be found
from the boundary condition@Eq. ~3!#. It is very important to
note that in the general form@Eqs.~6! and ~7!# there are no
limitations on the parameterN: It is not necessarily an in-
teger number. The only argument, which is usually given
favor of taking integerN, is a possibility to get a cut off in
the summation@Eq. ~8!#. Indeed, if we insert an integerN
into the summation, then by adding 1 toN in each new term
we shall eventually come to the situation where2N1N50
and all subsequent terms in the summation will be equa
zero. Thus by the cutoff we just use a finite number of ter
in the summation@Eq. ~8!#, and of courseM is finite in this
case. But we should keep in mind that any converging r
also gives a finite solution forM . Therefore, not only the
positive integerN in Eq. ~7!, but also noninteger and eve
negativeN values are possible. In finite-size samples theN
value, which we further denote asN(L,R0), has to be found
from the boundary condition atR5R0 @Eq. ~3!#, whereR0 is
the normalized disk radius:

]uC~R!u
]R U

R5R0

50. ~10!
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55 11 795PARAMAGNETIC MEISSNER EFFECT FROM THE SELF- . . .
Since we are looking for the lowest possible energy state
should take the minus sign in the argument of the expon
exp~2iLf! in the solution given by Eq.~6!. In this case2L
and1L in Eq. ~7! cancel, and for anyL the energy levels
become

E'5\v~N1 1
2 !, ~11!

wherev5e*H/mc is the cyclotron frequency.
This result coincides with the well-known Landau qua

tization, but nowN is any real number, including negativ
real number, which is to be calculated from Eq.~10!. Using
the expression

dM~a,c,y!

dy
5
a

c
M ~a11,c11,y!

for the derivative of the Kummer function, we can find th
N(L,R0) value, which obeys the boundary condition@Eq.
~10!#, from the equation

~L2R0
2!M ~2N,L11,R0

2!2
2NR0

2

L11
M ~2N11,L12,R0

2!

50. ~12!

The remarkable thing about theN(L,R0) values, found
from the solutions of Eq.~12!, is that they are negative whic
immediately gives the energyE' in Eq. ~11! lower than
\v/2.As a result of the confinement with the ‘‘supercondu
ing’’ boundary conditions, the energy levels in finite samp
lie below the classical value\v/2 for infinite samples.22,23

The whole energy level scheme~Fig. 1!, found by
Saint-James,22 can be reconstructed by calculatingE' vsR0

2

for differentL values. From this diagram we can easily go
the ‘‘field versus temperature’’ plot, using the relatio
E'52a. The corresponding values of the Abrikosov para
eter bA , giving an idea about the ‘‘flatness’’ ofuCu,25 are
plotted in Fig. 2. It should be noted thatbA for certainL and
H ~see the levels below the dashed line in Fig. 2! is smaller

FIG. 1. EnergyE' vs normalized fluxF/F0 for a superconduct-
ing cylinder in a parallel magnetic field. The vertical dashed lin
illustrate which orbital quantum numberL is fixed atHc3(T) in the
FC mode; for example,L53 for F/F055 andL57 for F/F0510.
e
nt

-

-
s

-

than the well-known minimum possible valuebA51.16 for
the triangular Abrikosov vortex lattice.

To conclude this section, we note that in finite samplesN
is a bad ‘‘quantum number.’’ It is rather a parameter whi
has to be found from the boundary condition. A ‘‘good qua
tum number’’ for the problem isL. By forming a supercon-
ducting condensate with a proper finiteL andN(L,R0),0,
we conserve the rotational momentum and at the same
reduce the energy below\v/2.

As shown above, because of the onset of the surface
perconductivity atHc3(T), corresponding to negativeN in
Eq. ~11!, the superconductivity can appear well above t
Hc2(T) line ~found forN50!. By changing the variableE'

in Fig. 1 into T, we obtain the cusplike phase bounda
Hc3(T) as shown in Fig. 3, which is due to switching b
tween different orbital momentaL. The phase boundary o
the superconducting disk~Fig. 3! has been observed exper
mentally by Buissonet al.23 and by Moshchalkovet al.24

The linear component of the cusplikeHc3(T) line is
1.695Hc2, which is in good agreement with the calculatio
of Hc3 in theL→` limit.18

III. PARAMAGNETIC MEISSNER EFFECT

By cooling down a superconductor in a fixed applied fie
~FC mode!, we are crossing theHc3(T) boundary at a par-
ticular point corresponding to a certain orbital quantum nu
ber L ~see horizontal dashed lines in Fig. 3!. The phase
boundaryHc3(T) is calculated in this case from the linea
ized GL equation with boundary conditions being prope
taken into account as shown above. BelowHc3(T), however,
the solution of the full GL equations is necessary, sinc
nucleating superconducting condensate creates its own a
tional magnetic field which should be treated se
consistently.

In the following, a similar cylindrical geometry as in th
last section will be considered. The starting point for o
calculation is the system of two coupled GL equations wh
reads in dimensionless form as25

S 1ik ¹̄2ĀD 2C5C~12uCu2!, ~13!

s
FIG. 2. Field dependence of the Abrikosov parameterbA for

different orbital quantum momentaL.
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FIG. 3. Third critical fieldHc3 and the bulk
upper critical fieldHc2 ~dashed line! vs normal-
ized temperaturet5T/Tc . The cusplikeHc3(T)
line is formed due to the change of the orbit
quantum numberL. In the three-dimensiona
plots, uCu is depicted as a function of the spati
coordinates for severalL values.
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¹̄3¹̄3Ā5
1

2 H C* F 1ik ¹̄2ĀGC1CF2
1

ik
¹̄2ĀGC* J ,

~14!

whereC, Ā, b, andr are in units ofC` , &Hcl~0!, &Hc ,
andl~0!, respectively, andt5T/Tc is the reduced tempera
ture.C` , Hc , l~0!, andk are the wave function in bulk, the
thermodynamical critical field, the penetration depth at z
field and zero temperature, and the GL parameter, res
tively. We use the simplifications.

C~r ,f!5F~r !eiLf, A5
1

2
Hr1

1

2

w

r
, b5H1

1

2r

dw

dr
.

~15!

H is the applied magnetic field which is in thez direction~in
units of&Hc!, while b is the local induction given by the
vector potential¹̄3Ā5b̄. The functionw is to be deter-
mined. Inserting the above equations into Eqs.~13! and~14!,
taking into account the temperature dependence ofC which
is given byC2(t)5C2(0)(12t), we get the two coupled
equations17

d2F

dr2
52

1

r

dF

dr
1S 12 kHr1

1

2

kw

r
2
L

r D
2

F2kF~12F2!,

~16!

d2w

dr2
5
1

r

dw

dr
1SHr 21w2

2L

k DF2. ~17!

The corresponding boundary conditions for the above eq
tions are,17 at r5r 0
o
c-

a-

dF/dr50, dw/dr50 ~18!

and, atr50,

w50, F50 for LÞ0, ~19a!

dF/dr50 for L50. ~19b!

In the calculation given below, we have fixed the size of o
sample atr 05)l~0!.

The magnetization per unit volume 4pM is defined as

4pM

Hc
52E

0

r0
r ~b2H !dr5w~r 0!. ~20!

The difference of the Gibbs free energy between the
perconducting (GS) and normal (GN) states is

Dg5
GS2GN

Hc
2V/2p

5
1

2 E
0

r0
@~b2H !22F4#r dr . ~21!

Using a numerical procedure, we have performed s
consistent calculations of the radial dependence of the
malized order parameterF(r )5uCu/uC0u @Figs. 4~a! and 5~a!#,
the functionw(r ) @Figs. 4~b! and 5~b!#, and the local induc-
tion b(r ) @Figs. 4~c! and 5~a!# for fixed L and different nor-
malized temperaturest5T/Tc , using the formalism de-
scribed earlier in this section.

Following Fink and Presson,17 we have assumed in thes
calculations that the orbital quantum numberL, found ac-
cording to the location of the crossing point betweenHc3(T)
andH5const~Figs. 1 and 3!, is kept constant also below th
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55 11 797PARAMAGNETIC MEISSNER EFFECT FROM THE SELF- . . .
Hc3(T) line. The conservation of the orbital quantum num
berL in the superconducting state can result from pinning
the giant vortex state, corresponding to a ringlike superc
ducting order parameter nucleated at the sample bounda
Hc3(T) ~Fig. 3!. The sample boundary itself pins the gia
vortex state in this case. The conserved valueL5const is

FIG. 4. Radial-dependent part of the order parameterF(r ) @Eq.
~16!# ~a!, functionw(r ) @Eq. ~15!# ~b!, and local inductionb(r ) ~c!,
calculated from Eqs.~16!–~19! for a superconductor withk510,
fixed L51 in a magnetic fieldH50.1.
-
f
n-
at

determined by the applied field. For sufficiently small field
the state withL51 is realized. The normalized order param
eterF(r ), calculated for this particular value ofL @Fig. 4~a!#,
has a normal core penetrated by the flux line carrying o
flux quantumF0.

As temperature decreases, theF(r ) value grows and the
London limit uCu5const is recovered everywhere except
the vortex core area@see Fig. 4~a!#. As a result of theF(r )
increase, the trappedL5const vortex is compressed and th
leads to an enhancement ofw(r ) @Fig. 4~b!# andb(r ) @Fig.
4~c!# in the core area of the sample interior and to a reduct
of w(r ) andb(r ) at the sample periphery. Similar behavi
of w(r ) andb(r ) is found forL55, as shown in Figs. 5~a!
and 5~b!. The crossover pointr cr separating the areas, whe
b(r ) is enhanced or reduced, isL dependent, for example
for L51 @see Fig. 4~c!# r cr'0.40r 0, whereas forL55 @see
Fig. 5~a!#, r cr'0.75r 0.

From the calculated difference in Gibbs functions,Dg,
between normal and superconducting states@Figs. 6~a! and
6~b!#, it is evident that the conservation of the trapped orb
momentum~L5const! does not correspond to the lowest e
ergy. At the same time, for superconductors with highk
@compare Fig. 6~a!, k510, with Fig. 6~b!, k55# the differ-

FIG. 5. Local inductionb(r ) @Eq. ~15!#, radial-dependent part o
the order parameterF(r ) @Eq. ~16!# ~a!, and functionw(r ) @Eq.
~15!# ~b!, calculated forL55, k510, andH50 for different nor-
malized temperaturest5T/Tc .
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ence between variousDg(L) becomes very small. Taking
this factor into account, as well as possible pinning of
giant vortex state itself, we can assume that in certain exp
mental conditions the tendency to conserveL may override
the lowest-energy condition.

For L55 @Fig. 5~a!# the vortex core and the area, whe
additional fieldb(r ) is generated due to the flux compre
sion, are considerably larger than forL51 @Fig. 4~a!#. Ini-
tially, at L55 andt51, b(r ) is constant through the samp
and uCu50. As the temperature goes down, the order para
eter grows and pushes the magnetic field into the core.
clearly seen from our calculations@Figs. 4~a!, 4~c!, and 5~a!#
that for the trappedL>1 vortex the fieldb(r ) is localized in
the area where the superconducting order paramete
strongly reduced. This reflects a very general flux expuls
property of a superconductor which causes either normal
magnetic Meissner effect with complete flux expulsion
the stateL50 without a core or flux compression~PME! in
the vortex core forL>1. Topologically,L50 andL.0 states
are qualitatively different, since for the latter flux is expell
both inwards and outwards. When the former domina
PME can appear. By separating the areas where the
penetrates from the ones where the order parameter n

FIG. 6. Difference in the Gibbs potentials between superc
ducting and normal state@Eq. ~21!# vs normalized temperatur
t5T/Tc in magnetic fieldH50.1 for a superconductor with GL
parameterk510 ~a! andk55 ~b!.
e
ri-

-
is

is
n
a-
r

s,
ld
le-

ates, a kind of a ‘‘peaceful coexistence’’ of the two antag
nistic phenomena—magnetism and superconductivit
becomes possible.

By integrating the radial-dependent inductionb(r ), the
magnetizationM5(B–H)/4p can be easily calculated.B is
here the macroscopic induction. In fact@see Eq.~20! and
Figs. 4~b! and 5~b!#, the magnetization is given byw(r ) at
the sample boundary. In full agreement with the abo
mentioned expectation, the growth with decreasing temp
ture of the superconducting order parameter with a fixed
bital quantum numberL results in the appearance of th
PME @Figs. 7~a! and 7~b!#.

The amplitude of the PME and the slopedMFC/dt @see
Fig. 7~b!# are dependent onL and are also very sensitive t
the variation of the applied field. Indeed, forH50.1 @Fig.
7~a!#, only states withL>3 demonstrate PME, whereas for
lower field H50.001 all states withL>3 exhibit the PME
@Fig. 7~b!#. Fixing, for example,L52 or L51, and increas-
ing the applied magnetic field fromH50.001 toH50.1, the
sign of the magnetic response can be changed from ano
lous paramagnetic@L52, L51 in Fig. 7~a!# to conventional
diamagnetic@L52, L51 in Fig. 7~b!#. This field suppression
of the PME is in qualitative agreement with experimen

- FIG. 7. Temperature dependence of the field cooled magne
tion MFC @Eq. ~20!# of a superconductor with GL parameterk510
for different fixed orbital quantum momentaL in applied magnetic
field H50.1 ~a! andH50.001~b!.
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55 11 799PARAMAGNETIC MEISSNER EFFECT FROM THE SELF- . . .
which have demonstrated that the anomalous PME can
observed only in weak field.2–8

Another interesting feature of theM (T) curves related to
the L5const states is a possibility to obtain theM (T) sign
inversion at temperatures very close toTc . Indeed, the en-
ergy level pattern~Fig. 1!, used to find theHc3(T) boundary
~Fig. 3!, is such that in the FC mode the crossing point b
tweenH5const andHc3(T) always corresponds to a small
L(Hc3) than the one just calculated from the applied norm
ized flux F/F05pr 0

2H/F0 . For example, theHc3(T) seg-
ment, crossed by theH5const line forF/F055 ~Fig. 1!, is
given by theE(L53,H) level, for F/F0510, by theE(L
57,H) level, etc. The differenceDL5F/F02L(Hc3) be-
tween the normalized applied fluxF/F0 and the particular
L(Hc3) value resulting in the lowest-energy sublevel impli
the diamagnetic response at temperatures just belowHc3(T)
line and very close to it.

The ‘‘diamagnetic’’ difference between theseL ’s has al-
ready been discussed by de la Cruzet al.26 who calculated
the sign inversion ofM (T,H) in the vicinity ofTc . For large
L(Hc3) values they found that

F

F0
2L~Hc3!'

R

j3~H !
, ~22!

wherej3 is the value ofj(T) at the crossing point betwee
the Hc3(T) line and the lineH5const. The algorithm we
were using for numerical calculations of Eqs.~16! and ~17!
was not very reliable for the calculation of theMFC with the
sign change at temperatures very close toTc . Nevertheless,
we have obtained a weak diamagnetic response atT→Tc .
Taking into account previous calculations,17 we suggest tha
the kink at theMFC(L55,t) curve in Fig. 7~b! atT→Tc may
be an artifact, and therefore in reality theMFC(L55,t) may
eventually demonstrate a more pronounced sign inver
@see the dashed line in Fig. 7~b!#, analyzed earlier in Ref. 26

Summarizing this section, we would like to emphas
that the PME effect can be obtained from the self-consis
solution of the GL equations assuming that orbital quant
numberL is conserved. In this case, the PME effect and
field dependence can be reproduced in the framework
very simple and natural approach without making any furt
assumptions, related to the presence of ap junction6,10–12or
d-wave superconductivity.9 From this point of view, the re-
cent observation of the PME in Nb disks15 is not very sur-
prising. The reported sensitivity to the surface treatment15,27

may be caused by violation of theL conservation and recov
ery of a normal diamagnetic response corresponding t
transition from largeL values trapped atHc3 to the state with
L50.

The PME is saturated at a certain temperatureTsat, which
decreases with applied field.2,6,8,15 Below Tsat, M (T,H)
curves are nearly temperature independent, thus formin
extended plateau. The crossover betweenM (T,H) growing
with decreasing temperature in the intervalTsat,T,Tc and
the M (T,H) plateau atT,Tsat is very sharp in single
crystals8 and may be interpreted as a consequence of an ‘
plosion’’ of the giant vortex state with a core carrying flu
LF0 into a collection of Abrikosov vortices, each carrying
flux F0. From this point of view, the characteristic crossov
temperatureTsat can be found by equating the Gibbs pote
be

-
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nt
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a
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a

an

x-

r
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tials for the Abrikosov vortex lattice and the giant vorte
state. As was demonstrated by Fink and Presson,17 the value
for Tsat, obtained from this equation, is very sensitive tok,
applied fieldH, and sample sizer 0. For example, for large
samples andk.1.5 the temperatureTsat corresponds to the
crossing point betweenHc2(T) and H5const lines. For
smaller samples the giant vortex state can be observe
fields even belowHc2(T), quite close to 0.84Hc2(T).

17

Let us assume now that inside a superconductor there
no pinning centers with the size comparable to the gi
vortex core. In this case a giant vortex state is stabilized o
by the sample surface and this state is reversible as lon
the orbital quantum numberL is kept constant. But as th
temperature goes down, the multiquanta vortex state is
sumed to decay rather quickly intoF0 vortices once the con
servation ofL is violated. As soon as the Abrikosov vorte
lattice is formed~T,Tsat!, pinning centers, which are rela
tively small in comparison to the giant core, can be qu
efficient to pin theF0 vortices, thus leading to the onset o
irreversibility. The irreversibility should then be considere
as the consequence of the onset of the variation ofL, initi-
ating the crossover between the giant vortex state~L5const!
and the Abrikosov vortex state~L51! which should occur
around theHc2(T) line. In other words, in superconductin
samples where the surface pinning plays the dominant rol
stabilizing the giant vortex state the irreversibility lin
H irr(T) seems to lie in fact, quite close to the upper critic
field Hc2(T).

On the other hand, if a superconducting sample conta
imperfections, impurities, etc., preventing the formation
the equilibrium F(r ) distribution found from the self-
consistent solution of the GL equations@see Figs. 4~a! and
5~a!#, then the equilibriumF(r ) andb(r ) profiles can only
be reached after a certain relaxation time. This delay in
formation of the equilibriumb(r ) andF(r ) states for chang-
ing fields and/or temperatures may result in flux creep p
nomena. It is worth mentioning here that magnetization c
increase or decrease, depending on the specific shape o
equilibrium b(r ) distribution, which the system tends t
reach. The unusual logarithmic increase of magnetization
indeed been observed experimentally.7

IV. TRANSITION BETWEEN L50 AND L51 STATES

States with orbital quantum numbersL.0 correspond to
the rotation of the superconducting condensate caused b
action of the Lorentz force, when an external magnetic fi
is applied to a superconducting sample. If the sample
cooled down throughTc in zero magnetic field, then it seem
reasonable to expect that superconducting state withL50 is
formed. Using the self-consistent solution of the GL equ
tions for L50, we can calculate the ZFC magnetizatio
MZFC(T,H) for different fieldsH applied already in the su
perconducting stateT,Tc with L50.

The results of these calculations are shown in Fig. 8.
clearly see the dependence of magnetizationMZFC(T→0,H)
upon applied magnetic field, which agrees qualitatively w
measurements of the superconducting transition in the Z
mode in different fields.

As a next step, we consider the onset of flux penetrat
into a superconducting film as the transition between the
quantum states:L50 andL51. This transition defines actu
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ally the lower critical fieldHc1(T), if one treats the defini-
tion ‘‘the onset of penetration’’ really as a penetration of t
first flux quantum into a sample. To avoid confusion, ho
ever, we use the notationH0→1 instead of the conventiona
Hc1. The transition betweenL50 andL51 states occurs if
the Gibbs energy for the latter is lower than for the form
Using again numerical self-consistent solution of the G
equations, we have determined the fieldH0→1 for different
temperatures~Fig. 9!. TheH0→1(T) curve shows linear de
pendenceH0→1(T)}12T/Tc for low temperatures and
square-root behaviorH0→1(T)}(12T/Tc)

1/2 at T→Tc .
We think that the fieldH0→1(T) can be used to analyz

experimental data onHc1(T) if these data were measure
with a superconducting quantum interference dev
~SQUID!, having a very low threshold for the registration
the onset of the flux penetration. We may also argue
linearHc1 vsT dependence often seen in high-Tc cuprates at
low temperatures~see, for example, Ref. 28! can be inter-
preted simply as the intrinsic behavior ofH0→1(T), taking
into account the sensitive methods used in Ref. 28 to de
mine theHc1 values.

V. CONCLUSION

In conclusion, we would like to emphasize that the ma
result, obtained in this paper, is an interpretation of the en
matic PME observed recently in high-Tc superconductors
and also in Nb. In our approach we did not use any su
ciently sophisticated model to interpret the available exp

FIG. 8. Temperature dependences of magnetizationMZFC in the
zero-field-cooled mode for different applied fields.
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mental data on the PME. Instead, we have solved the
equations self-consistently for a fixed orbital quantum nu
ber L and found that the PME can be caused by the co
pression of the fluxL, which is trapped inside a supercon
ducting sample below the third~surface! critical field
Hc3(T), when the sample magnetization is measured i
field-cooled mode. A similar flux compression mechanism
the PME has been recently considered by Koshelev
Larkin.29 We have demonstrated that the amplitude of
PME is suppressed by applying a magnetic field. A poss
definition of the irreversibility line as a crossover line b
tween the giant vortex state and Abrikosov flux lattice h
been given. The transition between the two quantum st
~L50 andL51! has been used to calculate the field cor
sponding to the penetration of one flux line at different te
peratures. Finally, we would like to note that our explanat
of the PME in terms of the conventional GL equations do
not exclude, of course, other possible explanations.1,6,10–12

At the same time, our model should not be omitted bef
making any final conclusion concerning the nature of
PME in superconductors.
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