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Cases of resonant tunneling important for highT . cuprates
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Some basic assumptions made by the present author in his work aaaig transport in layered cuprates
are examined on simple models. First, a one-dimensional model is considered with a localized center slightly
displaced from the middle of the barrier in order to find out whether this displacement prevents resonant
tunneling. Second, a three-dimensional model is analyzed with two resonant centers in the median plane; the
goal is to establish whether tunneling through such centers can be coherent. The results provide support for the
basic assumption§S0163-18207)13517-2

I. INTRODUCTION Il. ONE-DIMENSIONAL CASE, ONE CENTER

In Refs. 1-3 an idea was proposed that the mechanism of We will start with the second problem, since it can be
c-axis transport in underdoped YE2u,0, is resonant tun- solve_d in the framework of a one-.dimensional_ mode. Let us
neling through localized centers in the barrier between twgonsider a rectangular barrier with a potentialat 0<z
CuO, bilayers formed in place of broken CuO chains. It was <9 With a center located a, (0<z,<d) described by a
supposed that the tunneling through centers having the sanp@tential energy-(5/2m) 5(z-z,). The Schrdinger equa-

o ion can be presented in the form
binding energy happens coherently and therefore the ampli-
tudes are added, whereas the tunneling through centers with d>¥ )
different energies is incoherent, and therefore the probabili- G2 ¥ V=—B(z-29)¥(20), @
ties are summed up. The coherence leads to an importanth
consequence, namely that the electron momentum in th§ere
(ab) plane is conserved during tunneling. Whether this is a=[2m(U—E)]*2 2
true has to be checked.

Another important problem is that in other layered high-
Te cupratesé7 such as MrCaCyOg. 5*° and V(2)=[A—(BlRa)¥(zy) O(z— z5)e **0]e*??
TI,Ba,CuG;, 5" the resistivity ratiop./p,p varies with wz
temperature as ex(T), and this is very much reminiscent +[B+(Bl2a)¥(20) B(z—Zg)e™0]e™ "% (3)
of resonant tunneling behavior. HOWeVer, there are no chains The solutions beyond the barrier are
between the Cu®layers, and, actually, the median plane is ) )
empty. It is widely believed that the doping of the GuO V(z)=€e"*+re "%, z<0
layers with holes in BiSr,CaCyOg, s originates from the i (2
BiO layers. They areBZE)éatedLéargu?d the median plane at V(z)=pe"?,  z>d, )
distances approximately equal to 1 A. If the localized centersvherex=(2mE)*?, r is the amplitude of the reflected wave,
in the barrier are associated with these layers, the question &ndp is of the penetrated wave.
whether this small displacement from the middle can reduce The boundary conditions are the continuity ¥f and
substantially the resonant tunneling probability. dW¥/dz at the interfaces. From these four conditions we de-

Although the answer, at least for the second problem, cafine the constanté, B, r, andp. They are
be obtained from some previous articles, e.g., Refs. 8 and 9,

Its general solution is

their authors were concerned with rather general cases, and _ } '_K i, '_K

. A= 1+ 1 ,
this made the results somewhat hard to comprehend. There- 2 2 a 5
fore we find it useful to consider the simplest models in a . (5)
straightforward way in order to leave no doubts and to B:E RN DL
present the results in a most transparent form. 2 @ 2 al’

(Bla) ¥ (zo)[(1—ikla)e* 9" 20)+ (1+ik/a)e” *9720 —2(1+ %/ a®)sinh ad) _(Bla)¥(zg)e”“*0—(1+ixla)
(1—ikla)?e®—(1+ix/a)’e - 1-ixla :

(6)

_ (Bla)¥(zo)[(1—ikla)e™+(1+ikla)e” 0] —4ix/a (Bla)¥(zp)e*?~ D (4ik/a)e
- (1—ik/a)’e®—(1+ik/a)?e *d - l-ikla  (1-ikla)?

)
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We assumed here thay, d—zy>1/a. either by the environment, or by their distance from each
From Egs.(3), (5), and(6) (here we have to use the full other. The latter problem we are going to analyze in the next
expressiopwe obtainV (zp): section.

2ik ) Ill. THREE-DIMENSIONAL CASE, TWO CENTERS
W (zg)~—| —| e 4" 2 (1— Bl2a)(1—ikl a)e*— (Bl a) o .
@ This time we suppose that there are two centers located in
the median plane: the first at (32), and the second at

H _ -1
X(I+ixlajcostia(d—22)]} ®) (po,d/2). This time we have to solve the three-dimensional
and Schralinger equation. Performing a Fourier transformation
with respect togp, we obtain
p~(Bla)e®? I (1—ikla) *W(z,) P
k
2i B B | 7 V= —pYNdR) o z—(d2)], (12
~—|—5— 1_2_ ead+2l(p
Kta @ where
,3 -1
— Z COSI‘E(Z(d—ZZO)]] , (9) \I’(p,Z)= f \I,k(z)eikpd2k/(2ﬂ_)2’ (13)
where ¢ = arctang/x). _ —E)+ k2112
The transparency coefficient is equal to the absolute ar=[2m(U=E)+ kT (14
square of this expression. It is exponentially small except in W O(d/2) =W (0,d/2)+ ¥ (py,di2)ekeo, (15)

a small “coherence interval” of energies around: 2 g, or - o
The boundary conditions for a normal incidence are
Wi (0)=(2m)?8(k)+r), Wi(d)=py. (16)

provided that the resonant center is located close to th . - _
middle of the barrierzy~d/2. Our main goal is to find out to E;;meiflgf.e(ls),:(%S)Zivekzg?}zalgr:‘gguilgztzgglIa:)rfctyo 515‘(53{2
what extent this condition is stringent. One sees readily tha(t_ k’z)l/z instegd ofx, w((d/2) instead of‘lf(zo), and the
the requirement is terms withoutV in the numerators of Eq46) and (7) ac-

o <1y _Ey1-12 quire a factor (2r)28(k).
|d=220| <1a=[2m(U~E)]" (1) The self-consistency relations are

U—Eo=8%/(8m), (10

As it was said already, in Bsr,CaCyOg, 5 the displace- d2k
ment of the BiO layers from the center is approximately 1 A. ¥ (0,d/2)= f —— (A 2+ B e i)
Even in this case, Il —Eq=1 eV, 1lix=2 A, and the actual (2m)
resonant levels might be more shallow. One sees that practi- d2k _
cally all localized centers formed from broken chains in  W¥(p,,d/2)= f —— (Ae*92+ B, e d2)glkro,
YBa,CuO, and from BiO layers in BiSr,CaCyOg, s can (2)
serve for resonant tunneling at proper energies. The onlgubstitutingA, andB, we get equations defining’ at both
remaining question is their coherence, which may be violatedenters:

—ad/2

V(0,42 f T B (L T g W(0d12) + W (po. I e 0] = — K

O™ ] m? a\2 " 1=iaa, © YO T o e T ey
" " f d’k B (1 1+igley —aid | (0 d/2)ePo+ P d/i2)1= 2ice 1
o207 ] G w2 Toiara, © Y OARET 0 SR Gy 0

where« and « are the same, as in the previous section. The symmetry of the integrals with resgeet-t& leads to the
conclusion

V(pgy,d/l2)="¥(0,4d/2), (19
and hence
2i ke~ @92 d’k B 1+iq/ oy o]t
- — - = —apd —ikp
v (0dr2) a(l—ikla) (27)? 20 ( * 1-ig/ay <) (1+e ) (19

Since the minimal value ofy,, is «, the second term of the integrand vanishedato. The remaining integral is
divergent. This is due to the fact that in the three-dimensional casgftiection potential has no finite eigenvalues. Therefore
we must consider some potential with a finite range. Since the precise eigenvalue is of no importance, we simply cut off the
integral at somé&=K. Assumingpg to be larger than I and the range of the potential KL/ we can calculate the square
bracket in the denominator of E¢L9) close to the resonance and obtain
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-1

—ad/2 H
Ke e—gg B k—la 2
~ —apgyl(2d)ya— ad
v (0.d72) k+ia |2[eg(eo+K?2m) ]2 27d k+ia (1+e70)e ' (20
wheree o= (1/2m)(B/87)*[K2— (4 B)?]? is the resonant value af=U—E.
From the formula, similar to Eq.7) we can obtain the Fourier component of the penetrated wave
P=~iBY(0,d/2)(1+ e Poye d2(q+ia,) 2, (21)

and, transforming to real space, we get for two centers

2iBak 2
—apgql/d
md(xtia)? (1TE 70

(e —ggo)e™ B k—ia
2[eg(eo+K?2m)]*? 27d k+ia

P<2>=f ped2k/(21)%=

-1
(1+ eﬂpé/@d))} . (22

The dependence opy in the square bracket can be ne- have approximately the same energy or are concentrated
glected, as we will see in a moment. Then, in this case, ifiround few discrete valugthe experimental curves for high-
po<+d/a, the amplitude is doubled compared to the case ofrequencyc conductivity'® can be considered as evidence of
one center, and that means coherence of tunneling throughe latter  situatop ~ The  factor  [eg(gg
the two centers. In the general case of many centers, if the K*/2m)]¥%“o(dn; /de)o plays the role ofn;, which
average distance between them is less tfdh, i.e., their  WaS introduced in Refs. 1 and 2. The coefficienappearing

density is larger tharw/d, we can introduce the average there in the tunneli‘r‘l_g Hamiltonian, 'S the product of
_ o —andr 4Bal(kd) and some “interaction energy” having the order
amplitude, substituting the bracket{E~*'%) in Eq. (21) of the barrierU.

by the density of the centers. This, however, does not take The main result, which we obtained here, is that coherent
into account that the energies of the centers can be slightly,nnejing through different centers is possible, if their ener-
different. If this scatter of eigenvalues, although small, is St'”gies do not differ too much and if their density is higher than

sufficiently large, so that the absolute limiting values of theg,a center per aredla. For Bi,Sr,CaCyOg. 5 the distance
first term in the square bracket of EQ2) are larger than the  panveen the closest double layerslis 15 A. If we assume

second term, then this bracket can be replaced by leo|=1eV, we obtain =2 A, but it is likely that the
_ ad localized levels are more shallow, and so we take 1/
—i6|5 ) = —2im[eo(go+K22m)] =4 A. From this we get the characteristic area of the order
[eo(eo m)] of 60 A%, more than one center per such an area looks quite
x e “0d5(s—g,): re_aILstic. One has to_cgnsider also our basic assumption
) ) o e ““<1; in this casee™ *“~0.024.
this expression does not dependmn The principal part of The above estimates are rather transparent and, despite
Eq. (22) does not contribute to the result. _ the simplicity of the models, provide support to the assump-
. Summa!:lon over centers, I.e., |ntegrat|0n over their enertions made by the present author in Refs. 1-3 and hence, to
gieseg;, gives the resonant tunneling mechanism of thexis transport in
layered cuprates.
P_: M [8 (8 + K2/2m)]1/2e7a0d m Y up S
d(ko+iag)? 070 de | ACKNOWLEDGMENTS
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