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Cases of resonant tunneling important for high-Tc cuprates

A. A. Abrikosov
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

~Received 9 December 1996!

Some basic assumptions made by the present author in his work aboutc-axis transport in layered cuprates
are examined on simple models. First, a one-dimensional model is considered with a localized center slightly
displaced from the middle of the barrier in order to find out whether this displacement prevents resonant
tunneling. Second, a three-dimensional model is analyzed with two resonant centers in the median plane; the
goal is to establish whether tunneling through such centers can be coherent. The results provide support for the
basic assumptions.@S0163-1829~97!13517-2#
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I. INTRODUCTION

In Refs. 1–3 an idea was proposed that the mechanism
c-axis transport in underdoped YBa2Cu3Ox is resonant tun-
neling through localized centers in the barrier between
CuO2 bilayers formed in place of broken CuO chains. It w
supposed that the tunneling through centers having the s
binding energy happens coherently and therefore the am
tudes are added, whereas the tunneling through centers
different energies is incoherent, and therefore the proba
ties are summed up. The coherence leads to an impo
consequence, namely that the electron momentum in
(ab) plane is conserved during tunneling. Whether this
true has to be checked.

Another important problem is that in other layered hig
Tc cuprates, such as Bi2Sr2CaCu2O81d,

4,5 and
Tl2Ba2CuO61d,

6,7 the resistivity ratiorc /rab varies with
temperature as exp(E/T), and this is very much reminiscen
of resonant tunneling behavior. However, there are no ch
between the CuO2 layers, and, actually, the median plane
empty. It is widely believed that the doping of the CuO2
layers with holes in Bi2Sr2CaCu2O81d originates from the
BiO layers. They are located around the median plane
distances approximately equal to 1 Å. If the localized cent
in the barrier are associated with these layers, the questio
whether this small displacement from the middle can red
substantially the resonant tunneling probability.

Although the answer, at least for the second problem,
be obtained from some previous articles, e.g., Refs. 8 an
their authors were concerned with rather general cases,
this made the results somewhat hard to comprehend. Th
fore we find it useful to consider the simplest models in
straightforward way in order to leave no doubts and
present the results in a most transparent form.
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II. ONE-DIMENSIONAL CASE, ONE CENTER

We will start with the second problem, since it can
solved in the framework of a one-dimensional mode. Let
consider a rectangular barrier with a potentialU at 0,z
,d with a center located atz0 (0,z0,d) described by a
potential energy2(b/2m)d(z2z0). The Schro¨dinger equa-
tion can be presented in the form

d2C

dz2
2a2C52bd~z2z0!C~z0!, ~1!

where

a5@2m~U2E!#1/2. ~2!

Its general solution is

C~z!5@A2~b/2a!C~z0!u~z2z0!e
2az0#eaz

1@B1~b/2a!C~z0!u~z2z0!e
az0#e2az. ~3!

The solutions beyond the barrier are

C~z!5eikz1re2 ikz, z,0

C~z!5peik~z2d!, z.d, ~4!

wherek5(2mE)1/2, r is the amplitude of the reflected wave
andp is of the penetrated wave.

The boundary conditions are the continuity ofC and
dC/dz at the interfaces. From these four conditions we d
fine the constantsA, B, r , andp. They are

A5
1

2 S 11
ik

a D1
r

2 S 12
ik

a D ,
~5!

B5
1

2 S 12
ik

a D1
r

2 S 11
ik

a D ,
r5
~b/a!C~z0!@~12 ik/a!ea~d2z0!1~11 ik/a!e2a~d2z0!22~11k2/a2!sinh~ad!

~12 ik/a!2ead2~11 ik/a!2e2ad '
~b/a!C~z0!e

2az02~11 ik/a!

12 ik/a
,

~6!

p5
~b/a!C~z0!@~12 ik/a!eaz01~11 ik/a!e2az0#24ik/a

~12 ik/a!2ead2~11 ik/a!2e2ad '
~b/a!C~z0!e

a~z02d!

12 ik/a
2

~4ik/a!e2ad

~12 ik/a!2
. ~7!
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We assumed here thatz0 , d2z0@1/a.
From Eqs.~3!, ~5!, and~6! ~here we have to use the fu

expression! we obtainC(z0):

C~z0!'2S 2ika Dea~d2z0!$~12b/2a!~12 ik/a!ead2~b/a!

3~11 ik/a!cosh@a~d22z0!#%
21 ~8!

and

p'~b/a!ea~z02d!~12 ik/a!21C~z0!

'2S 2ibk

k21a2D H S 12
b

2a Dead12iw

2
b

a
cosh@a~d22z0!#J 21

, ~9!

wherew5arctan(a/k).
The transparency coefficient is equal to the abso

square of this expression. It is exponentially small excep
a small ‘‘coherence interval’’ of energies around 2a5b, or

U2E05b2/~8m!, ~10!

provided that the resonant center is located close to
middle of the barrier:z0'd/2. Our main goal is to find out to
what extent this condition is stringent. One sees readily
the requirement is

ud22z0u<1/a5@2m~U2E!#21/2. ~11!

As it was said already, in Bi2Sr2CaCu2O81d the displace-
ment of the BiO layers from the center is approximately 1
Even in this case, ifU2E051 eV, 1/a52 Å, and the actual
resonant levels might be more shallow. One sees that pr
cally all localized centers formed from broken chains
YBa2Cu3Ox and from BiO layers in Bi2Sr2CaCu2O81d can
serve for resonant tunneling at proper energies. The o
remaining question is their coherence, which may be viola
e
n

e

at

.

ti-

ly
d

either by the environment, or by their distance from ea
other. The latter problem we are going to analyze in the n
section.

III. THREE-DIMENSIONAL CASE, TWO CENTERS

This time we suppose that there are two centers locate
the median plane: the first at (0,d/2), and the second a
(r0 ,d/2). This time we have to solve the three-dimension
Schrödinger equation. Performing a Fourier transformati
with respect tor, we obtain

d2Ck

dz2
2ak

2Ck52bC~k!~d/2!d@z2~d/2!#, ~12!

where

C~r,z!5E Ck~z!eikrd2k/~2p!2, ~13!

ak5@2m~U2E!1k2#1/2, ~14!

C~k!~d/2!5C~0,d/2!1C~r0 ,d/2!e2 ikr0. ~15!

The boundary conditions for a normal incidence are

Ck~0!5~2p!2d~k!1r k , Ck~d!5pk . ~16!

From Eqs.~12!, ~16! we obtain formulas similar to Eqs.~5!–
~7!, where ak5(a21k2)1/2 enters instead ofa, q5(k2

2k2)1/2 instead ofk, C (k)(d/2) instead ofC(z0), and the
terms withoutC in the numerators of Eqs.~6! and ~7! ac-
quire a factor (2p)2d(k).

The self-consistency relations are

C~0,d/2!5E d2k

~2p!2
~Ake

akd/21Bke
2akd/2!,

C~r0 ,d/2!5E d2k

~2p!2
~Ake

akd/21Bke
2akd/2!eikr0.

SubstitutingAk andBk we get equations definingC at both
centers:
re
t off the
e

C~0,d/2!2E d2k

~2p!2
b

ak
S 121

11 iq/ak

12 iq/ak
e2akdD @C~0,d/2!1C~r0 ,d/2!e2 ikr0#52

2ike2ad/2

a~12 ik/a!
,

C~r0 ,d/2!2E d2k

~2p!2
b

ak
S 121

11 iq/ak

12 iq/ak
e2akdD @C~0,d/2!eikr01C~r0 ,d/2!#52

2ike2ad/2

a~12 ik/a!
, ~17!

wherea andk are the same, as in the previous section. The symmetry of the integrals with respect tok→2k leads to the
conclusion

C~r0 ,d/2!5C~0,d/2!, ~18!

and hence

C~0,d/2!52
2ike2ad/2

a~12 ik/a! F12E d2k

~2p!2
b

2ak
S 112

11 iq/ak

12 iq/ak
e2akdD ~11e2 ikr0!G21

. ~19!

Since the minimal value ofak , is a, the second term of the integrand vanishes atd→`. The remaining integral is
divergent. This is due to the fact that in the three-dimensional case thed-function potential has no finite eigenvalues. Therefo
we must consider some potential with a finite range. Since the precise eigenvalue is of no importance, we simply cu
integral at somek5K. Assumingr0 to be larger than 1/a and the range of the potential, 1/K, we can calculate the squar
bracket in the denominator of Eq.~19! close to the resonance and obtain
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C~0,d/2!'
2ke2ad/2

k1 ia F «2«0
2@«0~«01K2/2m!#1/2

2
b

2pd

k2 ia

k1 ia
~11e2ar0

2/~2d!!e2adG21

, ~20!

where«05(1/2m)(b/8p)2@K22(4p/b)2#2 is the resonant value ofe5U2E.
From the formula, similar to Eq.~7! we can obtain the Fourier component of the penetrated wave

pk' ibC~0,d/2!~11eikr0!e2akd/2~q1 iak!
21, ~21!

and, transforming to real space, we get for two centers

P~2!5E pkd
2k/~2p!25

2ibak

pd~k1 ia!2
~11e2ar0

2/d!F ~«2«0!e
ad

2@«0~«01K2/2m!#1/2
2

b

2pd

k2 ia

k1 ia
~11e2ar0

2/~2d!!G21

. ~22!
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The dependence onr0 in the square bracket can be n
glected, as we will see in a moment. Then, in this case
r0!Ad/a, the amplitude is doubled compared to the case
one center, and that means coherence of tunneling thro
the two centers. In the general case of many centers, if
average distance between them is less thanAd/a, i.e., their
density is larger thana/d, we can introduce the averag

amplitude, substituting the bracket (11e2ar0
2/d) in Eq. ~21!

by the density of the centers. This, however, does not t
into account that the energies of the centers can be slig
different. If this scatter of eigenvalues, although small, is s
sufficiently large, so that the absolute limiting values of t
first term in the square bracket of Eq.~22! are larger than the
second term, then this bracket can be replaced by

2 idS ~«2«0!e
ad

2@«0~«01K2/2m!#1/2D522ip@«0~«01K2/2m!#1/2

3e2a0dd~«2«0!;

this expression does not depend onr0 . The principal part of
Eq. ~22! does not contribute to the result.

Summation over centers, i.e., integration over their en
gies«0 j , gives

P̄5
4ba0k0

d~k01 ia0!
2 @«0~«01K2/2m!#1/2e2a0dS dnjd« D

0

,

~23!

wherednj /d« is the density of localized states. This penet
tion amplitude exceeds the amplitude of direct tunneling
dnj /d« is sufficiently large, i.e., if all the localized state
if
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have approximately the same energy or are concentr
around few discrete values~the experimental curves for high
frequencyc conductivity10 can be considered as evidence
the latter situation!. The factor @«0(«0
1K2/2m)#1/2e2a0d(dnj /d«)0 plays the role ofnj , which
was introduced in Refs. 1 and 2. The coefficientt, appearing
there in the tunneling Hamiltonian, is the product
4ba/(kd) and some ‘‘interaction energy’’ having the orde
of the barrierU.

The main result, which we obtained here, is that coher
tunneling through different centers is possible, if their en
gies do not differ too much and if their density is higher th
one center per aread/a. For Bi2Sr2CaCu2O81d the distance
between the closest double layers isd515 Å. If we assume
u«0u51 eV, we obtain 1/a52 Å, but it is likely that the
localized levels are more shallow, and so we take 1a
54 Å. From this we get the characteristic area of the or
of 60 Å2; more than one center per such an area looks q
realistic. One has to consider also our basic assump
e2ad!1; in this casee2ad'0.024.

The above estimates are rather transparent and, de
the simplicity of the models, provide support to the assum
tions made by the present author in Refs. 1–3 and henc
the resonant tunneling mechanism of thec-axis transport in
layered cuprates.
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