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Ground-state phase diagram of an extended Hubbard chain
with correlated hopping at half-filling

Liliana Arrachea,* E. R. Gagliano, and A. A. Aligia
Centro Atómico Bariloche and Instituto Balseiro, Comisio´n Nacional de Energı´a Atómica, 8400 Bariloche, Argentina

~Received 19 December 1995; revised manuscript received 18 April 1996!

We consider a generalized Hubbard model with on-site interactionU, nearest-neighbor repulsionV, and
nearest-neighbor hopping for spins, which depends on the sum of particlesms̄ with opposite spin in the two
sites involved. The hopping matrix elements are denoted bytAA ,tAB ,tBB for ms̄50,1,2, respectively. For
0,tAB,tAA5tBB , we have determined the regions of parameters for which the ground-state~GS! of the
one-dimensional system is a charge-density wave~CDW!, a spin-density wave~SDW!, or a metal (M ), using
Hartree-Fock, exact diagonalization of finite chains and quantum Monte Carlo. The results agree qualitatively
with the exactly solvable limit oftAB50. For 0,tAB,tAA5tBB , the GS is aM for sufficiently low values of
U andV. In contrast, whentAA1tBB22tAB50, our results suggest that the GS is either a CDW or a SDW,
with the boundary between them lying near the lineU52V. @S0163-1829~96!08929-1#
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I. INTRODUCTION

Two key physical ingredients, strong correlations and l
dimensionality, seem to be crucial for the electronic struct
of novel materials, such as the cuprate superconduc
quasi-one-dimensional organic conductors,1 or conducting
polymers.2 The Hubbard model3 is the generic model for
interacting electrons in narrow-band and highly-correla
fermionic systems. It contains anoccupation-independen
nearest-neighbor hoppingt and an on-site interactionU.
However, in any physical realization, one would expect t
the hopping energy depends on the occupation of the s
involved. In addition, in many real materials, particularly f
low carrier densities or near a metal-insulator transiti
there is considerable evidence that Coulomb interaction
longer range are essential, and one needs to include at le
nearest-neighbor repulsionV. This term allows one to obtain
a correlation exponentKr,1/2,4 which seems necessary
explain the observed strong x-ray scattering at 4kF in the
organic compound TTF-TCNQ,5 while in the Hubbard
modelKr>1/2 for all values ofU/t.6

The above discussion leads naturally to the followi
Hamiltonian written in standard notation as

H52 (
^ i j &s

f i j ~ci s̄
† cj s̄1H.c.!1U(

i
ni↑ni↓1V(̂

i j &
ninj ,

~1!

where the correlated hoppingf i j is given by

f i j5$tAA~12nis!~12njs!1tBBnisnjs

1tAB@nis1njs22njsnis#%. ~2!

The particular caseV50 has been derived in different phys
cal situations, as an effective one-band model to describe
low-energy physics of intermediate-valence system7

‘‘hole’’ superconductors8 ~including also phonons in the an
tiadiabatic approximation9!, and cuprate superconductors10

IncludingV, the model contains the most important terms
the one-band Hamiltonian for the cuprate superconduc
550163-1829/97/55~2!/1173~12!/$10.00
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obtained by Schu¨ttler and Fedro11 and has been also pro
posed to describe the benzene molecule.12

The phase diagram has been investigated previously
tAB50 and also fortAA5tBB5tAB ~Hubbard limit!. In the
first case, taking in additiontAA52tBB , Strack and Voll-
hardt obtained the exact ground-state~GS! in arbitrary di-
mensions, in two regions of parameters using lower and
per bounds for the GS energy.12 The lower bounds have bee
improved by Ovchinnikov.13 The results have been extende
to all values oftAA and tBB and the phase diagram has be
determined exactly in one dimension~1D! for all ~positive!
values ofU andV.14 The results fortAB50 can be summa-
rized as follows: in an arbitrary lattice inD dimensions with
coordination numberz52D, the GS is a Mott insulator~MI !,
corresponding to all sites singly occupied, if

U.zmax„V,utAAu1utBBu…. ~3!

This state possesses a high spin degeneracy. FortABÞ0 the
spin degeneracy is broken and this phase is a spin-den
wave ~SDW!. For all simple cubic lattices and also oth
bipartite lattices like 3D bcc lattice,15 the GS is a charge
density wave~CDW! if

V.max„U/z,~U/21utAAu1utBBu!…/2. ~4!

For these lattices, inD.1, the GS possesses metallic beha
ior (M ) within a region of (U,V) between these two phase
The exact boundary betweenM and MI is

UM2MI5z~ utAAu1utBBu!. ~5!

The metallic character is not fully developed inD51,16 but
the exact boundary between the gapless phase (M ) and the
MI is also given by Eq.~5!.17–19Equation~5! is also valid for
a 3D fcc lattice, a 2D hexagonal lattice, and other lattices14,15

if V50, tAA.0, andtBB.0.
Finally, for D51, the boundary fortAB50 ~Ref. 14! be-

tween theM and CDW is given by

VM2CDW5~U/21utAAu1utBBu!/2. ~6!
1173 © 1997 The American Physical Society
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For tAA5tBB51, the exact phase diagram in 1D is repr
sented by the dashed-dotted line at the bottom of Fig. 1.

When tAA5tAB5tBB perturbation theory in high dimen
sions gives a boundary between the CDW and the SDW
U5zV and no metallic phase.20 In 1D, the phase diagram
has been studied using the Hartree-Fock approximatio21

real-space renormalization group,22 Monte Carlo,23

bosonization,24,25 and exact diagonalization of finit
chains.26,27 All results coincide in that there is noM phase,
except eventually, on the line of the second-order transi
discussed below. The Hartree-Fock results~showed at the
top of Fig. 1! predict a first-order transition between a CD
and a SDW again atU52V. While these results are qual
tatively correct, the other methods give a boundary sligh
shifted to higher values ofV, and obtain a continuous tran
sition for small values of the interactions.28 The line of the
continuous transition ends at the tricritical point.23–25,27

There is no overall agreement about the exact position of
tricritical point. Hirsch23 located it atU;2V;3t, Cannon
and Fradkin atU;2V;1.5t;24 Cannon, Scalettar, and Frad
kin at U;2V;(425)t,27 while Voit at U;2V;4.76t.25

Our results suggest that the tricritical point might be loca
at U;2V;4t. We shall return to this point in Sec. VIII.

The aim of the present work is to determine, at least qu
tatively, the 1D phase diagram in the space of the parame
(U,V,tAB). We consider the third coordinate interpolatin
between both previously studied cases mentioned above
remind the reader that due to the symmetry properties of
Hamiltonian,15,29changing the sign of all hoppings or that
tAB alone, leads to an equivalent model. Thus we ta
tAA51 as the unit of energy and restrict totAB>0. Interpo-
lation betweentAA5tAB5tBB and utAAu2utBBu5tAB50 can
be done in two nonequivalent ways, depending on the sig

FIG. 1. Phase diagram of the one-dimensional extended H
bard model with correlated hopping at half-filling fortAA5tBB in
the Hartree-Fock approximation. The solid lines in each pla
tAB5const separate the regions of charge-density-wave~CDW! and
spin-density-wave~SDW! instabilities from the metallic (M ) region
~see text!. The dashed lines, the lineU5V50, and the plane
tAB50 delimit a pyramid inside which the system is metallic. T
dashed-dotted lines correspond to exact boundaries fortAB50.
-

at

,

n

y

e

d

i-
rs

e
e

e

of

tAAtBB in the exactly solvable limit:~a! keepingtAA5tBB ,
~b! keepingtAA1tBB22tAB50 with tAAÞtBB @in this case,
the three-body term of the Hamiltonian Eqs.~1! and ~2!,
vanishes8,29#. We have studied both cases using the Hartr
Fock approximation, quantum Monte Carlo, and exact dia
nalization. The results are qualitatively radically different
both cases. For the sake of clarity we show in Fig. 1,
Hartree-Fock phase diagram for the case~a!. The volume
inside the pyramid corresponds to the metallic (M ) phase. In
case~b! theM phase shrinks to the lineU5V50. In Sec. II
we explain the Hartree-Fock approximation. Sections III a
IV contain a description of the numerical methods and te
nical details. Sections V and VI contain the results for CD
and SDW order parameters obtained using Monte Carlo
the Lanczos method. Section V studies the CDW-SDW tr
sition, while Sec. VI refers to the metal-insulator transitio
M -SDW andM -CDW. Section VII is an analyzes the peak
at incommensurate wave vectors of the correlation functi
in the metallic phase. Section VIII is a summary and disc
sion.

II. HARTREE-FOCK PHASE DIAGRAM

To treat Eq.~1! within the Hartree-Fock approximation,
is useful to separate the zero-, one-, and two-body contr
tions of the correlated hopping term as

f i j5t11t2~ni s̄1nj s̄ !1t3ni s̄nj s̄ , ~7!

where

t15tAA , t25tAB2tAA , t35tAA1tBB22tAB . ~8!

We consider solutions with broken symmetry in a simp
cubic lattice ofD dimension to describe the SDW and CDW
phases. The order parameters for these phases, define
Eq. ~9!, are the staggered magnetizationm, for the SDW
phase, andn, for the CDW one. The mean values of th
occupations in real space are functions of them as follow

nis
SDW5 1

2 @11smexp~ iQ–Ri!#,

nis
CDW5 1

2 @11n exp~ iQ–Ri!#, ~9!

whereQ5p. The decoupling of the two- and three-bod
terms has been made as in Ref. 7. The Hartree-Fock Ha
tonian results

HHF5E1(
ks

@~2 t̄ek1U0!cks
† cks1UQ

scks
† ck1Qs#,

~10!

where

A5
1

L(k ek^cks
† cks&, ek5 2(

i

D

cos~ki !

U05
U

2
22t2A2t3A12V ~11!

and for the SDW phase,

b-

e
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FIG. 2. Hartree-Fock results for the groun
state energy per sitee ~solid line!, SDW ~left! or
CDW ~right! order parameter~dashed line!, and
charge gapD ~dotted line! as a function ofU at
V50 ~left! or V at U50 ~right! for several val-
ues of tAB . Open circles are exact results from
ED on a L512 ring. Vertical arrows indicate
where a nonvanishing charge gap sets in.
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t̄5t11t2n1t3
1
4 @~12m2!23A2#1 1

2 VA

UQ
s 52smFU2 2t3AG ,

E52AF t21t3
~12m22A2!

2 G2
U

4
~12m2!1V~ 1

2 A
221!,

~12!

while for the CDW one,

t̄5t11t2n1t3
1
4 @~12n2!23A2#1 1

2 VA

UQ
s 52nF2V2

U

2
2t3AG ,

E52AF t21t3
~12n22A2!

2 G2
U

4
~11n2!

1VF12A22~12n2!G . ~13!

The gap in both phases isD5uUQ
s u. For V50 we find a

nonzero solution for the gapDSDW whenU,Uc , with

Uc5t3
4

p
, ~14!

in 1D. It is easy to see that this boundary between the
tallic phase and the SDW one (U.Uc) is not affected by the
e-

addition of a small nearest-neighbor Coulomb repulsionV.
The gap equation for the CDW solutionDCDW possesses
nonzero solution forV.Vc , with

Vc5t3
1

p
1
U

4
, ~15!

in 1D. The critical values, Eqs.~14!,~15!, are 4/p times
smaller than those obtained in 2D. Finally, forU.Uc , the
boundary between the CDW and the SDW is given
V5U/2, as in the Hubbard limit. These boundaries a
shown in Fig. 1, for particular values oftAB with
tAA5tBB51. In Fig. 2, the values of the energy for differe
values oftAB , are compared with those obtained by nume
cal diagonalization of finite chains. We find quantitativ
agreement fortAB*0.5, for all values of the other param
eters. For smaller values oftAB , the agreement with the re
sults of exact diagonalization of finite chains is not so go
for V,Vc , where DCDW50. For strictly tAB50 and
U.UM2MI @see Eq. ~5!#, the ground state is a spin
degenerate Mott insulator.14,18However, a nonzero but sma
tAB introduces an effective nearest-neighbor exchange in
action J54tAB

2 /(U2V), and the antiferromagnetic correla
tions and with it the SDW phase is restored. It can be see
Fig. 1 that even in this limit, the SDW Hartree-Fock appro
mation gives qualitatively well the boundaries between
different phases. This is due to the fact that although t
long-range order does not exist in the chain, the antifer
magnetic Hartree-Fock solution describes well the ex
short-range order.
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III. NUMERICAL METHODS AND TECHNICAL DETAILS

The properties of the 1D electron gas have been ex
sively studied in the past by using a weak-coupli
g-ology scheme.30 This approach provides important insig
for the characterization of the ground state properties of o
dimensional correlated systems. In particular, it suggests
the competing phases with true long-range order are lim
to charge-density waves~CDW!, bond-ordering waves
~BOW!, and phase separation~PS!. Power law decaying cor
relation functions are expected to occur in the metallic
gime as well as in the spin-density-wave~SDW! phase.

Two complementary numerical algorithms have be
used to investigate the properties of the 1D generalized H
bard model, exact diagonalization~ED! of small clusters by
the Lanczos algorithm, and the quantum Monte Carlo te
nique ~QMC!. Because ED methods are restricted to sm
clusters, we need to choose properly the boundary condit
in order to reduce as much as possible finite-size effects
have a smooth behavior of static properties as a functio
band-filling r5Ne /L, whereNe is the number of particles
and L is the chain length. The boundary condition at t
closing link renormalizes the hopping amplitudet→teiLf,
so the system is not translation invariant. However, rede
ing the fermion operators by attaching a piece of flux to e
of them, one can recover translation invariance. The ba
ground flux per linkf originates from the boundary cond
tions and can be fixed by general considerations. In fac
there is no external field, the ground state of a system with
even number of particles will have no net current flo
Hence,f must satisfŷ c0uJ(f)uc0&50, whereuc0. is the
ground state wave function andJ is the current operator. Fo
noninteracting fermions with spin, one can do the calculat
analytically and find thatf is 0 for Ne54m12 ~periodic
boundary conditions! and p/L for Ne54m ~antiperiodic
boundary conditions!, wherem is an integer number. For th
interacting case, we checked numerically that this choic
also appropriate. Quite generally, after this choice of
background flux, the ground state energy behaves smoo
as a function of 1/L.

For QMC calculations, we implemented the world-lin
algorithm as described in Ref. 31. We make use also of
plaquette representation of Ref. 32. Since we are intere
in GS properties, the temperature was chosen in orde
reach the GS plateau.33 Most of the simulations were carrie
out on systems of up to 64 sites at inverse temperature
b520. The Trotter time stepDt was fixed at 0.125. A typi-
cal simulation involved~5–55! K warm-up and~150–800! K
sweeps through the lattice, with measurements perform
every~5-8! sweeps and collected following a coarse-grain
averaging procedure.34 By contrast to thet2U2V Hubbard
model, simulations of the generalized model Eq.~1! at low
temperatures are quite demanding due to near degener
in the low-energy part of the spectrum for particular valu
of the hopping parameters. These almost degenerate s
show up, for example, attAA5tBB51 astAB→0. Complete
degeneracy is found attAB50. This is related with the con
servation of the number of double occupied sitesd. In this
case, forU,UM2MI @see Eq.~5!#, there exists a finite den
sity of doublonsrd5d/L, which varies continuously be
tweenrd50.25 (U50) to rd50 (U>UM2 MI). The dou-
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blons, as well as the holes, move through the latt
interchanging their positions with theL22d unpaired spins.
The total kinetic energy is equal to that ofL22d spinless
fermions.17–19In a finite-size lattice, the number of doublon
in the GS,d0 , changes discontinuously as a function ofU,
but there is a large number of excited states withd near
d0 . For example, the excited states for whichd5d061,
have an excitation energy;24tcos(kF

sp72p/L)6U with
kF
sp5p(122d0 /L). In addition, for tAB→0 and fixedd,
there is a large spin and pseudospin degeneracy~the latter
related with permutations of doublons and holes17–19! which
for an open chain amounts to 2L22d(d

2d).18

At finite 0<tAB<0.5, the conservation ofd is almost
fulfilled and the low energy levels have an approximate
well defined number of doublons. In Fig. 3, we show t
energy spectrum at half-filling for an 8-site ring with per
odic boundary conditions in the sector of total wave vec
K50 for some values oftAB . It is clearly seen that as
tAB→0, the low energy part of the spectrum is more den
than in the Hubbard case. AttAB50.1 andU53, the ground
state hasd;1. There is a small gapD;0.14 between the GS
and the first excited state withd;0. Higher excited states
have eitherd;0 or d;1.

For small tAB andV, and values ofU corresponding to
the metallic phase, but near the boundary with the SD
insulating phase, we were not able to reach the ground-s
energy~known from Lanczos in small rings or from exa
results fortAB50) with QMC, even doing simulated annea
ing. The cause of this failure might be ascribed to the f
lowing fact: In each QMC sweep, the world lines are d
formed by means oflocal changes in the~111! lattice. When
a doublon and an empty site meet at nearest-neighbor s
the algorithm always replaces them by two nearest-neigh
singly occupied sites because of the local gain in ene

FIG. 3. Energy relative to the ground-state energy of the fi
100 lowest states of aL58 generalized Hubbard ring at half-filling
for total wave vectork50, tAA5tBB51 ,U53 and different values
of tAB . The arrows indicate the position of the 24th level.
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U2V, while the opposite process, although favored by
kinetic energy, should overcome a large energy barrier. T
situation has some similarities with the usualt2U Hubbard
model for largeU, which was solved by asimultaneous
deformation of spin-up and down world lines. We were n
able to find a similar special update for our problem. S
after warm up, we equilibrate in one of the so many sta
close to the GS withd50 and never reach thezero-
temperature plateau.

The ‘‘almost conservation’’ ofd for small tAB has also
consequences in the ED analysis. For example, in the lim
tAB5V50 and forU,UM2MI , the density of doublons in
the thermodynamic limitrd is known. For some finite sys
tems, it can happen thatLrd is not an integer, the Lanczo
method chooses one~or both! of two integer values ofd
nearer toLrd , and this introduces a nonmonotonic depe
dence of the physical quantities with size.

To study the properties of the generalized Hubbard mo
we first performed ED calculations of the charge g
D5E0(Ne11)1E0(Ne21)22E0(Ne11) for different
system sizes.E0(Ne) is the ground state energy of a syste
with Ne particles. Next, we calculate the chargeC(q) and
spinS(q) structure factors by ED and QMC methods. The
structure factors are defined as the Fourier transform of
charge-charge and spin-spin spatial correlation functions

C~q!5
1

L(i , j
L

^~ni↑1ni↓!~nj↑1nj↓!&e
iq~ i2 j !, ~16!

whereq5 (2p/L) n andn50,1,. . . ,L21,

S~q!5
1

4L(i , j
L

^~ni↑2ni↓!~nj↑2nj↓!&e
iq~ i2 j !. ~17!

In the QMC simulations, we have also collecte
;32 000 partial averages of the order parameters,

m5 1
2(

i
~21! i^ni↑2ni↓&,

n5 1
2(

i
@11~21! i^ni↑1ni↓&#, ~18!

corresponding respectively to the SDW and CDW phas
For further characterization of these phases, we built up
tograms of these quantities.

IV. HOW TO DETECT THE SDW AND CDW REGIONS?

At q5p, S(q) and C(q) can be used to identify the
CDW and SDW phases. In fact, in a perfect CDW or Ne
stateC(p) or S(p) diverge asL→`. However, because in
1D there is no true magnetic long-range order,C(p), in the
CDW region, diverges faster thanS(p) for the SDW phase,
when the length of the cluster is increased. In fact, in a p
fect CDW,C(p);L, while in the strong coupling limitU
@t, S(p);(lnL)11s with 0.2,s,0.3.35 C(p) @S(p)# is
expected to sature or decrease with size if the system is
in a CDW ~SDW! state.

The information given by the histograms of the order p
rameters Eq.~18! is also very useful to determine not on
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the boundary of the CDW and SDW phases, but also
distinguish between a first order and a continuo
transition.23,24 In the finite system, these histograms provi
a direct measure of the probability distribution~PD! associ-
ated to quantum fluctuations. In a disordered phase, the
exhibits a maximum around zero, which sharpens asL→`.
In contrast, in a SDW~CDW! phase the PD ofm(n) is
characterized by two absolute maxima located at6m0
(6n0), which also sharpen asL is increased. When a tran
sition boundary is approached from the ordered phase,
shape of the PD of the corresponding order parameter g
information about the nature of the transition. In a contin
ous transition, the two maxima of the PD in the order
phase evolve smoothly to a single one by crossing
boundary line. In a first order transition, the two maxima
the ordered phase show up as metastable~not absolute! ones
outside this region. This gives rise to hysteretical behavio
measured quantities.23 This type of analysis has been don
for the SDW-CDW transition of thet2U2V model23,24and
is similar to the one proposed in Ref. 36 for finite
temperature phase transitions.

Complementary, ED calculations can be also helpful
determining the CDW-SDW boundary line. In what follow
we describe our approach for this case. In a finite-size c
ter, there can be no spontaneous symmetry breaking. A t
fold degenerate ground state such as the CDW state in
infinite lattice will be detected as two nearly degener
states in a finite size cluster. These states will have oppo
parity, a result which can be used in finite-cluster calcu
tions to estimate the location of the transition boundary li
To illustrate this feature, let us consider a cluster of on
two-sites in thet2U2V model. In this system, the groun
state wave function is a combination of aS50 CDW- and a
S50 SDW-like states. By application of thestaggered
charge or magnetization order parameters, this state is
nected to triplet excited states withq5p. These excitations
can be characterized as triplet CDW- and SDW-like sta

FIG. 4. Spin ~dotted line! and charge~solid line! dynamical
structure factors atU51 for the t2U2V model in a ring of
L512 sites.~a! V50 ~SDW phase! and ~b! V50.8 ~CDW phase!.
~c! spin and charge lowest energy excitations of wave vec
q5p as a function ofV.
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The spinS(q,v) and chargeC(q,v) dynamical structure
factors will detect these excitations at low frequencies a
the SDW-CDW transition will be the result of a level cros
ing between the lowest excitations on both sectors. For
case ofL52 andL54, ED calculations locate the crossov
atU52V in agreement with the change of the weight of t
states with maximum order parameter in the exact analyt
solution of these clusters. For other cluster sizes, we perf
ED numerical calculations. In Figs. 4~a,b!, we plotS(p,v)
and C(p,v) well inside the SDW and CDW phases fo
L512. The lowest-energy peak corresponds to the spin-
and charge-charge correlations forV50 andV50.8, respec-
tively. Following these excitations as a function ofV, we
were able to locate the SDW-CDW ‘‘transition’’ poin
which forU51 is atV;0.51, in good agreement with pre
vious calculations. Higher energy states of these spectra
respond to multimagnon and charge excitations which
well separated from the low energy peaks.

V. SDW-CDW BOUNDARY LINE

In this section we will examine the competition betwe
CDW long-range and SDW algebraic order for both cas
~a! tAA5tBB and ~b! the electron-hole asymmetric cas
tAA1tBB22tAB50. We have calculated the CDW and SD
structure factors on rings of up to 64 sites by using QM
techniques and up to 12 sites by using ED methods to id
tify these regions of the (tAB2U2V) phase diagram for the
half-filled case.

A. Symmetric case

In this case we fixtAA5tBB51 and changetAB from 0 to
1. As explained in Sec. I, this study of the electron-ho
symmetric case provides an interpolation between two p
viously solved cases, namely thetAB50 plane and the
t2U2V model. Aside from the trivial case ofU5V50 for
which the system is metallic, the CDW and SDW regions
the only possible phases for positive values of the Coulo
interaction parameters in thetAB51 plane. By contrast, thre
competing phases exist fortAB50: CDW, metallic, and the
Mott-insulating regime. As already stated, the GS is hig
degenerate in the MI region whereU.2(utAAu1utBBu) and
V,U/2. In particular, the perfect Ne´el and ferromagnetic
states are part of the spin-degenerate GS. A small hop
tAB breaks this degeneracy in favor of a SDW state. Clea
at largeV, this hopping process amounts only to a diago
correction22tAB

2 /(3V2U) to the energy of the CDW stat
with maximum order parameter. Thus the CDW region w
be not very much affected astAB→1. In Fig. 5, we show the
spin and charge structure factors fortAB50.6 andU51. This
value ofU is very close to the boundary between the SD
and theM phases, predicted by the Hartree-Fock meth
(Uc51.02 for this value oftAB). These structure factors hav
the same shape that we find for thet2U2V model for the
same value ofU. In the present case,S(p) seems to have a
stronger divergence for the smaller values ofV,U/2 than
that observed in thet2U2V limit. However, it is not obvi-
ous that the system is within the SDW phase for this value
U. We shall return to this point in the next section. At lar
values ofV.U/2, the system is characterized by 2kf CDW
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correlations. AsV is decreased,C(p) decreases and at th
same time,S(p) gains intensity signaling dominating SDW
fluctuations in theV,U/2 sector, while for small~large!
values ofV, the spin ~charge! structure factor clearly in-
creases with system size, indicating that the system is in
SDW ~CDW! phase. Unfortunately, the value ofV at the
transition cannot be identified with enough accuracy neit
with this method nor by the crossing of the lowest char
and spin excitations. The spin~charge! lowest excitation en-
ergy increases~decreases! monotonically with increasingV
and for example, fortAB50.6 andU52.5 they coincide at
Vc;1.1. Although in thet2U2V model, this approach
works properly, in the present caseVc is too low, since one
cannot expect a critical value smaller than that predicted
the Hartree-Fock calculation (V;1.25). However, it shows
indeed the softening of the CDW mode followed by an
crease at largerV of C(p) ~from 0.07 atV51.0 to 0.11 at
V51.3).

In Fig. 6, histograms ofn, Eq. ~18!, are shown for
U52.5. The transition boundary is atV;1.27, in good
agreement with the Hartree-Fock results. The data of
histograms are nicely fitted by three Gaussians shown in
figure. One of them is centered aroundn50, while the other
two are centered around finite values6n0 . The three Gaus-

FIG. 5. ~a! Spin-spin and~b! charge-charge structure factors
the half-filled generalized Hubbard model atU51.0, tAB50.6, and
L516,32. The wave vectorq is measured in units ofp/16.
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55 1179GROUND-STATE PHASE DIAGRAM OF AN EXTENDED . . .
sians reflect the fluctuations of the finite system between
two competing phases near the boundary line. The first
accounts for the weight of the fluctuations around sta
without CDW order in the total PD, while the latter corr
spond to the weight of fluctuations around ordered sta
which gain intensity at expense of the former as the tra
tion is approached. Interpolating the evolution of the th
Gaussians betweenV51.25 andV51.30, we find a PD with
three equal flat probability maxima separated by two shal
valleys, atV51.27, what is a signal of a weak first-ord
transition. However, as found earlier,24,27the character of the
transition is quite sensitive to finite-size effects. For e
ample, it was found in thet2U2V model, that forV&2 the
transition evolves from first to second order as the size of
system increases.27 The position of the tricritical point will
be discussed in Sec. VIII. The same behavior is obtained
other values oftAB and for (U,V) outside of the pyramid
drawn in Fig. 1. Inside the pyramid, the metallic phase
stabilized. Discussion about the CDW-M and SDW-M tran-
sition will be done in the next section.

For large values of the Coulomb interaction paramete
the SDW-CDWU52V transition line found fortAB50 is
modified by this hopping process as a result of the effec
exchange interactionJ;4tAB

2 /(U2V) between neighboring
spins in the SDW phase and the above mentioned sec
order correction to the energy of the CDW state. The lo
tion of this boundary line can be estimated by equating
energy of the perfect CDW and SDW states includingtAB in
perturbation theory as in Ref. 23. The resulting critical va
of V is

Vc5U/211.545tAB
2 /U. ~19!

FIG. 6. Histograms of the CDW order parametern in a L532
site lattice fortAB50.6, U52.5, andV50.12,0.125,0.128,0.13.
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B. Asymmetric case

In this case, the two-bodyt3 term does not contribute to
the correlated hopping, see Eq.~6!. The evolution towards
the t2U2V model can be thought as21<t2<0. At
V50, depending on the value oftAB (t2), there are two
distinct situations that one can find by rewriting Eq.~1! in
k space. There is pairing between particles fortAB.tAA
(t2.0). Furthermore, numerical simulations and a BC
mean field calculation provide evidence in favor of a sup
conducting GS for small values ofU.8,29,37 Instead, in the
Hartree-Fock approximation, the main effect oft2,0 is to
narrow the bandwidth. The gap equations~12! and ~13! are
the same as those of thet2U2V model with a renormalized
smaller hopping. Thus we do not find a gapless region in
case for any positive value ofU andV. Therefore, the only
possible phases correspond to SDW or CDW. In Fig. 7,
plot C(q) for U51 andU55. We chosetAA51,tBB50.6,
and tAB50.8 and perform calculations forL516 and 32 us-
ing the QMC method. ForU51, the general behavior o
S(q) ~not shown! is similar to that of Fig. 5~a!. Instead, for
U55 andV<2.5 S(q) has the form of a sharp peak. Bot
structure factors peak atq5p. C(p) increases asV is in-
creased consistently with a transition to a CDW phase. At
same time, the behavior ofS(p) as a function ofV is con-
sistent with a SDW region at smallV. At smallU, the tran-
sition seems to be smooth while the structure factors

FIG. 7. Charge structure factor for the electron-hole asymme
case, two system sizes, and~a! U51 and~b! U55. Other param-
eters aretBB50.6 andtAB50.8. The wave vectorq is measured in
units ofp/16.
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1180 55LILIANA ARRACHEA, E. R. GAGLIANO, AND A. A. ALIGIA
q5p change abruptly near the transition boundary for la
values of the Coulomb interaction parameters@for U55,
S(p) increases from;0.18 to;0.6 asU is decreased from
2.7 to 2.5#. For small values ofU, the SDW-CDW transition
line is as before, difficult to determine. However, forU55,
the size dependence of the structure factors clearly show
the critical value ofV is near but slightly larger thanU/2, in
agreement with the strong-coupling value~19!.

VI. THE METAL-INSULATOR TRANSITION

In the tAB50 plane, a whole gapless region appears
small values ofU andV. As tAB is turned on, the metallic
phase in the Hartree-Fock solution decreases in size coll
ing to one pointU5V50 in thetAB51 plane. To follow the
M -CDW andM -SDW boundaries at finitetAB , we calculate
first the charge gap for different system sizes. In Fig. 8,
show our results fortAB50.2, and several values ofV at
U50. For small values ofV,0.4, we observed finite-siz
effects on systems of 4n12 sites due to frustration induce
by the almost conservation ofd for small values oftAB . The
optimum doublon density fortAB5V50 is d/L51/4. A
rough extrapolation of the gap suggest that theM phase ex-
tend up toV;(0.2–0.4! to be compared with the Hartree
Fock valueV;0.5. For larger values of the nearest-neighb
Coulomb interaction, there are no noticeable frustration
fects and the charge gap extrapolates to a finite value
L→`. At the same time, the charge structure factor peak
q5p in the gapped region indicating theM -CDW transition.
In Figs. 9~a,b!, we plotC(q) obtained by ED atU50 for
values oftAB close to known limits (tAB50 andtAB51). In
the CDW region, the peak atq5p scales asL while in the
metallic phase there is an incipient peak which signals o
strong nearest-neighbor charge correlations rather than a
long-range order. According to the Hartree-Fock results@Eq.
~14!#, Vc50.51 andVc50.13 for the values oftAB andU

FIG. 8. Charge gapDc vs inverse of system length fo
tAB50.2, U50, and several values ofV. For solid symbols, taken
only the points withL58,12 which have no frustration~see text in
Sec. V! and assuming an error;5% inDc , the data are consisten
with an extrapolation toDc50 for L→`.
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used in Figs. 9~a! and 9~b!, respectively. NearVc , it seems
that C(q) is flat for q;p, while at least for smalltAB , if
V,Vc , C(q) peaks at incommensurate positions~discussed
in the next section!, while for V.Vc , the CDW peak at
q5p develops.

In Figs. 9~c,d!, we show the spin structure factorS(q) as
a function ofU for V50 and the same values oftAB as
before. The Hartree-Fock critical value ofU for these values
is ~c! Uc52.04 and~d! Uc50.51. As in the previous case
the shape ofS(q) changes near theM -SDW transition, but
no clear criterion to determine the transition point can
established from the information gathered in Fig. 9.

We have also studied the scaling of the charge gap
Drude weight for different values ofU and V50. Dc de-
creases with increasing system size~like the behavior shown
in Fig. 8 forV50.8). All curvesDc(1/L) look very similar
for U,UL , while Dc increases withU for U.UL . For
tAA5tBB51, tAB50.6, UL;3.2, considerably larger tha
the valueUc for which a gap opens according to the Hartre
Fock result Eq.~14!. The Drude weight or charge stiffness
obtained from the flux dependence of the ground state en
~see Sec. III! as

Dc5
L

2

]2E~L,F!

]F2 UF5F0

. ~20!

For tAA5tBB51, tAB50.6, the Lanczos results in systems
4, 6, 8, 10, and 12 sites are consistent with an extrapola
to zero ofDc if and only if U.3;UL , in agreement with
the results ofDc . However, it is clear that the extrapolation
to the thermodynamic limit are not valid if the correlatio
length j exceeds the size of our rings. For the Hubba
modelj was calculated by Stafford and Millis and increas
for decreasingU.38 We interpretUL as the minimum value
of U for which the charge gap in the thermodynamic limit
of the order of the minimum possible charge excitation e
ergy in our finite systems. It should be a lower limit
UM , whereUM;2(tAA1tBB) characterizes the crossove
between two insulating regimes: a weak coupling one wh

FIG. 9. Charge@~a! and ~b!# and spin@~c! and ~d!# structure
factors of the half-filled generalized Hubbard model for a ring
L512 sites, several values ofV at U50, and ~a! and ~c!
tAB50.2, ~b! and ~d! tAB50.8. The wave vectorq is measured in
units ofp/6.
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55 1181GROUND-STATE PHASE DIAGRAM OF AN EXTENDED . . .
the antiferromagnetic fluctuations introduced bytAB and
small U ~combined with the nesting of the Fermi surfac!
open an exponentially small gap, and a Mott regime,
which the insulator has one~essentially! localized particle at
each site.18,39Thus for tABÞ0 a true Mott transition~from a
metal to a Mott insulator! does not exist. Rather for sma
values ofU (;Uc) a transition to a SDW takes place.

In our finite rings, we cannot detect the opening of a sm
SDW gap if it is smaller than the minimum possible char
excitation energy, which one can estimate as 2p/(Lvc),
wherevc is the charge velocity. However, the Mott regime
clearly identified. The charge velocity can be calculated
two ways. The more direct one uses the minimum energ
a function of wave vectorES(q), for the same total spin a
the ground state29

vc5
ES~2p/L1Q!2ES~Q!

2p/L
, ~21!

whereS,Q are the total spin and wave vector of the grou
state ~both zero in our case!. The other expression, vali
when the system is in a Tomonaga-Luttinger-liquid regi
is29

vc
25

LDc

2
„E~N12!1E~N22!22E~N!…, ~22!

FIG. 10. Histograms of the CDW order parametern in a
L532 site lattice fortAB50.6, U50 andV50.15,0.2,0.25. The
curves have been fitted with three Gaussians, although they
not necessarily a physical meaning in this case.
n

ll

n
as

e

whereE(N) is the ground state of the ring withN particles.
In an insulator, the concept ofvc becomes meaningless, an
thus, a deviation of the results obtained using both exp
sions is again an indication of an opening of a~significant!
charge gap. In rings from 8 to 12 sites, this deviation beg
at U;1.5t for the Hubbard model andU;2.5 if
tAA5tBB51, tAB50.6.

While neither the scaling of the charge gap or Dru
weight, nor the study of the charge velocity in our sm
rings is able to detect the opening of an exponentially sm
gap, the position and character of theM -CDW and
M -SDW transitions can be efficiently studied using the
formation obtained from the PD of the order parameters
the QMC calculations. In Fig. 10, results are shown for t
PD of the CDW order parametern atU50 andtAB50.6 for
an L532 lattice. The transition from the metallic to th
CDW phase takes place atV;0.25, which is manifested by
the development of two peaks in the PD. This is in go
agreement with the Hartree-Fock prediction. From Fig. 11
similar analysis can be made withm at V50 to determine
the transition from the metallic to the SDW. It seems to ta
place atU;(1.00–1.10!, also in agreement with Hartre
Fock. In contrast to the results shown in Fig. 6, according
the PD ~which shows one maximum evolving into tw
maxima with increasing values of the corresponding inter
tion!, it is seen that both, theM -CDW andM -SDW are
continuous transitions. This fact is also reflected in the
havior of the structure factorsC(q) andS(q), which display

ve

FIG. 11. Histograms of the SDW order parameterm in a
L532 site lattice fortAB50.6,V50 andU50.9,1,1.1. The curves
have been fitted with three Gaussians, although they have not
essarily a physical meaning in this case.
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incipient divergences atq5p within theM phase near the
corresponding boundary. This is the case, for example
S(q) shown in Fig. 5~a! for small values ofV. Our previous
exact results fortAA5tBB , tAB50 have also led to continu
ous metal-insulator transitions.14–16,18

VII. SPIN-SPIN AND CHARGE-CHARGE CORRELATIONS
IN THE METALLIC PHASE

As already mentioned in Secs. I and III, exact results
tAB50 ~Refs. 12–19! show that the gapless phase (M ) that
exists for smallU andV is characterized by large spin an
charge degeneracies. It is interesting to study how the C
and SDW correlations are introduced in theM phase as
tAB increases. We remarked in previous sections that
tAB→0, doublons and holes can be almost identified as
particles. In dimensions higher than one,14,15 these species
introduce significant effects in the magnetic response. In p
ticular, for tAB50 andU&UM2MI , where their concentra
tions are small, a double Nagaoka state with one hole
one doublon in a ferromagnetic background is expected.
also rather likely that magnetic polarons of Nagaoka isla
immersed in an antiferromagnetic background are formed
tABÞ0.15 In one dimension, the lattice does not fulfill th
connectivity hypothesis of Nagaoka’s theorem, so, in wh
way do the antiferromagnetic correlations grow astAB→1?

In theM phase, both structure factors display incomme
surate responses with peaks atq5p6d, d→0 asU→Uc ,
as is shown in Fig. 9. The shapes ofS(q) andC(q) resemble
the corresponding ones for the Hubbard model out of h
filling. To understand this result, let us consider first the lim
V50, tAB→0. In this limit we have obtained that the groun
state wave function can be factorized in three terms:
describing the position of the singly occupied sites, and
spin and pseudospin wave functions which describe res
tively the spin of the unpaired particles and the charge in
remaining sites. This generalization of the wave function
the infiniteU Hubbard model40 has been proposed and ve
fied by ED in Ref. 17. Because only unpaired fermions c
tribute to the spin structure factor,S(q) does not depend on
the pseudospin wave function. In particular if all doubly o
cupied sites are replaced by empty sites, we can takeS(q)
from the result of Ogata and Shiba40 for theU→` Hubbard
model. ThusS(q) is peaked atq5pr f , where r f is the
density of unpaired fermions and is a simple function
tAA5tBB , U, and the total densityr5Ne /L. For
tAA5tBB , the transformation of Shiba17,41 which inter-
changes empty sites with singly occupied sites with spin
and doubly occupied sites with singly occupied sites w
spin down, has the effect of changing the sign ofU in the
Hamiltonian. Using this transformation, at half-filling and f
qÞ0, we can write C(q,12r f)5S(q,r f)/4. Thus the
charge-charge correlation functions are peaked
q5p(12r f) in the metallic phase of the system fo
tAB→0.

For tABÞ0, the number of doubly occupied and sing
occupied sites are no longer conserved quantities. Howe
for small tAB , the doublons~doubly occupied sites! and
holes ~empty sites! can still be thought as almost genuin
particles and althoughS(q) now changes if the doublons ar
replaced by holes, its qualitative behavior remains the sa
of
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This is an important fact from the practical point of vie
since the critical slowing down of our QMC treatment a
the fact that the system is trapped in metastable states
not occur in the absence of doublons. In Fig. 12~a!, we com-
pare results of ED calculations of the spin-spin structure f
tor S(q) at tAB50.2 andU52.5, whererd51/8 before and
after the replacement of the doublon by a hole. The m
difference is found at smallq where S(q);qa with
a51(2) for thedoublon~two-hole! case. The incommensu
rate peak atq5pr f is seen in both cases, although there
no quantitative agreement. The intensity of the incommen
rate peak increases as the system size is increased,
shown in Fig. 12~b!.

VIII. SUMMARY AND CONCLUSIONS

We have studied the phase diagram at half-filling of
extended Hubbard model which contains two physical ing
dients expected to be important: the correlated hopping
the nearest-neighbor repulsionV. In addition to the charge-
density-wave~CDW! and spin-density-wave~SDW! phases
already known in the model without correlated hoppi
(t2U2V model!, there is also a metallic phase (M ). The
Hartree-Fock phase diagram shown in Fig. 1 is qualitativ
correct for thet2U2V model and an exactly solvable lim
obtained previously. We have also studied the charge g
charge-charge and spin-spin correlation functions, proba
ity distributions of the order parameters of the CDW a
SDW phases, and several aspects of the possible transi
as functions of the parameters of the model, using quan
Monte Carlo and exact diagonalization of finite rings.
spite of the difficulties of these methods~critical slowing
down and finite-size effects!, the results are consistent wit
the Hartree-Fock phase diagram. For small values of the
teractions and smalltAB @see Eqs.~1! and ~2!#, the charge-
charge and spin-spin correlation functions in the meta
phase are peaked at incommensurate wave vectors, ev
half-filling.

We would like to discuss the nature of the transition b
tween any two of the phases studied~CDW, SDW, M! and

FIG. 12. Spin structure factor.~a! Obtained from ED forL58
and two different densities.~b! Obtained from QMC for two differ-
ent lengths and fixed densityr53/4. Other parameters ar
tAB50.2,tAA5tBB51,V50,U52.5. The wave vectorq is mea-
sured in units ofp/4 in ~a! andp/16 in ~b!.
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55 1183GROUND-STATE PHASE DIAGRAM OF AN EXTENDED . . .
the tricritical point fortAA5tBB5t andtAB<t. As discussed
at the end of Sec. VI, theM -SDW andM -CDW transitions
are continuous. FortAB50, the CDW-SDW transition, which
takes place forU.4t is discontinuous.14 For smallV, we
also obtained in Sec. VI that the change of regime from
weak- to strong-coupling insulator takes place at some va
UM.UL;2. A similar effect is observed for smallU in the
CDW asV is increased. The valueUM;4t is consistent with
previous studies of the position of the tricritical point for th
t2U2V model, which separates the line of second-ord
CDW-SDW transition at smallU to that of first-order tran-
sition at large U.23–25,27 In the renormalization-group
schemes,24,25 the criterion to determine the tricritical point i
based on the change of the scaling dimension of an ap
priate operator. Below the tricritical point, this operator
irrelevant indicating that the system is in a weak-coupli
regime. These SDW and CDW weak-coupling regimes
strongly affected bytAB and disappear in favor of a gaples
metallic phase in the limittAB→0.

These facts, together with the results fortAB→0 men-
tioned above, lead us to speculate that the tricritical poin
located atU5Ut;4t, almost independently oftAB . Starting
from the limit tAB50, it is clear that the effect oftAB reduces
the region of existence of theM phase, but one cannot ex
pect that fluctuations induced bytAB increasethe region of
first-order transition. Thus 4t should be alower boundfor
Ut . The value ofUt;UM separates the weak coupling re
gimeU,Ut with a small gap which vanishes at the trans
tion line, from the strong coupling regimeU.Ut with a
large gap that cannot be reduced to zero by the combi
effects of fluctuations introduced bytAB and the competition
between CDW and SDW. Therefore, the transition should
first order forU@Ut . Since the above arguments do n
l
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depend on dimensionality, one might expect the same qu
tative behavior in dimensionsD.1.

If finite-size effects were disregarded, the above cons
erations which places the tricritical point atU*4t would be
in clear contradiction with the Monte Carlo probability dis
tribution results of Fig. 6, which are indicative of a first
order transition atU;2.5. Cannon and Fradkin,24 with the
same method, also obtained first-order transitions at very
values of the interactions in thet2U2V model. This was
later ascribed to statistical errors, to large values of the ti
discretization (Dt50.5), and to large temperatures.27 Al-
though all these features have been improved in the pres
study, we still find that it is necessary to do careful finite-si
scaling for different values of the interactions, to be able
determine the position of the tricritical point by Monte Carl
or exact diagonalization of finite systems.27

If the three-body term of the correlated hopping vanish
@ t350 in Eq. ~7!#, the metallic phase disappears for the sig
of the two-body term (t2,0) considered here. However
previous numerical and mean-field calculations8,29,37 show
that for t350,t2.0, the system is superconducting, even
half-filling. Superconductivity also occurs for other param
eters and fillings, liketAB,tAA5tBB ,V50, smallU, and out
of half-filling.17,29 Other interesting models with correlate
hoppings also display superconductivity.19,42,43
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