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Ground-state phase diagram of an extended Hubbard chain
with correlated hopping at half-filling
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We consider a generalized Hubbard model with on-site interadfipmearest-neighbor repulsios, and
nearest-neighbor hopping for spin which depends on the sum of particleg-with opposite spin in the two
sites involved. The hopping matrix elements are denoted Rytag,tgg for m;=0,1,2, respectively. For
0<tag<taa=tgg, We have determined the regions of parameters for which the ground(&8teof the
one-dimensional system is a charge-density w@/@W), a spin-density wav€SDW), or a metal M), using
Hartree-Fock, exact diagonalization of finite chains and quantum Monte Carlo. The results agree qualitatively
with the exactly solvable limit ofsg=0. For O<t g<<taa=tgg, the GS is a for sufficiently low values of
U andV. In contrast, wherisp+tgg— 2tog=0, our results suggest that the GS is either a CDW or a SDW,
with the boundary between them lying near the ltie2V. [S0163-18286)08929-1

I. INTRODUCTION obtained by Schider and Fedr&' and has been also pro-
posed to describe the benzene moleddle.

Two key physical ingredients, strong correlations and low The phase diagram has been investigated previously for
dimensionality, seem to be crucial for the electronic structurd,g=0 and also fortaa=tgg=tag (Hubbard limij. In the
of novel materials, such as the cuprate superconductorfirst case, taking in additiobyp=—tgg, Strack and Voll-
quasi-one-dimensional organic conductbrer conducting hardt obtained the exact ground-st#@S) in arbitrary di-
polymers?> The Hubbard mod@lis the generic model for mensions, in two regions of parameters using lower and up-
interacting electrons in narrow-band and highly-correlatedper bounds for the GS enerd§yThe lower bounds have been
fermionic systems. It contains aoccupation-independent improved by Ovchinnikov3 The results have been extended
nearest-neighbor hopping and an on-site interactiot. to all values ofty, andtgg and the phase diagram has been
However, in any physical realization, one would expect thatdetermined exactly in one dimensighD) for all (positive
the hopping energy depends on the occupation of the sitesalues ofU andV.* The results fott,g=0 can be summa-
involved. In addition, in many real materials, particularly for rized as follows: in an arbitrary lattice i@ dimensions with
low carrier densities or near a metal-insulator transitioncoordination number=2D, the GS is a Mott insulatqMI),
there is considerable evidence that Coulomb interactions aforresponding to all sites singly occupied, if
longer range are essential, and one needs to include at least a
nearest-neighbor repulsiah This term allows one to obtain U>zmax(V,|taa + [tgg)). (3)

a correlation exponer ,< 1/2,* which seems necessary to hi hiah spin d h
explain the observed strong x-ray scattering & 4n the | 1iS State possesses a high spin degeneracytfger0 the

organic compound TTF-TCN®,while in the Hubbard spin degeneracy is broken and this phase is a spin-density
modelK =1/2 for all values ofU/’t 6 wave (SDW). For all simple cubic lattices and also other
The gbove discussion leads naturally to the followingbipartite lattices like 3D bc latticE, the GS is a charge-

Hamiltonian written in standard notation as density wave(CDW) if

V>max(U/z,(U/2+ |taal +|tegl))/2. (4)

H=— > &j(clez+Hc)+U nin +VY ninj, o _
(e i a0 For these lattices, iD>1, the GS possesses metallic behav-
(1) ior (M) within a region of J,V) between these two phases.

where the correlated hopping; is given by The exact boundary betwedft and Ml is

¢ij={taa(1=n;;)(1=nj,) +tgpni Nj, Uni-=2(tanl + [teal)- ®

T tagl i+ Ny — 20,0501} (2)  The metallic character is not fully developedin= 1,16 but
the exact boundary between the gapless phisednd the

The particular cas¥ =0 has been derived in different physi- Ml is also given by Eq(5).1""*°Equation(5) is also valid for
cal situations, as an effective one-band model to describe thee 3D fcc lattice, a 2D hexagonal lattice, and other latfit&s
low-energy physics of intermediate-valence systéms,if V=0, tan>0, andtgg>0.
“hole” superconductord (including also phonons in the an- Finally, for D=1, the boundary fot,g=0 (Ref. 14 be-
tiadiabatic approximatioh, and cuprate superconductdfs. tween theM and CDW is given by
IncludingV, the model contains the most important terms of
the one-band Hamiltonian for the cuprate superconductors Vi —cow=(U/2+ |tan + |tggl)/2. (6)
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taatgg in the exactly solvable limit{a) keepingtaa=tgg,

laB (b) keepingtaa+tgg—2tag=0 With taa#tgg [in this case,
Q the three-body term of the Hamiltonian Eq4) and (2),
AN 58 vanishe&2%. We have studied both cases using the Hartree-
& Fock approximation, quantum Monte Carlo, and exact diago-
Q i nalization. The results are qualitatively radically different in
< \ILK & both cases. For the sake of clarity we show in Fig. 1, the
10 H ‘\ %Q Hartree-Fock phase diagram for the cdag The volume
09r Q RSN inside the pyramid corresponds to the metallt)(phase. In
08¢ R S SN case(b) the M phase shrinks to the lingd=V=0. In Sec. Il
071 o } we explain the Hartree-Fock approximation. Sections Il and
0.6 IV contain a description of the numerical methods and tech-
0.5r nical details. Sections V and VI contain the results for CDW
041 and SDW order parameters obtained using Monte Carlo and
0.3 the Lanczos method. Section V studies the CDW-SDW tran-
02¢ sition, while Sec. VI refers to the metal-insulator transitions
0.1r . M-SDW andM-CDW. Section VIl is an analyzes the peaks
005 1 at incommensurate wave vectors of the correlation functions
\ in the metallic phase. Section VIl is a summary and discus-

FIG. 1. Phase diagram of the one-dimensional extended Hub-
bard model with correlated hopping at half-filling fofta=tgg in
the Hartree-Fock approximation. The solid lines in each plane
tag= const separate the regions of charge-density-w@aW) and
spin-density-wavéSDW) instabilities from the metallic1) region
(see text The dashed lines, the linel=V=0, and the plane
tag=0 delimit a pyramid inside which the system is metallic. The
dashed-dotted lines correspond to exact boundariet, fer 0.

Il. HARTREE-FOCK PHASE DIAGRAM

To treat Eq.(1) within the Hartree-Fock approximation, it
is useful to separate the zero-, one-, and two-body contribu-
tions of the correlated hopping term as

oij=ti+to(niz+ N5 +tsnign (7)
For tapa=tgg=1, the exact phase diagram in 1D is repre-
sented by the dashed-dotted line at the bottom of Fig. 1.

Whentya=tag=tgg perturbation theory in high dimen-
sions gives a boundary between the CDW and the SDW at

U=zV and no metallic phas€.In 1D, the phase diagram we consider solutions with broken symmetry in a simple
has been studied using the Hartree-Fock approximation, cupic lattice ofD dimension to describe the SDW and CDW
real-space _renormalization  grot, Monte Carlo?®  phases. The order parameters for these phases, defined by
bOSOﬂizatiOI‘?,4’25 and exact diagonalization of finite Eq (9), are the Staggered magnetizatin‘n for the SDW
Chain52.6'27A" results coincide in that there is nél phase, phase, andh, for the CDW one. The mean values of the

except eventually, on the line of the second-order transitiomccupations in real space are functions of them as follows:
discussed below. The Hartree-Fock resiithowed at the

top of Fig. ) predict a first-order transition between a CDW nSPW=1[1+omexpiQ-R))],
and a SDW again dt/=2V. While these results are quali-

tatively correct, the other methods give a boundary slightly
shifted to higher values df, and obtain a continuous tran-

sition for small values of the interactiof5The line of the  \here Q= The decoupling of the two- and three-body

; . i 25,27 . )
continuous transition ends at the tricritical po%fﬁ. terms has been made as in Ref. 7. The Hartree-Fock Hamil-
There is no overall agreement about the exact position of thg)nian results

tricritical point. HirscH® located it atU~2V~3t, Cannon
and Fradkin at) ~2V~1.%;?* Cannon, Scalettar, and Frad-

where

ti=taa, tr=tag—tan, tz=taaTtgg—2tag. (8

ncPW=1[1+nexpiQ-Ry)], (9)

kin at U~2V~(4-5)t,%” while Voit at U~2V~4.7.% Hue=E+ > [(—text+Ug)ClyCuo+ USCH,Cusgol,
Our results suggest that the tricritical point might be located ko 10
at U~2V~4t. We shall return to this point in Sec. VIILI. (10

The aim of the present work is to determine, at least qualiyhere
tatively, the 1D phase diagram in the space of the parameters
(U,V,tag). We consider the third coordinate interpolating 1 D
between both previously studied cases mentioned above. We A= —Z 6k<CI,eru>, €= 22 cogk;)
remind the reader that due to the symmetry properties of the L% [
Hamiltonian®>2° changing the sign of all hoppings or that of
tag alone, leads to an equivalent model. Thus we take ]
tap=1 as the unit of energy and restrict ttgs=0. Interpo- UO:E_ZtZA_t3A+2V (11
lation betweertya=tag=tgg and|taal —|tgg| =tag=0 can
be done in two nonequivalent ways, depending on the sign aind for the SDW phase,



The gap in both phases is=|Ug|. ForV=0 we find a

nonzero solution for the gapSPW whenU<U,, with

(14
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T=t,+ton+ts 1 [(1—m?) —3A2]+ L VA addition of a small nearest-neighbor C_oulomb repulsion
The gap equation for the CDW solutioh“®" possesses
U } nonzero solution fovV>V,, with
Ul=—om =—t3A|,
) 2 V.=t ! + bt (15
(1-m?—A%)] U ¢ a4
E=2A t2+t3—}_—(1_m2)+V(%A2_1), . .- .
2 4 in 1D. The critical values, Eqs(14),(15), are 4fr times
(12 smaller than those obtained in 2D. Finally, fde>U,, the
while for the CDW one, boundary between the CDW and the SDW is given by
V=U/2, as in the Hubbard limit. These boundaries are
t_=t1+t2n+t3%[(1—n2)—3A2]+ 1VA shown in Fig. 1, for particular values of,g with
taa=tgg=1. In Fig. 2, the values of the energy for different
U values oft,g, are compared with those obtained by numeri-
Ug=-n 2V—E—t3A}, cal diagonalization of finite chains. We find quantitative
agreement fot,g=0.5, for all values of the other param-
(1-n2—A%)] U eters. For small_er valu_es p/f\B, thg agreement with the re-
E=2A|t,+1t3 }— —(1+n?) sults of exact diagonalization of finite chains is not so good
2 4 for V<V., where A®®Y=0. For strictly t,g=0 and
1 U>Upy_m [see Eq.(5)], the ground state is a spin-
+V EAZ—(l—nZ) . (13)  degenerate Mott insulatdf:*® However, a nonzero but small

tapg introduces an effective nearest-neighbor exchange inter-
actionJ=4t,§B/(U—V), and the antiferromagnetic correla-

tions and with it the SDW phase is restored. It can be seen in
Fig. 1 that even in this limit, the SDW Hartree-Fock approxi-

mation gives qualitatively well the boundaries between the
different phases. This is due to the fact that although true
long-range order does not exist in the chain, the antiferro-

in 1D. It is easy to see that this boundary between the memagnetic Hartree-Fock solution describes well the exact
tallic phase and the SDW on&J U _) is not affected by the short-range order.
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IIl. NUMERICAL METHODS AND TECHNICAL DETAILS

The properties of the 1D electron gas have been exten-
sively studied in the past by using a weak-coupling s
g-ology schemé? This approach provides important insight
for the characterization of the ground state properties of one- 6}
dimensional correlated systems. In particular, it suggests that s
the competing phases with true long-range order are limited sk
to charge-density wavegCDW), bond-ordering waves I
(BOW), and phase separatidRS. Power law decaying cor- 4
relation functions are expected to occur in the metallic re- 2
gime as well as in the spin-density-wa(@DW) phase.

Two complementary numerical algorithms have been
used to investigate the properties of the 1D generalized Hub-
bard model, exact diagonalizati¢ggD) of small clusters by
the Lanczos algorithm, and the quantum Monte Carlo tech-
nigue (QMC). Because ED methods are restricted to small
clusters, we need to choose properly the boundary conditions
in order to reduce as much as possible finite-size effects and 0
have a smooth behavior of static properties as a function of '
band-filling p=N./L, whereN, is the number of particles tAB
and L is the chain length. The boundary condition at the
closing link renormalizes the hopping amplitutieste'-?, FIG. 3. Energy relative to the ground-state energy of the first
so the system is not translation invariant. However, redefini00 lowest states of a=8 generalized Hubbard ring at half-filling
ing the fermion operators by attaching a piece of flux to eacHor total wave vectok=0, tya=tgg=1 ,U=3 and different values
of them, one can recover translation invariance. The backef t,g. The arrows indicate the position of the 24th level.
ground flux per link¢ originates from the boundary condi- _
tions and can be fixed by general considerations. In fact, iPlons, as well as the holes, move through the lattice
there is no external field, the ground state of a system with aiterchanging their positions with the—2d unpaired spins.
even number of particles will have no net current flow. The total kinetic energy is equal to that bf-2d spinless
Hence,¢ must satisfy | J( )| o) =0, where| o> is the fermions:~In a f|n|te—5|;e Iatt_lce, the number of QOublons
ground state wave function adds the current operator. For in the GS,dy, changes discontinuously as a functionlbf
noninteracting fermions with spin, one can do the calculatiorPut there is a large number of excited states wdtmear
analytically and find thatp is 0 for N.=4m+2 (periodic ~ do. For example, the excited states for whidkdo*1,
boundary conditionsand =/L for No=4m (antiperiodic have an excitation energy —4tcoske™+27/L)+U with
boundary conditions wherem is an integer number. For the ki’=m(1—2dy/L). In addition, fort,g—0 and fixedd,
interacting case, we checked numerically that this choice ithere is a large spin and pseudospin degene(tmy latter
also appropriate. Quite generally, after this choice of theelated with permutations of doublons and hbfe¥) which
background flux, the ground state energy behaves smoothfipgr an open chain amounts td 224(3) .8
as a function of 1. At finite 0<t,z=<0.5, the conservation o is almost

For QMC calculations, we implemented the world-line fulfilled and the low energy levels have an approximately
algorithm as described in Ref. 31. We make use also of thevell defined number of doublons. In Fig. 3, we show the
plaguette representation of Ref. 32. Since we are interesteghergy spectrum at half-filling for an 8-site ring with peri-
in GS properties, the temperature was chosen in order todic boundary conditions in the sector of total wave vector
reach the GS plateali Most of the simulations were carried K=0 for some values of,g. It is clearly seen that as
out on systems of up to 64 sites at inverse temperatures @fz— 0, the low energy part of the spectrum is more dense
B=20. The Trotter time step 7 was fixed at 0.125. A typi- than in the Hubbard case. Atg=0.1 andU = 3, the ground
cal simulation involved5-55 K warm-up and150-800 K state hasi~1. There is a small gai~0.14 between the GS
sweeps through the lattice, with measurements performednd the first excited state witti~0. Higher excited states
every (5-8) sweeps and collected following a coarse-grainechave eithed~0 or d~ 1.
averaging procedur¥.By contrast to the —U —V Hubbard For smalltyg andV, and values ol corresponding to
model, simulations of the generalized model E). at low  the metallic phase, but near the boundary with the SDW
temperatures are quite demanding due to near degeneracigsulating phase, we were not able to reach the ground-state
in the low-energy part of the spectrum for particular valuesenergy (known from Lanczos in small rings or from exact
of the hopping parameters. These almost degenerate staiesults fort,g=0) with QMC, even doing simulated anneal-
show up, for example, ah,=tgg=1 astag—0. Complete ing. The cause of this failure might be ascribed to the fol-
degeneracy is found a@fg=0. This is related with the con- lowing fact: In each QMC sweep, the world lines are de-
servation of the number of double occupied sitedn this  formed by means dbcal changes in thél+1) lattice. When
case, fortu<Uy,_y, [see Eq(5)], there exists a finite den- a doublon and an empty site meet at nearest-neighbor sites,
sity of doublonspys=d/L, which varies continuously be- the algorithm always replaces them by two nearest-neighbor
tweenpy=0.25 U=0) to p4=0 (U=Uy_ ). The dou- singly occupied sites because of the local gain in energy
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U -V, while the opposite process, although favored by the

L ; o 100 ; . ; 12
kinetic energy, should overcome a large energy barrier. This (@) v=0.0 N E
situation has some similarities with the ustialU Hubbard 0.75 e (c) S
model for largeU, which was solved by asimultaneous \o ‘
deformation of spin-up and down world lines. We were not  0.50 11 \ 1
able to find a similar special update for our problem. So, 3 .
after warm up, we equilibrate in one of the so many states 0.25 L ] \
close to the GS withd=0 and never reach theero- ooolk Al Ay T SDW g\ 110
temperature plateau (b) K

The “almost conservation” ofd for smallt,g has also s.00f’ V=0.8 1 \\. K
consequences in the ED analysis. For example, in the limit of e S(mw) | [ . \ 10-9
tag=V=0 and forU<U,,_w , the density of doublons in 2.00 — C(no) | .,,.-’" / \
the thermodynamic limipy is known. For some finite sys- DW
tems, it can happen thatp, is not an integer, the Lanczos 1.00p 1+ c \-0-8
method chooses on@r both of two integer values ofl 0.00L L, o, , , . .
nearer toLpy, and this introduces a nonmonotonic depen- 0 1 2 3 4 5 600 02 04 06 08
dence of the physical quantities with size. Y \'

To study the properties of the generalized Hubbard model
we first performed ED calculations of the charge gap FIG. 4. Spin(dotted ling and charge(solid line) dynamical
A=Eg(Ng+1)+Ep(Ne—1)—2Ex(Ng+1) for different  structure factors al=1 for the t—U—-V model in a ring of
system sizesEq(N,) is the ground state energy of a systemL =12 sites.(8) V=0 (SDW phasgand (b) V=0.8 (CDW phasg.
with N, particles. Next, we calculate the charG¢q) and (c) spin and charge lowest energy excitations of wave vector
spinS(q) structure factors by ED and QMC methods. Thesed= 7 as a function ol.
structure factors are defined as the Fourier transform of the
charge-charge and spin-spin spatial correlation functions, the boundary of the CDW and SDW phases, but also to
distinguish between a first order and a continuous

L > . . .
transition®>?*In the finite system, these histograms provide

=_ ) . ) ) iq(i—j) . -~ . . .
C(g)= le] ((ig+ni)(njp+n; )€1, (16) 3 direct measure of the probability distributiéRD) associ-
ated to quantum fluctuations. In a disordered phase, the PD
whereq= (27/L)n andn=0,1,...,L—1, exhibits a maximum around zero, which sharpens as».

L. In contrast, in a SDW(CDW) phase the PD ofMm(n) is
B iz characterized by two absolute maxima located zafn,
S(a)= I.EJ ((nig=ni(njp =)t 17 (+ng), which also sharpen ds is increased. When a tran-
sition boundary is approached from the ordered phase, the
In the QMC simulations, we have also collected shape of the PD of the corresponding order parameter gives
~32 000 partial averages of the order parameters, information about the nature of the transition. In a continu-
ous transition, the two maxima of the PD in the ordered
= 12 (—1)i(n;;—n phase evolve smoothly to a single one by crossing the
T 24 i1, boundary line. In a first order transition, the two maxima of
the ordered phase show up as metastéaini¢ absolutgones
_ outside this region. This gives rise to hysteretical behavior of
n= %Z [1+ (=D (nj; +ni )], (18  measured quantiti€s. This type of analysis has been done
! for the SDW-CDW transition of the— U —V modef*?*and
corresponding respectively to the SDW and CDW phaseds Similar to the one proposed in Ref. 36 for finite-
For further characterization of these phases, we built up hisemperature phase transitions.

tograms of these quantities. Complementary, ED calculations can be also helpful in
determining the CDW-SDW boundary line. In what follows,
I\V. HOW TO DETECT THE SDW AND CDW REGIONS? we describe our approach for this case. In a finite-size clus-

ter, there can be no spontaneous symmetry breaking. A two-

At g=, S(g) and C(g) can be used to identify the fold degenerate ground state such as the CDW state in an
CDW and SDW phases. In fact, in a perfect CDW or Neelinfinite lattice will be detected as two nearly degenerate
stateC(w) or S(w) diverge ad.—c. However, because in states in a finite size cluster. These states will have opposite
1D there is no true magnetic long-range ordefsr), in the  parity, a result which can be used in finite-cluster calcula-
CDW region, diverges faster th&{=) for the SDW phase, tions to estimate the location of the transition boundary line.
when the length of the cluster is increased. In fact, in a perdo illustrate this feature, let us consider a cluster of only
fect CDW, C(m)~L, while in the strong coupling limitJ)  two-sites in thet—U—V model. In this system, the ground
>t, S()~(InL)*" 7 with 0.2<¢<0.33° C(7) [S(m)] is  state wave function is a combination 0530 CDW- and a
expected to sature or decrease with size if the system is n&=0 SDW-like states. By application of thetaggered
in a CDW (SDW) state. charge or magnetization order parameters, this state is con-

The information given by the histograms of the order pa-nected to triplet excited states witj+ 7. These excitations
rameters Eq(18) is also very useful to determine not only can be characterized as triplet CDW- and SDW-like states.
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The spinS(q,w) and chargeC(q,w) dynamical structure 0.5p
factors will detect these excitations at low frequencies and o4l
the SDW-CDW transition will be the result of a level cross- 05¢ ——L=16
ing between the lowest excitations on both sectors. For the 04_0-3' ——L=32
case ofL=2 andL =4, ED calculations locate the crossover ose o2}
atU=2V in agreement with the change of the weight of the 04_0‘3 [ ol - L
states with maximum order parameter in the exact analytical osr fozf | v A ",
solution of these clusters. For other cluster sizes, we perform 03f oy = V=0.6
ED numerical calculations. In Figs(&b), we plot S(7,w) 0'4'0.2_0‘1 [ ~ *a,
and C(m,w) well inside the SDW and CDW phases for /5-4 03t 090 " v=0.4
L=12. The lowest-energy peak corresponds to the spin-spin > 0'2_0‘1 [ /.,
and charge-charge correlations %6+ 0 andV=0.8, respec- L 0 B Bes )
tively. Following these excitations as a function 6f we oLr /"{ \.‘.
were able to Ipcate the SDW—CDW “transition”_ point, 0.0% = T T o o e 5 V=0,
which forU=1 is atV~0.51, in good agreement with pre-
vious calculations. Higher energy states of these spectra cor- () q
respond to multimagnon and charge excitations which are 5¢ .
well separated from the low energy peaks. J
st —s—1=16
V. SDW-CDW BOUNDARY LINE A I ——L=32
2F
In this section we will examine the competition between ’ 3 o o
CDW long-range and SDW algebraic order for both cases: 4 N T on® ae,
(@) taa=tgg and (b) the electron-hole asymmetric case St sl 0...1_.'7'{::_._‘__'...0" ~*%eaes /=0.8
tapattgg— 2tog=0. We have calculated the CDW and SDW | IZ‘ ” ae,,
structure factors on rings of up to 64 sites by using QMC a Al opomewe®®s | |, L L | %%eeen,, V=0.6
techniques and up to 12 sites by using ED methods to iden- = ‘Z ._...-"‘--.._._
tify these regions of thetgg— U —V) phase diagram for the QO [ ofbmerem™ | ewenny04
half-filled case. ! A'._.?...-.........,,_._.”
O 4§ 12 16 20 24 28 32V=0.2
A. Symmetric case ®) q

In this case we fix,p=tgg=1 and change,g from 0 to
1. As explained in Sec. |, this study of the electron-hole g 5. (5 Spin-spin andb) charge-charge structure factors of
symmetric case provides an interpolation between two préme half-filled generalized Hubbard modelat=1.0, tag=0.6, and
viously solved cases, namely thgg=0 plane and the | =16,32. The wave vectay is measured in units of/16.
t—U—V model. Aside from the trivial case &f =V=0 for
which the system is metallic, the CDW and SDW regions arecorrelations. AsV is decreasedC () decreases and at the
the only possible phases for positive values of the Coulomiame timeS(#) gains intensity signaling dominating SDW
interaction parameters in thgg=1 plane. By contrast, three fluctuations in theV<U/2 sector, while for smalllarge
competing phases exist fogg=0: CDW, metallic, and the values ofV, the spin(charge structure factor clearly in-
Mott-insulating regime. As already stated, the GS is highlycreases with system size, indicating that the system is in the
degenerate in the M region wheté>2(|tas +[tgsl) and ~ SDW (CDW) phase. Unfortunately, the value df at the
V<U/2. In particular, the perfect ¢ and ferromagnetic transition cannot be identified with enough accuracy neither
states are part of the spin-degenerate GS. A small hoppingith this method nor by the crossing of the lowest charge
tap breaks this degeneracy in favor of a SDW state. Clearlyand spin excitations. The spi{oharge lowest excitation en-
at largeV, this hopping process amounts only to a diagonakrgy increasegdecreasgsmonotonically with increasiny/
correction—2t4,/(3V—U) to the energy of the CDW state and for example, fot,z=0.6 andU=2.5 they coincide at
with maximum order parameter. Thus the CDW region will V.~1.1. Although in thet—U—V model, this approach
be not very much affected agz— 1. In Fig. 5, we show the works properly, in the present ca%g is too low, since one
spin and charge structure factors fgg=0.6 andU=1. This = cannot expect a critical value smaller than that predicted by
value ofU is very close to the boundary between the SDWthe Hartree-Fock calculatiorvV(-1.25). However, it shows
and theM phases, predicted by the Hartree-Fock methodndeed the softening of the CDW mode followed by an in-
(U.=1.02 for this value of 5g). These structure factors have crease at large¥ of C(#) (from 0.07 atv=1.0 to 0.11 at
the same shape that we find for theU —V model for the V=1.3).
same value obJ. In the present cas&(w) seems to have a In Fig. 6, histograms ofn, Eq. (18), are shown for
stronger divergence for the smaller values\of£U/2 than U=2.5. The transition boundary is at~1.27, in good
that observed in the— U —V limit. However, it is not obvi- agreement with the Hartree-Fock results. The data of the
ous that the system is within the SDW phase for this value ohistograms are nicely fitted by three Gaussians shown in the
U. We shall return to this point in the next section. At largefigure. One of them is centered aroume O, while the other
values ofV>U/2, the system is characterized by; ZDW  two are centered around finite valuesy. The three Gaus-
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sians reflect the fluctuations of the finite system between the (b) q

two competing phases near the boundary line. The first one

accounts for the weight of the fluctuations around states FIG. 7. Charge structure factor for the electron-hole asymmetric
without CDW order in the total PD, while the latter corre- case, two system sizes, ataj U=1 and(b) U=5. Other param-
spond to the weight of fluctuations around ordered statesters ardgg=0.6 andtag=0.8. The wave vectoq is measured in
which gain intensity at expense of the former as the transitinits of 7/16.

tion is approached. Interpolating the evolution of the three

Gaussians between=1.25 andv=1.30, we find a PD with B. Asymmetric case

three equal flat probability maxima separated by two shallow | this case, the two-bodts term does not contribute to
valleys, atV=1.27, what is a signal of a weak first-order the correlated hopping, see E@). The evolution towards
transition. However, as found earl®&?’ the character of the the t—U—V model can be thought as-1<t,<0. At
transition is quite sensitive to finite-size effects. For ex-y -0, depending on the value dfg (t,), there are two
ample, it was found in the—U—V model, that foVV=2 the  distinct situations that one can find by rewriting E@) in
transition evolves from first to second order as the size of thg gpace. There is pairing between particles fQg>taa
system increasé€. The position of the tricritical point will (t,>0). Furthermore, numerical simulations and a BCS
be discussed in Sec. VIII. The same behavior is obtained fofean field calculation provide evidence in favor of a super-
other values oftyg and for (U,V) outside of the pyramid ¢onducting GS for small values d.22%" Instead, in the
drawn in Fig. 1. Inside the pyramid, the metallic phase isyarree-Fock approximation, the main effecttgk 0 is to
stabilized. Discussion about the CDW-and SDWM tran-  parrow the bandwidth. The gap equatidd®) and (13) are
sition will be done in the next section. _ the same as those of the U—V model with a renormalized
For large values of the Coulomb interaction parameterssmgajier hopping. Thus we do not find a gapless region in this
the SDW-CDWU =2V transition line found fortag=0 is  case for any positive value &f andV. Therefore, the only
modified by this hopping process as a result of the eﬁeCt'Vepossible phases correspond to SDW or CDW. In Fig. 7, we
exchange interactiod~ 4tag/(U—V) between neighboring plot C(q) for U=1 andU=5. We chosea=1tgg=0.6,
spins in the SDW phase and the above mentioned secong@ndt,,=0.8 and perform calculations far=16 and 32 us-
order correction to the energy of the CDW state. The locajng the QMC method. FotJ=1, the general behavior of
tion of this boundary line can be estimated by equating thes(q) (not shown is similar to that of Fig. &). Instead, for
energy of the perfect CDW and SDW states includiRgin  y=5 andVv<2.5S(q) has the form of a sharp peak. Both
perturbation theory as in Ref. 23. The resulting critical valuegirycture factors peak @f= . C() increases a¥ is in-
of Vis creased consistently with a transition to a CDW phase. At the
same time, the behavior & =) as a function otV is con-
5 sistent with a SDW region at small. At smallU, the tran-
Ve=U/2+1.5493/U. (19  sition seems to be smooth while the structure factors at
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FIG. 8. Charge gapA. vs inverse of system length for units of 7/6.

tag=0.2, U=0, and several values &f. For solid symbols, taken
only the points withL = 8,12 which have no frustratiofsee textin  used in Figs. @) and 9b), respectively. Nea¥,, it seems
Sec. V) and assuming an errer5% in A, the data are consistent that C(q) is flat for g~ o, while at least for smalt,g, if
with an extrapolation ta\;=0 for L —c. V<V,, C(q) peaks at incommensurate positigdiscussed

N in the next section while for V>V,, the CDW peak at
g= 7 change abruptly near the transition boundary for Iargeq:  develops.
values of the Coulomb interaction parametéfsr U=5, In Figs. 9¢,d), we show the spin structure facts¢q) as
S(m) increases from-0.18 to~0.6 asU is decreased from 3 function of U for V=0 and the same values ¢fg as
2.7 t0 2.9. For small values obl, the SDW-CDW transition  pefore. The Hartree-Fock critical value Gffor these values
line is as before, difficult to determine. However, 10r=5, s (¢) U.=2.04 and(d) U.=0.51. As in the previous case,
the size dependence of the structure factors clearly show thg{e shape of5(q) changes near thikl-SDW transition, but
the critical value oV is near but slightly larger thad/2, in o clear criterion to determine the transition point can be

agreement with the strong-coupling val(i9). established from the information gathered in Fig. 9.
We have also studied the scaling of the charge gap and
VI. THE METAL-INSULATOR TRANSITION Drude weight for different values dff and V=0. A de-

. creases with increasing system silike the behavior shown
In the tog=0 plane, a whole gapless region appears afy Fig. 8 for V=0.8). All curvesA.(1/L) look very similar
small values ofU andV. As tp is turned on, the metallic for U<U_, while A, increases withUu for U>U, . For
phase in the Hartree-Fock solution decreases in size coIIap§AA:tBB: 1, tag=0.6, U ~3.2, considerably larger than
ing to one poinlJ =V =0 in thet,g=1 plane. To follow the  the valueU, for which a gap opens according to the Hartree-
M-CDW andM-SDW boundaries at finiteyg, we calculate  Fock result Eq(14). The Drude weight or charge stiffness is

first the charge gap for different system sizes. In Fig. 8, wepptained from the flux dependence of the ground state energy
show our results fot,g=0.2, and several values &f at  (see Sec. I)l as

U=0. For small values o¥/<0.4, we observed finite-size

effects on systems ofrH-2 sites due to frustration induced L &2E(L,®)

by the almost conservation dffor small values of,5. The DC=§ oz
optimum doublon density fotag=V=0 is d/L=1/4. A =2
rough extrapolation of the gap suggest that theohase ex-
tend up toV~(0.2-0.4 to be compared with the Hartree- Fortaa=tgg=1, tog=0.6, the Lanczos results in systems of
Fock valueV~0.5. For larger values of the nearest-neighbor4, 6, 8, 10, and 12 sites are consistent with an extrapolation
Coulomb interaction, there are no noticeable frustration efto zero ofD if and only if U>3~U, , in agreement with
fects and the charge gap extrapolates to a finite value abe results ofA.. However, it is clear that the extrapolations
L—, At the same time, the charge structure factor peaks ab the thermodynamic limit are not valid if the correlation
g=m in the gapped region indicating th&-CDW transition.  length £ exceeds the size of our rings. For the Hubbard
In Figs. 9a,b, we plot C(q) obtained by ED atJ=0 for = model ¢ was calculated by Stafford and Millis and increases
values oftg close to known limits (s5=0 andt,g=1).In  for decreasind).*® We interpretU, as the minimum value
the CDW region, the peak at= 7 scales as. while in the  of U for which the charge gap in the thermodynamic limit is
metallic phase there is an incipient peak which signals onlyf the order of the minimum possible charge excitation en-
strong nearest-neighbor charge correlations rather than a treegy in our finite systems. It should be a lower limit to
long-range order. According to the Hartree-Fock reqits. Uy, where Uy ~2(taa+tgg) Characterizes the crossover
(14)], V,=0.51 andV.=0.13 for the values of,g and U between two insulating regimes: a weak coupling one where

(20

0
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curves have been fitted with three Gaussians, although they ha‘éessarily a physical meaning in this case.

not necessarily a physical meaning in this case.

) ) ) ) whereE(N) is the ground state of the ring witk particles.
the antiferromagnetic fluctuations introduced byg and | an insulator, the concept of, becomes meaningless, and
small U (combined with the nesting of the Fermi surface {5, a deviation of the results obtained using both expres-
open an exponentially small gap, and a Mott regime, ingions is again an indication of an opening ofsignifican)

which the insulator has on@ssentially localized particle at charge gap. In rings from 8 to 12 sites, this deviation begins
each sit¢®* Thus fortag#0 a true Mott transitiorffrom a4+ (J~1.5 for the Hubbard model andU~25 if

metal to a Mott insulatgrdoes not exist. Rather for small taa=tgp=1, taz=0.6.
values ofU (~U,) a transition to a SDW takes place. While neither the scaling of the charge gap or Drude
In our finite rings, we cannot detect the opening of a smallyeight, nor the study of the charge velocity in our small
SDW gap if it is smaller than the minimum possible chargeyjngs is able to detect the opening of an exponentially small
excitation energy, which one can estimate as/(:ng), _gap, the position and character of théd-CDW and
wherev . is the charge velocity. However, the Mott regime is \j_Spw transitions can be efficiently studied using the in-
clearly identified. The 'charge velocity can.b'e calculated infoymation obtained from the PD of the order parameters in
two ways. The more direct one uses the minimum energy age QMC calculations. In Fig. 10, results are shown for the
a function of wave vectoEg(q), for the same total spin as pp of the CDW order parameteratU=0 andt,z=0.6 for

the ground stafé an L=32 lattice. The transition from the metallic to the
CDW phase takes place "t-0.25, which is manifested by

E<s27/L+Q)—E4Q) the development of two peaks in the PD. This is in good

Ve= L , (2)  agreement with the Hartree-Fock prediction. From Fig. 11, a

similar analysis can be made with at V=0 to determine
dthe transition from the metallic to the SDW. It seems to take

state (both zero in our cage The other expression, valid place atU~(1.00-1.1, also in agreement with Hartree

when the system is in a Tomonaga-Luttinger-liquid regimeFOCk‘ In contrast to the results shown in Fig. 6, according to
529 the PD (which shows one maximum evolving into two

maxima with increasing values of the corresponding interac-
tion), it is seen that both, thé1-CDW and M-SDW are
continuous transitions. This fact is also reflected in the be-
havior of the structure factoig(q) andS(q), which display

whereS,Q are the total spin and wave vector of the groun

LSC(E(N+2)+ E(N-2)—2E(N)), (22

2_
V=
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incipient divergences aj= 7 within the M phase near the

corresponding boundary. This is the case, for example, of Lo =l | b Q 0 —e—L=16|
S(q) shown in Fig. %a) for small values ol. Our previous (a) —o—p=3/4 (b) —o—L=32
exact results fotya=tgg, tag=0 have also led to continu- 08r T '
ous metal-insulator transitiort4-16:18
CRil
N’ o [o
VII. SPIN-SPIN AND CHARGE-CHARGE CORRELATIONS |#p) 04
IN THE METALLIC PHASE T \/
o\ / @ (e
As already mentioned in Secs. | and Ill, exact results for 02} o . T I
tag=0 (Refs. 12—19 show that the gapless phadd ) that ,/o o\. ood hoo
exists for smallU andV is characterized by large spin and 0.0 6/(1)/5 T 3\3 Oocfffoé 00
charge degeneracies. It is interesting to study how the CDW
and SDW correlations are introduced in thk phase as q q

tag increases. We remarked in previous sections that for
tag— 0, doublons and holes can be almost identified as true FIG. 12. Spin structure factofa) Obtained from ED folL=8
particles. In dimensions higher than offé® these species and two different densitiegb) Obtained from QMC for two differ-
introduce significant effects in the magnetic response. In parent lengths and fixed densitp=3/4. Other parameters are
ticular, fortag=0 andU=<U,,_,, Where their concentra- tas=0.2taa=tgg=1V=0U=2.5. The wave vectoq is mea-
tions are small, a double Nagaoka state with one hole angtred in units ofr/4 in (a) and 7/16 in (b).
one doublon in a ferromagnetic background is expected. It is
also rather likely that magnetic polarons of Nagaoka islanddhis is an important fact from the practical point of view
immersed in an antiferromagnetic background are formed fosince the critical slowing down of our QMC treatment and
tag#0.1° In one dimension, the lattice does not fulfill the the fact that the system is trapped in metastable states does
connectivity hypothesis of Nagaoka's theorem, so, in whichnot occur in the absence of doublons. In Fig(el2we com-
way do the antiferromagnetic correlations growtas—1?  pare results of ED calculations of the spin-spin structure fac-
In the M phase, both structure factors display incommen-or S(q) att,g=0.2 andU=2.5, wherepy=1/8 before and
surate responses with peaksgat 7+ 6, 6—0 asU—U_,  after the replacement of the doublon by a hole. The main
as is shown in Fig. 9. The shapessff)) andC(q) resemble difference is found at smaliq where S(q)~q“ with
the corresponding ones for the Hubbard model out of half«=1(2) for thedoublon(two-hole case. The incommensu-
filling. To understand this result, let us consider first the limitrate peak atj=mp; is seen in both cases, although there is
V=0, t,g—0. In this limit we have obtained that the ground no quantitative agreement. The intensity of the incommensu-
state wave function can be factorized in three terms: ongate peak increases as the system size is increased, as is
describing the position of the singly occupied sites, and theéhown in Fig. 120).
spin and pseudospin wave functions which describe respec-
tively the spin of the unpaired particles and the charge in the
remaining sites. This generalization of the wave function for
the infiniteU Hubbard modéf has been proposed and veri-  We have studied the phase diagram at half-filling of an
fied by ED in Ref. 17. Because only unpaired fermions conextended Hubbard model which contains two physical ingre-
tribute to the spin structure factd®(q) does not depend on dients expected to be important: the correlated hopping and
the pseudospin wave function. In particular if all doubly oc-the nearest-neighbor repulsidh In addition to the charge-
cupied sites are replaced by empty sites, we can 8k¢  density-wave(CDW) and spin-density-wavéSDW) phases
from the result of Ogata and Shit¥dor the U— Hubbard  already known in the model without correlated hopping
model. ThusS(q) is peaked aiy=mp;, wherep; is the (t—U—V mode), there is also a metallic phas#j. The
density of unpaired fermions and is a simple function ofHartree-Fock phase diagram shown in Fig. 1 is qualitatively
taa=tgg, U, and the total densityp=N./L. For correct for thet—U—V model and an exactly solvable limit
taa=tgg, the transformation of Shiba* which inter- obtained previously. We have also studied the charge gap,
changes empty sites with singly occupied sites with spin upcharge-charge and spin-spin correlation functions, probabil-
and doubly occupied sites with singly occupied sites withity distributions of the order parameters of the CDW and
spin down, has the effect of changing the signlbiin the  SDW phases, and several aspects of the possible transitions
Hamiltonian. Using this transformation, at half-filling and for as functions of the parameters of the model, using quantum
g#0, we can write C(q,1—ps)=95(q,ps)/4. Thus the Monte Carlo and exact diagonalization of finite rings. In
charge-charge correlation functions are peaked agpite of the difficulties of these methodsritical slowing
g=m(1—ps) in the metallic phase of the system for down and finite-size effecksthe results are consistent with
tag— 0. the Hartree-Fock phase diagram. For small values of the in-
For tag# 0, the number of doubly occupied and singly teractions and smatl,gz [see Eqs(1) and (2)], the charge-
occupied sites are no longer conserved quantities. Howevecharge and spin-spin correlation functions in the metallic
for small t,g, the doublons(doubly occupied sitgsand phase are peaked at incommensurate wave vectors, even at
holes (empty sitey can still be thought as almost genuine half-filling.
particles and althougB(qg) now changes if the doublons are ~ We would like to discuss the nature of the transition be-
replaced by holes, its qualitative behavior remains the saméween any two of the phases studigegDW, SDW, M) and

VIIl. SUMMARY AND CONCLUSIONS
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the tricritical point fortya=tgg=t andt,g<t. As discussed depend on dimensionality, one might expect the same quali-
at the end of Sec. VI, th#1-SDW andM-CDW transitions tative behavior in dimension >1.

are continuous. Fdr,g= 0, the CDW-SDW transition, which If finite-size effects were disregarded, the above consid-
takes place folU>4t is discontinuous? For smallV, we  erations which places the tricritical pointdt= 4t would be
also obtained in Sec. VI that the change of regime from 4n clear contradiction with the Monte Carlo probability dis-

weak- to strong-coupling insulator takes place at some valufibution results of Fig. 6, which are indicative of a first-

CDW asV is increased. The valug,,~ 4t is consistent with ~Same method, also obtained first-order transitions at very low

previous studies of the position of the tricritical point for the Values of the interactions in the-U—V model. This was
t—U—V model, which separates the line of second-ordefater ascribed to statistical errors, to large values of the time

CDW-SDW transition at small to that of first-order tran- discretization A7=0.5), and to large temperatur&sAl-
sition at large U.22%27 |n the renormalization-group though all these features have been improved in the present

schemes$*?the criterion to determine the tricritical point is Study, we still find that it is necessary to do careful finite-size
based on the change of the scaling dimension of an appr&caling for different values of the interactions, to be able to
priate operator. Below the tricritical point, this operator is détermine the position of the tricritical point by Monte Carlo
irrelevant indicating that the system is in a weak-coupling® €xact diagonalization of finite systerfs. _ _
regime. These SDW and CDW weak-coupling regimes are f the three-body term of the correlated hopping vanishes

strongly affected by g and disappear in favor of a gapless [t3=0 in Eq.(7)], the metallic phase disappears for the sign
metallic phase in the limityg— 0. of the two-body term ;<<0) considered here. However,

These facts, together with the results fg—0 men-  Previous numerical and mean-field calculatfofts’” show

tioned above, lead us to speculate that the tricritical point ighat fort;=0t,>0, the system is superconducting, even at
located atJ = U,~ 4t, almost independently df. Starting half-filling. _S_uperc.onductlvny also occurs for other param-
from the limitt,g=0, it is clear that the effect df,z reduces  Eters an.d_fllhrlggé liké \p<tpp=tpg,V=0, smallU, and out
the region of existence of thil phase, but one cannot ex- of hqlf-ﬂllmg. = Other interesting modezliswnh correlated
pect that fluctuations induced byg increasethe region of ~NOPPINgs also display superconductivify>

first-order transition. Thus t4should be dower boundfor

U;. The value ofU;,~U,, separates the weak coupling re-

gime U<<U, with a small gap which vanishes at the transi- We thank E. Jagla for bringing Ref. 36 to our attention
tion line, from the strong coupling regime>U, with a  and discussions about it. We also thank Daisey Luz and R.
large gap that cannot be reduced to zero by the combineR. dos Santos for helpful discussions. L.A. and E.G. were
effects of fluctuations introduced lyg and the competition supported by CONICET. A.A.A was partially supported by
between CDW and SDW. Therefore, the transition should beeONICET. Partial support from FundacidAntorchas under
first order forU>U,. Since the above arguments do not Grant No. 13016/1 is gratefully acknowledged.
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