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Radiation of linear waves by solitons in a Josephson transmission line with dispersion
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We report a method of using a distributed Josephson junction to generate and amplify electromagnetic
waves, based on Cherenkov radiation of linear waves by Josephson solitons. The device by which this principle
can be realized is essentially a distributed Josephson junction electromagnetically coupled to a dispersion
waveguide system providing resonance interaction between moving solitons and a linear electromagnetic wave.
The current-induced motion of Josephson vortices in a distributed junction excites, due to the Cherenkov
effect, a synchronous electromagnetic wave in the dispersion line; by interacting with the radiation field the
vortices bunch in the decelerating phase of the wave, thus providing the coherence contribution of a large
number of solitons to radiation. These devices are actually the Josephson analog of the traveling-wave and the
backward-wave tubes. A linear theory for these types of oscillators and amplifiers is developed, and the
equations for the starting current and growth rate of instability are obtained. A study performed on the
nonlinear effects has yielded straightforward estimates of the generation j&0&63-18207)01409-4

I. INTRODUCTION Further, through interaction with the radiation field the vor-
tices bunch in the decelerating phase of the wave, providing
The Josephson effect as a means for generation of elethe coherence contribution of a large number of solitons to
tromagnetic radiation has long been attracting researchergdiation.
worldwide. One promising trend in the development of a The paper is concerned with the development of a theory
Josephson oscillator is the use of the motion of Josephsdier oscillators of this type. It is organized as follows. In Sec.
vortices in a long Josephson junction. Oscillators based oH we provide derivation of the basic equations describing the
this principle — the so-called flux-flow oscillato(EFO) —  dynamics of a Josephson junction coupled to an auxiliary
is a well-addressed research subject today both theoreticalglectrodynamical system. Section Ill deals with the problem
and experimentalfy® and has already found application as on radiation of waves by a single soliton. We show therein
local oscillator in integrated receivetddowever, the power that once a wave and a soliton are synchronous, the field
and noise characteristics of radiation from such oscillators détructure in the junction changes qualitatively as compared to
not fully meet the desired standard and have to be improvedbhat in a smooth Josephson junction. In Sec. IV a linear
The drawback of the currently used smooth Josephsortheory of interaction between solitons and an increasing
junction FFO is a low efficiency of interaction between thewave is considered, a TWT gain and a bias current threshold
solitons and linear modes, determined by the dispersion patequired for inducing generation in a BWT are found. Sec-
tern of Swihart modes in the Josephson junctiontion V describes a simple nonlinear theory that allows esti-
w?= w]?+ ngz, wherev is the Swihart velocity ana; the mation of the radiation power of the oscillators in question.
Josephson plasma frequency. This type of wave dispersiolﬁ_inally, the obtained results are summarized in the Conclu-
makes the resonance interaction of solitons and waves withi®lon.
the junction, observed atg,~v,,, impossible, since the
phase velocity of the wavey,,>vs and of the soliton Il. GENERAL EQUATIONS
V5o <Us, SO Waves are radiated only at the end of the Joseph-
son junction where it links the passive transmission line.
In this paper we propose a kind of the Josephson flux-flo

Let us consider a simplest system that provides realization
wf the above principle and a sufficient detail of analytical

oscillator in which radiation of electromagnetic waves pro-description in terms of the perturbation theory. It is essen-
ceeds within the entire junction. The main idea involved intidlly @ long Josephson junction electrodynamically coupled
this mechanism is to cause distortion of the dispersion chat® & Strip transmission line with dispersion, see Fig. 1. The
acteristic of Swihart modes by electromagnetically couplingN€ dispersion is caused by strip resonators periodically ar-

the Josephson junction to an external space-periodic wav&2nged along the sides of the junction, whose impedance is
guide system. The external view of such a device and itfrequency dependent. The equations describing the dynamics

linear wave dispersion curve are exemplified in Fig. 1. ©Of coupled lines follow from the Kirchhoff's law for an

The operation principle of the proposed generator is simi€duivalent scheméFig. 2) and have the form:
lar to that underlying the traveling-wave tub€BWT) and
the backward-wave tubg8WT) and is based on the well-
known analogy between Josephson vortices and charged par- o
ticles. The Josephson vortices moving under a bias current in CiUyt GiUs 1= —ClUp—Ua) —jstiens (2
a junction coupled to a transmission line with dispersion ex- R
cite an electromagnetic wave due to the Cherenkov effect. Lolyi+Uy=—Mly;, 3

LilitUp=—Mly, 1
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FIG. 2. Discrete electronic circuit of the system considered. The
interaction is given by the mutual inductarideand the capacitance
C. ElementsJJ drawn by crosses symbolize Josephson conduc-
tance between the Josephson-junction electrddess the induc-
tance of the Josephson juncti(ﬁmnd\? are the impedance and the
admittance of the transmission line with dispersion.

pa(t)=C,oU,= f:czw)uz(t—r)dr,

respectively. By analogy with the no-dispersion case we
shall further refer to them as the inductance and capacitance
operators. In the Fourier representation they become multi-
plying operatorsL,=L,(w,k), C,= C,(w,k) and define the
dispersion relation for linear waves in an external electrody-
namical system:

—Cy(w,k)w?+ L, Hw,k)k?=0.

0 g k For a smooth strip line without dispersion the values of
(b) C,L, are independent of frequency. The operafbﬁﬁz are
related to the commonly used impedanZeand conductiv-

FIG. 1. (a) External view of the device under consideration. ity, Y, operators as the well-known equalities
Josephson area is shown in black, dielectric interlayers in the line
with dispersion and in the overlap area are shown in gifayDis- ~ O " a0
persion characteristics of the system in question. Curve 1 is the Z= ELz: YZCzE: )
dispersion characteristic of the linear waves in Josephson junction.
Thin straight line is the asymptote for curve 1, and this is a disperor, in the Fourier representation,
sion characteristic for a soliton moving at its ultimate velocity.
Curves 2 and 3 are the dispersion characteristics of the waves in the Z=—iwl,, Y=—-iwC,. (6)
transmission line with dispersion.
The real parts olL,(w),C,(w) define the dispersion, the
imaginary ones — the losses in the electrodynamical system.
The coefficientV,C, i.e., the mutual inductance and capaci-
_ tance, respectively, define the value of coupling between the
Herel, U, , are the currents and voltages in the long Jo-josephson junction and the external electrodynamical sys-
sephson junction and in the transmission line with disperyem. The subscriptsandx designate, as usual, the time and
sion, respectivelyjs is the linear density of supercurrent, space partial derivatives. Taking into account the Josephson
Jext is the density of external currerlt;,C, are the induc-  phase difference in the junction and the component of
tance and capacitance per unit length of the Josephson junge vector potential in the dispersive lige which relate to
tion, L,,C, are the linear operators defining the couplingthe voltagesU;, and to the linear densities of magnetic

CoUgt 1= —C(Uy—Uyy). (4)

between the magnetic flux density and current, fluxes, S, ,, in the Josephson junction and in the line as
X o Dy @, @q D
S,(t)=L,l,= fo L(7)l,(t—7)d7 Ui=o_en Ua=o—th, Si=5_exs S5 i,
(7)

and between the charge density and voltage in the externathere ®, is the magnetic flux quantum, and using the ex-
electrodynamical system, plicit expression for supercurrerjy= j .Sing, wherej . is the
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critical density of the Josephson current, from E{3—(4) having the form of the sine-Gordon equation where the

we find a set of equations for the variables): D'Alamber operator is replaced by some linear operaor
s 2] which defines the dispersion features of an electromagnetical
~ T ; ; : :
CitClont G —(Li—M2LH 1o+ ®sin system with a long Josephson junction. Equation of /&
(Cit Ot Cren ¢9X( ! 27) e ®q ® is the most general expression to describe the dynamics of a

P o Josephson junction coupled to a linear electrodynamical sys-
= —M— (L~ M2 1 Y+ Cop + ()Tiext, tem. Examples of how nonlocal equations of ty@e) are
X 0 used to describe Josephson-junction dynamics can be found
(8) in Refs. 11-14.
In conclusion, we provide the explicit expressions for the

9. M2 1 capacitance and inductance entering in the &bts(4) via
(Co+C) iy —( Lo— —) Iy the geometrical dimensions of the strip lines shown in Fig.
X L, . . . .
1(a). For a weak coupling, if the long-wave approximation
M o /. M2 1L A>d (where\ is the wavelengthd the system perigdis
=T x| b L_l) ext+Ceoy, (9)  met, a simple computation yields the expressions
which describes the dynamics of a Josephson junction induc- W, W, d; WtanwW/v)

C]_:€€Oh_1, 022660

) o : R —_—t
tively and capacitively coupled to a linear transmission line. h, dh, (0W/v) /'

Surface losses not written explicitly in Eq®) and (9) may

play an important part at high frequencies of waves and high eegW;
velocities of solitons. Throughout the paper we will consider 3= hy
them to be small enough so that they can be taken into ac-
count as small anti-Hermitian parts 6@,@2 operators. hy+2\ h,+ 2\
In this paper we are seeking analytical results, so we shall LFW‘OTl' Lo=puo W, (13
restrict our consideration to the case of a weak coupling be-
tween the junction and the electrodynamical system, assum- W5 (hy+2N)(hy,+2)N)
ing further C<C;,C, and M?<L,,[,. The “weak- Ms=puuo hat 21 W,W, ;

coupling” approximation allows one to neglect the terms
with C andM in the left-hand parts of the set8) and (9), whereh, h,, hs are the thicknesses of the dielectric inter-
leaving them only in the right-hand parts. layers in the Josephson junction, in the line with dispers-
It is convenient to go over to the commonly used time andon, and in the overlap area, respectivel;, W, are the
space dimensionless variables by introducing the valuavidths of the strip linesW; is the width of the junction-
wj—l as a unit of time[wj=(277jcld)oCl)l/2 is the Joseph- strip line overlap areag is the period of the structure;
son plasma frequengy and the Josephson length v=1/\eeomuoh,/(hy+2)\) is the velocity of wave propa-
)\j=(¢’o/27TicL1)1/2 as a unit of scale, the velocity unit gation in a passive electrodynamical sys;em. _The compli-
vs=M\jo; is the Swihart velocity in a Josephson junction. cated frequency dependence of the capacitaiices due to
With these dimensionless variables the g8isand (9) take  the resonance in the side outgrowths of the strip line. If the

the form coupling between the Josephson junction and the dispersion
line is strong, and the wavelength and the period of the sys-
@it~ Pxx T SiNe= — a iy + Bt jexi— Yoi, (100  tem are comparable, the inductance and capacitance coeffi-
cients should be determined by way of more exact electro-
D= — @yt Boy, (11  dynamic calculations.

In the conclusion of the section it is nesessary to make an
wherea=M/L,, p=C/C, are the coefficients of the mag- important remark. Generally speaking, the periodicity of the
netic and electric interaction between the Josephson junctiofosephson transmission line leads to pinning of the solitons.
and the transmission line, respectively=G,;/C,w; is the  But due to weakness of coupling between the Josephson
dimensionless damping factor describing the losses in thRinction and the dispersive line, accepted in the article, we
Josephson junction, the operator will not take it into account. Besides, a periodical structure is

. not the only way to reach a dispersion.
C, & dn y 0
T Cpat? Tlox 2 ox lIl. THE CHERENKOV RADIATION
OF A SOLITON MOVING IN A TRANSMISSION LINE
WITH DISPERSION

o

characterizes dispersion of waves in the electrodynamical
system. The sets of equations similar to EG€) and (11)
describe the dynamics of the whole class of Josephson sys- In this section we consider spontaneous Cherenkov radia-
tems; some particular cases have been widely discussen of a soliton moving in a long Josephson junction

elsewheré&®-11 coupled to a transmission line with dispersion. A likelihood
Note that by eliminatings we can write the system@0)  of the effect of the Cherenkov radiation of solitons was also
and(11) as one equation suggested earlier in some particular cases of stacked Joseph-

. son junctions? in Josephson junctions with nonlocal
Ko+ Sing = j exts (12 electrodynamic$? in the discrete models of the sine-Gordon
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equation®~18 Here we provide only a general treatment subtractions in the poles of the integrand, which are located

valid for any electrodynamical system with an assigned disin the pointsw=kv and w= w,(k) determined by zero val-

persion law. ues of the denominator of the integrand with respecipto
Regarding the right-hand sides of the systei® and  where w (k)= = w|(k)—il'|(k) are the complex eigenfre-

(11) as perturbations, i.e., assuming the coupling parameteguencies of waves in the electrodynamical system, that can

a,B and the damping factoy to be small, in the zero ap- be found from the solution to the equati@(w,k)=0. In-

proximation we shall have two independent equations, oneegration of Eq(17) via residues yields

describing the dynamics of a Josephson junction, the other

—the linear waves in a line with dispersion. The first equa- ikef(k)ye kvt

tion, referred to as the sine-Gordon one, has a well-known — #(t,k)= m“kff(k)

solution defining the Josephson vortex soliton ’

e_iw|(k)t

X2 FanR =Ko TEaD (@K 7Tl

x—vut
@sol( X,t) =4arctan ex ,

V1-v?

] ] ] ) ] ~ where the sum is taken over all branches of the dispersion
wherev is the dimensionless velocity of a soliton. Substitu- characteristic. Now, to fings(t,x) we need to take the inte-
tion of this expression into the right-hand side of E&l) g
yields an equation describing a field created by a moving

soliton in the electrodynamical system, ~dk
s = [ e, 19
N az@sol ¢ 2m
Di=—e— 2 (14

where the path of integratio@ in the complex plan& goes
wheree is the effective coupling coefficieng=(a—Bv?).  along the real axis.

A solution to this equation is sought via a Fourier trans- Contributions to the integréll8) are determined by sin-
form with respect to coordinate and a Laplace transform wittgularities of the integrand in the complex regi&nwhich
respect to time which are performed by a commoncan be classified into two types. The singularities of type |
procedure7, relate to the poles of functiofi(k), located in the points
ko=(2n+1)i/y1- 2 and to the zero values of functions
ﬁD(w,k)/0w|w:w,- Type-ll singularities are due to the ze-
roes in the expressiond(w=kv,k) and w(k)=kv. The
type | lie on the imaginary axis, and their contributions go
down rapidly atx— *+«. These fields — further referred to
as the local fieldg),,. — are rigidly coupled to a soliton and

Pw,k)= f:e“”tdtf:glf(x,t)e’“‘xdx. (15

Assuming that there is no field in the external electrodynami
cal system at=0, we find Eq.(15) after the transforn{14)

as ; : ) . .
are responsible for its deformation by motion. The contribu-
ikf(k) tions from the type-Il singularitie§if any) are of a qualita-
D(w,k)(w,k)=— ko' tively different nature; they determine the intensity of the
Cherenkov radiation by linear waves.
whereD(w,k) is the Fourier image of the operatbr, the We now look for this contribution, assuming damping of
function f(k) is the Fourier representation of a magneticthe eigenwaves to be relatively small. Let the straight line
field in a soliton w=Kkv cross some dispersion branchdi&) in point k,
i.e., k¢ is the solution to the equation Rgk.)=vk.. Fur-
) “ IPsol i 20 16 ther on \(/jve igno[je thedsu?}scriptimplyingvthel:e% thgt on(ljy
= - = . one mode is radiated. Then equatiddéw=kv,k)=0 an
. OX cosf (mk/2)y1-v?] w,=kv can be easily solved yielding a common root
From here follows an explicit expression ¢ w,k): k=kc+il'(kc)/[vg(ke) —v] which defines the position of
the sought-for singularity of the integrand; here
i ekf(k) I'(k)=Imw,(k) is the damping rate of the wave and
Plwk)=— (w—kv)D(w,K) " vg(K)=dw(K)/ K|k, is the group velocity of this wave.

- . Note that the damping rate coefficieht accounts for all
and the problem on finding(x,t) reduces to calculations of Josses in the Josephson transmission line.

integrals corresponding to the inverse Laplace transform in We seek the contribution of this singularity by expanding

w and the Fourier transform ik. : .
) ' . D(w=kv,k) andw,(k) neark, in the Taylor series and con-
Let us first findy(t,k) expressed by the integral sidering only the first terms; this yields the expression for the

ikef(k)e ™' daw radiation field:
'/’(t,k):—fc —(a)—kv)D(a),k) e (17 _ B
e ik.ef(ke)€
where the path of integratio@ in the complex plane goes Yrad X, 1)= ID/dw

along the real axis above all singularities of the integrand.
Fort>0 we can complete the path on an infinite semicircle
in the lower half-planew and find the integral as a sum of

+ooeiX(X_Ut)_ eiX[X_Ug(kc)t] =TIkt d)(
X J +c.c.,

e [o-vg(k)Ix+iT(ky) 27
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1/0wC Jdwl
Yz - 2% 2%
ﬂ 4\ Jw 1) =, (20)
whereU and| are the complex voltage and current ampli-

tudes in the waveC, andL, are the frequency-dependent
capacitance and inductance of the electrodynamical systems

(8),(9). With Egs.(5), (6), and(7) in mind we find the energy
[\ /\ /\ E of the radiation field in the form
UEE"AVARY vtz e ‘JMWt S LG0T S el
(=]  Wtxjdx=7 |0D/dw|?lv—v4(k,)| 2T

2(9(1)02 L_Z&(DLZ

X +L,
Jw Jw

v , (21

FIG. 3. The distribution off, (dimensionless magnetic figlth

the transmission line with dispersion in which the values of all functions are taken in points

w(ke) andk.. The powerP of the linear waves’ generation
in which we have introduced a variabje=k—k.; the val- by a soliton is easily found from the energy expression as
ues of the functioD (w,k)/dk here and elsewhere through

2 21,4
the paper are taken in the poirks-k., w=Kk.v. Integration p= d_E _< M
using the theory of residues leads us to the final result for the dt o 4 |oD/dw| |U_Ug|

radiation field:

2(?(1)C2 L72(9(1)L2

v +L, o | (22

ke (kg)eikex =0+ I x—vt/v=vg(ko)] X
|9D/dw|[v—vg(ke)] One important circumstance we would like to emphasize is
X[ B(x—vt)— B(x—vg(k)t)]+c.c; (19 that, de_spite the _sn_”nalln_ess of the coupling _coefficient,_ the
energy in the radiation field may be much higher than in a
here®(x) is a step function. The complex-conjugate contri- soliton,
bution appears here because the equation describing the pres-
ence of the Cherenkov resonardéw=kv,k)=0 has two +opl @2
solutions. The step functio® (x) reflects a physically evi- Esor= f_w 5 5 t(1-cosp)dx= -
dent localization of the radiation field in the interval

vgt<x<ut. Expression(19), from a mathematical point of ~ Thys, we have shown that a soliton moving in a long
view is the contribution of eliminated singularities in the josephson junction coupled to a transmission line with dis-

Yrad X,t)=—

integrand(17). _ _ _persion may continuously radiate a linear wave as a result of
So, we have found that a field created by solitons in arthe Cherenkov radiation effect. The energy of this wave is
electrodynamical system has the form limited only by damping and by the finite length of the elec-
_ trodynamical system.
V= oct raa- If more than one vortex propagate in the junction, the

One should note that, of course, the far and near field sep&otal radiation field is a superposition of the radiation fields
ration is only possible provided damping rate is smallof individual vortices, and the collective radiation power of
enoughl (w ko) <w., w.=K. the vortex bunch depends on the relative position of vortices
The qualitative dependence gf, (dimensionless mag- and on the difference in their velocities. The maximum ra-
netic field on the coordinates for the case-v4(k.) is given diation power which is proportional to the vortex number
in Fig. 3. The radiation field is nonzero in the region squared is achieved when all vortices radiate coherently, i.e.,
v4(k)t<x<wt. In calculations we neglected the terms like When all of them move with the same velocity, and the in-
ggw/m@ and, therefore, the obtained expression for the ratervortex distance is a multiple of their radiation wavelength.

diation field holds at the times In the following section we show that radiation from vortices
becomes coherent automatically, due to interaction of vorti-

9?wl ok ces through the radiation field, which equalizes their veloci-
t< m ties and promotes bunching of vortices in the optimal phase

_ . _ of the collectively radiated wave.
when the dispersion spreading of the wave packet can be

ignored. To find the radiation field at the times larger than IV. BUNCHING OF SOLITONS IN THE FIELD
the aboye it is necessary to retain the higher derivatives OF A RADIATED WAVE
d"wl/ K" in the expansion.

Knowledge of the expression for the radiation field allows In this section we consider the effects arising by the ac-
one to calculate its energy as well as the radiation power of &on of linear waves on solitons. We assume that a field in a
soliton at any time. Using the well-known formula for the Josephson junction can be represented as a chain of solitons
energy density of a quasimonochromatic electromagneti€ither of which is described by the distribution of phase
waveW,” we have o and the linear wavé (x,t),
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and the wave amplitude¢ small: £,<<1, 3§n<u, Y<1, and
linearizing the setg23)—(25) near the stat€,=0, £,=0,
=0. We find the expression to describe the dynamics of
Then, assuming the right-hand sides in the §&@ and(11) perturbations:

relatively small we can use the perturbation metfigfito
derive the expression for the motion of solitons and for the. s
dynamics of linear waves in the junction and in the externafn T 7’§n+@(2§n_§n—l_§n+l)
electrodynamical system. Representing the field in ritre 0

@:; (X, ) +F(x,1).

C2

soliton as w e (x,1)
:(1—02)3’2f7 F(x,t)%dx, 27)
eM(x)=4arctan exi¥,(x—Z,),
. &
whereZ, is the coordinate of the center of tiéh soliton, D¢=(a—ﬁvz)§n(9—X§2 Pl Xit), (28)
Y, '=\1-22 is its dimensionless width, and introducing "
gg soliton momentur® in the formP,=YZ,,, we have the Fut yFi— F ot F=— aihyy+ By, (29)
wherec = (\7do/2) (1— v?)¥%exp(—dy2\1—v?) is the ve-
_ - locity of acoustic waves in the soliton chain. This linear sys-
P,+ yP,+ Z[equnZn—YM 1Zn+1) tem can be solved in the following way. We seek its solution
in the form
—exXp(Yn-1Zy-1~ YnZn)]= f FOxt)—— —dx, p(x.)=yexp—iottikx)+c.c.,
23 F(x,t)=Fexp—iwt+ikx)+c.c.,
5 E(D)=¢ exp(—iwt+ikndy+ikvt)+c.c.
~ ., 0
Dy=-, (a—,BZﬁ)W eMl(x,1), (24 Then we substitute these expressions in the 5-(29)
n and extract the terms with the same dependenceandt to
eventually obtain a set of algebraic equations for the com-
Fut ¥Fi—Fut F=—aiht B t]. (25  plex amplitudesy, F, &
This approximation is valued provided that the distance be- . 4c§ [ kdg
tween the solitons is much greater than their width. —(o—kv)“—iy(o—kv)+ ?Slnz i
We shall use this set to analyze the dynamics of an equi- 0
distant chain of solitons moving at the velocity whose 1 93/
spatial periodd, is incommensurable with the radiated wave =g (17v) (K, (30
length
k?&ef(K)
w= do UV,K= do y

(—w?—iyo+k?+1)F=(ak’- Bw?)y, (32
so that a phase mismatch of the contributions by individual o ) ) )
solitons eliminates the Cherenkov radiation. The coordinate8ere€=(a—Bv?), just as in the second part is the coupling
of the solitons’ centers in such a case are given by the forcoefficient,f(k) is determined by Eq.16) and is essentially

mula a Fourier spectrum of the magnetic field in a soliton. The
resolvability condition for this set of equations is the disper-
Z,=don+ut sion relation
n L]
2
and the velocity is defined from the equation —(w—kv)2—iy(w—ko)+ %sinz(g) (— 0’y
v ] 1 K?ef?(k)(ak?®— Bw?)
=—— 26 2 __ _ . 2\3/2
T 4y (26) +k2+1)D(w k) =g 5 (1-v?)%?,

Further we show that this state is unstable with respect to (33
soliton bunching and wave build-up in an electrodynamicaklwhich defines the spectrum of the eigenwaves in the set.

system. Generally speaking, this equation should be solved numeri-
We shall study this instability assuming the deviations ofcally, but given a rather weak coupling of waves it is pos-
solitons from the initial position sible to find the solution by means of the perturbation theory.

In the absence of interactior€ 0) Eq.(33) describes the
&=2Z,—don—ut, dispersion of uncoupled density waves in a soliton chain, the
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Swihart waves in a Josephson junction, and waves in an
electrodynamical system. If the coupling is weak, the inter-
action effect will be appreciable only near the crossing points
of the dispersion curves of noninteracting waves, and Eq.
(33) can be largely simplified.

Let us now consider the dispersion equati@3) in the
vicinity of the Cherenkov synchronism poikt defined by
the relation

Re w

o(ke) =K,

where w(k) is the wave dispersion in the electrodynamical
system in which this condition can be met. We now intro-
duce the new variablesy=k—k. and é=w—w(k)
=w—Kev characterizing deviation from the poikt with
respect to wave number and frequency, respectively. Then,
expansion of the dispersion relati@83) near the synchro- Re w 1 9
nism point in the small damping limfl' < w(k.)] yields 3

(@)

[(8—xv)2+i (86— xv)— wZ](8— xvg+il)=G, (34)

in which w?=(c2/d3)sir’(k.dy/2) is the parameter for the
splitting of the dispersion characteristics of the acoustic
waves in the soliton chain in poifi., the coupling constant
G is defined by the relation

“ kée?f2(k,)
~ 8d[1+k3(1-0v?)]|dD/dw|

(1_02)3/2. kc k

b
This expression is a complete analog of the dispersion rela- ®

tion for the waves in a TWTfor v4>0) and in a BWT(for
v <0)’21 G is analogous to the Pierce parameter, aﬁds FIG. 4. (a) The dependence of the real part@fon k for the
similar to the parameter accounting for the spatial charge ofyStem in question whewy,>0. Curves 1 and 2 correspond to the
a beam ast and slow acoustic waves in the soliton chain, curve 3 corre-
" A . : . sponds to the wave in transmission line. Thin lines show the per-
Equation(34) is still quite complicated at .thls Stage’.and aturbation of the dispersion characteristics when the coupling be-
complete study of the dependencedify) which determines

. . g tween the Josephson junction and the transmission line takes place.
the growth rate of the instability for different values Gf, (b) The dependence of the real part @fon k for the system in

3, 7, T, v, vg requires numerical calculations. This €qua- guestion wherv;<0. Curves 1 and 2 correspond to the fast and

tion is well studied; the details of its solution procedure cansjow acoustic waves in the soliton chain, curve 3 corresponds to the

be found, for example, in Ref. 22. We shall consider soméyave in transmission line. Thin lines show the perturbation of the

limiting cases that allow simple analytical solutions. dispersion characteristics when the coupling between the Josephson
Without interactionG=0, Eq.(34) breaks down into the junction and the transmission line takes place.

product of factors and is easy to solve:

iy G
i 2 S—xv+ == 5— +il)=% 36
51,2:)(0_%/1r V wg= YZ, ( S cus)( gt 20, (39

and can be studied in detail. The upper sign in E2f)
83=xvg—iT. (35)  corresponds to the interaction between a wave in the electro-
dynamical system and a slow wave in the soliton chain, the
The above dependences — actually, the dispersion curvéswer one — to the same interaction but with a fast wave of
near the poink., are shown in Fig. @) for v,>0 and Fig.  the soliton chain. One can easily see that instability is pos-
4(b) for v4<<0. Let us first consider the case of low dampingsible only in the first case, when the right-hand side is nega-
in the junction,y<wg, and a small coupling coefficief®, tive. It is this situation that we are going to address.
i.e., when the resulting growth rate satisfies the condition By introducing the variable$’ and ' in the form
Imé<wg. Splitting of the dispersion curves due &+ 0 in
this case will be inconsiderably small as comparedotq g
and the points where the dispersion curve of eigenwaves of X=
the electrodynamical system crosses the dispersive curves of
fast and slow waves in a soliton chain can be examined sepa-
rately. S= Y9 wst+ &',
Equation(34) then reduces to a quadratic equation, U~ Uyg

+x',
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and dropping the primes we can rewrite the equation as

(5—)(v+% (5—ng+i1“):—y§,

where y2=G/2wy is the new coupling constant. From here

follows a direct solution

. Y
5:v+vg _I(F+§
2 X 2

1
ii\/y%-i—z

2

I‘—Z-i-i)((v—vg) , (37

2

defining the complex frequency of the interacting waves for

a set wave number. The maximum dnis reached at the
exact resonancey=0). From Eq.(37) it is readily found
that the threshold of instability is

Y
ve> 7t2h=7 (39
or

G>T yws. (39

This threshold can be easily exceeded for real microstrip

circuits. For a small excess of the threshold

I'y 2
2

__«_
Yoo 7Sy

Y
r+3
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well-known fact that a system with a convective instability
will feature a spatial exponential amplification of waves. The
gain per unit length is determined from the dispersion equa-
tion (36) if that is resolved fory. The maximum gain is
expressed ag=e'™¥* where Iy is defined by the formula

Ilvg+yl2v 73 1/ y)\?
M=t Ny, T alo, T 20)

which for a large supercriticality reduces to a simpler form:

If the coupling coefficieniG is large:G> w2, such that

IméS becomes comparable with, it is no longer possible to
reduce Eq(34) to Eq. (36), so we have to solve the cubic
equation(34). For a large supercriticality it gives the follow-
ing expression to describe the growth rate of the instability:

V3
_ Y ~13
Imé& 5 G,
and the imaginary part of the wave number responsible for
amplification will be defined as
\/§ G 1/3
Imy=—|——=| .
X 2 (vgv )
This leads us to a conclusion that a Josephson junction
coupled to an electrodynamical system with dispersion can

the maximum growth rate of the instability is expressed as be used for amplification of electromagnetic waves. Natu-

'yS—F'yIZ_
F+y/l2°

if the opposite condition is met,

Imé=

then
|m5= ’)/O .

The wave number range in which instability &fy)>0 oc-
curs is defined by the relation A xy/2<y<<Ax/2, where
Ay is the instability domain

4\/)/3—F'y/2

A =
X U_Ug

(40

rally, large gains will take a rather large length of the system
to be achieved.

If v4(Ks) <O in the point of crossings, of the dispersion
curves for a slow density wave in a soliton chain and for a
wave in electrodynamical system, then the instability de-
scribed by Eq(34) will be absolute and the system in ques-
tion will be able to operate as a generator. This case is a very
close analogy with generation of waves by a backward-wave
tube oscillato’? We look for the critical values o and the
system length that will make generation possible. Solution of
this problem takes more than the dispersion equaf8sh:
we also need to know the relations betwegny, andF in
the growing waves. Therefore, we now get back to the set
(30—(32.

AssumingG<w§, we expand the left-hand sides in this
set in a series in the vicinity of the Cherenkov synchronism
point exactly as we did it in the attempt to simplify the
dispersion equation. The result is a linear set of equations for

So we see that the soliton chain which was initially out ofthe amplitudes and ¢,

phase with the wave is unstable to growing perturbations in
the positions of solitong, and the wave in the electrody-
namical systemy. The physical mechanism responsible for
this instability is clearly understood as soliton bunching in
the decelerating phase of the wave. The growth of the wave,
in its turn, is related to bunching of solitons. A{>0 the
instability exhibits a convective behavitThe wave packet

6—)(v+i%

&= —o1¢,

(6—xvg+il) =058,

where

is increasing with a growth rate7) in the reference frame 2 232 5
moving at the velocity = (v4+v)/2, while in the laboratory Ul:} kcef(kcz(l vz) and o, kief (k)
frame perturbation tends to zero at any fixed point. It is a 8 1+ki(1-v9) 2wd(dD/dw)
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are the coupling coefficients of the slow wave in the solitonThis is a much more strict threshold condition on the density
chain and of the wave in the electrodynamical system, reand velocity of a soliton chain than E488) and(39), which
spectively. From this set we directly derive the dispersionmakes it by far more complicated to achieve generation in
equation (33) considered earlier, since, as is easily seensuch a soliton analog of BWT than to realize the amplifica-
0'10'2='yg. It follows from this set that the fields can be tion mode at 4>0.

defined as Note, however, that generation may also be made possible
_ _ _ atvy>0 by introducing an auxiliary feedback loop providing
£=C(8+ xa|vglHil)exp —idt+ixx) transfer of the amplified wave energy from the output to the

input of the system. The feedback can be effected either via
reflection at the unmatched ends of the system, or by using a
ring geometry. In the latter case, given instability, the system
will always work as a generator regardless of its dispersion
whereC,,C, are the arbitrary constantg,, x» are the solu- characteristics, and the growth rate of the instability will be
tions to Eq.(33), defined by Eq.(37) with a range of possible values for

determined by the size of the systegy 27n/L, wheren is
X12=Xo*= X' the integer. Extraction of energy from such a system will

take an additional transmission line.

It has been shown that interaction of a soliton chain with

5+i(y/2) 5+i1“) a wave in electrodynamical system may give rise to amplifi-

+Cy(8+ xolvgl +il)exp —idt+ix,x),

= C1,eXp( —i 8t+1ix1X) + CoorpeXp — i St+i xoX),

in which

1

Xo=> cation and generation of an electromagnetic wave and to

soliton bunching in the decelerating phase of the wave. In the
and following section we analyze the nonlinear stage of this
bunching instability with a view to estimating the output
. Jg
X~ Njg

5+i(v12) 5+i1“)2 yé power of the proposed device.
Satisfying the boundary conditions

v |Ug|

v - |Ug| U|Ug|.

V. NONLINEAR STAGE OF SOLITON BUNCHING
At the nonlinear stage of bunching the solitons’ shifts
£0)=0, ¥(L)=0, from their initial positions can no longer be assumed small as

_ _ in derivation of the dispersion relatio30)—(32). To derive

by which waves do not enter the system i§ the length of  the equations describing the nonlinear mode of interaction

the system we derive the characteristic equation for the petween solitons and a synchronous wave in the electrody-

instability parameters versus a length of the interaction renamical system we consider the simplest case, when the am-

gion and the system parameters, which can be representedfification band defined by the relation &fy)>0 from Eq.

a convenient form as follows: (37) includes only one wave whose field can be written in the
form
L — _taw . .
\/52—_)’2 ) Y(x,t)y=a(t)exp —iwt+ikx)+c.c.,

wherey=x'L, a=yoL/\v|v|. It is easily seen that non- wherea(t) =|a|e'? is the slow (‘;?‘|<“’0|a|) complex ampli-
trivial _solutions of this g,\quationsy £0, appear at tude independent of the coordinate. This situation may take
n H

a>m/2(2n+ 1), wheren is the integer. We find solutions to Pace, for example, in an annular geometry of Josephson
this equation and, further, expressing via & obtain the junction and electrodynamical system. The wave nunkher

complex frequencies of the eigenmodes due_ to periodi_city of the boundary conditions_, can have only
a discrete series of valuég=27n/L, whereL is the length
5+i(y2)  S+IT \/m of the system; so, if the intermode distance in khepace

exceeds the amplification bandr2.>Ay defined by Eq.

v [vgl L (40), then only one wave will be amplified.
and the threshold value of the pump parametes deter- It_ is convenient to represent a soliton’s coordinates in the
mined from the equation chain as
Z,=vt+ ¢
Y F 2 n n»
— 4+ —=—_JaZ—vy¥a). : ;
2v Jugl L y (@) where the velocityy=w,/K,, o, is the frequency of the

resonator eigenmode with the wave numlsgrnearest to

If the length of the system is Iargez such tmﬂz’ k.. Here, unlike the case in Sec. lll, we do not assume the
y(a)— m, the root can be expanded in series to yield ari
t

. . oliton shifts¢ much smaller than the wavelength. Settin
explicit expression for the dependence of the fundamenta § g ¢

mode growth rate on damping and the system length: e vortex velocities closef¢,|<v and the soliton chain
rather rare, such that a soliton-soliton interaction can be ne-

1 1 2y I y () glected, we find from Eqg10) and(11) the expression
5(_+_ :i(_o__+_)__ S
v fogl) vy [vgl 20] al &+ yE= oy(aekréntc.c) + Al (42)
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where Al = (7/4)l — y(v/\J1—v?) is the correction to the
bias currentg is the earlier introduced coefficient describ-
ing the force of the wave-vortex coupling.

We derive the expression for the slow amplitudé)
from Eq. (28) in the following way. First, we expand the
function D(w,k) just as above in Eq(33), near the point
;K

dD ) 9 w(ke, /
D(w;+6,kr)=D(w k) + ——(5+iT). L e

Then, rewriting this expression in termstalby replacing the
multiplication operators 6 with the operators—ad/dt and 0 I
integrating the right- and left-hand sides of Eg8) over the
space coordinate we have

FIG. 5. The current-voltage characteristic of the system consid-
N ered. Dotted line shows the unstable branch oflttue characteris-

ﬁ—a-l—l“a: _ EE exp(—ik, &), (42) tic. Thin line depicts the current-voltage characteristic of the long

at L 7=o Josephson junction without coupling to an additional transmission

whereo;= ek, f(k,)/|dD/dw|, N is the number of solitons in
the systeml is the system length. The resulting set of equa-
tions (41), (42) provides the basis for investigation on the synchronism conditiofk.v = w(k.), and, since the spectrum
nonlinear stage of soliton bunching in the field of a Wave; it the wave numberk. =2#1/L and frequencieso(k,) in

r r

howe\{er, despite the 'above sir'nplifications.it remains t‘?Qhe ring geometry considered here is discrete, the voltage in
complicated to be studied analytically. To estimate the radiag,, junction will be defined a = 2mun/L, whereN is the

tion power we assume that all solitons are in phase with they, nher of solitons in the system, which relates to the fre-
excngd wave, "e'§”:§+2.77”kf' | is an integer. We seek a guencies of excited modes &= (N/l)w. The presence of
solution to Eqs(41), (42) in the form the steps on the current-voltage characteristic is not the evi-

nance velocity of solitons is determined by the Cherenkov

£=Eot+ Aut dence of Cherenkov emissidgeimilar steps may be caused
0 ' by Fiske resonances, etcMoreover, if the Cherenkov ra-
a=Ae idtt+éo diation takes place and the spectrum of the resonator is very

) ) ) ) _ dense, then th€-V characteristic will not have any steps, it
whereAv is the perturbation of soliton velocity=Kk.Av is  will only go lower than in the unloaded Josephson junction

the frequency mismatct is the real amplitude of the wave. case. So, to distinguish Cherenkov emission, direct measure-
Assuming furtherA and Av to be stationaryd/dt=0, we  ments of the radiation are necessary.

find the equations The maximum amplitude of the wave
yAv=0,A cod +Al, A osn  enk f(k,)
max_ 1T T1am 9.
A= —o3n coMd, (43) [ I'lob/dw]
_ i is reached at exact resonante =0 which corresponds to
6A=—a3n sind, O =7 and occurs at\l = o,03n. Knowledge of the wave

which define the steady-state value of the amplitude and freamplitude and the expression for the energy density in a
quency of the electromagnetic wave; héde=k, &, is the  dispersive mediuni20) provide a sufficient basis for estima-
soliton phase with respect to the waves N/L is the con-  tion of the energy stored in an annular resonator:

centration of solitons. Since there is a straight relationship

4
between the perturbation of solitons’ velocityy and the _ e?n’Lk?| f (k)| vzﬂ(wcz(w))+L_25(sz(w))
voltage perturbatioU in the Josephson junction, AT'?|oD/dw|? dw 2 dw ’

AU=2mnAv, wheren=N/L is the density of a soliton chain. From here

) . we derive the radiation power:
we can, knowing the dependenda (Al), also determine

the |-V characteristic of the junction coupled to electrody- €2n2LK4 f(K,)|2
namical system. Solutio®3) is easily found in the form P=2T'E= W
PR LU | ,9@Cy(@) | pdely(w))|

\/F2+k?Av2’ \/F2+k2rAv2’ x| Jw 2 dw

and the velocity perturbation is related tdl as |t is clearly seen that its value increases with a higfer
yAv + o304nT/(T?+k*Av?) = Al, which defines the junc- factor of the resonator.

tion |-V characteristic. Its qualitative curve in the vicinity of ~ We shall now use the obtained formulas to estimate a
the resonance point is shown in Fig. 5. Note that the resopractically feasible radiation emission power of solitons
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moving in a dispersive electrodynamical system. The powetion electrodynamically coupled to a dispersive waveguide
unit in the dimensionless system of units used here is theystem that allows for resonance interaction of moving soli-
guantity Po=®,j Wv /27, wherej, is the critical current tons with a wave. From the viewpoint of general physics the
density per unit aredy is the width of a Josephson junction. proposed Josephson oscillator is an analog of the traveling-
Using the typical values for the Nb-AlO-Nb-based Josephsomvave and backward-wave tubes. The problem of interaction
junctions (see, for example, Refs. 3%5j.=10* Alcn?, between the Josephson vortices moving in a long Josephson
W=10"°m, v,=10" m/s, we find a definition for the power junction electrodynamically coupled to a transmission line

unit in our system of units: with dispersion is considered. It is shown that the Cherenkov
e effect causes the Josephson vortices to effectively excite
Po=3 X10""W. electromagnetic waves, the radiation intensity is estimated.

The dimensionless power can be estimated by putting in th e f_ound out a_nd studied the effect_ of _soliton bunching_ in
characteristic parameter values attainable in the experimenta€ field of excited wave. By bunching in the decelerating
on Josephson junctions and strip lines on the Nb basis. Adhase of the wave the solitons are shown to cause wave

suming there is only one soliton on the length of an excited®MPlification due to coherence contributions of individual
wave we haven=Kk.27 and taking, for examplek.=1, solitons. The coefﬂqents of s_patlal amplification and the
€=0.3,C,=10, =103 we come to a very hopeful esti- grovvt_h rate of bgnc_hmg instability are Calcula_te_d. Other re-
mate for the radiation power: sults include derivation of the equations describing a nonlin-
ear stage of soliton bunching and estimation of the Cheren-
P=100P,=3 X 10 *W. kov radiation power. The Josephson flux-flow oscillator

. . . . - based on the Cherenkov effect is shown to hold the promise
The mechanism underlying such a high radiation efficiencyst 4604 energy characteristics. It seems quite likely that the

is the Cherenkov emission of solitons, which makes possiblgyjiion punching effect will largely upgrade the FFO noise
their interaction with electromagnetic waves in the em'reproperties.

junction.
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