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Radiation of linear waves by solitons in a Josephson transmission line with dispersion

V. V. Kurin and A. V. Yulin
Institute for Physics of Microstructure of the Russian Academy of Science, 46 Ulyanov str., 603600 Nizhny Novgorod, Rus

~Received 17 July 1996; revised manuscript received 27 September 1996!

We report a method of using a distributed Josephson junction to generate and amplify electromagnetic
waves, based on Cherenkov radiation of linear waves by Josephson solitons. The device by which this principle
can be realized is essentially a distributed Josephson junction electromagnetically coupled to a dispersion
waveguide system providing resonance interaction between moving solitons and a linear electromagnetic wave.
The current-induced motion of Josephson vortices in a distributed junction excites, due to the Cherenkov
effect, a synchronous electromagnetic wave in the dispersion line; by interacting with the radiation field the
vortices bunch in the decelerating phase of the wave, thus providing the coherence contribution of a large
number of solitons to radiation. These devices are actually the Josephson analog of the traveling-wave and the
backward-wave tubes. A linear theory for these types of oscillators and amplifiers is developed, and the
equations for the starting current and growth rate of instability are obtained. A study performed on the
nonlinear effects has yielded straightforward estimates of the generation power.@S0163-1829~97!01409-4#
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I. INTRODUCTION

The Josephson effect as a means for generation of e
tromagnetic radiation has long been attracting researc
worldwide. One promising trend in the development of
Josephson oscillator is the use of the motion of Joseph
vortices in a long Josephson junction. Oscillators based
this principle — the so-called flux-flow oscillators~FFO! —
is a well-addressed research subject today both theoreti
and experimentally1–5 and has already found application
local oscillator in integrated receivers.6 However, the power
and noise characteristics of radiation from such oscillators
not fully meet the desired standard and have to be improv
The drawback of the currently used smooth Josephs
junction FFO is a low efficiency of interaction between t
solitons and linear modes, determined by the dispersion
tern of Swihart modes in the Josephson junct
v25v j

21vs
2k2, wherevs is the Swihart velocity andv j the

Josephson plasma frequency. This type of wave disper
makes the resonance interaction of solitons and waves w
the junction, observed atvsol'vph, impossible, since the
phase velocity of the wavevph.vs and of the soliton
vsol,vs , so waves are radiated only at the end of the Jose
son junction where it links the passive transmission line.

In this paper we propose a kind of the Josephson flux-fl
oscillator in which radiation of electromagnetic waves p
ceeds within the entire junction. The main idea involved
this mechanism is to cause distortion of the dispersion c
acteristic of Swihart modes by electromagnetically coupl
the Josephson junction to an external space-periodic w
guide system. The external view of such a device and
linear wave dispersion curve are exemplified in Fig. 1.

The operation principle of the proposed generator is si
lar to that underlying the traveling-wave tubes~TWT! and
the backward-wave tubes~BWT! and is based on the well
known analogy between Josephson vortices and charged
ticles. The Josephson vortices moving under a bias curre
a junction coupled to a transmission line with dispersion
cite an electromagnetic wave due to the Cherenkov eff
550163-1829/97/55~17!/11659~11!/$10.00
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Further, through interaction with the radiation field the vo
tices bunch in the decelerating phase of the wave, provid
the coherence contribution of a large number of solitons
radiation.

The paper is concerned with the development of a the
for oscillators of this type. It is organized as follows. In Se
II we provide derivation of the basic equations describing
dynamics of a Josephson junction coupled to an auxili
electrodynamical system. Section III deals with the probl
on radiation of waves by a single soliton. We show ther
that once a wave and a soliton are synchronous, the fi
structure in the junction changes qualitatively as compare
that in a smooth Josephson junction. In Sec. IV a lin
theory of interaction between solitons and an increas
wave is considered, a TWT gain and a bias current thresh
required for inducing generation in a BWT are found. Se
tion V describes a simple nonlinear theory that allows e
mation of the radiation power of the oscillators in questio
Finally, the obtained results are summarized in the Conc
sion.

II. GENERAL EQUATIONS

Let us consider a simplest system that provides realiza
of the above principle and a sufficient detail of analytic
description in terms of the perturbation theory. It is ess
tially a long Josephson junction electrodynamically coup
to a strip transmission line with dispersion, see Fig. 1. T
line dispersion is caused by strip resonators periodically
ranged along the sides of the junction, whose impedanc
frequency dependent. The equations describing the dyna
of coupled lines follow from the Kirchhoff’s law for an
equivalent scheme~Fig. 2! and have the form:

L1I 1t1U1x52MI 2t , ~1!

C1U1t1G1U11I 1x52C~U1t2U2t!2 j s1 j ext, ~2!

L̂2I 2t1U2x52MI 1t , ~3!
11 659 © 1997 The American Physical Society
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Ĉ2U2t1I 2x52C~U2t2U1t!. ~4!

Here I 1,2U1,2 are the currents and voltages in the long J
sephson junction and in the transmission line with disp
sion, respectively,j s is the linear density of supercurren
j ext is the density of external current,L1 ,C1 are the induc-
tance and capacitance per unit length of the Josephson
tion, L̂2 ,Ĉ2 are the linear operators defining the coupli
between the magnetic flux density and current,

S2~ t !5L̂2I 25E
0

`

L~t!I 2~ t2t!dt

and between the charge density and voltage in the exte
electrodynamical system,

FIG. 1. ~a! External view of the device under consideratio
Josephson area is shown in black, dielectric interlayers in the
with dispersion and in the overlap area are shown in gray.~b! Dis-
persion characteristics of the system in question. Curve 1 is
dispersion characteristic of the linear waves in Josephson junc
Thin straight line is the asymptote for curve 1, and this is a disp
sion characteristic for a soliton moving at its ultimate veloci
Curves 2 and 3 are the dispersion characteristics of the waves i
transmission line with dispersion.
-
r-

c-

al

r2~ t !5Ĉ2U25E
0

`

C2~t!U2~ t2t!dt,

respectively. By analogy with the no-dispersion case
shall further refer to them as the inductance and capacita
operators.7 In the Fourier representation they become mu
plying operators:L̂25L2(v,k), Ĉ25C2(v,k) and define the
dispersion relation for linear waves in an external electro
namical system:

2C2~v,k!v21L2
21~v,k!k250.

For a smooth strip line without dispersion the values
C2L2 are independent of frequency. The operatorsĈ2L̂2 are
related to the commonly used impedance,Ẑ, and conductiv-
ity, Ŷ, operators as the well-known equalities

Ẑ5
]

]t
L̂2 , Ŷ5Ĉ2

]

]t
, ~5!

or, in the Fourier representation,

Z52 ivL2 , Y52 ivC2 . ~6!

The real parts ofL2(v),C2(v) define the dispersion, the
imaginary ones — the losses in the electrodynamical syst
The coefficientsM ,C, i.e., the mutual inductance and capa
tance, respectively, define the value of coupling between
Josephson junction and the external electrodynamical
tem. The subscriptst andx designate, as usual, the time an
space partial derivatives. Taking into account the Joseph
phase differencew in the junction and thez component of
the vector potential in the dispersive linec, which relate to
the voltagesU1,2 and to the linear densities of magnet
fluxes,S1,2, in the Josephson junction and in the line as

U15
F0

2p
w t , U25

F0

2p
c t , S15

F0

2p
wx , S25

F0

2p
cx ,

~7!

whereF0 is the magnetic flux quantum, and using the e
plicit expression for supercurrent:j s5 j csinw, wherej c is the

e

e
n.
r-

the

FIG. 2. Discrete electronic circuit of the system considered. T
interaction is given by the mutual inductanceM and the capacitance
C. ElementsJJ drawn by crosses symbolize Josephson cond
tance between the Josephson-junction electrodes,L1 is the induc-

tance of the Josephson junction,Ẑ andŶ are the impedance and th
admittance of the transmission line with dispersion.
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55 11 661RADIATION OF LINEAR WAVES BY SOLITONS IN A . . .
critical density of the Josephson current, from Eqs.~1!–~4!
we find a set of equations for the variablesw,c:

~C11C!w tt1G1w t2
]

]x
~L12M2L̂2

21!21wx1
2p j c
F0

sinw

52M
]

]x
~L12M2L̂2

21!21L̂2
21cx1Cc tt1

2p

F0
j ext,

~8!

~Ĉ21C!c tt2
]

]x S L̂22 M2

L1
D 21

cx

52
M

L1

]

]x S L̂22 M2

L1
D 21

wx1Cw tt , ~9!

which describes the dynamics of a Josephson junction ind
tively and capacitively coupled to a linear transmission lin
Surface losses not written explicitly in Eqs.~8! and~9! may
play an important part at high frequencies of waves and h
velocities of solitons. Throughout the paper we will consid
them to be small enough so that they can be taken into
count as small anti-Hermitian parts ofL̂2,Ĉ2 operators.

In this paper we are seeking analytical results, so we s
restrict our consideration to the case of a weak coupling
tween the junction and the electrodynamical system, ass
ing further C!C1 ,Ĉ2 and M2!L1 ,L̂2. The ‘‘weak-
coupling’’ approximation allows one to neglect the term
with C andM in the left-hand parts of the sets~8! and ~9!,
leaving them only in the right-hand parts.

It is convenient to go over to the commonly used time a
space dimensionless variables by introducing the va
v j

21 as a unit of time@v j5(2p j c /F0C1)
1/2 is the Joseph-

son plasma frequency# and the Josephson leng
l j5(F0/2p j cL1)

1/2 as a unit of scale, the velocity un
vs5l jv j is the Swihart velocity in a Josephson junctio
With these dimensionless variables the sets~8! and ~9! take
the form

w tt2wxx1sinw52acxx1bc tt1 j ext2gw t , ~10!

D̂c52awxx1bw tt , ~11!

wherea5M /L2, b5C/C1 are the coefficients of the mag
netic and electric interaction between the Josephson junc
and the transmission line, respectively,g5G1 /C1v j is the
dimensionless damping factor describing the losses in
Josephson junction, the operator

D̂5
Ĉ2

C1

]2

]t2
2L1

]

]x
L̂2

21 ]

]x

characterizes dispersion of waves in the electrodynam
system. The sets of equations similar to Eqs.~10! and ~11!
describe the dynamics of the whole class of Josephson
tems; some particular cases have been widely discu
elsewhere.2,8–11

Note that by eliminatingc we can write the systems~10!
and ~11! as one equation

K̂w1sinw5 j ext, ~12!
c-
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having the form of the sine-Gordon equation where
D’Alamber operator is replaced by some linear operatorK̂
which defines the dispersion features of an electromagne
system with a long Josephson junction. Equation of type~12!
is the most general expression to describe the dynamics
Josephson junction coupled to a linear electrodynamical
tem. Examples of how nonlocal equations of type~12! are
used to describe Josephson-junction dynamics can be fo
in Refs. 11–14.

In conclusion, we provide the explicit expressions for t
capacitance and inductance entering in the sets~1!–~4! via
the geometrical dimensions of the strip lines shown in F
1~a!. For a weak coupling, if the long-wave approximatio
l@d ~wherel is the wavelength,d the system period! is
met, a simple computation yields the expressions

C15ee0
W1

h1
, C25ee0SW2

h2
1
d1
d

W

h2

tan~vW/v !

~vW/v ! D ,
C35

ee0W3

h3
,

L15mm0

h112l

W1
, L25mm0

h212l

W2
, ~13!

M35mm0

W3

h312l

~h112l!~h212l!

W1W2
,

whereh1, h2, h3 are the thicknesses of the dielectric inte
layers in the Josephson junction, in the line with dispe
ion, and in the overlap area, respectively;W1, W2 are the
widths of the strip lines;W3 is the width of the junction-
strip line overlap area;d is the period of the structure
v51/Aee0mm0Ah2 /(h212l) is the velocity of wave propa-
gation in a passive electrodynamical system. The com
cated frequency dependence of the capacitanceC2 is due to
the resonance in the side outgrowths of the strip line. If
coupling between the Josephson junction and the disper
line is strong, and the wavelength and the period of the s
tem are comparable, the inductance and capacitance co
cients should be determined by way of more exact elec
dynamic calculations.

In the conclusion of the section it is nesessary to make
important remark. Generally speaking, the periodicity of t
Josephson transmission line leads to pinning of the solito
But due to weakness of coupling between the Joseph
junction and the dispersive line, accepted in the article,
will not take it into account. Besides, a periodical structure
not the only way to reach a dispersion.

III. THE CHERENKOV RADIATION
OF A SOLITON MOVING IN A TRANSMISSION LINE

WITH DISPERSION

In this section we consider spontaneous Cherenkov ra
tion of a soliton moving in a long Josephson junctio
coupled to a transmission line with dispersion. A likelihoo
of the effect of the Cherenkov radiation of solitons was a
suggested earlier in some particular cases of stacked Jos
son junctions,15 in Josephson junctions with nonloca
electrodynamics,14 in the discrete models of the sine-Gordo
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equation.16–18 Here we provide only a general treatme
valid for any electrodynamical system with an assigned d
persion law.

Regarding the right-hand sides of the systems~10! and
~11! as perturbations, i.e., assuming the coupling parame
a,b and the damping factorg to be small, in the zero ap
proximation we shall have two independent equations,
describing the dynamics of a Josephson junction, the o
–the linear waves in a line with dispersion. The first equ
tion, referred to as the sine-Gordon one, has a well-kno
solution defining the Josephson vortex soliton

wsol~x,t !54arctan expS x2vt

A12v2
D ,

wherev is the dimensionless velocity of a soliton. Substit
tion of this expression into the right-hand side of Eq.~11!
yields an equation describing a field created by a mov
soliton in the electrodynamical system,

D̂c52e
]2wsol

]x2
, ~14!

wheree is the effective coupling coefficient,e5(a2bv2).
A solution to this equation is sought via a Fourier tran

form with respect to coordinate and a Laplace transform w
respect to time which are performed by a comm
procedure,7

c~v,k!5E
0

`

eivtdtE
2`

`

c~x,t !e2 ikxdx. ~15!

Assuming that there is no field in the external electrodyna
cal system att50, we find Eq.~15! after the transform~14!
as

D~v,k!c~v,k!52
ik f ~k!

v2kv
,

whereD(v,k) is the Fourier image of the operatorD̂, the
function f (k) is the Fourier representation of a magne
field in a soliton

f ~k!5E
2`

` ]wsol

]x
e2 ikxdx5

2p

cosh@~pk/2!A12v2#
. ~16!

From here follows an explicit expression forc(v,k):

c~v,k!52
i ek f~k!

~v2kv !D~v,k!
,

and the problem on findingc(x,t) reduces to calculations o
integrals corresponding to the inverse Laplace transform
v and the Fourier transform ink.

Let us first findc(t,k) expressed by the integral

c~ t,k!52E
C

ike f ~k!e2 ivt

~v2kv !D~v,k!

dv

2p
, ~17!

where the path of integrationC in the complex planev goes
along the real axis above all singularities of the integra
For t.0 we can complete the path on an infinite semicir
in the lower half-planev and find the integral as a sum o
-
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subtractions in the poles of the integrand, which are loca
in the pointsv5kv andv5v l(k) determined by zero val-
ues of the denominator of the integrand with respect tov,
where v l(k)56v l8(k)2 iG l(k) are the complex eigenfre
quencies of waves in the electrodynamical system, that
be found from the solution to the equationD(v,k)50. In-
tegration of Eq.~17! via residues yields

c~ t,k!5
ike f ~k!e2 ikvt

D~v5kv,k!
1 ike f ~k!

3(
l

e2 iv l ~k!t

@v l~k!2kv#@]D~v,k!/]v#uv5v l ~k!
,

where the sum is taken over all branches of the dispers
characteristic. Now, to findc(t,x) we need to take the inte
gral

c~x,t !5E
C
c~ t,k!eikx

dk

2p
, ~18!

where the path of integrationC in the complex planek goes
along the real axis.

Contributions to the integral~18! are determined by sin
gularities of the integrand in the complex regionk, which
can be classified into two types. The singularities of typ
relate to the poles of functionf (k), located in the points
kn5(2n11)i /A12v2, and to the zero values of function
]D(v,k)/]vuv5v l

. Type-II singularities are due to the ze

roes in the expressionsD(v5kv,k) and v l(k)5kv. The
type I lie on the imaginary axis, and their contributions
down rapidly atx→6`. These fields — further referred t
as the local fieldsc loc — are rigidly coupled to a soliton and
are responsible for its deformation by motion. The contrib
tions from the type-II singularities~if any! are of a qualita-
tively different nature; they determine the intensity of t
Cherenkov radiation by linear waves.

We now look for this contribution, assuming damping
the eigenwaves to be relatively small. Let the straight l
v5kv cross some dispersion branch Rev(k) in point kc ,
i.e., kc is the solution to the equation Rev l(kc)5vkc . Fur-
ther on we ignore the subscriptl , implying thereby that only
one mode is radiated. Then equationsD(v5kv,k)50 and
v l5kv can be easily solved yielding a common ro
k5kc1 iG(kc)/@vg(kc)2v# which defines the position o
the sought-for singularity of the integrand; he
G(k)5Imv l(k) is the damping rate of the wave an
vg(k)5]v l(k)/]kuk5kc

is the group velocity of this wave

Note that the damping rate coefficientG accounts for all
losses in the Josephson transmission line.

We seek the contribution of this singularity by expandi
D(v5kv,k) andv l(k) nearkc in the Taylor series and con
sidering only the first terms; this yields the expression for
radiation field:

c rad~x,t !52
ikce f ~kc!e

ikc~x2vt !

]D/]v

3E
2`

1`eix~x2vt !2eix[x2vg~kc!t]2G~kc!t

@v2vg~kc!#x1 iG~kc!

dx

2p
1c.c.,
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in which we have introduced a variablex5k2kc ; the val-
ues of the function]D(v,k)/]k here and elsewhere throug
the paper are taken in the pointsk5kc , v5kcv. Integration
using the theory of residues leads us to the final result for
radiation field:

c rad~x,t !52
kce f ~kc!e

ikc~x2vt !1G~x2vt !/[v2vg~kc!]

u]D/]vu@v2vg~kc!#

3@u~x2vt !2u„x2vg~kc!t…#1c.c.; ~19!

hereQ(x) is a step function. The complex-conjugate cont
bution appears here because the equation describing the
ence of the Cherenkov resonanceD(v5kv,k)50 has two
solutions. The step functionQ(x) reflects a physically evi-
dent localization of the radiation field in the interv
vgt,x,ut. Expression~19!, from a mathematical point o
view is the contribution of eliminated singularities in th
integrand~17!.

So, we have found that a field created by solitons in
electrodynamical system has the form

c5c loc1c rad.

One should note that, of course, the far and near field s
ration is only possible provided damping rate is sm
enoughG(vc ,kc)!vc , vc5kcv.

The qualitative dependence ofcx ~dimensionless mag
netic field! on the coordinates for the casev.vg(kc) is given
in Fig. 3. The radiation field is nonzero in the regio
vg(kc)t,x,vt. In calculations we neglected the terms lik
]2v/]k2 and, therefore, the obtained expression for the
diation field holds at the times

t!
]2v/]k2

@v2vg~kc!#
2 ,

when the dispersion spreading of the wave packet can
ignored. To find the radiation field at the times larger th
the above it is necessary to retain the higher derivati
]nv/]kn in the expansion.

Knowledge of the expression for the radiation field allo
one to calculate its energy as well as the radiation power
soliton at any time. Using the well-known formula for th
energy density of a quasimonochromatic electromagn
waveW,7 we have

FIG. 3. The distribution ofcx ~dimensionless magnetic field! in
the transmission line with dispersion.
e
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W5
1

4 S ]vC2

]v
UU*1

]vL2
]v

II * D , ~20!

whereU and I are the complex voltage and current amp
tudes in the wave,C2 and L2 are the frequency-depende
capacitance and inductance of the electrodynamical syst
~8!,~9!. With Eqs.~5!, ~6!, and~7! in mind we find the energy
E of the radiation field in the form

E~ t !5E
2`

1`

W~ t,x!dx5
e2

4

u f ~kc!u2kc
4

u]D/]vu2uv2vg~kc!u
12e22Gt

2G

3S v2 ]vC2

]v
1L2

22 ]vL2
]v D , ~21!

in which the values of all functions are taken in poin
v(kc) andkc . The powerP of the linear waves’ generation
by a soliton is easily found from the energy expression a

P5 UdEdt U
t50

5
e2

4

u f ~kc!u2kc
4

u]D/]vu2uv2vgu

3S v2 ]vC2

]v
1L2

22 ]vL2
]v D . ~22!

One important circumstance we would like to emphasize
that, despite the smallness of the coupling coefficient,
energy in the radiation field may be much higher than in
soliton,

Esol5E
2`

1`w t
2

2
1

wx
2

2
1~12cosw!dx5

8

A12v2
.

Thus, we have shown that a soliton moving in a lo
Josephson junction coupled to a transmission line with d
persion may continuously radiate a linear wave as a resu
the Cherenkov radiation effect. The energy of this wave
limited only by damping and by the finite length of the ele
trodynamical system.

If more than one vortex propagate in the junction, t
total radiation field is a superposition of the radiation fiel
of individual vortices, and the collective radiation power
the vortex bunch depends on the relative position of vorti
and on the difference in their velocities. The maximum
diation power which is proportional to the vortex numb
squared is achieved when all vortices radiate coherently,
when all of them move with the same velocity, and the
tervortex distance is a multiple of their radiation waveleng
In the following section we show that radiation from vortic
becomes coherent automatically, due to interaction of vo
ces through the radiation field, which equalizes their velo
ties and promotes bunching of vortices in the optimal ph
of the collectively radiated wave.

IV. BUNCHING OF SOLITONS IN THE FIELD
OF A RADIATED WAVE

In this section we consider the effects arising by the
tion of linear waves on solitons. We assume that a field i
Josephson junction can be represented as a chain of sol
either of which is described by the distribution of pha
wsol
(n) and the linear waveF(x,t),
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w5(
n

wsol
~n!~x,t !1F~x,t !.

Then, assuming the right-hand sides in the sets~10! and~11!
relatively small we can use the perturbation method19,20 to
derive the expression for the motion of solitons and for
dynamics of linear waves in the junction and in the exter
electrodynamical system. Representing the field in thenth
soliton as

wsol
~n!~x!54arctan expYn~x2Zn!,

whereZn is the coordinate of the center of thenth soliton,

Yn
215A12Żn

2 is its dimensionless width, and introducin

the soliton momentumP in the formPn5YnŻn , we have the
set

Ṗn1gPn1
p

4
@exp~YnZn2Yn11Zn11!

2exp~Yn21Zn212YnZn!#5E
2`

`

F~x,t !
]wsol

~n!~x,t !

]x
dx,

~23!

D̂c52(
n

~a2bŻn
2!

]2

]x2
wsol

~n!~x,t !, ~24!

Ftt1gFt2Fxx1F52acxx1bc tt1 j . ~25!

This approximation is valued provided that the distance
tween the solitons is much greater than their width.

We shall use this set to analyze the dynamics of an e
distant chain of solitons moving at the velocityv, whose
spatial periodd0 is incommensurable with the radiated wa
length

UDS v5
2p l

d0
v,k5

2p l

d0
D U@1,

so that a phase mismatch of the contributions by individ
solitons eliminates the Cherenkov radiation. The coordina
of the solitons’ centers in such a case are given by the
mula

Zn5d0n1vt,

and the velocityv is defined from the equation

v

A12v2
5

p

4

j

g
. ~26!

Further we show that this state is unstable with respec
soliton bunching and wave build-up in an electrodynami
system.

We shall study this instability assuming the deviations
solitons from the initial position

jn5Zn2d0n2vt,
e
l

-

i-

l
s
r-

to
l

f

and the wave amplitudec small: jn!1, j̇n!v, c!1, and
linearizing the sets~23!–~25! near the statejn50, j̇n50,
c50. We find the expression to describe the dynamics
perturbations:

j̈n1gjn1
cs
2

d0
2 ~2jn2jn212jn11!

5~12v2!3/2E
2`

`

F~x,t !
]wsol

~n!~x,t !

]x
dx, ~27!

D̂c5~a2bv2!jn
]3

]x3(n wsol
n ~x,t !, ~28!

Ftt1gFt2Fxx1F52acxx1bc tt , ~29!

wherecs5(Apd0/2)(12v2)3/2exp(2d0/2A12v2) is the ve-
locity of acoustic waves in the soliton chain. This linear sy
tem can be solved in the following way. We seek its soluti
in the form

c~x,t !5cexp~2 ivt1 ikx!1c.c.,

F~x,t !5Fexp~2 ivt1 ikx!1c.c.,

jn~ t !5j exp~2 ivt1 iknd01 ikvt !1c.c.

Then we substitute these expressions in the sets~27!–~29!
and extract the terms with the same dependence onx andt to
eventually obtain a set of algebraic equations for the co
plex amplitudesc, F, j

F2~v2kv !22 ig~v2kv !1
4cs

2

d0
2 sin

2S kd02 D Gj
5
1

8
~12v2!3/2f ~k!F, ~30!

D~v,k!c5
k2je f ~k!

d
, ~31!

~2v22 igv1k211!F5~ak22bv2!c, ~32!

heree5(a2bv2), just as in the second part is the couplin
coefficient,f (k) is determined by Eq.~16! and is essentially
a Fourier spectrum of the magnetic field in a soliton. T
resolvability condition for this set of equations is the disp
sion relation

F2~v2kv !22 ig~v2kv !1
4cs

2

d2
sin2S kd2 D G~2v22 igv

1k211!D~v,k!5
1

8

k2e f 2~k!~ak22bv2!

d
~12v2!3/2,

~33!

which defines the spectrum of the eigenwaves in the
Generally speaking, this equation should be solved num
cally, but given a rather weak coupling of waves it is po
sible to find the solution by means of the perturbation theo

In the absence of interaction (e50) Eq.~33! describes the
dispersion of uncoupled density waves in a soliton chain,
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Swihart waves in a Josephson junction, and waves in
electrodynamical system. If the coupling is weak, the int
action effect will be appreciable only near the crossing po
of the dispersion curves of noninteracting waves, and
~33! can be largely simplified.

Let us now consider the dispersion equation~33! in the
vicinity of the Cherenkov synchronism pointkc defined by
the relation

v~kc!5kcv,

wherev(k) is the wave dispersion in the electrodynamic
system in which this condition can be met. We now intr
duce the new variablesx5k2kc and d5v2v(kc)
5v2kcv characterizing deviation from the pointkc with
respect to wave number and frequency, respectively. Th
expansion of the dispersion relation~33! near the synchro-
nism point in the small damping limit@G!v(kc)# yields

@~d2xv !21 ig~d2xv !2vs
2#~d2xvg1 iG!5G, ~34!

in which vs
25(cs

2/d0
2)sin2(kcd0/2) is the parameter for the

splitting of the dispersion characteristics of the acous
waves in the soliton chain in pointkc , the coupling constan
G is defined by the relation

G5
kc
4e2f 2~kc!

8d@11kc
2~12v2!#u]D/]vu

~12v2!3/2.

This expression is a complete analog of the dispersion r
tion for the waves in a TWT~for vg.0) and in a BWT~for
vg,0),21 G is analogous to the Pierce parameter, andvs

2 is
similar to the parameter accounting for the spatial charge
a beam.

Equation~34! is still quite complicated at this stage, and
complete study of the dependence Imd(x) which determines
the growth rate of the instability for different values ofG,
vs
2 , g, G, v, vg requires numerical calculations. This equ

tion is well studied; the details of its solution procedure c
be found, for example, in Ref. 22. We shall consider so
limiting cases that allow simple analytical solutions.

Without interaction,G50, Eq.~34! breaks down into the
product of factors and is easy to solve:

d1,25xv2
ig

2
6Avs

22
g2

4
,

d35xvg2 iG. ~35!

The above dependences — actually, the dispersion cu
near the pointkc , are shown in Fig. 4~a! for vg.0 and Fig.
4~b! for vg,0. Let us first consider the case of low dampi
in the junction,g!vs , and a small coupling coefficientG,
i.e., when the resulting growth rate satisfies the condit
Imd!vs . Splitting of the dispersion curves due toGÞ0 in
this case will be inconsiderably small as compared tovs ,
and the points where the dispersion curve of eigenwave
the electrodynamical system crosses the dispersive curve
fast and slow waves in a soliton chain can be examined s
rately.

Equation~34! then reduces to a quadratic equation,
n
-
ts
q.

l
-

n,

c

a-

of

-
n
e

es

n

of
of
a-

S d2xv1
ig

2
6vsD ~d2xvg1 iG!57

G

2vs
~36!

and can be studied in detail. The upper sign in Eq.~36!
corresponds to the interaction between a wave in the elec
dynamical system and a slow wave in the soliton chain,
lower one — to the same interaction but with a fast wave
the soliton chain. One can easily see that instability is p
sible only in the first case, when the right-hand side is ne
tive. It is this situation that we are going to address.

By introducing the variablesd8 andx8 in the form

x5
vs

v2vg
1x8,

d5
vg

v2vg
vs1d8,

FIG. 4. ~a! The dependence of the real part ofv on k for the
system in question whenvg.0. Curves 1 and 2 correspond to th
fast and slow acoustic waves in the soliton chain, curve 3 co
sponds to the wave in transmission line. Thin lines show the p
turbation of the dispersion characteristics when the coupling
tween the Josephson junction and the transmission line takes p
~b! The dependence of the real part ofv on k for the system in
question whenvg,0. Curves 1 and 2 correspond to the fast a
slow acoustic waves in the soliton chain, curve 3 corresponds to
wave in transmission line. Thin lines show the perturbation of
dispersion characteristics when the coupling between the Josep
junction and the transmission line takes place.
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11 666 55V. V. KURIN AND A. V. YULIN
and dropping the primes we can rewrite the equation as

S d2xv1
ig

2 D ~d2xvg1 iG!52g0
2 ,

whereg0
25G/2vs is the new coupling constant. From he

follows a direct solution

d5
v1vg
2

x2

i S G1
g

2D
2

6 iAg0
21

1

4 S G2
g

2
1 ix~v2vg! D 2, ~37!

defining the complex frequency of the interacting waves
a set wave number. The maximum Imd is reached at the
exact resonance (x50). From Eq.~37! it is readily found
that the threshold of instability is

g0
2.g th

25
Gg

2
~38!

or

G.Ggvs . ~39!

This threshold can be easily exceeded for real micros
circuits. For a small excess of the threshold

g0
22

Gg

2
!
1

4 S G1
g

2D 2
the maximum growth rate of the instability is expressed

Imd5
g0
22Gg/2

G1g/2
;

if the opposite condition is met,

g0
22

Gg

2
@
1

4 S G1
g

2D 2,
then

Imd5g0 .

The wave number range in which instability Imd(x).0 oc-
curs is defined by the relation2Dx/2,x,Dx/2, where
Dx is the instability domain

Dx5
4Ag0

22Gg/2

v2vg
. ~40!

So we see that the soliton chain which was initially out
phase with the wave is unstable to growing perturbation
the positions of solitonsjn and the wave in the electrody
namical systemc. The physical mechanism responsible f
this instability is clearly understood as soliton bunching
the decelerating phase of the wave. The growth of the wa
in its turn, is related to bunching of solitons. Atvg.0 the
instability exhibits a convective behavior.23 The wave packet
is increasing with a growth rate~37! in the reference frame
moving at the velocityv5(vg1v)/2, while in the laboratory
frame perturbation tends to zero at any fixed point. It is
r

ip

f
in

e,

a

well-known fact that a system with a convective instabil
will feature a spatial exponential amplification of waves. T
gain per unit length is determined from the dispersion eq
tion ~36! if that is resolved forx. The maximum gain is
expressed asg5eImxx, where Imx is defined by the formula

Imx52
G/vg1g/2v

2
1A g0

2

vvg
1
1

4 S G

vg
2

g

2v D
2

,

which for a large supercriticality reduces to a simpler for

Imx5
g0

Avgv
5S G

vsvgv
D 1/2.

If the coupling coefficientG is large:G@vs
3 , such that

Imd becomes comparable withvs , it is no longer possible to
reduce Eq.~34! to Eq. ~36!, so we have to solve the cubi
equation~34!. For a large supercriticality it gives the follow
ing expression to describe the growth rate of the instabil

Imd5
A3
2
G1/3,

and the imaginary part of the wave number responsible
amplification will be defined as

Imx5
A3
2 S G

vgv
2D 1/3.

This leads us to a conclusion that a Josephson junc
coupled to an electrodynamical system with dispersion
be used for amplification of electromagnetic waves. Na
rally, large gains will take a rather large length of the syst
to be achieved.

If vg(ks),0 in the point of crossing,ks , of the dispersion
curves for a slow density wave in a soliton chain and fo
wave in electrodynamical system, then the instability d
scribed by Eq.~34! will be absolute and the system in que
tion will be able to operate as a generator. This case is a v
close analogy with generation of waves by a backward-w
tube oscillator.22We look for the critical values ofG and the
system length that will make generation possible. Solution
this problem takes more than the dispersion equation~34!:
we also need to know the relations betweenc, x, andF in
the growing waves. Therefore, we now get back to the
~30!–~32!.

AssumingG!vs
3 , we expand the left-hand sides in th

set in a series in the vicinity of the Cherenkov synchroni
point exactly as we did it in the attempt to simplify th
dispersion equation. The result is a linear set of equations
the amplitudesj andc,

S d2xv1 i
g

2D j52s1c,

~d2xvg1 iG!c5s2j,

where

s15
1

8

kc
2e f ~kc!~12v2!3/2

11kc
2~12v2!

and s25
kc
2e f ~kc!

2vsd~]D/]v!
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are the coupling coefficients of the slow wave in the solit
chain and of the wave in the electrodynamical system,
spectively. From this set we directly derive the dispers
equation ~33! considered earlier, since, as is easily se
s1s25g0

2. It follows from this set that the fields can b
defined as

j5C1~d1x1uvgu1 iG!exp~2 idt1 ix1x!

1C2~d1x2uvgu1 iG!exp~2 idt1 ix2x!,

c5C1s2exp~2 idt1 ix1x!1C2s2exp~2 idt1 ix2x!,

whereC1,C2 are the arbitrary constants,x1,x2 are the solu-
tions to Eq.~33!,

x1,25x06x8

in which

x05
1

2 S d1 i ~g/2!

v
1

d1 iG

uvgu
D

and

x85A1

4 S d1 i ~g/2!

v
2

d1 iG

uvgu
D 21 g0

2

vuvgu
.

Satisfying the boundary conditions

j~0!50, c~L !50,

by which waves do not enter the system (L is the length of
the system!, we derive the characteristic equation for t
instability parameters versus a length of the interaction
gion and the system parameters, which can be represent
a convenient form as follows:

y

Aa22y2
52tany,

where y5x8L, a5g0L/Avuvgu. It is easily seen that non
trivial solutions of this equationsynÞ0, appear at
a.p/2(2n11), wheren is the integer. We find solutions t
this equation and, further, expressingx8 via d obtain the
complex frequencies of the eigenmodes

d1 i ~g/2!

v
1

d1 iG

uvgu
5

Aa22yn
2~a!

L
,

and the threshold value of the pump parametera is deter-
mined from the equation

g

2v
1

G

uvgu
5
2

L
Aa22y2~a!.

If the length of the system is large, such thata@p/2,
y(a)→p, the root can be expanded in series to yield
explicit expression for the dependence of the fundame
mode growth rate on damping and the system length:

dS 1v 1
1

uvgu D 5 i S 2g0

Avvg
2

G

uvgu
1

g

2v D 2
p2~a!

aL
.

-
n
,

-
in

n
al

This is a much more strict threshold condition on the dens
and velocity of a soliton chain than Eqs.~38! and~39!, which
makes it by far more complicated to achieve generation
such a soliton analog of BWT than to realize the amplific
tion mode atvg.0.

Note, however, that generation may also be made poss
atvg.0 by introducing an auxiliary feedback loop providin
transfer of the amplified wave energy from the output to
input of the system. The feedback can be effected either
reflection at the unmatched ends of the system, or by usin
ring geometry. In the latter case, given instability, the syst
will always work as a generator regardless of its dispers
characteristics, and the growth rate of the instability will
defined by Eq.~37! with a range of possible values forx
determined by the size of the system,x52pn/L, wheren is
the integer. Extraction of energy from such a system w
take an additional transmission line.

It has been shown that interaction of a soliton chain w
a wave in electrodynamical system may give rise to amp
cation and generation of an electromagnetic wave and
soliton bunching in the decelerating phase of the wave. In
following section we analyze the nonlinear stage of t
bunching instability with a view to estimating the outp
power of the proposed device.

V. NONLINEAR STAGE OF SOLITON BUNCHING

At the nonlinear stage of bunching the solitons’ shi
from their initial positions can no longer be assumed smal
in derivation of the dispersion relations~30!–~32!. To derive
the equations describing the nonlinear mode of interac
between solitons and a synchronous wave in the electro
namical system we consider the simplest case, when the
plification band defined by the relation Imd(x).0 from Eq.
~37! includes only one wave whose field can be written in t
form

c~x,t !5a~ t !exp~2 ivt1 ikx!1c.c.,

wherea(t)5uaueiw is the slow (uȧu!vcuau) complex ampli-
tude independent of the coordinate. This situation may t
place, for example, in an annular geometry of Joseph
junction and electrodynamical system. The wave numbek,
due to periodicity of the boundary conditions, can have o
a discrete series of valueskn52pn/L, whereL is the length
of the system; so, if the intermode distance in thek space
exceeds the amplification band 2p/L.Dx defined by Eq.
~40!, then only one wave will be amplified.

It is convenient to represent a soliton’s coordinates in
chain as

Zn5vt1jn ,

where the velocityv5v r /kr , v r is the frequency of the
resonator eigenmode with the wave numberkr nearest to
kc . Here, unlike the case in Sec. III, we do not assume
soliton shiftsj much smaller than the wavelength. Settin
the vortex velocities close:u j̇nu!v and the soliton chain
rather rare, such that a soliton-soliton interaction can be
glected, we find from Eqs.~10! and ~11! the expression

j̈n1gj̇n5s1~ae
ikrjn1c.c.!1DI , ~41!



b-

e

a
e
e
to
ia
th
a

.

fr

h

y-

f
s

ov

e in

re-

evi-
d
-
very
it
on
ure-

n a
-

re

a
ns

sid-

ng
ion

11 668 55V. V. KURIN AND A. V. YULIN
where DI5(p/4)I2g(v/A12v2) is the correction to the
bias current,s1 is the earlier introduced coefficient descri
ing the force of the wave-vortex coupling.

We derive the expression for the slow amplitudea(t)
from Eq. ~28! in the following way. First, we expand th
function D(v,k) just as above in Eq.~33!, near the point
v r ,kr :

D~v r1d,kr !5D~v r ,kr !1
]D

]v
~d1 iG!.

Then, rewriting this expression in terms oft by replacing the
multiplication operatorsid with the operators2]/]t and
integrating the right- and left-hand sides of Eq.~28! over the
space coordinate we have

]a

]t
1Ga52

s3

L (
n50

N

exp~2 ikrjn!, ~42!

wheres35ekr f (kr)/u]D/]vu, N is the number of solitons in
the system,L is the system length. The resulting set of equ
tions ~41!, ~42! provides the basis for investigation on th
nonlinear stage of soliton bunching in the field of a wav
however, despite the above simplifications it remains
complicated to be studied analytically. To estimate the rad
tion power we assume that all solitons are in phase with
excited wave, i.e.,jn5j12p l /kr , l is an integer. We seek
solution to Eqs.~41!, ~42! in the form

j5j01Dvt,

a5Ae2 idt1f0,

whereDv is the perturbation of soliton velocity,d5kcDv is
the frequency mismatch,A is the real amplitude of the wave
Assuming furtherA andDv to be stationary:]/]t50, we
find the equations

gDv5s1A cosQ1DI ,

GA52s3n cosQ, ~43!

dA52s3n sinQ,

which define the steady-state value of the amplitude and
quency of the electromagnetic wave; hereQ5krj0 is the
soliton phase with respect to the wave,n5N/L is the con-
centration of solitons. Since there is a straight relations
between the perturbation of solitons’ velocityDv and the
voltage perturbationDU in the Josephson junction,

DU52pnDv,

we can, knowing the dependenceDv(DI ), also determine
the I -V characteristic of the junction coupled to electrod
namical system. Solution~43! is easily found in the form

A5
s3n

AG21kr
2Dv2

, cosQ52
G

AG21kr
2Dv2

,

and the velocity perturbation is related toDI as
gDv1s3s4nG/(G21kr

2Dv2)5DI , which defines the junc-
tion I -V characteristic. Its qualitative curve in the vicinity o
the resonance point is shown in Fig. 5. Note that the re
-

;
o
-
e

e-

ip

o-

nance velocity of solitons is determined by the Cherenk
synchronism conditionkcv5v(kc), and, since the spectrum
of the wave numberskr52p l /L and frequenciesv(kr) in
the ring geometry considered here is discrete, the voltag
the junction will be defined asU52pvn/L, whereN is the
number of solitons in the system, which relates to the f
quencies of excited modes asU5(N/ l )v. The presence of
the steps on the current-voltage characteristic is not the
dence of Cherenkov emission~similar steps may be cause
by Fiske resonances, etc.!. Moreover, if the Cherenkov ra
diation takes place and the spectrum of the resonator is
dense, then theC-V characteristic will not have any steps,
will only go lower than in the unloaded Josephson juncti
case. So, to distinguish Cherenkov emission, direct meas
ments of the radiation are necessary.

The maximum amplitude of the wave

Amax5
s3n

G
5

enkr f ~kr !

Gu]D/]vu

is reached at exact resonanceDv50 which corresponds to
Q5p and occurs atDI5s1s3n. Knowledge of the wave
amplitude and the expression for the energy density i
dispersive medium~20! provide a sufficient basis for estima
tion of the energy stored in an annular resonator:

E5
e2n2Lkr

4u f ~kr !u2

4G2u]D/]vu2 S v2 ]„vC2~v!…

]v
1L2

22 ]„vL2~v!…

]v D ,
wheren5N/L is the density of a soliton chain. From he
we derive the radiation power:

P52GE5
e2n2Lkr

4u f ~kr !u2

2Gu]D/]vu2

3S v2 ]„vC2~v!…

]v
1L2

22 ]„vL2~v!…

]v D .
It is clearly seen that its value increases with a higherQ
factor of the resonator.

We shall now use the obtained formulas to estimate
practically feasible radiation emission power of solito

FIG. 5. The current-voltage characteristic of the system con
ered. Dotted line shows the unstable branch of theI -U characteris-
tic. Thin line depicts the current-voltage characteristic of the lo
Josephson junction without coupling to an additional transmiss
line.
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55 11 669RADIATION OF LINEAR WAVES BY SOLITONS IN A . . .
moving in a dispersive electrodynamical system. The po
unit in the dimensionless system of units used here is
quantity P05F0 j cWvs/2p, where j c is the critical current
density per unit area,W is the width of a Josephson junction
Using the typical values for the Nb-AlO-Nb-based Joseph
junctions ~see, for example, Refs. 3–5!, j c5104 A/cm2,
W51025 m, vs5107 m/s, we find a definition for the powe
unit in our system of units:

P05331026W.

The dimensionless power can be estimated by putting in
characteristic parameter values attainable in the experim
on Josephson junctions and strip lines on the Nb basis.
suming there is only one soliton on the length of an exci
wave we haven5kc/2p and taking, for example,kc51,
e50.3, C2510, G51023 we come to a very hopeful est
mate for the radiation power:

P5100P05331024W.

The mechanism underlying such a high radiation efficien
is the Cherenkov emission of solitons, which makes poss
their interaction with electromagnetic waves in the ent
junction.

VI. CONCLUSION

The main results achieved through this effort can be f
mulated as follows. We propose a method of using a Jose
son junction for generation and amplification of electroma
netic waves, which involves the Cherenkov emission
linear waves by Josephson solitons. The device by which
principle can be realized is essentially a long Josephson j
ur

d,

.

s
,

J

R

d

r
e

n

e
nts
s-
d

y
le

-
h-
-
f
is
c-

tion electrodynamically coupled to a dispersive wavegu
system that allows for resonance interaction of moving s
tons with a wave. From the viewpoint of general physics
proposed Josephson oscillator is an analog of the travel
wave and backward-wave tubes. The problem of interac
between the Josephson vortices moving in a long Josep
junction electrodynamically coupled to a transmission li
with dispersion is considered. It is shown that the Cheren
effect causes the Josephson vortices to effectively ex
electromagnetic waves, the radiation intensity is estima
We found out and studied the effect of soliton bunching
the field of excited wave. By bunching in the decelerati
phase of the wave the solitons are shown to cause w
amplification due to coherence contributions of individu
solitons. The coefficients of spatial amplification and t
growth rate of bunching instability are calculated. Other
sults include derivation of the equations describing a non
ear stage of soliton bunching and estimation of the Cher
kov radiation power. The Josephson flux-flow oscillat
based on the Cherenkov effect is shown to hold the prom
of good energy characteristics. It seems quite likely that
soliton bunching effect will largely upgrade the FFO noi
properties.
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