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Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures
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Normal-conducting mesoscopic systems in contact with a superconductor are classified by the symmetry
operations of time reversal and rotation of the electron’s spin. Four symmetry classes are identified, which
correspond to Cartan’s symmetric spaces of {€p€l, D, andDlIIl. A detailed study is made of the systems
where the phase shift due to Andreev reflection averages to zero along a typical semiclassical single-electron
trajectory. Such systems are particularly interesting because they do not have a genuine excitation gap but
support quasiparticle states close to the chemical potential. Disorder or dynamically generated chaos mixes the
states and produces forms of universal level statistics different from Wigner-Dyson. For two of the four
universality classes, the-level correlation functions are calculated by the mapping on a free one-dimensional
Fermi gas with a boundary. The remaining two classes are related to the Laguerre orthogonal and symplectic
random-matrix ensembles. For a quantum dot with a normal-metal—superconducting geometry, the weak-
localization correction to the conductance is calculated as a function of sticking probability and two perturba-
tions breaking time-reversal symmetry and spin-rotation invariance. The universal conductance fluctuations are
computed from a maximum-entrof8tmatrix ensemble. They are larger by a factor of 2 than what is naively
expected from the analogy with normal-conducting systems. This enhancement is explained by the doubling of
the number of slow modes: owing to the coupling of particles and holes by the proximity to the superconduc-
tor, every cooperon and diffusion mode in the advanced-retarded channel entails a corresponding mode in the
advanced-advancedr retarded-retardedhannel [S0163-18207)04001-0

[. INTRODUCTION stationarity condition is relaxed and additional symmetries
are imposed, new universality classes may arise. This hap-
Following the early work of Wignet Dyson in his classic pens, for instance, when a massless Dirac particle is placed
1962 paper classified complex many-body systems such asn a random gauge field. Because the Dirac oper@tamnti-
atomic nuclei according to their fundamental symmetriescommutes withys in the chiral(or masslesslimit, its matrix
Arguing on mathematical grounds, he proposed the existends block off-diagonal in the eigenbasis @f. As a result, the
of three symmetry classes, which are distinguished by theieigenvalues oD are either zero or come in paita,—\).
behavior under reversal of the time direction and by theifThe average spectral densitydfclose to zero is nonstation-
spin. The statistical properties of these classes are describady but universal and is of relevance for the physics of QCD
by three random-matrix models, called the Gaussian orat low energies. It is determined by one of three so-called
thogonal, unitary, and symplectic ensembl&OE, GUE, chiral Gaussian ensembles, where different ensembles corre-
and GSE. Dyson’s classification scheme has since provedpond to different choices of the gauge group and the num-
very far reaching. Although atomic nuclei display only GOE ber of flavors’ These ensembles have appeared in the con-
statistics, physical realizations of the other two classes wertext of disordered single-electron systems, t0o.
later found in chaotic and disordered single-electron systems In the present paper we introduce and analyze four addi-
subject to a magnetic fieldGUE) or to spin-orbit scattering tional Gaussian random-matrix ensembles, which share
(GSB. many striking similarities with the chiral ones but are de-
By standard arguments, Wigner-Dyson statistics appliesnonstrably distinct. The universality classes they describe
to theergodiclimit, i.e., to times long enough for the degrees are realized in mesoscopic normal-metal—superconducting
of freedom to equilibrate and fill the available phase spacéNS) systems, i.e., in microstructures composed of a metallic
uniformly. More specifically, in the context of disordered part in contact with one or several superconducting regions.
mesoscopic systems the ergodic limit is reached for timedust as in the classic Wigner-Dyson case, the universality
larger than the diffusion time?/D, whereD is the diffusion  classes are distinguished by their behavior under time rever-
constant and. the linear extension of the system. By the sal and rotation of théelectron’s spin. The four new classes
uncertainty relation, the ergodic limit corresponds to the en{ogether with the six known ones add up to a grand total of
ergy range below the Thouless enevgp/L2. ten. We have reasons to believe that this exhausts the number
One may ask whether the level statistics of disordered oof possible universality classes in disordered single-particle
chaotic single-particle systems in the ergodic limit must al-systems and none else will be fouritore precisely speak-
ways be Wigner-Dyson or whether different statistics is posing, by universality classes we here mean infrared
sible. The answer is that Wigner-Dyson statistics is genericenormalization-group fixed points describing an ergodic
and universal as long as the statistics is required to be stdimit.) Some of our ideas were anticipated in Refs. 7 and 8.
tionary under shifts of the energyThis can be understood The prototype of the kind of systénwe are going to
from the mapping on a nonlinearmodel®) However, if the  study is depicted in Fig. 1. A metallidi.e., normal-
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polynomial method and then diagrammatic perturbation
theory. The latter method easily extends to the calculation of
the transport properties of an open system. In Sec. VII we
work out the weak-localization correction to the average con-
ductance and in Sec. VIII the universal conductance fluctua-
tions. Our conclusions are presented in Sec. IX.

Il. SYMMETRY CLASSIFICATION

The treatment of this paper is based on the BCS Hamil-

FIG. 1. Metallic quantum dotl) in contact with two supercon- tonian in the Hartree-Fock-Bogoliubov mean-field approxi-
ducting regions §). The dot is separated from the leads) (by a mation:

tunnel barrier T).

conducting quantum dot is put in contact, via potential bar- Hzf ddx( 2 Ut ATyl A gy |,
riers, with two superconducting regions. Several leads are o=l
attached for the purpose of making current and voltage mea-
surements. The metallic quantum dot may or may not be
disordered. In the latter case we assume its geometric shapere V(x) is a scalar potential which may have a random
to be such that the classical motion of a single electron insidgomponent, and (x) is the pairing field. The presence of a
it is chaotic. The quantum dot may be pierced by a magnetignagnetic vector potentiad(x) breaks time-reversal symme-
flux of the order of one or several flux quanta, and there mayry while the spin-orbit fieldJso(x) breaks invariance under
exist some impurity atoms causing spin-orbit scattering. Theotations of the electron’s spin is the chemical potential.
temperature is so low that the electron’s phase coherence The second-quantized Hamiltoni&hcan be rewritten in
length exceeds the size of the quantum dot by far. an equivalent first-quantized form by the Bogoliubov-
The characteristic feature that distinguishes this kind oldeGennegBdG) formalism. For our purposes it is conve-
quantum dot from more conventional mesoscopic systems, isient to introduce some generic orthonormal basis of single-
the possibility for two electrons to tunnel through the poten-electron statekr), wherea is a multindex that combines the
tial barrier at the NS interface, thereby adding a Cooper paibrbital and spin quantum numbers of the electrom i the
to (or removing it from the superconducting condensate. Annumber of orbital states used,runs from 1 to N. Letc|

equivalent statement in single-particle language is that agndc, be the usual creation and annihilation operators obey-
electron incident on the NS interface may be retroreflected &g the canonical anticommutation relatiom%cﬁ+chT
~ (23

a_hole(ar_1d vice versp This process of particle—hole_conver—_ = 3,5 The HamiltonianH can be written

sion, which conserves energy, momentum and spin but vio-

lates charge, is calleAndreev reflectiofl In the semiclassi- -

cal limit, Andreev reflections give rise to numerous almost- H=2> (hasChes+ %AaﬁCLCEJF 3A%4C5C,).
periodic orbits whose action does not grow but remains of “p

order# as the length of the orbit increas€sThe existence Hermiticity requiredwa[;:hjg.a, and the matrix elements,

of these orbits modifies the mean density of stai®®yl  must be antisymmetric by Fermi statistieg;;= —Ag, . Now

term) of the quantum dot without leads: in general, an exci-we write H in the form “row multiplies matrix multiplies
tation gap opens up and we arrive at the “boring” situation column’:

where the vicinity of the chemical potential is devoid of

single-particle states. However, by tuning the phase differ- - h A

ence of the order parameters of the two superconducting re- H= 5 (cf C)( —A* _hT)

gions to the special value, we can make the gap close. R

More generally, we expect quasiparticle excitations to exisin this way every HamiltoniaH is uniquely assigned to a

right at the chemical potential whenever the phase shift in4NXx 4N matrix H,

curred during Andreev reflection vanishes on average over

the NS-interfacial region. Disorder or dynamically generated h A

chaos mixes the states and creates a universal spectral region H= A% —hT/

close to the chemical potential. Its width is determined by the

energy uncertainty which is caused by the coupling of parThe eigenvalue problem fdt is known as the Bogoliubov-

ticles and holes by Andreev reflection. It is this very regiondeGennes equations. We refer % as the “BdG Hamil-

and its consequences for the transport properties that we atenian” for short.

going to study in the present paper. The first-quantized Hamiltoniafi{ acts in an enlarged
The organization of the paper is as follows. Mesoscopicspace, namely the tensor product of the physical sgtte

independent-quasiparticle systems are classified according torbitals and spipwith an extra degree of freedo@f, which

their behavior under time reversal and spin rotations in Seave call the “particle-hole space.” Note however that the

Il. Having specified the required dynamical input in Sec. Il “particles” and “holes” of the BdG formalism are not the

we formulate the appropriate random-matrix ensembles iparticle and hole states of a degenerate Fermi gas. Indeed,

Sec. IV. In Sec. V we discuss the spectral statistics of arthe matrixh already acts omll of the single-electron states,

isolated system, using first the Dyson-Mehta orthogonalvhich have energiesither above or belovwthe chemical po-

h=(p—eA)?2m+V+Ugy oX (p—eA) — u.

+ const. (§H)]

cf

@
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(and in this sense redundant, or unphysiaapies of the cf

c Y
=l )=
BdG-particle states acted upon byThey are introduced for
the convenience of treating the pairing field within the for-can be showit to coincide with Eq.(4). Thus, inserting
malism of first quantization. X=g~ Qg into Eq.(1) we obtain
The aim of the current section is to classify systems ac-
cording to their symmetries. Using the BdG formalism we
will show that the presence or absence of time-reversal
and/or spin-rotation invariance leads to four distinct symme- + + . ]
try classes. The situation thus is different from the well-With ¥a¥s+ 7g7a= 645 The frequenciess, may be posi-
known Wigner-Dyson scenario where only three distincttive or negative. The BCS ground state is defined by de-
classes exist. mandingy,|[BCS=0 for w,>0 andy!|BCS =0 for w,<O0.
The discussion of Secs. Il A—II D uses some basic factg'he normal-ordered Hamiltonian
from the theory of Lie algebras and symmetric spaces and is
somewhat technical. The casual reader may wish to skip b= E
these subsections and proceed directly to Table | given at the 0y >
end of Sec. II D. A brief summary of the symmetries¥gf .
for each class is provided also at the beginning of Sec. IV. IS always positive.

tential. The BdG-hole states acted upon-big" are identical ( c

~ 1
H= 2 ; wx(?’;[%\_ %\’YI)

|w)\|y;[y>\+ > |w>\|%\%t
0 0, <0

A. Symmetry classD B. Symmetry classC

We start by considering systems with the least degree of W& now consider systems without time-reversal symme-
symmetry, i.e., systems with neither time-reversal symmetrj’y. Put with spin-rotation invariance. We again use the
nor spin-rotation invariance. In this case the matriceand ~ Unique representation of a second-quantized BCS mean-field
A in general have no symmetry properties beyond thos&t@miltonianH by (i times a BAG HamiltonianX=i".
stated above, namely hermiticity bfand skew symmetry of WE write the particle-hole decomposition of as
A. Because the set of Hermitian matrices does not close u¢=(c  b) or, in tensor-product notation,
der commutation whereas the antiHermitian ones do, we pre- _
fer to work with X: =i rather thari{ in the current section. X=Epp@A+Epn®B+Eny®C+Ep®D.

In terms of X, the conditionsh=h', A=—AT can be pre- The conditionX= ~3,X'S,, meansB=—-B",C=-C" and
sented summarily in the form D=—AT. Antihermiticity requiresA=—A" andC=—-B".

fox=_3 XTS The generators of spin rotations), (k=x,y,2z),

TRIEX= T2 X 2 are represented on particle-hole space hy=(E,®0y

) —E®0 ) ®1y. Spin-rotation invariance of the Hamil-
s = 0 Lo —ool tonian requires thaX and J, commute. This condition is
11,y O XTI easily seen to constraif,B,C to be of the formA=1,®a,

. . . B=io,®b andC=—ioy®c or, in matrix presentation,
If two matricesX,Y satisfy these equations, then so does

their commutator X,Y]. Hence, we may viewX as an ele- a o0 0 b
ment of some Lie algebra. To identify this Lie algebra we 0 b 0
conjugate byX—X=U XU ,* where X = a -
0 -¢c —-a" o0
1 /1 1 0 o -—a'
Up=—=|. . |®1n. ¢ a
0 2 ( P ®@ Loy

We see thalX decomposes into two commuting subblocks.
Equations (3) then take the form—X '=X=—XT or, One corresponds to spin-up particles and spin-down holes,
equivalently X=X* = —X T. This shows that Eq3) fixes a and the other to spin-down particles and spin-up holes. Be-
so(4N) algebra, i.e., a Lie algebra isomorphic to the realcause the subblocks are related by an algebra homomor-
antisymmetric A X 4N matrices. Since so()=D,, in  phism(b——b, c——c) it is sufficient to focus on one of
Cartan’s notation, we denote the present symmetry class bjiem, say

the symbolD.

Being a Lie algebra elemenX, can be brought into diag- |2 b
onal form byX—Q=gXg ! whereg is an element of the X = c —a'
corresponding Lie group which is isomorphic to SQI4
and is defined by and account for spin degeneracy by inserting factors of 2
whenever needed. We drop the subscript and wifer X; .
g lf=g=3,913,. (4) Since B=-B', the equation B=io,®b implies

b=+b". Similarly, we deduce&=+c'. Antihermiticity re-
The conditions (3) imply Q=diag (o,—iw)=0,8iw quiresa=—a' andc=—b". All these conditions are sum-
wherew=diag(w;,®,,...,w,y) With realw; . The conditions marized by
for the canonical anticommutation relations to be invariant
under a transformation —X'=X=-3,X"S,, I,=0,®ly. (5)
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This is the defining equation of the symplectic Lie algebra TABLE I. Symmetry classes.
sp(2N). Thus X=iH is an element of sp(f). Since _ _
sp(2N)=C, in Cartan’s notation, we denote the presentClass Time-rev Spin-rot Sym space
symmetry class by C.” D N N SO(N
The second-quantized Hamiltonian associated with © © (4N)
o _sa b . C No Yes Sp(N)
=Xi=( —a1)is DI Yes No SO(4N)/U(2N)
. Cl Yes Yes Sp(N)/U(N
PI __| 2 (CT c ) amn bmn CT'IT p( ) ( )
1 2 fon mt ~ml Cmn —mm C;l .

. . R The solutions of the latter are of the for=diag (Z,—Z")
gs: ?,egiri,' :;1% Zin diglz?g)onallzf )byar>1( d_g nos\/)vgs;\;ihs?irees with Z an antiHermitian B X 2N matrix. We now recognize
it Y 0@, ON), 9 _ K as being isomorphic to the Lie algebra of antiHermitian
g "'=g=%y9 " Xy, i.e., geSp(N). The transformation N x 2N matrices, orC=u(2N). Thus, the spac® of BdG
HamiltoniansX=iH is obtained from so(M) by removing a
(CIF)H9<C$) ::( 7}) u(2N) subalgebra. Because is the difference of two Lie
il C 7 algebras so(M) and u(2N), it can be interpreted as the tan-
gent space of the quotient SO U(2N) of the corre-
sponding Lie groups, which is a symmetric space of type
|:|:|:|T+|:|l DIIl in Cartan’s notation; hence the nan@lll for the
present symmetry class.
1 + + + s From the general theory of symmetric spaéase know
) ; OV VT VI T I T - that an elemenK e P can be diagonalized by a transforma-
tion Xr—k Xk with keexp X=U(2N). Time-reversal sym-
Becausa e Sp(2N) CU(2N) is a unitary matrix, the canoni- metry causes every eigenvalue to be doubly degenerate by
cal anticommutation relations are preserved by the transfolkramers’ theorem.
mation from(c,c’) to (y,9'). Every quasiparticle level has a
trivial degeneracy due to spin.

diagonalizes the Hamiltonian:

D. Symmetry classCl

Finally, we turn to systems with both time-reversal sym-
) o metry and spin-rotation invariance. Recall that spin-rotation
We next consider systems with time-reversal Ssymmetrynyariance causes the BdG HamiltoniXr=i, to obey the
t_Jut without spin-rotation mvanangre. Recall th?t the .Cond"relations— XF=x= —EyXTEy, which define the symplectic
tions for symmetry classD, —X'=X=-%,X"3, with  |je algebra sp(R). Because of the restriction to a single
24=0,®1,@1y, fix a so(A) algebra. The time-reversal op- gpin sector, the action of the time-reversal operator simplifies
erator7 acts on the BAG Hamiltonian by to T:X—X". Thus, time-reversal symmetry constrasto
T His 1% 71 be symmetric. LefC now denote the subalgebra of antisym-
: metric matrices in sp(9). ThenX, being symmetric, lies in
where 7=1,®i 0, ®1y . UsingX=i andX*=—X" we get ~the complementary sep defined by sp(R)=K+P. We
the action of 7 on X, TX—7X"7"1. Thus, for a time- claim thatX is isomorphic to the unitary Lie algebraNy.
reversal invariant systenX is subject to the additional con- TO prove this, we observe that the solutioNs=/C of
straint X=+7X"r .. We denote the set of solutions in —Y'=Y=-3Y'S,=YT have the form 1,®ReA
so(4N) of this condition byP. While P does not close under tioy®ImA where A is an arbitrary antihermitiatN < N
commutation and therefore does not form a subalgebra dhatrix, i.e., Acu(N). The embedding W)—sp(2N) by
so(4N), the solution setC, of the complementary condition A—1@ReA+io,®ImA is easily seen to be a homomor-
Y=—7YT7"1 does. Therefore, we may descrifieas the Phism of Lie algebras. Thereforé=u(N) as claimed. The
complement of a subalgebr& in so(4N). In formulas, linear complemen® of u(N) in sp(2N) can be regarded as

C. Symmetry classDIII

so(4N)=K+P. We are now going to identifyC. the tangent space of Sp/U(N), which is a compact sym-
The equations fokC can be rewritten metric space of typ&€l according to Cartan’s list. For the
benefit of the casual reader the various symmetry classes and
—YT=Y==-3 Y3, =S, nNY S, . the names by which they are referred to in the present paper,

) . i , _are summarized in Table I.
Let U, be the unitary matrix given in particle-hole and spin

decomposition by
E. Is the symmetry (3) wiped out by Coulomb effects?
1 (1 oy The symmetry(3) is central to our approach. Just how
E robust is it?
_ The relationg3) follow from the well-known mathemati-
Conjugation byU,, Y—Y=U ;1Y U,, takes the equations cal fact! that the set of all bilinear combinations of the ferm-
for K into ion creation and annihilation operators is isomorphic to an
o _ _ orthogonal Lie algebra. Put differently, the symme(By re-
-YT=Y=-3,Y T3, =-3,Y3,. quires no more than the fermionic nature of the electron and

UOZ ®1N

O'y _|12
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the use of the Hartree-Fock-Bogoliubov mean-field approxierage over the NS-interfacial regiolTo appreciate what
mation, allowing us to express the Hamiltonian in terms ofsuch an assumption implies, let us look at a few ex-
bilinears of the creation and annihilation operators. Alternaamples. Consider first a superconducting—normal-metal—
tively, we could say that Eq3) is an exact symmetry when- superconductingSNS system consisting of an infinite slab
ever the system can be described in terms of independenf normal metal sandwiched between two superconducting
Bogoliubov quasiparticles. slabsS; andS,. The pairing interaction causes the existence
What happens when we add a Coulomb charging energgf an excitation gap in each of the superconducting regions.
to the Hamiltonian? The relative minus sign between theNe now ask how the presence of the normal-conducting slab
particle-particle and hole-hole blocks ®f, Eq. (2), tells us  affects the excitation spectrum of the combined SNS system
that, if the creation of an electron in a given state costs at the chemical potential. The answer to this question was
certain amount of energy, then the creation of a Hoée  given in Refs. 16 and 17 and it is essentially as follows. In
moval of an electronin this state should release exactly the the clean limit, the BAG Hamiltonian is separable and we can
same amount. The Coulomb interaction, however, does najet a qualitative understanding of the quantal energy spec-
conform to that principle. When a charge is added to arum by the method of semiclassical quantization. For sim-
charge-neutral system, say, it makes no difference whethedicity we assume that all reflections at the NS interface are
this charge is a particle or a hole, the electrostatic energy cogtndreev. Every periodic classical motion then is some mul-
is positive in both cases. Therefore, the Coulomb chargingiple of a primitive periodic orbit where an electron moves
energy(as well as other perturbations that do not fit into theback and forth between the superconducting regions and is
independent-quasiparticle framewpwkolates the symmetry Andreev reflected at each interfacek|f (k,) are the wave
(3). More precisely speaking, we expect the independentaumbers of the particléhole) normal to the slabs and is
guasiparticle approximation to be adequate for describing théhe thickness of the normal-conducting region, the Bohr-
short-time physics, but at sufficiently long times Coulomb Sommerfeld quantization rule applied to this periodic motion
effects must become visible and, in particular, they will cutreads
off the particle-hole modes we are going to study in the
present paper. Whether the cutoff time can be long enough E(kp—knL+7T+@1—@,=27n (neZ). (6)

for the consequences of the symmeByto be observable, is Here m+¢,— ¢, is the phase accumulated by the two An-
a tough quantitative question for theory, which cannot bed

i . O eev reflections ifp; and ¢, are the phases of the supercon-
answered without an understanding of screening in open an&{] fey 2 P P

- . ) cting order parameter in the regioBg and S,. For an
finite metallic systems. Fortunately, the question has alreadé(lectron with energy equal to the Fermi enerigyequalsk,
been answered in the affirmative by experiment. OVer the, yhe first term on the left-hand side vanishes. From the

last years a number of mesoscopic NS phenomena has be?é%ulting equatiorp; — ¢, = (2n— 1) we see that the quan-

observed, the most _promin_ent of which is the dra_‘ma_tictization condition can be fulfilled only wheg, and ¢, differ
enhancemeft of the differential conductance at zero bias in by an odd muliple of = In other words, for

NS geometries with a high potential barrier separating th%os((pl_@z#_l which includes the homogeneous case
normal-conducting and superconducting regions. This phe- X

: : ” ©1=,, We expect a gap in the excitation spectrum not only
nomenon has been ex_pla!’rJrédb)‘/‘ a meqhanlsm calleq C5° in the superconductor but also in the combined SNS system.
herent Andreev reflection” or “reflectionless tunneling:

S L On the other hand, for c6s,— —1 the gap closes and
which is the result of constructive interference between semi- 08~ ¢2)— gap

lassical hs with And flecti d bl quasiparticle excitations exist all the way down to zero en-
classical paths with one Andreev reflection and a variable, o The |atter situation is special in that the Andreev phase

number of normal reflections. !n order for such an .'merfer'shift vanishes on average over the two NS interfaces in that
ence to take place, the dynamical phases of a particle andc% e

hole traversing the same path in opposite directions must The above argument applies to the extreme limit of a

can_cel efaCh other. It is premsgly the_s_ymmét}ym combi- clean system which clearly is unrealistic. What can we say
nation with the exira symmetries dgflnlng clasisthat guar- — apout the effects of disorder? A generic random potential
antee the necessary phase relation be'Fween partlg:les aaastroys separability and makes Bohr-Sommerfeld quantiza-
holgs to hoId..We conclude that there e?<|sts convincing €Xgjon inapplicable. The general case therefore needs to be
perimental evidence that the symmet) is not wiped out studied with the help of a computer, or by using the random-
Shatrix theory that will be developed in the remainder of our
g[')aper. What is easy to treat analytically is the case of a
slowly varying random potential depending only on the co-
ordinate,z, of the direction perpendicular to the slabs. In this
case the quantization rule Eq®6) remains valid if
we replace the expressionk (—kp)L by the integral
The classification of Sec. Il refers only to symmetry andfb[kp(z)—kh(z)]dz where ky(z)=[2m(u+ e—V(2)]Y2
thus is very general. To go further, we make two dynamicakh(z)=[2m(,u—s—V(z)]1’2, andE= u+¢ is the total en-
assumptions. ergy of the electron. Sinck,(z) =kp(z) for e=0, our con-
When an electron is retroreflected from the NS interfaceclusions are the same as before: there is a gap for
as a hole, its wave function acquires a phase shift which isog¢;—¢,)#—1, and the gap closes as ¢pg—¢,)——1.
determined by the phase of the superconducting order pa- Another instructive example is provided by the vortex so-
rameter. Our first assumption is that this phase shift, herttion for a clean type-ll superconductor. The phase of the
called the “Andreev phase shift” for shortanishes on av- superconducting order parameter uniformly winds once

guences. In the remainder of this paper we are going to i
nore Coulomb effects.

IIl. DYNAMICAL INPUT
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around the unit circle as we go once around the vortex coreand holes by the process of Andreev reflection at the NS
For this reason, the pairing field experienced by normal exinterface. As was shown in Sec. Il, the presence of the pair-
citations bound to the vortex core vanishes on average oveng field A leads to symmetries different from Wigner-
the vortex. Because the vortex solution breaks translationddyson. We therefore expect different types of universal level
symmetry, there must exist some random-phase approximatatistics to emerge in such systems. This type of statistics
tion (RPA) (or vibrationa) zero modes of the vortex. These will extend over an energy range set by the energy uncer-
zero modes are the Goldstone modes associated with thainty due to the action of the pairing fie[dr Andreev re-
spontaneous breaking of translational symmetry by the localflection). The goal of our paper is to give a quantitative de-
ized vortex solution. It follows that, if the RPA correlation scription of precisely these correlations and their effect on
energy vanishefis smal), i.e., if the excitation energies are the transport properties. To reach this goal we may follow
given by(are approximately given Bysums of two quasipar- two different routes. The first and more comprehensive one
ticle energies, there must exist quasiparticle excitations witlis to generalize Efetov’s analysis, i.e., to construct an effec-
vanishing(smal) energy. In contrast, for a piece of cylindri- tive field theory of the nonlineasr model type and solve the
cally shaped normal metal immersed in a superconductingeld theory in the zero-dimensional limit corresponding to
environment(*“columnar defect’) there is no general reason the universal regime. Such an approach yields not only the
why we should expect quasiparticle excitations with low en-ynjversal behavior but also the crossover to the short-time
ergy. regimes. Since our interest is in the universal limit, there
These two examples, the SNS slab geometry and the Vogyists also another option. Armed by the experience gained
tex, Ienq support to the plausible expectation that a pairing,.qm, the study of theN system, we may replace the BdG
f'elq wh|c_h 1S Io<_:a||y nonzero but Wh(_)s_e mean phée@) . Hamiltonian (2) by an ensemble of random matrices with
\E/Iamshgs ina SL_utany defln_ed sense, is ineffective at c_reatm aximum entropy, paying attention only to the symmetries
genuine gap m_the denS|_ty o_f states near the chem|ca|_ P@nder time reversal and spin rotation. While the field-
tential. This then is the motivation behind the above require-

ment that the Andreev phase shift should vanish on avera tgeoret|c meihod IS more hvrt?rsattrzle, thet ra(ljndorp-matrfné or
over the NS-interfacial region: it ensures that the gap close aximum-entropy approach has the great advantage ot being

and quasiparticles can exist right at the chemical potential.mUCh simpler technically. For this reason we have chosen to

Our second main input is the assumption thatclassical  [ollow the latter in the present paper. _
dynamics in the normal-conducting (N-) region be chaotic 10 maximize the entropy of the random-matrix ensemble
The presence of a sufficient amount of disorder will alwaysWe Will take the matrix elements of the BdG Hamiltonian to
guarantee this assumption to be justified. For a ballistic sysPe normally distributed and statistically independent. All ma-
tem, chaotic dynamics is achieved by choosing for thellix elements will be chosen to haveero mean For the
boundary of theN region some surface that causes a typicaloff—diagona| blocks of the BdG Hamiltonian, this choice cor-
classical trajectory to be unstable. Chaoticity of the classicalesponds to our assumption that the spatial average of the
motion means that the long-time behavior of the system ifAndreev phase shift vanishes on average. In general, we
unpredictable; in particular, the phase shifts acquired by Anwould need to distinguish between the strength of fluctuation
dreev reflection along a typical semiclassical trajectory formof h and A. However, at low energy, i.e., within the energy
a random sequence. This randomness will allow us to modetindow defined by the uncertainty due to Andreev reflection,
the pairing field by a stochastic variable. Note that the spatiathis distinction turns out to be irrelevant and we may take the
constancy of the magnitude of the pairing field in the bulk ofstrengths to be equal. The resulting random-matrix ensemble
the superconductor is an irrelevant feature for our purposesiepends on two parameters only. These are the strengths of
If we switch from coordinate representation to a generic bathe perturbations that break time-reversal and spin-rotation

sis of single-particle states, say the eigenbasésarfd—h', invariance and are responsible for the crossover between uni-
both the phase and the magnitudedoWill fluctuate and be versality classes.
distributed around zero. To finish off this orientational section, we mention an-

Consider now an isolated finite system, so that the Bogoether realm of application of the above random-matrix ideas.
liubov quasiparticle spectrum is discrete. According to ourConsider an array of superconducting grains or islands em-
above arguments, we expect the existence of levels close tiedded in a metalliénonsuperconductinghost. The grains
the chemical potential in the pure system under the condiare disordered and/or of irregular shape, and they are mutu-
tions described. The effect of dynamically generated chaoally coupled by Josephson tunneling. The array is exposed to
and/or disorder will be to cause mixing of these levels. Fora subcritical magnetic field which penetrates the host but is
the conventionaN system, such mixing is known to lead to ejected from the grains. By tuning the strength of the field
universal level statistics, depending only on symmetrywe can frustrate the coupling between the grains and drive
(More precisely, the level correlations are universal in thethe system into a spin-glass-type phase where superconduct-
low-frequency regime corresponding to the long-time or ering order exists locally but not globally. Such a system has
godic limit.) For the case of disordered metallic granules, thebeen called a superconducting glasts prime characteristic
level correlations were calculated by Efetbwis results is that the pairing field, or superconducting order parameter,
show that the level statistics is Wigner-Dyson, i.e., identicalcontinues to be nonzero on each grain but vanishes on aver-
to that of an ensemble of random matrices with uncorrelatedge over large scales. The low-energy quasiparticle excita-
Gaussian distributed matrix elements. In the NS systemsons of such a system are predicted to be described by the
considered in the present paper, characteristic features appeandom-matrix model formulated below. Because of the
at low excitation energy, owing to the coupling of particlesbreaking of time-reversal symmetry by the magnetic field,
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the relevant symmetry class @& The presence of spin-orbit a o0 0 b
interactions causes crossoverlo
0 a —-b 0
H: T
IV. RANDOM-MATRIX ENSEMBLES 0 -b -a 0
b 0 0 -a'

To prepare the formulation of the random-matrix en-
sembles, we summarize the discussion of Sec. Il by present-
ing the symmetries of the BdG Hamiltonigtifor each sym-  with symmetrica andb. Hermiticity then implies thaa and

metry class explicitly. b are real matrices.

For systems where all symmetries are brok&lassD) H Now recall the dynamical conditions formulated in Sec.
satisfiesH=—3,H'S, with 3,=0,®1,®1y. The block de-  lll. By assumption, the classical dynamics in fResystem is
composition chaotic and the Andreev phase shift vanishes on average

over the NS-interfacial region. We therefore may replace the
A B BdG Hamiltonian by a random matri¢of the appropriate
H= Bf —AT @) symmetry with matrix elements that have zero mean. The

principle of least information, or maximum entropy, then
expresses the particle-hole structuretof The off-diagonal leads us to postulate a random-matrix ensemble with a
block B is antisymmetric by Fermi statistics. Hermiticity of Gaussian probability distribution
the Hamiltonian required=A".

ClassDIll consists of the systems where time reversal is
the only good symmetry. For such systefiobeys the ad-
ditional relationH=7H"7 ' with r=1,®i0,®1y. The de-
composition of H according to particles and holdsuter  for each symmetry class. Heté{ denotes a Euclidean mea-
block structurg¢ and spin(inner block structurghas the form  sure on the linear space of BdG Hamiltonians with metric

exp(— Tr H2/2v?)dH 9

Tr(dH)>2.
art ary by by, More generally, we can formulate a two-parameter family
a al -bT b of Gaussian random-matrix ensembles which interpolates be-
LT 17 1l I : L
H= T - tween all four symmetry classes. Because a Gaussian distri-
—by by —ay ap bution (with zero meahis completely specified by its second
b“ —byy  a;  —apy moment, it is sufficient to describe the correlation function

(Tr AHXTr BH) for two arbitrary sources4d and B. The

requiresa, ;= am, bTl bu' a; = a”, andbll bTT
For classC spin is conserved while time-reversal symme-

try is broken. In this casé( commutes with the spin-rotation (Tr AHXTr BH)/v?
generators]k=(Epp®crk—Ehh®al)®1N or, equivalently,H
obeysH=J,HJ,. The particle-hole and spin decomposition =Tr(A-3,ATS,)| B+ (1—€)mB"r 1+ (1—¢)
of H reads
a o0 0 b X > I B+ (1—e)(1—e) > I BT 13|
0O a -b o0 X X
H= 0 -b" -a” o (10

b" 0 0 -a' . o
For e;=€,=0 the correlation law is invariant under both

with symmetrich. Every level has a trivial twofold degen- reversal of time and rotation of spin. This is the symmetry
eracy due to spin. Without loss of information we may focusclassCl. A nonzero value ok, breaks time-reversal symme-

on the spin-up sector with reduced Hamiltonian try. Therefore, by increasing, we cross over to clasS. A
nonzero value ofe; breaks spin-rotation invariance, so by
a b increasinge we cross over to cladslll. By increasing both
He= bt —aT ® €; and e, we break all symmetries and cross over to class

We call a symmetry “maximally broken” when its
Hermiticity requiresa=a’. Systems belonging to cla8  symmetry-breaking parametér, or ;) equals unity. When-
have been the subject of a previous publicalfbA subse- ever a symmetry is either unbroken or maximally broken, the
quent microscopic analysfshas shown that our phenomeno- probability distribution of the Gaussian ensemble can be pre-
logical random-matrix modeling of this class is justifieden  sented in the simple forrt®), with the corresponding sym-
if the condition of a zero mean Andreev phase shift ismetry constraints imposed df.
relaxed™® All information about the level statistics is contained in

In class Cl both spin rotations and time reversal are the joint probability distribution for the eigenvalué®({w}).

good symmetries. The BdG Hamiltonian satisfiesThis distribution is a complicated function in general, but it
H=7H"7 1=J,HJ,, and is constrained by these symme-takes a simple form for each universality class. By diagonal-
tries to be of the form izing the BAG Hamiltonian
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ently, the matrixA in Eq. (2) is antisymmetric and therefore

o 0
)Ul, w=diag w,,ws,...) has zeroes on its diagonal—which resultsr 0.

el o

and computing the Jacobian of the transformation to diago-

nal form, we obtain the formula V. SPECTRAL STATISTICS

A. Exact results

2 . .. .
P({w})d{w}zH |wi2—w]-2|3H |wk|“e""k’”2dwk, Our interest here is in the level correlations for a large
<] k matrix dimension. These are easy to compute when the sym-

1D metry class isC or D. Consider first clas€. For this sym-
where, for the individual cases, metry class we can interprét({w}) as the joint probability
density of a Gaussian unitary ensemfBBUJE) of 2N levels
classD: B=2, «a=0, wq,07,...,0N,0N Subject to the mirror constraink =
—wy. The GUE joint probability density, in turn, can be
classC: B=2, a=2, interpreted as the square of the ground-state wave function
for a system of spinless nonrelativistic noninteracting one-
classDIll:  B=4, a=1, dimensional(1D) fermions confined by a harmonic wéfl.
This correspondence of levels and Fermi particles turns the
classCl:  B=1, a=1. n-level correlation functions of the GUE into the-point

static density correlation functions of the Fermi system. In

These expressions f&({w}) can be derived by elementary the largeN limit, the spatial variation of the harmonic con-
means. A particularly elegant derivation uses the interpretafining potential becomegocally) negligible and the gas of
tion of H as being tangent to the symmetric space of pe fermions can be treated as locally free. The mirror constraint
DI, C, or Cl. The Jacobian can then be read off immedi- means that whenever a fermion approaches zero, then so
ately from the tabulated root systems of these spaces. does its mirror image. Because the Pauli principle makes the

The formula forP({w}) permits some immediate conclu- wave function vanish as two fermions approach each other,
sions to be drawn. Clearly, the significance of the parametetis amounts to hard walbr Dirichlet) boundary conditions
a is that it governs the level repulsion from the origie=0,  at w=0. Hence we can compute the level density and its
while 8 gives the mutual repulsion between levels. For thecorrelations as the particle density and its correlations for a
following it is useful to view the factojw,|* as being due to free 1D Fermi gas with Dirichlet boundary conditions at the
the interaction of thekth level with its “image” at —w,.  origin. The free-fermion wave functions that vanisheat0
Similarly we view the factow; +; in 7~ as resulting ~ are sifiwr), wherer plays the role of a “wave number.” By
from the interaction of théth level with the image of thgth ~ summing over the Fermi sea of states occupied in the ground
level. At energies» much greater than the mean-level spac-state, we obtain for the mean density of levels
ing, the interaction of levels with their distant images at
negative energies is expected to be irrelevant. Therefore the >
level statistics derived from Eql1) will reduce, in that <p(w)>:_f si(wr)dr=1—
limit, to the usual Wigner-Dyson statistics as determined by m™Jo
the parametep. On the other hand, in the opposite limit of
energies of order unity on the scale set by the level spacingdere and throughout this subsection we follow the conven-
the level statistics will be different from Wigner-Dyson. In tion of measurings in units of the mean spacing between
particular, by the definition oP({w}) as a joint probability neighboring particlesi.e., of the level spacingt a distance
density we immediately conclude that the mean density obf many spacings from zero. Note thgw)) for o«—0 has
levels near zero behaves as the behavior expected from E(l2) (recall «=2 for class

C). A similar calculation of the density-density correlator of
(p(@))=(Tr (w—H))~|w|* (0—0). (12  the Fermi gas yields the two-level cluster function:

Note that for the systems where our random-matrix descrip-

sin2mw

27w

(13

tion applies, the exponent is predicted to be universal, (p(w1)p(®2))—{p(w1) ) p(w2))—[ (w1~ wy)
dependent only on symmetry. The value @for the sym-
metry classe<l| and C is easily understood from the fact +0(w1+ wa) [(p(w1))

that the repulsion of a level from its own image is caused by

the pairing fieldA. For classC pairing matrix elements are =
complex, whereas for clasgl all pairing matrix elements 7(w1~ wy) 7(w1+ wy)

can be chosen to be real. By a standard power counting ar-

gument this results in=2 anda=1, respectively. To under- Keepingr=w;— w,# 0 fixed and lettingw; + w, tend to in-
stand whya is zero for clas®, note that in this case a level finity, we recover the familiar GUE two-level cluster func-
and its own image are not really physically distinct but aretion —sir?(zrr)/(ar)?. Similarly, all n-level functions
copies of thesamesingle-electron stateln contrast, for the R,(wq,...,0,)=(p(w1)---p(w,)) can be calculated. On
classe<C andCl the hole level has its spin flipped relative to subtracting the level self-correlations, which amounts to nor-
the particle leve). The pairing matrix element between iden- mal ordering in the particle-gas formulation, we obtain the
tical states vanishes by the Pauli principle—or put differ-result

sin m(wy—wy)  Sin m(wy+ wy) |2
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Ro(w1,....0n0)=Def{¥c(wi,®)]i -1, n (Re.call that by the levet- particle correspondenae is to
(14) be interpreted as a space coordinate herbe mirror con-
2 (7 i straint of the CSM folCl and DIl translates into a boundary
Ye(oi,0)=— fo sin(w; 7)sin(w; 7)d, conditon on ¢ at »=0. Since the vertex operator
exp(J4 i ¢/R) has the scaling dimensionR7= 2/8, we ex-
by simply using Wick’s theorem for the free Fermi gas. pect
We turn to the symmetry clags. It is convenient again to
use the interpretation of the joint probability density as a (p(w))=1+ w*Z’BAB(w)er, (17
Gaussian unitary ensemble oN2evels with a mirror con-
straint. The only change from before is that the repulsion ofvhereAg(w) is a function that oscillates with a period de-
a level from its own mirror image is now abset=0). termined by the mean spacing. Note that Eky) is consis-
Correspondingly the single-fermion wave functions of thetent with the =2 results(13) and (15). Note also that the
Fermi gas no longer vanish on approaching the origin. Infirst term on the right-hand side of E(.6) gives a vanishing
stead, what we need to demand is that thegwenfunctions  contribution to the average density, although it does contrib-
of w, which is the same as imposing vanishing derivatime  ute to the CSM density-density correlator. This is because
Neumani boundary conditions ab=0. Thus the levek»  the currentd,e, being linear in the boson fielg, has a
particle correspondence now leads to the free Fermi gas withianishing expectation value even when there is a boundary.
Neumann boundary conditions at the origin. Doing the same The validity of bosonization and conformal field theory
kind of calculation as before we find arguments is restricted to the infrared regime. To obtain ex-
pressions that are valid in thentire range of frequencies,
we turn to the orthogonal polynomial method of Dyson and
Mehta?® The substitutionx,=w?2 turns Eq.(11) for a=1
into

2 (= sin(2
(p(w))=— f COSz(wT)d7'=1+n(—Ww), (15
a Jo 2
and the result Eq(14) remains valid if we replac& - by
’\I’ 1
i p({xh)d{x =consi [ [x—x;|*T] e~/ dx,,
i<j K

2 T
Vp(wi,w)=— i i .
olwi )= fo coswincodwjr)dr which defines what has been caflethe Laguerre orthogo-
nal ensembléLOE) for 8=1, and the Laguerre symplectic
ensemble(LSE) for B=4. Note that this nomenclature is
rather unfortunate in the present context. As we saw, the
LOE relates to the symmetric space SN)j2U(N), while the
LSE relates to the symmetric space SAJAU(2N). In both
cases the invariance group is umitary group, UN) or
against the “wall” atw=0. Because it is the current rather U(ZN)' Closed expressions for trelevel correlation f!‘“c'
fions of these ensembles have recently been published by

than the density that is required to vanish by the Neuman o7 ' )
boundary condition, an excess particle density forms at thglagao and SIewﬁ. Unfortunately, the final results they give
re wrong, owing to a computational error that occurred be-

wall such that the extra statistical force balances the pressurg. ; L S
More effort is required by the symmetry class@tsgnd Ween Eqs(5.5 and(6.2) of their paper. By fixing this mis-

DIll, where =1 and8=4. It is still possible in these cases '2Ke and returning to the variable= VX, we obtain for the

to map the level statistics problem on a model of particledN€an density
moving on a half line, but progress is slowed down by the

From Eq.(15) we see that for a metallic quantum dot with
spin-orbit scatteringclassD), the proximity of a supercon-
ductor with (€'?)=0 enhancesthe level density at the
chemical potential. While this effect may seem physically
surprising, it is very natural in the Fermi-gas picture of the
levels. The pressure of the gas pushes parti@edevels

fact that the particles now interact with each other. By a Cl: (p(w))=F(7w),
standard transformatiéhone can show that their motion is
governed by the Hamiltonian of the Calogero-Sutherland DIl (p(w))=F(27w)+7d1(27w)/2,

model (CSM) associated with the symmetric spaces of type

Cl andDlIl. For the case of the CSM'’s corresponding to the T (2

Wigner-Dyson ensembles, it was recently fotithat the F(9=3 jodt Jo()J1(D)/1,

CSM particles behave as a gasfafe anyonsi.e., particles

with fractional charge and statistics. Although we have somevhereJ, is the Bessel function of orddr. (Remember that
preliminary results indicating that the free anyon gas pictureye are taking the level spacing at largéor our energy unit.
can be adapted to the present situation, the details have nphe levels are counted without multiplicifyFrom this we

been worked out yet. read off the small» expansions:
A quick way to get the infraredor largew) asymptotics
of the level density forCl and DIl is to bosonizé® the (p(w))=Bm2wl4+O(w%) (Cl and DIII).

CSM. This procedure has been argifeth yield thec=1

conformal field theory of a free boson with compactification Knowing the mean density, we can construct the full one-

radiusR=\/B/2. The expression for the CSM particle den- point function{(g(w))=(Tr(w+id—H)~") by causality, i.e.,

sity ¢4 in terms of the boson field is?® by using the dispersion relation that connects the real and
_ imaginary parts of a holomorphic function on the upper com-
=4, +constx cog JamplR+ Kew). (16) plex half-plane. The results can be presented in the form
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% +1 [1—72 gimou=uv) to the class of system we have delineated being understood,
Cl: (g(w))z—iw+ij duf dv —= i of course—and are not to be corrupted by any kind of un-
A Lt folding.
) . i u ol B. Diagrammatic perturbation theory
Dlll:  (g(w))=—im+i WJ; du Ji—1 e for the one-point function
5 Zimo(u_s) As we have seerqg(w)) tends to a constant for frequen-
~i(Cdu Hd yus—1 e” 7Y cies much larger than the level spacing. The leadimgpoth
1 1 v h—p2 u—-v (i.e., nonoscillatory correction is of order 14 in all cases.

More precisely, on restoring the physical units and taking

Although it is hard work to construct these expressions diinto account the multiplicity of levels, we have
rectly, they can easily be verified. For that we simply differ-(9(®))=—imv+c/w+O(1/w?), wherec=—1 for C and
entiate the result fofg(w)) with respect tow, thereby can- Cl, andc=+1/2 for D andDIll. v is the asymptotidi.e.,
celing the factoru—v in the denominator of the double largew) density of states. We are now going to show how to
integrals. The integrals over andv then separate, and on obtain this result by a variant of the impurity diagram tech-
taking the imaginary part each integral produces a Bessdlique, a method which has the attractive feature of general-
function. By using standard recursion relations for thesdzing easily to the calculation of transport properties of an
functions and then undoing the differentiation by integra- Open system. It also has the great virtue of lending itself to
tion, we immediately retrieve the expressions fa(w))  Semiclassical interpretation, which will help improve our un-
given earlier. derstanding of the physics involved.

The double integrals fo€l (8=1) andDIIl (8=4) are The impurity diagram technique in its present version
seen to be related by a duality transformation that exchangearts from the usual idea of expanditig+is—H)™*in a
the compact4) and noncompactu) degrees of freedom. A geometric series with respect #¢ and then taking the en-
similar duality relation holds for the conventional Wigner- Semble average. Becauseis Gaussian distributed, the en-
Dyson ensembles witg=1 and =42 In the limit of large ~ S€mble average is evaluated by forming all products of pair-

o we get the following asymptotic expansions for the one-Wise contractiong7), which are determined by the basic
point function: law (10). To resume the relevant contributions, we use stan-

dard diagrammatic techniques. On multiplying the factors on
1 1 _ the right-hand side of Eq10) we generate eight terms. In
Cl: (g(w)=—im— th e?mo ... explicit index notation these are given by

(Hio)a'y,ﬁﬁz 5a§5yﬁ ’

Arw?

DIII: <g(w)>=—iw+i+ 1 gzmotimiiy ...
4o 2o (3 ay.p0= 2 (Jasl e,
For completeness, the one-point functions for the symmetry 0 .
classesC andD (8=2), as determined from Eq$13) and (M) ay,p6= Tay(T ") 3p

(15) by causality, are
_ 27w (H)il)a%w:; (D) ar(T 1) 55,

(g(w))=—iw+(l—a)T (C and D). . (18)
(HE) )ay,ﬁ&z - (EX) ya(zx)ﬁﬁa
By comparing with Eq(17) we see that the oscillatory cor-
rection to the stationary asymptotic limig(w))— —im c1 __
agrees with what is expected from the con(forma%l limit of the () ar.p5 ; (&) yalEdps:
Calogero-Sutherland model, in all cases. The sma@bih)
part of the correction is purely real and does not enter into (ngo)ay,w: — (2T gy (T2 50
the asymptotic expression for the density of states.
The largew asymptotics of the level density that results d1 4
on expanding Eq(6.2) of Ref. 27 for the Laguerre orthogo- () ay,ps= _Ek: (2 (7 E ) -
nal ensemblg=1), is found to be(p(w))—1~w *. Note
that this disagrees with our exact result and the estiifiate It is characteristic of the contractions indexed by the latter
from bosonization. that the initial states3,6 bear a definite relation to each
The authors of Ref. 27 subjected thdevel correlation other, and so do the final statesy. This situation is remi-

functions forn>1 to a renormalization or unfolding proce- niscent of the cooperon channel of disordered mesoscopic
dure in the low-frequency regime they call “nonuniversal” systems where a pair of particles with initial momeptand
(meaning different from standard Wigner-DysokVe wish ~ —p are scattered to final momengg and —p’. Similarly,
to emphasize that such a procedure is neither necessary ritve contractions indexed by correspond to the diffusion
appropriate here. Both the mean density and the level correshannel where a pair with momengp’ is scattered to a
lation functionsare universal as they standthe restriction  pair with momentep’,p. The contractions with subscrift
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former diagrams, which we call th®-type spin-singlet
cooperon mode and denote Bﬁ%w, has the expression

SO:U2H0/(1_UZKH0)

With K, 55= 8,50,5G9,G Y, and II,=I15. Its largeN

limit is
o Mo
FIG. 2. Diagrams contributing to the average single-particle S'=— +O(1IN). (21
Green’s function. The light-shaded regions represenD-&ype lmve
cooperon mode, the dark-shaded one a nonsingiifrladder. Similarly, the sum of all ladder diagrams built frof ch

o ) ) _contractions, théD-type spin-triplet cooperon, is evaluated
owe their existence to the operation of particle-hole conjugazg

tion X——3,X"S, , whose fixed point set is the orthogonal

algebraD,y=s0(4N). The name of thé\-type contractions St=(1—eg)v?ll /[1—(1— €x)v?KIl,]

is motivated by the fact that they determine the second mo-

ments of the conventional Wigner-Dyson ensembles describ- _ 2T, +O(IN 22
ing N systemgwithout any coupling of particles and hojes C pe—imre (AN), 22
which derive from the unitary algebs,_;=su(k). The nu- o1 N
merals 0 and 1 distinguish between spin-singlet and spin¥here 7s=4Nes andII;=IIp5". The dependence &" on

triplet contractions. Using the conventiofis) we can write  the parametek; through the producNe; means that the
the correlation law(10) in the form breaking of spin-rotation invariance takes place on scales

€s~1/N and thus is very fast. This rapid crossover happens

(HQBHW;}:vzHM’M, because the crossover scale is determined by the typical size

(19 of a symmetry-breaking matrix element in relation to the
=1L+ T+ (1- ) (TTL+ L) + (1— o) (I +T1EY)  level spacing, which is'~*=\ /4N for our choice of nor-
malization.
+(1— €9 (1— ) (M + 115, Note that expressiong21) and (22) are singular at

w=0= 54 even though the sums of ladder diagrams they

Our goal is to find the large behavior oi(g(w)). What are represent are built from retarded Green's functions only

the dominant diagrams in this limit? From what has bee

said, theA-type contractions give rise to Wigner-Dyson sta- G*G" channel. This is a feature which does not occur for
! yp 9 ; 9 ys the standard Wigner-Dyson ensembles, where singular lad-
tistics, whereas th®-type contractions are responsible for

_ders exist only in the advanced-retardedG ™~ G™) channel.

the corrections to It. Since our systems are Wigner-Dyson "he singularity in the present case comes about because the
the limit of large w, the D-type contractions must become minus sign fromK = —1/\%is canceled by a minus sign
ay,ay

irrelevant in that limit. Moreover, in the Wigner-Dyson re- appearing in the definition of the contractions of tyPe

gmeirt]gi agﬁéae%f g?ﬁ:g f%?ﬁg?rn_'srg%’r\]m toe?gj Iﬁgigrﬁfsﬁ]ereby turning an alternatingonditionally convergentse-
P y y 9p KNS s into a divergent one.

and €. We therefore conclude thdg(w)) is completely Th ; L _
. ) e dark-shaded region appearing in the second diagram
determined bylI 4 contractions forw— (and largeN). By of Fig. 2 representsHi% Iaddgf. Accc?rding t0 Eq(18), theg

; do _ ’
Zumr?)'(?n%;:gﬂg%tfglé;??” i?eé@gi?,r?ﬁhs' we get Pastur's contractions of typé\ come with an overall plus sign, so the
PP =\ ' minus signs now daot cancel, and the ladder sum is always

0_ Pe 2 0y-1 finite. Computing the sum we find that this nonsingLI[[aliO
G =(w+lo—p T G 20 ladder renormalizes the first diagram in Fig. 2 by a factor of
This equation is exact foN— and largew. Its solution 1—(1-1+1—-..)=1/(1+1)=1/2. (We mention in passing

yields Wigner’'s semicircle law for the density of states. Put-that nonsingular ladders of this kind are the random-matrix
ting v2=\2/4N and focusing on the central region of the analog of the single-impurity lines that appear in the context

semicircle, we obtain of the impurity diagram technique.
To evaluate the first diagram of Fig. 2 we need the fol-
Tr G=—imv+ (7v)?w/8N+ O(w?/N?) lowing sums:

wherev=4N/7\ is identified as the asymptotic density of

states. What we need to do to probe the local structure of the > (HCDO)an= -> (2 a2 pa=—1,
spectrum, is to keep the produab fixed while sendingN to B B

infinity. The corrections to T6E%=—i7v from Pastur's

equation are seen to become negligible in this limit. How- c1 __ _
ever, we know that corrections to the stationary asymptotic Eﬁ (15 ) ap pa= % (2 pal I o= 13-
behavior TrG°= —i7v do appear as we approach zero fre- )

quency. These must be due to the contractions of §pe We then obtain

The leading correction is depicted in Fig. 2, where the light-

shaded regions represent ladder diagrams built either from (9(@))=—imv+imv 312 12

Y contractions or froml1 ! contractions. The sum of the Ns— Mrvew —mve
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which agrees with the result stated at the beginning of théractionsIT& andII &! generate singular geometric series of
current subsection fop,=0 (classe<C andCl) and ;— ladder diagrams. In the same way, every one of the other
(classedD andDlIIl). For the classe€ andD, smooth cor- contractions gives rise to one singular ladder. These singular
rections of higher order in & are completely absent from modes can be visualized as follows:

the exact result of Sec. V A. This implies that all diagrams of

higher order than the ones considered here must cancel each (h) G+.(_C.¥')
other, in these two casedThe oscillatory correction P P P
~Azo 2P is nonanalytic in the expansion parametew 1/ p(h) RS
8 ST ; G=(GY)
and therefore remains invisible to all orders of perturbation
theory) A-—type cooperon,
Finally, let us comment on the relation of the results of e
this and the preceding subsection to other works in the field. p(h) ——s G (G ) -
Correlations in the energy spectra of NS-composite struc- 0 P P
tures have been analyzed previously by Bruun, Evangelou, p(h) G"'('C;“f)

and Lamber and Berkovits®® Bruun, Evangelou, and Lam-
bert consider &- and spin-symmetric random-matrix en-
semble where the particle-hole coupliftge B block in Eq.

A—type diffuson,

+ -
(7)] is negligible. In this limit, the total spectrum is just the p(h) @ (G )_._»_._
superposition of the spectra Afand—AT= — A. The energy h(p) o
levels of this so-called “folded GOE spectrum” lack the G*(G)

level repulsion present for our ensembles. Therefore the re-

D—type cooperon,
sults cannot be compared.

Berkovits analyzes a SNS geometry within the framework GH(G™)
of diagrammatic perturbation theory. The order parameters p(h) R e
of the two superconductors sandwiching the normal region h(p) —t U S
are allowed to be different. In the case of a phase difference GH(G7)
of 7, both Berkovits’ diagrammatic approach and our D—type diffuson.

random-matrix modeling should be applicable to a descrip- . . . . .
tion of the low-frequency limit(scales smaller than the The dotted vertical lines represent both impurity scatterings

Thouless energyof the spectral correlations of this system. anthn(tj_ree\i]rsglec;iErAs,Dgndihei/j.desnfge 1an3_/”o]netof the feight
Unfortunately, the results cannot be compared since iponiractionsilx (._ Dy X=C,0, 5= ). The type o
Berkovits’ work theD modes, which are responsible for the contraction is mvanant_Wlthl_n one ladder. Thetype _modes
nonstandard features of our ensembles, are missing. As ae built from states of identical chargie/o BAG particles or

consequence, Berkovits obtains spectral correlations that ﬂgg q BdG hh0|e$ ptrﬁga?atmg 03 opp05|tbe llste?mentsh of the
analogous to that of a normal-metal ring pierced by a adder, whereas “typé modes areé burt from charge-

Aharonov-Bohm flux, where the “flux” corresponds to the rgversed state@ne particle and one hgleThe former are

; +~— ; +~+
h ifferen tween the two order parameters. In 1rlgul_ar in theG™ G~ channel, the latter in th& G' (or_
phase difference betwee € two order parameters Pa G7) channel. The arrows on the Green’s-function lines

ticular, the two-level energy correlation function computed.” . . . ; . -
by Berkovits depends only on theifferencebetween the indicate the order in which single-particle states are visited.
energy arguments involved rather than on both values ingiFOr the cooperon modes the order on both lines is the same,

vidually. We believe that this result is wrong for energy val- while for the diffusion modes it is reversed. In the fimit
ues close to the chemical potential. w=ns=n7=0 (with 7=4Ne) all modes are singular, or
massless. ThB-type modes are made massive by frequency

(or voltage o, while the A-type modes are insensitive to
V1. SLOW MODES such a perturbation. ThA-type cooperon and thB-type
diffuson are made massive by the breaking of time-reversal
In all previous Green’s-function treatments of NS systemssymmetry. Since a Green'’s function line carries spin-1/2, the
the diagrams were enumerated by the number of Andreemodes decompose into spin-singlet and spin-triplet ones. The
reflections. Unfortunately, when the perturbation expansiorspin-triplet modes are sensitive to spin-orbit scattering while
is organized in that way, the vast number of possibilities tathe spin-singlet modes are not.
insert Andreev reflections into the diagrams generates a flood We wish to mention that there is some redundancy in our
of terms which is hard to control, and as a result it is veryclassification of modes, as the basic particle-hole symmetry

easy to miss important contributions. The technical innova{3) causes the existence of certain relations among the matrix
tion made in the present paper is not to single out Andree¢lements of the Gorkov Green’s function

reflections but to treat them on exactly the same footing asi(w)z(wiis—H)‘l. In particular, the particle-particle
the processes of impurity scattering. This is possible by ouand hole-hole matrix elements are related by

dynamical assumptions ensuring that the quantum-

mechanical phase acquired during Andreev reflection, can be G,fp(w) =— Gh:h( —w). (23
regarded as a random variable with zero mean. Our key tech- B

nical step is the decomposition E(L9) which leads to an Similarly, G,;:h(w)=—Gﬁp(—w)T. These identities transcribe
organization of the perturbation-theory diagramssgynme- into relations connecting the singular modes. For example,
try. In the preceding subsection we discussed how the corby using Eq(23) on one of the Green’s-function lines of the
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GRS T

FIG. 4. Schematic representation of the average conductance of
the quantum dot shown in Fig. 3. The meaning of the diagrammatic
building blocks is detailed in the text.

where

FIG. 3. Andreev quantum dot\) coupled to a single lead_{
via a tunneling barrierT). The flux loop on the right is introduced G=(i6—H+iww")?!
to adjust the difference of the order parameter phases of the super-
conducting regions$) to the value#, —¢,=m (cf. the discussion is the Gorkov Green’'s function evaluated at the chemical
of Sec. Il). potential. Without loss of generality, we may assume the

. . matricesW={W,,} to be of the form
D-type cooperon, we can make this mode look like the

A-type diffuson, at the expense of having to change the sign
of one frequency(w——w). In a similar way, theD-type
diffuson is related to thé-type cooperorfagain with a sign
change in one of the frequenciet spite of that, we prefer
to treat theA- and D-type modes as separate entities. T
main reason for doing so is that they respond differently t M .
translations of the energy: while tiiz-type modes are made %g)' Combtilr!lng Eqs(25) and (24) and making use of Eq.
massive by shifting the energy, thetype modes are not. (26) we obtain

In the present paper we restrict our considerations to the
ergodic (or zero-dimensional limit. To go beyond, we _ 2
should associate with eadktype andD-type mode a small g=8 > LUl Gusm.ur sl Ty (27)

W,.=9Y%5,. (p=1,...N;a=1,..M).  (26)

The unitary transformation necessary to transféthio the
heform (26) can be absorbed in the Hamiltoniad by the
d’nvariance properties of the random-matrix ensemble Eq.

momentum variable(“slow modes”) and sum over mo- pspS
menta. In this way, it WI||. not k_)e difficult to generalize our \\hare
results beyond the ergodic limit.
<
VIIl. WEAK LOCALIZATION r =17 for p=M,
# 10 else.

Having made a thorough analysis of the isolated Andreev

quantum dot, we now turn to the d'SCEJSS'O” of the assomatewe are going to calculate this expression to leading order in
opensystem and its transport properties. To open up the d e small parametersN/ M/N and next-to-leading order in

in the simplest possible way, we couple it to a single lead) \; 32 o\ing to the presence of the BdG particle-hole de-
e i 1 o eedom, an analyss of 27 wifn e e
gree 9. 5. 1he . 9€\vork of plain diagrammatic perturbation theory turns out to
excitations from the lead to the interior of the dot is modeled;, .o \ve a sizable humber of diagrams. It is more efficient to
by a set of(spin-independeitreal hopping matrix elements preanalyze Eq(27) by means of a set of exact identities

W,.a, where the inde@a=1,...M (u=1,...N) enumerates 4 dentities before turning to diagrammatic methods.

the chgrslnell\j Cimﬁd bydthe Ieat:i:e sitez of the dot We dThis calculation is detailed in the Appendix. Here we restrict
assumeN>M>1. Letg denote the conductance measured, ,sa|yes to a presentation of the results and their interpre-

. . 2 .
n um;s r:)feL/haTo ca_lc.lf(latefg, Wel empll\cl)é the 9;%?5?"23' tation in terms of semiclassical trajectories.
tion of the Landauer-Biker formula to NS systems, A schematic representation of the conductance is shown

in Fig. 4, where the wavy lines stand for the quanti{Eg},
_ hp |2 the shaded region denotes the singubatype diffusion
9_22 |SBE| ' (24) mode introduced in Sec. VI, and a summation over indices is
ab understood. The weak-localizatigW/L) building block rep-
resents a quantum interference correctittre NS analog of
the well-known weak-localization correction for normal met-
hp _ _ _ als) to the classical conductance. In contrast with the pire
and S denotes the scattering amplitude connecting a parzase, howevetwo qualitatively different processes contrib-

ticle coming in channél with a hole going outin channél.  yte to the weak-localization correction for the Andreev dot:
The S matrix is given by

where the composite lab&=(a,s,) comprises the spin
s,==*=1/2 and the indexa of an open channel in the lead,

ba

h . —
S = —2(W], G s, s, Woas (25) wL| = |A| + |D
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Here the A(D) block is due to the presence of singular
A(D)-type modes. Whereas thA-type contribution re-
sembles the standard weak-localization correction known
from normal metals, th® term does not have any analog in a)
pureN systems and is of a different nature. In the following
we discuss separately the classical conductesfirst dia-
gram in Fig. 4, the A-type correction, and thB-type cor-
rection.
Classical conductanceQualitatively speaking, the con-
ductance is given by

, (28 b)

where A; is the amplitude to traverse a certain scattering

sequence(indexed byi) connecting an incoming particle FIG. 5. Pairs of semiclassical paths contributing to fype
channel with an outgoing hole channel. The classical valuga) and D-type (b) weak-localization process. The triangles(b)
of the conductanceg, is obtained by evaluating theco-  represent Andreev reflections.

herentsum

where the parameteng,= 4N e, and n,= 4Ne, are the scaled
g :2 A2 symmetry-breaking parameters of our model.
0~ < e D-type corrections A pair of paths contributing to the
D-type weak-localization process is shown in Figh)5Note
that the self-intersecting loop must contain a nonvanishing
even number of Andreev reflectiolfhe figure displays the
simplest possible case of just two Andreev evenige note
go=2MT, in passing that thé-type loop shown in Fig. &) may con-
tain Andreev reflections, todor this reason we said that the
where the transmission coefficiefitis the probability for an NS A-type correction is analogous to, though not identical
electron incident from the lead to enter the dot instead ofvith, the normal weak-localization correctiprtheir pres-
being reflected back into the leddThis result is easy to ence is just not imperative like in the case. Clearly, the
understand. By the ergodicity of our system, an electrorD-type correction does not have any analog in normal met-
leaves the dot with equél/2) probability as a particle or as als. Note also that the closed loop in Figbpinvolves only
a hole. In the latter case, two elementary charges are transne of the two paths. This shows that the existence of the
ferred across the entire system. Thus the dimensionless cobB-type process is essentially due to the nontrivial behavior
ductance per channel isX21/2X T=T. Multiplying by the  of the single-particle Green’s function. The same mechanism
number of channels we ggy=2MT. of quantum coherence at the single-particle level was respon-
A-type corrections Weak-localization corrections to the sible for the correction to the single-particle density of states
classical conductance originate from the phase-coherent codiscussed in Sec. V B.
tributions of nonidentical paths to the sum of amplitudes Eq. In diagrammatic language, the loop insertion in Fig)5
(28). In the case of thé-type correction, such contributions takes the form shown in Fig.(8), where the shaded region
are due to pairs of paths that differ by a sequence of scattenow represents B-type cooperon mode and the dots stand
ing events traversed in opposite directions as is indicated ifor a set of unitarity-preserving counter diagrams. The quan-
Fig. 5(@). The sum of these “maximally crossed” segmentstitative analysis yields
of pairs of paths is represented by the building bléckn
Fig. 4. A more specific representation of the diagrams con- = .
tributing to A is shown in Fig. 6a), where the shaded region
represents aA-type cooperon the subscript means that the a)
external arrows are shown merely for the sake of clarity but
do not contribute to thé block as such, and the dots stand L
for diagrams of a more complex structure that have to be
taken into account to obtain a result consistent with unitarity. -
It is the presence of these unitarity-preserving contributions
that renders the calculation of tieblock within plain dia- _
grammatic perturbation theory lengthy. The alternative com- b) I:]i -
putational scheme presented in the Appendix yields

Quantitatively, we obtain

L t

5gA:M T2 L 3 FIG. 6. Diagrammatic representation of tietype (a) and

2 MT+n MT+pst )’ D-type (b) weak-localization process.
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matrix with vanishing ensemble average, which meansS3hat
. can be taken to be uniformly distributed on Bmatrix
manifold.

3MT
C MTH+ 7

5gD=(1—T)(1

A striking feature of this expression is its insensitivity to
the breaking of time-reversal symmetry: thetype weak- A. ClassC

localization correction for NS systems survives the applica-

tion of external magnetic field¥.Collecting terms we obtain ~ For the symmetry class&s andCl the S matrix operates
the final result on the tensor product of channel space and particle-hole

space, while spin is accounted for by multiplication of the
conductance by a factor of 2. Recall the definition of the

3MT M 1 .
= — - |+ —T2 symplectic group Sp() by
(g)y=2MT+(1 T)(l MT+ 7. + 5 T (MT+77t
N u-tt=u=cu-tct, 30
MTT 7t +O(1/M,M/N) (29 (30

for the dimensionless mean conductance of our system athereC=1y®io,. In keeping with the above, we take tBe
zero bias. We see that tietype correction is zero foF=1, matrix S=U for classC to be uniformly distributed on
while the A-type correction vanishes in the liniit—0, with ~ Sp(2M). In other words, ensemble averages) are com-
MT held fixed. From what has been said about Enéype  puted by integrating with respect to the Haar measilde
modes, we expect the-type correction to disappear at finite
bias. Detailed analysis shows that the crossover sodla
this to happen is determined byw~MT. <f(U)>:f f(U)dU.
Sp(2M)
VIII. UNIVERSAL CONDUCTANCE FLUCTUATIONS

The conductance fluctuations of normal-conductingThe canonical projection of Sp{2) onto the coset space
system® have been studied extensively. They are indepenSp(2M)/U(M) by U—UUT turns the Haar measure of the
dent of system size and strength of the disorder and deperf@rmer into the invariantor uniform) measure of the latter.
only on symmetry. The latter dependence can be summarizetherefore, ensemble averages for cl@dscan be obtained
by saying that vaxg) is proportional to the number of mass- from
less modes for a given universality class. When all symme-
tries are broken, thé-type spin-singlet diffuson is the only
mode which is massless. As we switch off the spin-orbit (f(S)a=(f(UUT)).
interaction, theA-type spin-triplet diffusion modes become
massless, too, which increases grpy a factor of 4. If in
addition time reversal is a good symmetry, the coopero
modes become massless, thereby increasinggyary yet
another factor of 2.

The NS systems considered in the present paper are
expectea6 to show conductance fluctuations that are qualita- f f(U .UUgdU= f f(U)du,
tively similar to those ofN systems. To calculate the vari- Sp2M) Sp2M)
ance, we may use an extension of the diagrammatic method
described in the previous section or, alternatively, we mayhe defining equations for Spk2) lead to
map our random-matrix model on a zero-dimensional field
theory of the nonlinearr model type. In the present paper
neither of these methods will be used. Instead, we will turn (Uap)=0,
to another approach, which is restricted to the strong-
coupling limit T=1 but has the great advantage of being
very simple. (UasUCp) = dacden/2M, (31)

The symmetry properties of tHe matrix derive from the
symmetries of the Hamiltonian by exponentiation. As before,
let M denote the number of channels in the lead, not count- (UagUcp)=CacCsp/2M.
ing spin and particle-hole degeneracy. By the considerations
of Sec. Il theS matrix may be regarded as an element of the
symmetric space SOM) for class D, Sp(2M) for C,  To compute the ensemble average of a product of ti®
SO(4M)/U(2M) for DIII, and Sp(M)/U(M) for CI. We and twoU*'s we note that ifiy, € V are the components of a
will refer to these spaces asS‘matrix manifolds” for short. ~ vector transforming according to the fundamental represen-
Let A=(a,s,0) (@=1,...M; s=*=1/2; c=p,h) be a com- tation of Sp(2M), there exist only two independent invari-
posite index. From the definition of the transmission coeffi-ants on VeV*®VeV*, namely Zya¢xggyp and
cient T as a “sticking probability,® we have = CagCop¥atistfedsl. Using this elementary group-
T=1—|(Saa)|?*+O(1/MT). ThereforeT=1 implies anS theoretical fact we obtain

Because the Haar integral is invariant under left and right
riranslations,
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2M -1
* * —
(Uap,U c,0,Yn,8,U c202> T OM(2M+1)(2M—2) [ Oa,c,0n,c,08,0,98,0,T Oa,c,0A,c,58,0,08,D,

1
+Caya,Ceic,C,8,00,0,1~ 5 2M+1)(2M—2) [ Oa,c,%A,c,%,D,58,D,

+8a,¢,9A,¢,9,0,%8,0,1 (9a,c,%,c, 9a,c,%,c,)CB,8,Cp,D,

+Ca,a,Cc,c,(68,0,98,0,~ 98,0,%8,0,)]- (32

The numerical coefficients in this expression are determined B. ClassD

by summing over any two pairs of equal indices and then rhe symmetry clasB can be treated by direct transcrip-
comparing the results to E(31) using relationd30). Equa-  jon from classC, the only difference being the way the spin
tion (32) entails enters. TheS matrix now operates on the full tensor product
of channel space, particle-hole space and spin space. The
E (UpAUhAU";BUﬁB)z(ZMﬂLl)*l, S-matrix manifold for D is isomorphic to the orthogonal
AB group SO(M), and is defined by Eq.(30) with
which can be used to compute the weak-localization correcC=1u® ox®1. Equations(31) remain formally unchanged
tion for classCI. Summing over initial and finalor particle ~ €xcept for the replacement M—4M. The projection
and hole channels, we ge{Tr PSP =M2/(2M+1) U—UrU'7 with =1y®1’ioy, takes the Haar measure
which yieldssg= —1 in agreement with Eq29). To calcu-  0f SO(4M) into the invariant measure of SOW#)/U(2M).
late the conductance fluctuations for cla8s we deduce Ensemble averages are given by
from Eq. (32
(F(S)om=(f(UTUT71)),

2
((Tr SPhsTh)2) = MT+ %Jr(’)(M’l).
<f(U)>=f f(U)du.
SQ4M)

Subtracting the square of the first moment and multiplying
by a factor of 44 for charge and spin, we get vg)=2. The ensemble average of a product of falis is

AM+1
* * —
<UA131U clolquBZU 02D2> T AM(4M—1)(4M +2) [5A1015A202531015BZD2+ 5A1025Azcl5l31025|32Dl

+CA1AZCclczcslechoz] Ty (4M—1)(4M +2) [5A1015A202581D25B2D1

+ 0a,c,0,c,98,0,8,0,1 (Oa,c,0n,c,t 9a,c,9%,c,)C,B,Cp,D,

+Ca,a,Cc,c,(68,0,98,0,1 98,0,%8,0,) ]-

The remaining calculations are the same as before. We olwe expect varg) to be still determined by the number of

tain 8g=+1/2 for classDIll, and var(g) =1/2 for classD. massless modes. Indeed, the conductance fluctuations for the
classe<C andD are seen to be bigger than the corresponding
C. Conjecture for Cl and DIl fluctuations forN systems by a factor of 8. To understand

For N systems the breaking of time-reversal symmetry istr;is, we note that there is a trivial enhancement by afactor of
known to reduce vag() by a factor of 2, while the breaking 2 —4 due to the transfer ofwo elementary charges in an
of spin-rotation invariance causes a reduction by a factor of\ndreev reflection. The other factor of 2 can be interpreted
4. As was said earlier, this pattern is explained by the obse@S telling us that the number of massless maalgsiori is
vation that varg) simply counts the number of massless twice as large: for everyA-type mode, which is already
modes in each universality class. From our experience witfpresent in thé\ system, there exists an extatype (or BdG
diagrammatic perturbation theory of the model EG§) and  particle-holg¢ mode in the NS system, see Sec. VI. By ex-
(25) we expect the same principle to be operative here, i.elrapolation we are led to the followingonjecture
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4 (Cl), conductor. Let us emphasize that the effects we have studied
(©) are universalin the ergodic limif and are independent of
var(g) = ’ such microscopic detail as the NS-barrier transmittency.
1 (DI, Clearly, the present paper constitutes only a first step into
1/2 (D), an exciting research area of mesoscopic physics, and much

more is yet to be done. Some of the open problems are the

which differs from the result of Brouwer and Beenak®er following. (i) We have shown how to solve the level statis-
who found the size of the conductance fluctuations to depentics problem for each universality class but more generally
only weakly on whether time-reversal symmetry is broken orone might also be interested in the crossover between
not. Note however that their result applies to a different situclasses. Here the crossov&bs—C andDIIl —D look ame-
ation than the one considered héhe their case the super- nable to analytical techniques, since the level statistic€for
conducting order parameter is homogeneous in space feindD (just as for the Gaussian unitary ensemioteaps on a
classCl). free Fermi-gas problentii) Our results for the level statistics
are restricted to an energy range proportional to the inverse
mean time spent between successive Andreev reflections. To
access the short-time or high-energy regime beyond the

In this paper we have initiated the study of a special fam-crossover scale, our maximum-entropy ensembles need to be
ily of NS systems where the spatial variation of the superimodified by allowing for different variances of the random
conducting order parameter is such that the Andreev phaggairing and normal matrix elementsii) Although we have
shift averages to zero along a typical semiclassical singlesutlined the semiclassical interpretation of tbBetype (or
electron trajectory. We find such systems particularly interparticle-hol¢ modes, a more detailed discussion of their role
esting because the proximity effect is inoperative and quasin semiclassical periodic-orbit theory would certainly be de-
particle states exist right at the chemical potential. Disordesirable.(iv) We need to extend our results for the universal
or dynamically generated chaos mixes the states and leads ¢onductance fluctuations to the clas€dsand DIl and to
a universal type of level statistics within an energy windowarbitraryT. (v) While the zero-dimension&br ergodig limit
whose size is determined by the frequency of Andreev reis adequately described by the maximum-entropy ansatz, the
flection. By classifying systems according to their symme-diffusive and ballistic regimes necessitate a more detailed
tries we identified four universality classes, denotedChy modeling. In particular, the nonrandom nature of the magni-
Cl, D, andDlII. Time reversal is a goo¢broken symmetry  tude of the pairing field will make itself felt at short times. It
for Cl and DIlIl (C and D), while spin is conservednot is an open technical problem how to deal analytically with
conserveglfor C andClI (D andDlIIl). For each universality the phase randomness of Hamiltonian matrix elements when
class the joint probability distribution of the quasiparticle their magnitude is to be kept fixedvi) We have concen-
energy levels was given in closed form. Tindevel correla-  trated on an NS geometry that is particularly easy to treat but
tion functions for the classés andD were calculated by the future work will have to include other geometrigsii) Last
mapping onto a free Fermi gas on a half-line with Dirichlet but not least, we need to address the nontrivial question: how
and Neumann boundary conditions at the origin. The joinfarge is the effect of residual Coulomb interactions on the
probability distributions of the levels fo€l and DIl were D-type modes? There is no doubt that the short-time physics
transformed into those of the Laguerre orthogonal and Lacan be adequately described in a simple independent-
guerre symplectic ensembles, whose level statistics has beguasiparticle picture, but at large times the coherence be-
worked out completelyalbeit with a minor computational tween particles and holes will get cut off by Coulomb block-
erron by Nagao and Slevin. ade and other correlation effects. The question is what is the

To calculate the transport properties of open systems itime scale where this happens.
the zero-dimensional limit, we formulated a random-matrix We shall end on a mathematical note. According to Car-
model and treated it using a variant of the impurity diagramtan, there exist 11 large families of symmetric spaces. Those
technigue. An important feature we pointed out was the douef type Il are the compact unitary, orthogonal, and symplec-
bling of the number of low-energy modes in comparisontic Lie groups @,B,C,D). The large families of type-1 sym-
with conventional normal-conducting systems. For everymetric spaces are denoted By, All, Alll, BDI, CI, CII,
A-type mode, i.e., for every BdG particle-partidler hole- and DIIl. The standard Wigner-Dyson universality classes
hole) spin-singlet or spin-triplet diffuson or cooperon, there derive fromA (GUE), Al (GOE), andAll (GSB), while the
exists precisely one corresponding BdG particle-hole owmniversality classes of a massless Dirac particle derive from
D-type mode. The weak-localization correction to the aver-Alll (chGUB, BDI (chGOB, andCll (chGSH. As we have
age conductance for an NSS geometry was calculated asshown, the universality classes found in mesoscopic NS sys-
function of the “sticking probability” T and two perturba- tems exhaust the remaining large families of symmetric
tions breaking time-reversal symmetry and spin-rotation insspaces except foB (the orthogonal group in odd dimen-
variance. The technically more involved task of calculatingsions, which does not occur. Thus, if we groiptogether
the variance of the fluctuating conductance was carried outith D, there is abijection between the known universality
only for T=1 and the universality class€andD, by using classes of disordered single-particle systems and the large
an S-matrix formalism ‘ala Mello. We found varg) to be families of symmetric spaces. We consider this to be a strong
enhanced by a factor of 2 relative to the ruleindication that no other universality classes will be found,
vangyg)=4var(gy). We attribute this enhancement to the since any additional universality class would exceed Cartan’s
doubling of low-energy modes by the coupling to the superscheme and therefore would have to be of a different nature.

IX. CONCLUSIONS
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[Although other expressions involving arbitrary functions of
U= + I R + .. r, seem.possible, this fc_)rmula _does represent}rl]e most gen-
' e e eral starting point. Equatiof26) yieldsX ,I';="""3 ',
: . . - so it is sufficient to start from an expression that is linear in
FIG. 7. Diagrammatic representation of the two-particle irreduc- . . L \
. the coefficientsI',.] The quantity ® satisfies Dyson’s
ible vertex. equatioﬁg s
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where use of the identityAl) has been made. To fix the
coefficientsc,...,d, . .. wesubject Eq(A5) to various sum-

In this appendix we elaborate on the calculation of themation procedures. For example, by taking the stp*)
weak localization correction to the conductance, E29).  and then using the second Ward identi§2), we obtain
Owing to the presence of the BdG particle-hole degree of .
freedom, this calculation turns out to be much more involved c+yd=—1/4. (AB)
than in pureN systems. For this reason we prefer to controlSeven more equations for the remaining coefficients are gen-
the diagrammatic expansion by means of exact algebraic rerated by performing the summations ,(—)3(*),
lationships. The basic concepts used in this appendix have (—)%(x), X ,(-)%"9(*), 2,.(*), 3. .(-)%*),
been introduced in the seminal pager. 3., (—)9(*), and3 T ,(—)S*9(x). The outcome of all

To begin with, we recapitulate two Ward identities that this may be cast in the form of a matrix equation
will play a crucial role in what follows. Let us write the
average retarded Green’s function @, ,/) =0,/ (—2, A Bllc u
+iFM)_l::5a,a’G,u1 wherea=(u,S,q) is a composite in- c p/ld/ "~ a s (A7)
dex accounting for the sitéu), spin (s), and particle-hole T T T
(q=p,h) degrees of freedonfAfter averaging, the Green’s Where ¢'=(cs,Cq,C5¢), d =(d,ds,dq,dsg), u'=(0,1,0),
function depends only on the site indexthe first Ward  V'=(0,0,7,0), anda; =3 ,I' ,AG,, . Fortunately, it is easy to

identity is immediate from the definitions and reads invert the 7X7 matrix appearing in this equation. By con-
struction, the coefficients appearing in the subblock

A(B,C,D) involve summations over the indexthat do not

(do) contain matrix elementsl’,. Since X,---~O(N),
whereass I',---~O(M)), the coefficients appearing A ex-

where G; is the average advanced Green’s functidig,, ceed those in the remaining subblocks by a large factor of

=G,—Gj andAY =3 —37%. A second and less trivial O(N/M). We thus conclude

Ward-identity’® relates the self-energy to the so-called ir-

APPENDIX: CONDUCTANCE AND WARD IDENTITIES

G,GL=—AG, (A%, +2il )%, (A1)

-1
reducible two-particle vertek: A B 0 0 1
c D 0D_l:CO,d v. (A8)
_ The matrixD can easily be inverted as it is already of diag-
AX, % Uaa Gy (A2) onal form. Combining Eq9A3), (A6), and(A8), we obtain
. . . ) 1 2y%a, \
The irreducible verteX is defined as the set of all truncated (g)=16a,| — —— — , (A9)
four-point functions that cannot be cut by just cutting two 4i 4yc,—8iy’a,— U]
average Green'’s functior(gf. Fig. 7). In the following we wherec. =S T AG AS  and
focus on the analysis of the auxiliary quantity 1=2,0uAC A%,
U= T,AG,(—)%W, T, AG, (—)d.
q)a: 2 <|Ga,a’|2>r,u' . o .
a’;q'=p We next decompose the self-energy according to
2 ,=—1/\+6%, into a leading order contribution plus a
From this the mean conductance is obtaineficas(27)] correction termd X, of O(1/M). Anticipating that the terms
6 %, andU are of the same order, we obtain the preliminary
result
(g)=8 %}h r,o,. (A3)
o, q= — 'y - _
(g)—2MT+2MT m Im 8%+ m U
We start from the ansatz
+O(1M), (A10)

— _\S —_\q __\st+q .
P, =AG,{C+Cs( )™ Co( =) Coel —) wheress=(My) '3 ,I', 6%, . We next analyze the build-

+ T [d+ds(—)%+dg(—)9+dso(—)° ). (A4)  ing blockss3, andU by diagrammatic methods. Because Eq.
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(A10) is based on Ward identities, it automatically incorpo-

rates the condition of unitarity. As a consequence, the fol-

lowing calculation is much simpler than a direct diagram-
matic analysis of Eq(27). L

To leading order irM 1, the self-energy correctiod, is
given by

oL
" 4My

> I',D,,

a

(A11)

whereD , represents the first of the diagrams shown in Fig.

8. The light{dark)shaded region representPatype coop-
eron mode(a nonsingulard1$® laddey. Evaluation of the
diagrams yieldgcf. the explanation in connection with Fig.

2)

1 3
MT MT+ 5

AA=7)
2(N+7y)

Im 83 = . (A12)

The dominant contribution to the vertex correctiaresults
from an A-type cooperon:

U= ()T ,AG,A,AG, T, ()%

!
a,a

MARTIN R. ZIRNBAUER

FIG. 8. Diagrams contributing to the self-energy and the vertex

correction.

3
MT+7 MT+ gt/

—4NyTM (A13)

whereA,,, is the second of the diagrams shown in Fig. 8.

By combining Egs. (A10), (Al12), and (A13), and
using the expression for the transmission coefficient

T=4\y/(\+ y)?, we arrive at the final result given in Sec.
VILI.
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