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Application of the interface approach in quantum Ising models
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We investigate phase transitions in the Ising model and the ANNNI model in transverse field using the
interface approach. The exact result of the Ising chain in a transverse field is reproduced. We find that apart
from the interfacial energy, there are two other response functions which show simple scaling behavior. For the
ANNNI model in a transverse field, the phase diagram can be fully studied in the region where a ferromagnetic
to paramagnetic phase transition occurs. The other region can be studied partially; the boundary where the
antiphase vanishes can be estimaf&@163-18207)12817-X]

[. INTRODUCTION where the stiffness exponent is a constant forT<T_,
equal to zero folT=T_ and negative fof>T.. Hence the
Phase transitions in Ising spin systems driven entirely bycritical point can be obtained from(T.)=0. In Ising spin
guantum fluctuations have been getting a lot of attentiorsystems with nearest-neighbor interactions;d—1, where
recently! The simplest of such systems is the Ising model ind is the dimension of the system. For frustrated systems,
a transverse field which can be exactly solved in one dimenmay be nonintegrd.
sion. Quantum fluctuations in Ising systems with more com- On the other hand, in phase transitions driven by quantum
plicated interactions which, for example, incorporate frustrafluctuations at zero temperature, one needs to consider only
tion and or disorder, give rise to novel and intriguing the ground state enerdgyhich is equivalent to the free en-
features. Recently, the experimental realization of somergy) and here the interfacial free energy is expected to have
cases like the spin glass system in a transverse or tunnelirggdifferent stiffness exponent.
field, have added to the interest in such systéms. We have applied the twist method in two quantum sys-
We apply the method of interfaceis the Ising model and tems: first to reproduce the exact result of the Ising chain in
the anisotropic next-nearest-neighbor ISiANNNI) modef  a transverse fiefdand then to the ANNNI model in a trans-
in a transverse field at zero temperature to study the quanturerse field: In the latter, there are additional frustration ef-
fluctuation driven transitions. In the process, we also explordects which have to be taken under consideration. Our results
the scope of the so-called twist metRddvhich we have show that apart from the interfacial free energy, there are at
shown to have additional features apart from the ones alleast two other response functions which carry information
ready known. of the phase transition and follow simple scaling laws. In
Recently, it has been shown in a variety of spin systemsec. Il, we describe the method used to study the quantum
how the interfaces caused by twisting a system are closelising models as well as the results. The results are discussed
linked to the phase transition. Apart from the application ofin Sec. lIl.
the twist method to several classical models like Ising spins
systems, the Potts model, and spin gla§sm§,y recently it II. METHOD AND RESULTS
has been used for quantum ground state problems’afso. )
this method, the interface free energy is generated by the The stiffness exponent for the quantum model at zero
excess free energy between systems with and without a twisi€mperature is defined in the same way as in(2j.the role
In general, twisting the system may be done by changing thef temperature now being assumed by the transverse field
boundary condition in one direction. The idea is that longSuch that
range order produces stiffness. The interface free energy, _ _ Uy r
whi?:h is the I[r)esponse to the stress generated by the twist AE=Eo—E4=g[( —T)LY]LD). (€
provides direct information on the stiffness of the ordered Tpe Ising chain in a transverse field is described by the
state. For classical systems, i.e., in a thermally driven phasgzmiltonian
transition, this method analyzes sizke)(and temperature
(T,T. the critical temperatupedependence of the stiffness L L
free energy(which is the increment of free energy due to the H= —JE SZ$Z+1—FE S (4)
change¢ in boundary conditionsdefined by =1 =1
and the ferromagnetic to paramagnetic phase transition oc-
AF=F,—Fy, (D) curs atl'/J=1 for S*==*1. We take the basis states to be
diagonal in the representation 8f. The twist is applied in
whereF , andF are the free energy with and without twist, the following way? in one case we have fixed spins pointing

respectively AF has the simple scaling fortd parallely in the left and right boundaries which favors the
ferromagnetic alignment and is called the favorable bound-
AF=A[(T-TyL¥ LD, (2)  ary condition(FBC), while in the other case we have fixed
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FIG. 1. Plot of (a) AEL,
x=(T'-T)LY for system sizes 10¢), 12 (+), 14 (O), 16
(%), and 20 (\) for the Ising chain in transverse field with, = 1

andv=1 (E,I" in units ofJ).

(b) AE® and (c) Am vs

(©

FIG. 2. Plot of (8 AEL,
x=(-T LY for system sizes 10¢), 12 (+), 14 (O), 16
(X), and 20 \) for the ANNNI chain in transverse field with

X

(b) AE® and (c) Am vs

I'c=0.42 andv=1 at«=0.3 (E,I" in units ofJ).

spins at the boundaries antiparallely orienfeafavorable _ _ _ _
boundary condition or UBL The latter generates an inter- allely or antiparallely at the edges. This, while generating the
face and hence the excess energy. The first spin also interadtgerface, will also introduce boundary effe¢taite size ef-

with the extra spir(fixed) on its left and the lastl(th) spin
interacts with the extra(L+ 1)th] spin (fixed) on its right.

fects in a numerical studythe two effects are intermingled
and difficult to separate. It might be possible to study the
It needs to be clarified here that we have used opeinterface effect alone by using periodic and antiperiodic

boundary conditions with two extra spins pointed either parboundary condition$,but that involves more complicated



FIG. 3. Plot of(a) AEL and (b) AE® vs x=(I'—T LY for
system sizes 8¢ ), 12 (+), 16 (), and 20 () for the ANNNI
chain in transverse field with,=0.52 andv=1 at«=1.0 (E,I" in

units of J).

programming and computer time. Therefore, we have bot
interface and boundary effects, and when we talk of the in
terface effect in the rest of the paper, it essentially include
the boundary effect, the latter diminishing with system size.
We proceed to find out the ground state of a system o
L spins(excluding the two at the boundarin a transverse
field by using a Lanczos algorithm for both kinds of bound-

ary conditions(FBC and UBG.

Apart from the interfacial energy defined in E@), we
also investigate the behavior of the interfacial cooperative*
energy and the interfacial magnetization. These two quanti;

ties are defined in the following way: I€E°=(y|HC| )
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2.5 T T . . (P) transition, forx>0.5, the data points indicate the disappear-
2bx ® o maeeg, ] ance of the antiphas€2)).
<
& 15T +%'X$ 1 wheremg(m,) is the magnetization in the ground state with
@ o] . . . .
S 1L o ] (without) twist. We have obtained results for system sizes
2 o L = 6toL = 20 and studied the behavior afE, AES, and
g o5 R T Am. All three scale in general as E¢3) giving the exact
g 0 o R resultI';/J=1 andv=1 (see Fig. 1 Although the exact
g R critical point is known for Eq(4), certain other features are
g8 05f L, Zx 7 available from our study which show novel features of the
£ Al a ] stiffness exponent for quantum systems. We have discussed
x these scaling behaviors and commented about them in Sec.
151 T Il
5 L \ i : . We next extend the study to the ANNNI chain in a trans-
b) -10 -5 0 5 10 verse field. The Hamiltonian is described by
X

L L L
H= —J( ;1 SIZS,IZH—KE1 sfsﬁzjuri; s ()

Here « denotes the frustration parameter. The classical
ground state withouf at zero temperature is exactly known:
rf]erromagnetic fork<<0.5, antiphase fok>0.5, and highly
degenerate phases exist at0.53 The quantum ANNNI
model, which is perhaps the simplest model incorporating
Doth frustration and guantum fluctuation, has been studied
xtensively(and the corresponding classical mgdil the

ast few years.However, the nature of the ground state and
the phase transition is yet to be understood clearly, especially
in the regionk>0.5. It is believed that a floating phase
exists® close to thexk=0.5 region which has also been
found for the classical two-dimensional model in the free
ermion approximatiori. All earlier studies indicate that
there is a ferromagnetic to paramagnetic transition at
k<<0.5. Hence, the twist method is easily applicable here in

whereH¢ is the ternfs) in the Hamiltonian involving only
the cooperative interaction energy anf) the ground state.
For Eq.(4), H®=—J3}S'S, ;. Then the interfacial coop-
erative energy is given by

the same manner as in the nearest-neighbor Ising case. In
order to impose favorable and unfavorable boundary condi-
tions, we fix two spins on the left and right ends of the chain,
and find the ground states. The spins on the boundaries in-
teract with the extra fixed spins as in the Ising case, with

AEC:ECO_E;- (5) open boundary conditions prevailing. Fex 0.5, the FBC
consists of parallel spins, and for UBC, it is antiparallel just
The interfacial magnetization is similarly defined like the nearest-neighbor case. It may be mentioned that one
could do without bringing in two fixed spins but we keep this
Am=m,—my, (6) in order that it is consistent with the ground states also at
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«>0.5. We have applied here the twist method and foundstiffness exponenrtl for the transverse Ising chajthe same
that it gives consistent results in the<0.5 region where a as that of the @ classical mod¢l However, this is the same
ferromagnetic to paramagnetic transition occurs. Again wes sayingAE scales a$.%, and we do not find this behavior
find thatAE, AE®, andAm have simple scaling forms and (except, of course, d&t=0, but we are interested in the scal-
we get the critical field for any<<0.5 in this way. As an ing behavior near the critical pointOn the other hand, we
example, we have shown the scaling of the three quantities ido find thatA E® does have a stiffness exponerti.e., scales
Fig. 2 for k=0.3. as L% while AE shows a scaling bahavior with a stiffness

In the «>0.5 region, we have no clear idea about whatexponent=—1 [see Figs. (a8—1(c) drawn withv=1).
kind of a transition is taking place which is clearcut ferro- Now, in the case of the classical systems, we have the
magnetic to paramagnetic in the<0.5 region. Therefore, stiffness exponent d—1. Of course, fod=1, there is no
all we have attempted to do here is to find out the phas¢éhermal phase transition and therefore the exponaen0 is
boundary where the antiphase disappears by putting appraever encountered. But, here we do have a phase transition
priate UBC and FBC for the antiphase. However, there stilldriven by quantum fluctuations and that may be the reason
remains a problem. The frustration effects now becomdor obtaining an exponent=0 for the interfacial coopera-
dominant and the ground state is no longer trivially degentive energy. The interfacial magnetization also scales with an
erate. This generates not a single interface but maybe moexponenty=0. The scaling functiog.(x) for the interfacial
than one. Also, because of the structure of the degenaratmoperative energy is also evidently of the following form:
ground states due to the presence of both nearest- and next-
nearest-neighbor interactions, the so-called unfavorable
boundary condition for one particular ground state may be-
come favorable for another degenerate ground state, thus
making it difficult to feel the effect of the field due to the =0 for x>0,
twist. For example, if we set the two spins on the left bound-
ary down and the two on the right up, then the state withwherea is a constant depending oa It maybe noted that
minimum interaction energy ipiudd- - -uudd), a member the magnetization depends not only on the number of inter-
of the set of the four degenerate ground states in the arfaces but also their positions and it is apparent from the data
tiphase. Setting all the boundary spins on the left and righthat as the system size is increased, the interface caused by
down to provide the necessary twist, the new ground statéhe twist moves towards the center of the chain. Therefore,
should apparently have a structyteu- - - uuy, where we do  the exponentr=0 for the interfacial magnetization is not
not know how the spins in the interior are oriented. Thesurprising.
cooperative energy contribution at the boundary to this state One can say that the nontrivial exponent-el obtained
is 2J—4J«. However, if we look at another antiphase statefor the total interfacial energy is a novel feature of the quan-
which is|duudd - -dduud, then the energy contribution at tum model. On the other hand, if one looks at the scaling
the boundary is—2J. Hence it is possible that the latter is functions in Figs. 1-3, it is obvious that they are different for
lower in energy compared tduu---uu) especially if LAE andAE°. The scaling functions foAE® andAm are,
—2J<2J—-4Jk or whenk<<1. Hence, a second antiphase however, similar. Apparently the scaling functigrix) for
state becomes the ground state when the twist is appliedAE has the following form:
therefore making the present method ineffective. However,
with the quantum term also present, we observed from the
numerical exercise that this problem disappears«er0.7
where we find out the phase boundary. The interfacial mag-
netization is of course not meaningful here. =0 for x>0

We have estimated the phase boundary where(#)e
phase disappears again from the best scaling plota\for such thatLAE~ (I'.—TI')L which is the expected behavior
andAE. (the «k=1.0 case is shown in Fig,)3However, the mentioned in Ref. 4.
data collapse is not so impressive as in #h€0.5 region. The scaling behavior dAE® andAE are different but the
The resulting partial phase diagram is shown in Fig. 4. quantitiesAE® and LAE have the same stiffness exponent.
Hence, there is an additional dimensiorin the total energy
which may be related to the additional dimension which
comes into play in quantum models.

We have studied the behavior of essentially three quanti- That the interface method is quite powerful is again
ties and found that they carry information about the quantunproved. We obtain the exact critical point for the transverse
phase transitions in the Ising and ANNNI models in the in-Ising chain and a phase diagram for the transverse ANNNI
terface approach. Of these, the behavior of the total interfaceodel consistent with the previous studies. However, we did
energy had been known earlier, but the scaling of the internot venture to investigate the regirke>0.5 in the ANNNI
facial cooperative energy and interfacial magnetization apmodel fully because of the nontrivial nature of the transition
pear to be new results. However, there was earlier evidend® a possible floating phase. The phase boundary where the
that the cooperative energy contribution is significant in aantiphase disappears is also not obtainedktar0.7 because
study of quantum spin glasses. of the difficulty in imposing conflicting boundary conditions.

In Ref. 4, it was argued that one should look at the scalingSince in degenerate systems there can be a number of ways
behavior of the quantity. AE which is expected to have a to impose the FBC and the UBC, we tried several combina-

gc(x)=a for x<0

g(x)~—x for x<0

Ill. DISCUSSIONS
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