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Application of the interface approach in quantum Ising models
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~Received 17 September 1996; revised manuscript received 7 November 1996!

We investigate phase transitions in the Ising model and the ANNNI model in transverse field using the
interface approach. The exact result of the Ising chain in a transverse field is reproduced. We find that apart
from the interfacial energy, there are two other response functions which show simple scaling behavior. For the
ANNNI model in a transverse field, the phase diagram can be fully studied in the region where a ferromagnetic
to paramagnetic phase transition occurs. The other region can be studied partially; the boundary where the
antiphase vanishes can be estimated.@S0163-1829~97!12817-X#
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I. INTRODUCTION

Phase transitions in Ising spin systems driven entirely
quantum fluctuations have been getting a lot of attent
recently.1 The simplest of such systems is the Ising mode
a transverse field which can be exactly solved in one dim
sion. Quantum fluctuations in Ising systems with more co
plicated interactions which, for example, incorporate frust
tion and or disorder, give rise to novel and intriguin
features. Recently, the experimental realization of so
cases like the spin glass system in a transverse or tunn
field, have added to the interest in such systems.1

We apply the method of interfaces2 in the Ising model and
the anisotropic next-nearest-neighbor Ising~ANNNI ! model3

in a transverse field at zero temperature to study the quan
fluctuation driven transitions. In the process, we also exp
the scope of the so-called twist method2,4 which we have
shown to have additional features apart from the ones
ready known.

Recently, it has been shown in a variety of spin syste
how the interfaces caused by twisting a system are clo
linked to the phase transition. Apart from the application
the twist method to several classical models like Ising sp
systems, the Potts model, and spin glasses,2 very recently it
has been used for quantum ground state problems also4 In
this method, the interface free energy is generated by
excess free energy between systems with and without a tw
In general, twisting the system may be done by changing
boundary condition in one direction. The idea is that lo
range order produces stiffness. The interface free ene
which is the response to the stress generated by the
provides direct information on the stiffness of the order
state. For classical systems, i.e., in a thermally driven ph
transition, this method analyzes size (L) and temperature
(T,Tc the critical temperature! dependence of the stiffnes
free energy~which is the increment of free energy due to t
changef in boundary conditions! defined by

DF5Ff2F0 , ~1!

whereFf andF0 are the free energy with and without twis
respectively.DF has the simple scaling form5,2

DF5A@~T2Tc!L
1/n#La~T!, ~2!
550163-1829/97/55~17!/11367~5!/$10.00
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where the stiffness exponenta is a constant forT,Tc ,
equal to zero forT5Tc and negative forT.Tc . Hence the
critical point can be obtained froma(Tc)50. In Ising spin
systems with nearest-neighbor interactions,a5d21, where
d is the dimension of the system. For frustrated systemsa
may be nonintegral.2

On the other hand, in phase transitions driven by quan
fluctuations at zero temperature, one needs to consider
the ground state energy~which is equivalent to the free en
ergy! and here the interfacial free energy is expected to h
a different stiffness exponent.

We have applied the twist method in two quantum s
tems: first to reproduce the exact result of the Ising chain
a transverse field6 and then to the ANNNI model in a trans
verse field.1 In the latter, there are additional frustration e
fects which have to be taken under consideration. Our res
show that apart from the interfacial free energy, there are
least two other response functions which carry informat
of the phase transition and follow simple scaling laws.
Sec. II, we describe the method used to study the quan
Ising models as well as the results. The results are discu
in Sec. III.

II. METHOD AND RESULTS

The stiffness exponent for the quantum model at z
temperature is defined in the same way as in Eq.~2!, the role
of temperature now being assumed by the transverse
such that

DE5E02Ef5g@~G2Gc!L
1/n#Lf~G!. ~3!

The Ising chain in a transverse field is described by
Hamiltonian

H52J(
i51

L

Si
zSi11

z 2G(
i51

L

Si
x ~4!

and the ferromagnetic to paramagnetic phase transition
curs atG/J51 for Sz561. We take the basis states to b
diagonal in the representation ofSz. The twist is applied in
the following way:2 in one case we have fixed spins pointin
parallely in the left and right boundaries which favors t
ferromagnetic alignment and is called the favorable bou
ary condition~FBC!, while in the other case we have fixe
11 367 © 1997 The American Physical Society
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11 368 55PARONGAMA SEN
spins at the boundaries antiparallely oriented~unfavorable
boundary condition or UBC!. The latter generates an inte
face and hence the excess energy. The first spin also inte
with the extra spin~fixed! on its left and the last (Lth! spin
interacts with the extra@(L11)th# spin ~fixed! on its right.

It needs to be clarified here that we have used o
boundary conditions with two extra spins pointed either p

FIG. 1. Plot of ~a! DEL, ~b! DEc and ~c! Dm vs
x5(G2Gc)L

1/n for system sizes 10 (L), 12 (1), 14 (h), 16
(3), and 20 (n) for the Ising chain in transverse field withGc 5 1
andn51 (E,G in units of J).
cts

n
-

allely or antiparallely at the edges. This, while generating t
interface, will also introduce boundary effects~finite size ef-
fects in a numerical study!: the two effects are intermingled
and difficult to separate. It might be possible to study th
interface effect alone by using periodic and antiperiod
boundary conditions,7 but that involves more complicated

FIG. 2. Plot of ~a! DEL, ~b! DEc and ~c! Dm vs
x5(G2Gc)L

1/n for system sizes 10 (L), 12 (1), 14 (h), 16
(3), and 20 (n) for the ANNNI chain in transverse field with
Gc50.42 andn51 atk50.3 (E,G in units of J).
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55 11 369APPLICATION OF THE INTERFACE APPROACH IN . . .
programming and computer time. Therefore, we have bo
interface and boundary effects, and when we talk of the in
terface effect in the rest of the paper, it essentially include
the boundary effect, the latter diminishing with system size

We proceed to find out the ground state of a system
L spins~excluding the two at the boundary! in a transverse
field by using a Lanczos algorithm for both kinds of bound
ary conditions~FBC and UBC!.

Apart from the interfacial energy defined in Eq.~3!, we
also investigate the behavior of the interfacial cooperativ
energy and the interfacial magnetization. These two quan
ties are defined in the following way: letEc5^cuHcuc&
whereHc is the term~s! in the Hamiltonian involving only
the cooperative interaction energy anduc& the ground state.
For Eq. ~4!, Hc52J( i

LSi
zSi11

z . Then the interfacial coop-
erative energy is given by

DEc5Ec
02Ef

c . ~5!

The interfacial magnetization is similarly defined

Dm5mo2mf , ~6!

FIG. 3. Plot of ~a! DEL and ~b! DEc vs x5(G2Gc)L
1/n for

system sizes 8 (L), 12 (1), 16 (h), and 20 (3) for the ANNNI
chain in transverse field withGc50.52 andn51 atk51.0 (E,G in
units of J).
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wherem0(mf) is the magnetization in the ground state wi
~without! twist. We have obtained results for system siz
L 5 6 to L 5 20 and studied the behavior ofDE, DEc, and
Dm. All three scale in general as Eq.~3! giving the exact
result Gc /J51 and n51 ~see Fig. 1!. Although the exact
critical point is known for Eq.~4!, certain other features ar
available from our study which show novel features of t
stiffness exponent for quantum systems. We have discu
these scaling behaviors and commented about them in
III.

We next extend the study to the ANNNI chain in a tran
verse field. The Hamiltonian is described by

H52JS (
i51

L

Si
zSi11

z 2k(
i51

L

Si
zSi12

z 1G(
i51

L

Si
xD . ~7!

Here k denotes the frustration parameter. The class
ground state withoutG at zero temperature is exactly know
ferromagnetic fork,0.5, antiphase fork.0.5, and highly
degenerate phases exist atk50.5.3 The quantum ANNNI
model, which is perhaps the simplest model incorporat
both frustration and quantum fluctuation, has been stud
extensively~and the corresponding classical model! in the
last few years.1 However, the nature of the ground state a
the phase transition is yet to be understood clearly, espec
in the regionk.0.5. It is believed that a floating phas
exists1,8 close to thek50.5 region which has also bee
found for the classical two-dimensional model in the fr
fermion approximation.3 All earlier studies indicate tha
there is a ferromagnetic to paramagnetic transition
k,0.5. Hence, the twist method is easily applicable here
the same manner as in the nearest-neighbor Ising cas
order to impose favorable and unfavorable boundary con
tions, we fix two spins on the left and right ends of the cha
and find the ground states. The spins on the boundaries
teract with the extra fixed spins as in the Ising case, w
open boundary conditions prevailing. Fork,0.5, the FBC
consists of parallel spins, and for UBC, it is antiparallel ju
like the nearest-neighbor case. It may be mentioned that
could do without bringing in two fixed spins but we keep th
in order that it is consistent with the ground states also

FIG. 4. Partial phase diagram for the ANNNI chain in a tran
verse field: for the frustration parameterk,0.5 the data points in-
dicate the critical fields for the ferromagnetic (F) to paramagnetic
(P) transition, fork.0.5, the data points indicate the disappe
ance of the antiphase (^2&!.
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11 370 55PARONGAMA SEN
k.0.5. We have applied here the twist method and fou
that it gives consistent results in thek,0.5 region where a
ferromagnetic to paramagnetic transition occurs. Again
find thatDE, DEc, andDm have simple scaling forms an
we get the critical field for anyk,0.5 in this way. As an
example, we have shown the scaling of the three quantitie
Fig. 2 for k50.3.

In the k.0.5 region, we have no clear idea about wh
kind of a transition is taking place which is clearcut ferr
magnetic to paramagnetic in thek,0.5 region. Therefore
all we have attempted to do here is to find out the ph
boundary where the antiphase disappears by putting ap
priate UBC and FBC for the antiphase. However, there s
remains a problem. The frustration effects now beco
dominant and the ground state is no longer trivially deg
erate. This generates not a single interface but maybe m
than one. Also, because of the structure of the degena
ground states due to the presence of both nearest- and
nearest-neighbor interactions, the so-called unfavora
boundary condition for one particular ground state may
come favorable for another degenerate ground state,
making it difficult to feel the effect of the field due to th
twist. For example, if we set the two spins on the left boun
ary down and the two on the right up, then the state w
minimum interaction energy isuuudd•••uudd&, a member
of the set of the four degenerate ground states in the
tiphase. Setting all the boundary spins on the left and ri
down to provide the necessary twist, the new ground s
should apparently have a structureuuu•••uu&, where we do
not know how the spins in the interior are oriented. T
cooperative energy contribution at the boundary to this s
is 2J24Jk. However, if we look at another antiphase sta
which is uduudd•••dduud&, then the energy contribution a
the boundary is22J. Hence it is possible that the latter
lower in energy compared touuu•••uu& especially if
22J,2J24Jk or whenk,1. Hence, a second antipha
state becomes the ground state when the twist is app
therefore making the present method ineffective. Howev
with the quantum term also present, we observed from
numerical exercise that this problem disappears fork>0.7
where we find out the phase boundary. The interfacial m
netization is of course not meaningful here.

We have estimated the phase boundary where the^2&
phase disappears again from the best scaling plots forDE
andDEc ~thek51.0 case is shown in Fig. 3!. However, the
data collapse is not so impressive as in thek,0.5 region.
The resulting partial phase diagram is shown in Fig. 4.

III. DISCUSSIONS

We have studied the behavior of essentially three qua
ties and found that they carry information about the quant
phase transitions in the Ising and ANNNI models in the
terface approach. Of these, the behavior of the total inter
energy had been known earlier, but the scaling of the in
facial cooperative energy and interfacial magnetization
pear to be new results. However, there was earlier evide
that the cooperative energy contribution is significant in
study of quantum spin glasses.1,9.

In Ref. 4, it was argued that one should look at the sca
behavior of the quantityLDE which is expected to have
d
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stiffness exponent51 for the transverse Ising chain~the same
as that of the 2d classical model!. However, this is the same
as sayingDE scales asL0, and we do not find this behavio
~except, of course, atG50, but we are interested in the sca
ing behavior near the critical point!. On the other hand, we
do find thatDEc does have a stiffness exponent 0~i.e., scales
asL0) while DE shows a scaling bahavior with a stiffnes
exponent521 @see Figs. 1~a!–1~c! drawn withn51).

Now, in the case of the classical systems, we have
stiffness exponent5 d21. Of course, ford51, there is no
thermal phase transition and therefore the exponenta50 is
never encountered. But, here we do have a phase trans
driven by quantum fluctuations and that may be the rea
for obtaining an exponenta50 for the interfacial coopera
tive energy. The interfacial magnetization also scales with
exponenta50. The scaling functiongc(x) for the interfacial
cooperative energy is also evidently of the following form

gc~x!5a for x,0

50 for x.0,

wherea is a constant depending onk. It maybe noted that
the magnetization depends not only on the number of in
faces but also their positions and it is apparent from the d
that as the system size is increased, the interface cause
the twist moves towards the center of the chain. Therefo
the exponenta50 for the interfacial magnetization is no
surprising.

One can say that the nontrivial exponent of21 obtained
for the total interfacial energy is a novel feature of the qua
tum model. On the other hand, if one looks at the scal
functions in Figs. 1–3, it is obvious that they are different f
LDE andDEc. The scaling functions forDEc andDm are,
however, similar. Apparently the scaling functiong(x) for
LDE has the following form:

g~x!;2x for x,0

50 for x.0

such thatLDE;(Gc2G)L which is the expected behavio
mentioned in Ref. 4.

The scaling behavior ofDEc andDE are different but the
quantitiesDEc andLDE have the same stiffness exponen
Hence, there is an additional dimensionL in the total energy
which may be related to the additional dimension whi
comes into play in quantum models.

That the interface method is quite powerful is aga
proved. We obtain the exact critical point for the transve
Ising chain and a phase diagram for the transverse ANN
model consistent with the previous studies. However, we
not venture to investigate the regimek.0.5 in the ANNNI
model fully because of the nontrivial nature of the transiti
to a possible floating phase. The phase boundary where
antiphase disappears is also not obtained fork,0.7 because
of the difficulty in imposing conflicting boundary conditions
Since in degenerate systems there can be a number of
to impose the FBC and the UBC, we tried several combi
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55 11 371APPLICATION OF THE INTERFACE APPROACH IN . . .
tions but faced the same difficulty. This is because of
very structure of the degenerate ground states as elabo
in Sec. II. It is true that the more interesting phase transiti
for k.0.5 could not be obtained here, but we showed t
estimating the boundary above which the antiphase vani
is a nontrivial task itself. In fact, most of the analytical a
numerical methods give an incomplete picture fork.0.5.
e
ted
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