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Transfer and decay of an exciton coupled to vibrations in a dimer
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Transfer and decay dynamics of an exciton coupled to a polarization vibration in a dimer is investigated in
a mixed quantum-classical picture with the exciton decay incorporated by a sink site. Using a separation of
time scales, it is possible to explain analytically the most important characteristics of the model. If the vibronic
subsystem is fast, these are the enhancement of nonlinear self-trapping due to the sink and the slowing down
of the exciton decay for large coupling or sink strength. Numerical results obtained recently for the discrete
self-trapping~DST! approximation to the model are quantitatively explained and dynamic effects beyond this
approximation are found. If the vibronic subsystem is slow, the behavior of the system follows closely the
predictions of the adiabatic approximation. In this regime, the exciton decay crucially depends on the initial
conditions of the vibronic subsystem. In the transition regime between the adiabatic and DST approximation,
complex dynamics is observed by numerical computation. We discuss the correspondence to the chaotic
behavior of the excitonic-vibronic coupled dimer without trap.@S0163-1829~97!06317-0#
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I. INTRODUCTION

The purpose of this paper is to study the interplay
tween a coherent transfer regime of an exciton and two p
cesses leading to the loss of the linear character of the e
ton transfer, namely trapping of the exciton at a sink s
with a prescribed sink rateG and the coupling to intramo
lecular polarization vibrations. A lot of work has been do
on exciton transfer theories during the last decades. Be
ning with the microscopic treatment by Haken and Reinek1

and Grover and Silbey2 a number of theories such as th
continuous time random walk~CTRW!,3 the Pauli master
equation~PME!,4 the generalized master equation~GME!,5

the stochastic Liouville equation~SLE!, and the Haken-
Strobl-Reineker~HSR! model ~see Ref. 6, and reference
therein! were developed and mainly directed to obtaini
equations which describe the coupled coherent and inco
ent motion of the excitation.

Trapping of quasiparticles due to a sink site constitutes
important phenomenon in many molecular systems. In p
tosynthesis, for instance, an exciton in a harvesting ante
transfers its energy to a reaction center, where it can
trapped. Electron transfer processes then follow. Pearls
and Zuber were the first who recognized that the con
quences of a sink on the energy transfer processes are d
ent in the coherent and incoherent regimes~see Ref. 7 and
references therein!. Čápek and Szo¨cs8 pointed out the neces
sity of a transformation of the memory functions in presen
of a sink. They also gave a prescription for a proper inc
sion of the sink into the HSR model. This found applicatio
e.g., in computer simulations of the excitation transfer
photosynthetic systems.9,10Recently, a form of purely coher
ent memory functions was derived and shown to have
550163-1829/97/55~17!/11308~12!/$10.00
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portant consequences for the excitation transfer.11 Memory
functions were also used to obtain characteristics entering
CTRW description including a sink.12 An interesting feature
of the exciton dynamics in the presence of a very strong s
is the inhibition of the transfer towards the sink site.9,10,13

This leads to anincreasingexciton life time with increasing
sink rate.

The coupling between electronic and vibronic degrees
freedom in molecular and condensed media is another b
mechanism influencing transfer properties of electronic ex
tations in these systems. The investigation of its con
quences started from the polaron problem in solid states~see,
e.g., Ref. 14, and references therein; for exciton-phonon
teraction see Ref. 15! and continued with the study of th
influence of the vibronic bath variables on the excitati
transfer properties in the framework of the generalized m
ter equation5 and stochastic Liouville equation approaches6

With the development of the theory of dynamical syste
it has become attractive to analyze the implications
electronic-vibronic couplings employing concepts and me
ods of this field. Using such a dynamic system approach
study the detailed picture of the time evolution of a sm
number of relevant variables of the system, which are
sumed to interact weakly with the environment. Recent
perimental developments in the field of ultrashort tim
resolved spectroscopy~see, e.g., Ref. 16! seem to make a
direct observation of this time evolution possible in the ne
future.

A remarkable feature of the simplest excitonic-vibron
coupled model—the dimer—is the possibility of self-tra
ping, i.e., unequal time averaged occupation probabilities
the two sites of the configuration. The easiest way to obt
this effect from a coupling to vibrational degrees of freedo
11 308 © 1997 The American Physical Society
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55 11 309TRANSFER AND DECAY OF AN EXCITON COUPLED TO . . .
leads to the two-site discrete self-trapping~DST!
equation17–19 which is a nonlinear but self-contained equ
tion of motion for the excitonic site occupation amplitude
More sophisticated approaches take the dynamics of the
brations explicitly into account by using a mixed quantu
classical description20,21 or by treating the coupled system
quantum mechanically.22 The effect of dissipation on self
trapping was also studied by various authors.23–25

The investigation of the exciton transfer on relative
small molecular aggregates such as dimers or triades i
much interest for clarifying the applicability of exciton tran
fer theories to experimental situations such as describe
Refs. 26 and 27. Moreover they may serve as a reason
first approximation in order to understand, at least qual
tively, some processes in very complicated systems suc
photosynthetic units with their antenna systems and reac
centers28 which can hardly be treated as a whole. Consi
for example the photosynthetic membrane of pur
bacteria.29 The reaction center is surrounded by ringlike co
structures LH1 of bacteriochlorophylles. Peripheral ring s
units LH2 which are placed around and inbetween the L
structures, help to facilitate the energy transfer from the
tenna to LH1 and then to the reaction center. Experime
investigation during the last years has shown28 that the exci-
ton transfer inside and also between the LH2 and LH1 ri
takes place within a time of the order of some tens of fe
toseconds and a few picoseconds, respectively. Hence
last step—the transfer of the exciton from the LH1 subun
to the reaction center, which takes a time of the order
some tens of picoseconds, is much slower and essent
determines the total time from the exciton creation until
destruction at the reaction center by a charge separation.
generally accepted that the exciton comes probably by
incoherent hop at a contact place from LH2 to LH1 and th
spreads very quickly over LH1 within a time of only sever
hundert femtoseconds. Therefore the interesting last ste
the scenario can be modeled as transfer inside a dimer.
monomer where the exciton is initially created represents
whole ring LH1, and the other monomer is a sink site cor
sponding to the reaction center. In some bacteria the v
large time needed for the energy transfer on this dimer
simple geometrical reasons such as a large distance from
LH1 ring to the reaction center. However, this does not se
to be a satisfactory explanation in all cases and therefore
interesting to study other possible mechanisms leading
very large exciton life time such as the above-mention
self-trapping due to electronic-vibronic coupling and t
slowing down of the transfer towards the sink for large tra
ping rates.

Although the influences of vibronic coupling and trappi
on transport properties have been investigated separate
great detail, the combination of both, which can be import
in the application of the transfer theory, has rarely been
dressed in the past. In a recent paper30 we have studied the
interplay between vibrational coupling and trapping due t
sink site for a dimer and a trimer in the framework of t
DST approximation. In the present paper we focus our in
est on the exciton dynamics in a molecular dimer but exp
itly include the coupling to vibrations using a mixe
quantum-classical description,20,21 which is justified when-
ever the quantum fluctuations in the vibronic subsystem
.
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negligible. The model we use will be specified and dev
oped further in Sec. II, where we also indicate the modifi
tions leading to the DST equation.

Section III is devoted to the derivation of various se
contained equations for the total occupation probabi
based on some separation between the different time sc
of the system. In particular, we will generalize the analysis
the fixed points for the excitonic-vibronic coupled dim
without sink21 to the present system and in this way obta
an overall description of the phase space which allows u
understand qualitatively the dynamics for various initial co
ditions. We shall also point out in Sec. III A what is inherite
in our more complex model from the DST approximatio
and which dynamic effects are beyond it. Since the mix
quantum-classical description we are using in this paper
be justified best for small oscillator frequencies, we p
much attention to this adiabatic regime, too. As we shall s
the assumption of slow vibrations is just the antipode of
DST case and therefore a qualitatively new behavior can
expected from it~Sec. III B!.

Using the results of Sec. III as well as numerical comp
tations we will discuss the time dependence of the total
cupation probability and the relative site occupation pro
abilities for some solutions with specified initial condition
in Sec. IV. A summary of our results can be found in Sec.

II. DESCRIPTION OF THE MODEL

A. The Hamiltonian

We consider the dynamics of an exciton moving on
molecular dimer. At each of the two monomers the exciton
allowed to interact with an intramolecular vibronic degree
freedom. Thus, the Hamiltonian of our model contains ex
tonic, vibronic, and interaction parts denoted byHexc,
Hvib , andH int , respectively

H5Hexc1Hvib1H int . ~1!

Hexc describes a two site model

Hexc5(
n

encn* cn1 (
nÞm

Vnmcn* cm ~2!

with n,m51,2.cn is the probability amplitude of the excito
to occupy thenth molecule andVnm the transfer matrix ele-
ment due to dipole-dipole interaction. In a standard two s
model, theen are real quantities and correspond to the lo
site energies of the exciton. Here, we allowe2 to contain a
negative imaginary part in order to describe the decay of
exciton on the sink site 2. Since we are not interested in
effect of a site energy difference on the exciton dynamics
the present context, we set

e150, e252 i
G

2
, ~3!

which is equivalent to the extended sink model for the ex
ton decay introduced in Ref. 8 on the density matrix lev
This model has been shown to solve the problem of a c
sistent description of exciton trapping at a sink meeting ba
physical requirements such as positive occupation proba
ties.
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The vibrational partHvib is taken as the sum of the ene
gies corresponding to intramolecular vibrations at each of
monomers for which we use the harmonic approximation

Hvib5(
n

1

2
~pn

21vn
2qn

2!. ~4!

qn , pn , andvn are the coordinate, the canonic conjuga
momentum and the frequency of the intramolecular vibrat
of thenth molecule, respectively.

The interaction Hamiltonian takes into account that
exciton energy depends on the molecular configuration of
monomers which is expressed by the coordinatesqn . Using
a first-order expansion inqn one has

H int5(
n

gnqncn* cn , ~5!

wheregn are some coupling constants. In order to restrict
number of free parameters as much as possible we will
sume that the dimer is symmetric except for the additio
sink term on site 2, i.e.,v15v25v, g15g25g, andV12
5V2152V.

In what follows we will use a mixed quantum-classic
description of the dynamics, i.e., we treat the vibronic d
grees of freedom in the classical approximation while reta
ing the quantum wave function for the excitonic two s
system. The approximation can be justified over a finite
terval in time which increases as the oscillator frequenc
and coupling constants decrease. When this time range
ceeds the lifetime of the exciton the mixed quantum-class
picture describes correctly the decay of the excitation.

Using units with\51 we obtain from Eqs.~1!–~5! the
equations of motion

id/dtc15gq1c12Vc2 , ~6!

id/dtc25S 2 i
G

2
1gq2D c22Vc1 , ~7!

d/dtqn5pn , ~8!

d/dtpn52v2qn2gucnu2. ~9!

We believe that the excitonic-vibronic coupled dimer as
troduced in this section is a very basic model and repres
a topic of interest in its own right. We will therefore no
restrict the discussion by fixing the parameter values us
the particular realization which we described in the Introd
tion. In fact the available experimental data also do not all
us to do so with sufficient accuracy which is due to t
complicated structure of the photosynthetic units and
rather crude approximation by a simple dimer. Instead
will try to discuss the properties of our model covering t
largest possible range of values for the relevant parame
which will be specified in the next subsection.

B. Reduced equations of motion

For a numerical investigation Eqs.~6!–~9! are well suited
and we have integrated them in order to obtain the res
that will be presented in Sec. IV. The analytical treatmen
Sec. III, however, requires us to reduce the number of v
e
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ables and free parameters as much as possible. Therefor
will now rewrite the equations of motion~6!–~9! using ap-
propriate dimensionless variables and parameters.

The excitonic subsystem can be described by a point
the Bloch sphere which is usually given in Cartesian coor
nates. Here we prefer to parametrize the Bloch sphere
spherical coordinatesR, u, andf. They can be defined in
terms of the density matrix of the two-site syste
rmn5cmcn* (n,m51,2)

R5r111r22,

R cosu5r222r11 ~0<u<p!, ~10!

eifR sinu52r12 ~2p,f<p!.

Due to the trapping of the exciton the radius of the Blo
sphereR(t) which is the total probability to find an excito
on either of the two sites is not constant but a monotonica
decreasing function of time withR(0)51.

Besides the total occupation probabilityR the difference
of the occupation of the two sites is of interest. It is det
mined by the angleu since we have

uc1u25
12cosu

2
R, uc2u25

11cosu

2
R. ~11!

The phasef has no direct physical interpretation. We no
thatf is not well defined at the pointsu50 andu5p. This
can be circumvented by directly considering the time dep
dence of the density matrix at these points and will not aff
the following.

When deriving the equations of motion for the new va
ables from ~6!–~9! one observes that only the differenc
q22q1 couples to the excitonic degrees of freedom. The
fore we can introduce a dimensionless difference coordin
and the conjugate momentum

Q5AV~q22q1!, P5
1

2AV
~p22p1! ~12!

and reduce the number of independent variables in this
by two. The reduced equations of motion for the remain
five variables are obtained after the introduction of a dim
sionless time

t52Vt ~13!

and dimensionless parameters

p5
g2

2Vv2 , r5
v

2V
, g5

G

4V
~14!

describing the strength of the electronic-vibronic couplin
the frequency ratio of the two interacting subsystems and
strength of the sink, respectively. We find

Ṙ52g~cosu11!R, ~15!

u̇5gsinu1sinf, ~16!

ḟ5cotucosf1A2prQ, ~17!
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55 11 311TRANSFER AND DECAY OF AN EXCITON COUPLED TO . . .
Q̇5P, ~18!

Ṗ52r 2Q2Ap/2rRcosu. ~19!

In these equations~•! denotesd/dt.

C. The DST approximation

One standard way to simplify the dynamics of exciton
vibronic coupled systems is to assume that the vibronic
grees of freedom instantaneously adapt to the state of
excitonic subsystem and always remain in the ground s
prescribed by it. Applied to Eqs.~6!–~9!, this assumption
results in the DST equations mentioned in the introductio

Within our effective dynamic model~15!–~19! the DST
approximation can be justified assuming a separation of t
scales. The time scale for the~free! transfer of the excitation
between the two sites of the dimer has been normalized
when the equations of motion were written using the dim
sionless timet Eq. ~13!. Another relevant characteristic tim
of our system is the period of the oscillator which is;1/r .
Now we assume that the vibronic degrees of freedom
much faster than the exciton, i.e.,r@1. In this case the os
cillator coordinate completes many cycles during a time
the order 1 which is relevant for the slow excitonic su
system. Consequently, dynamic self-averaging over the
oscillator coordinate occurs andQ in Eq. ~17! can be re-
placed by its time average. For the harmonic oscilla
(Q,P) this average is given for arbitrary amplitude by t
oscillator ground state which is determined by the state
the excitonic subsystem and which represents at the s
time the only fixed point of the oscillator dynamics, i.e
formally we can introduce the DST approximation by requ
ing quasistationarity in the vibronic variablesQ̇5 Ṗ50. Af-
ter substitution of the time average

QDST52
1

r
Ap

2
Rcosu ~20!

for Q, Eq. ~17! is replaced by

ḟ5cotu cosf2pRcosu. ~21!

Together with Eqs.~15! and ~16! this equation governs th
DST dynamics of the model.

An analytical justification for the averaging procedur
applied in this and the following sections can be given us
mathematical tools that were developed in the theory of n
linear differential equations~see, e.g., Ref. 32! and will not
be discussed here. Instead we confirm the resulting equa
~21! by the numerical simulations forr@1 presented at the
end of this paper.

The derivation of the DST approximation using fast osc
lator dynamics is questionable although it seems straight
ward within the mixed quantum-classical description
which this paper is confined. However, the assumpt
r@1 means that the mixed quantum-classical description
self loses its justification and should be replaced by a
quantum treatment. More consistent ways to obtain the D
limit are based on dissipation due to a quantum heat ba24

and therefore beyond the scope of our model.
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The DST equation is known to reproduce at least qual
tively some remarkable features which the full dynam
system21 displays for an arbitrary value ofr , e.g., the bifur-
cation in the phase space forp51,17 the resulting possibility
of self-trapped solutions for coupling strengths above t
value,18 and the possibility of dynamical chaos when an e
ternal perturbation is applied.19 We can therefore conside
the results obtained in Ref. 30 within the DST approximati
for a dimer with sink as a guiding line for the effects that c
be expected in the present more complete treatment.

III. QUASISTATIONARY DECAY MODES

A. Fixed points for quasistationary total occupation

Beside the free exciton transfer time and the oscilla
period there is a third relevant time scale which controls
decay of the excitation but is not necessarily given by
inverse sink rate 1/g as we shall see. It is the aim of th
present section to derive quasistationary solutions of
equations of motion~15!–~19! and the corresponding self
contained equation for the decay of the total occupat
probabilityR(t) under the assumption that that the excit
decay is much slower than the oscillator dynamics. The
posite case of an oscillator which is slower than the exc
tion decay will be treated in the next subsection.

In the following we discuss the fixed points of Eqs.~16!–
~19! with R(t) treated as a slowly varying parameter. A
cording to Eq.~15!, this is justified when either the sink rat
g is very small or the quasistationary state has a site oc
pation difference which is strongly biased towards the s
without sink cosu;21. The exact condition for the applica
bility of our approach will be given below. The equation
~18! and ~19! yield for a fixed pointP50 andQ5QDST,
i.e., the location of the fixed points is the same for the syst
with the full oscillator dynamics included and for the DS
equations. Equations~16! and ~17! allow for two different
pairs of fixed points on the Bloch sphere classified in w
follows as detrapped and self-trapped states. The stab
exponents for any of these points can be obtained from
linearization of the equations of motion~16!–~19! around the
fixed point which yields the characteristic equation

05~l21r 2!S @l1sinf cotu#@l2gcosu#1
cos2f

sin2u D
2r 2pRcosf sinu. ~22!

1. Detrapped states

For sufficiently small sink rateg<1 we obtain two fixed
points at

sinf52g, cosf56A12g2, ~23!

cosu50. ~24!

Because of Eq.~24! the occupation probabilities for the tw
sites are the same and we call the fixed pointsA6 detrapped
states. The pointA1 at cosf.0 can be considered as a ge
eralization of the bonding state in the system without s
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whereas the pointA2 at cosf,0 corresponds to the ant
bonding state. The stability exponents of these fixed po
are given by

l252
r 21cos2f

2
6AS r 22cos2f

2 D 21r 2pRcosf.

~25!

For A1 the argument of the square root is always posit
and the pair of stability exponents corresponding to the ne
tive sign in Eq. ~25! is purely imaginary. The other pai
consists of two imaginary or two real exponents with opp
site signs such that the fixed pointA1 is stable elliptic if
(pR)21g2,1 and unstable hyperbolic otherwise.

ForA2 the stability is determined by the argument of t
square root in Eq.~25!. If it is positive, the point is a stable
elliptic center and this is always the case in the adiab
regimer→0, in the opposite DST caser→` or for arbitrary
parameters at large times since thenR→0. Only for suffi-
ciently largep the argument of the square root may temp
rarily be negative. The stability exponents then acquire r
parts with opposite signs and the pointA2 renders unstable
hyperbolic.

For the DST caser@1 one pair of stability exponent
which is given byl56 ir corresponds to the fast oscilla
tions around the DST solution whereas the other pair of
ponents

l25cosf~pR2cosf! ~26!

describes the stability of the DST solution itself.
We note, that the positions of the two fixed pointsA6 do

not depend onR and are thus constant in time. For the fu
system withR time dependent they represent, therefore, s
cial time-dependent states in which the distribution of
excitation over the two sites is constant, just the total oc
pation decreases exponentially at a rateg

Ṙ52gR. ~27!

When these fixed points are stable, a state prepared in
vicinity will remain there and decay at a mean rateg with
some oscillations superimposed.

2. Self-trapped states

For (pR)21g2>1 there exist two other fixed pointsB6

with biased site occupation probabilities, i.e., self-trapp
states:

sinu5
1

A~pR!21g2
, cosu56A12sin2u, ~28!

sinf52gsinu, cosf5pRsinu. ~29!

The existence of these two fixed points corresponds exa
to the range of parameters for which the fixed pointA1 is
hyperbolic and for (pR)21g251 the pointsA1 and B6

merge into a single one. So we have established a gene
zation of the pitchfork bifurcation of the system witho
sink.21 The difference is that the bifurcation parameter
longer depends exclusively on the coupling strengthp.
Rather it contains along withp the strength of the sinkg and
ts
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the total occupation probabilityR which is a function of
time. If g,1 the fixed pointsB6 will disappear for large
times whenR→0 and we can speak of a dynamic bifurc
tion. On the other hand, wheng.1 the detrapped statesA do
not exist anymore and there is no bifurcation in the course
time.

Without sink the fixed pointsB6 are stable elliptic centers
and in their vicinity there exist solutions which remain se
trapped for all times. In the present case the stability ex
nents have to be determined from the quartic equation

05~r 21l2!~@l2gcosu#21p2R2!2~rpRsinu!2, ~30!

which does not allow for an easy solution. We shall s
below, that the fixed pointsB6 due to their time dependenc
do not represent quasistationary solutions unless the bifu
tion parameter sin22u5(pR)21g2 is far enough above the
bifurcation value 1. Therefore we simplify Eq.~30! under the
assumption sin2u!1 and drop the second term. Then, the
are two pairs of solutions for the stability exponents. One
them is purely imaginaryl56 ir and the other one contain
a real part as well:

l5gcosu6 ipR. ~31!

Again, for r→` the first pair describes the oscillation
around the DST solution and the other one the stability of
DST solution which can alternatively be obtained from
linearization of Eqs.~16! and ~21! without further approxi-
mations as

l5gcosu6 i ucosuupR. ~32!

Note that6 in Eq. ~28! stands for the two different fixed
points, whereas the6 in Eqs. ~31! and ~32! corresponds to
two different stability exponentsl of the same fixed point.

The character of the fixed pointsB6 is determined by the
real part ofl. For B1 with an occupation bias towards th
sink site (cosu.0) we have a repeller, whereas the po
B2 with a low occupation probability at the sink sit
(cosu,0) is a stable attractor.

It is less clear than for the detrapped states that the fi
pointsB6 which were obtained under the assumption o
constant total occupation have some interpretation for
full system since their location does depend onR(t). How-
ever, we will show now that at leastB2 can represent an
attractor and a quasistationary solution for the compl
equations of motion~15!–~19! when we are sufficiently far
away from its threshold of existence, i.e., when the bifur
tion parameter is sufficiently large

sin2u5
1

g21~pR!2
!1. ~33!

For this purpose we have to show that the change in
position ofB2 is much slower than the relaxation toward
this fixed point. The latter occurs on a time scale given
Eq. ~31! as 1/g, while the oscillations around the fixed poin
have a period 2p/r and will be averaged out provided th
time is small enough.

The velocity of the fixed point location can be estimat
after inserting Eq.~15! into Eqs.~28! and ~29!. We obtain
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uu̇u5g~pR!2
sin3u~11cosu!

ucosuu

;
g~pR!2

2
sin5u

,
g

2
sin3u,

uḟu5~gpR!2
sin3u~11cosu!

cosf

;
g2pR

2
sin4u

,
g

2
sin2u

and conclude that the position ofB2 always changes slowly
when sin2u!1 and in particular the relaxation towards th
attractor is much faster. If, moreover,g/2 sin2u!r the oscil-
lations around the fixed point average out in Eq.~15! and we
can consider$R(t), u@R(t)#, f@R(t)#% as an attractor for
the full system. This condition is automatically satisfi
when r.1 ~e.g., in the DST regime!, but in the adiabatic
regimer!1 the assumption of quasistationarity ofB2 may
not be valid or restricted to a short interval in time. This ca
is considered in the next subsection. Once the system is c
to the attractorB2 the excitation decay is approximate
governed by the equation

Ṙ52
g/2

~pR!21g2
R. ~34!

If, moreover, the sink rate is dominantpR,g we obtain
from Eq. ~34! the interesting effect that the decay ratede-
creasesfor increasing sink rateg. The reason is that the
location of B2 is strongly shifted to the site without sin
such that the probability to find the exciton on the sink s
becomes very small. This behavior has previously been s
ied without coupling to vibrations.9 When we have
pR/g→0, which is always the case fort→`, Eq. ~34! im-
plies an exponential decay of the exciton with the r
1/2g. From Eqs.~27! and ~34! we conclude that the fastes
quasistationary decay of the excitation is realized for sm
electronic-vibronic coupling and a sink rateg51.

Self-trapping on the site with sink is not immediately d
stroyed when the sink becomes effective. Though the s
B1 is a repeller, the solution can oscillate with slowly i
creasing amplitude around this fixed point provided thatg is
not too large. In this caseB1 can control the dynamics fo
some finite time which then leads to anenhancedexcitation
decay.

B. The adiabatic regime

In the previous subsection we considered quasistation
dynamics of the excitation under the assumption that
decay of the exciton represents the slowest process in
system. This assumption breaks down when the system
the adiabatic regimer!1. Then the decay is an essentia
e
se

d-

e

ll

te

ry
e
he
in

nonstationary process leading to the disappearance of the
citon before the oscillator has gone through a large num
of cycles.

Opposite to the derivation of the DST equation we c
now assume that the exciton completes many oscillations
the time scale of the oscillator. Again we want to exploit th
fact by averaging over the variables of the fast subsys
and replacing them by their mean value, but in contrast to
harmonic oscillator of the DST case, the equations of mot
for the excitonic variables have two fixed points for a giv
Q which are obtained by setting the left-hand side of E
~17! and ~16! to zero. This results in

sinf52gsinu, cosf52A2prQtanu ~35!

and combining these two equations we find

g2sin2u12pr2Q2tan2u51. ~36!

The latter equation determines the location of the fix
points which depends parametrically onQ. The stability ex-
ponents can be given in the form

l5gcosu6 iA2pruQ/cosuu. ~37!

Equation~36! is a biquadratic equation in cosu, i.e., the two
fixed points have opposite signs for cosu. Due to Eq.~37!
this means that one of them is a stable attractor, the other
a repeller. Instead of writing down the explicit solution
Eq. ~36!, which is quite a lengthy expression though eas
found, we would like to mention two limiting cases.

First we note, that asg→0 the two fixed points approac
the well known lower and upper adiabatic states of the s
tem without trap

cosu56
A2prQ

A112pr2Q2
, cosf571 ~38!

~see, e.g., Ref. 22 for the adiabatic potentials!. The second
important limiting case corresponds to a strong localizat
of the exciton on one of the two dimer sites (cosu→61).
Assumingg212p r2 Q2@1 the solution approaches

sinu5
1

Ag212pr2Q2
. ~39!

In particular, for a very large sink rateg the dependence on
Q disappears and we have

sinu5
1

g
!1, sinf521. ~40!

In order to be able to replace the time average for the e
tonic variables by the discussed fixed points we have to
sume that the time scale given by Eq.~37! for the relaxation
is sufficiently short, or that the oscillations around the fix
point do average out. Due to the nonlinear equations for
excitonic variables and in contrast to the derivation of t
DST equation we have, in this latter case, to assume tha
amplitude of the oscillations is small, i.e., the system has
be prepared close to one of the adiabatic states. If so, e
the adiabatic state with cosu,0, which is in fact a repeller,
can be considered quasistationary for some limited time.
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A self-contained equation for the decay of the total ex
tation probabilityR(t) can be derived under the assumpti
that the exciton is located close to the attractive quasistat
ary state. Then cosu may be replaced by the value prescrib
by the oscillator coordinateQ according to Eq.~36! and is
constant provided the oscillator dynamics is sufficiently sl
to be completely disregarded during the lifetime of the ex
ton or if the position of the fixed point according to Eq.~40!
does not depend on time due to a strong trap. Either c
leads to an exponential decay of the excitation.

IV. THE TIME EVOLUTION OF THE SYSTEM

A. Parameter regions and initial conditions

In this section we turn to the investigation of the tim
evolution of particular solutions starting from explicitl
specified initial conditions. According to the experimen
situation in photosynthetic units described in the Introd
tion, where the exciton is always created at the site with
sink, we set initially

c1~0!51, c2~0!50. ~41!

This localized initial condition can also be realized in co
pletely different experimental settings, e.g., when an exc
in a dimer is created using a femtosecond laser pulse with
appropriate duration and polarization.31 Moreover, we would
like to mention that the results of the previous section can
applied in the most straightforward way for the special c
~41!. The evolution for different initial conditions and th
associated optical emission due to the spontaneous dec
excitons described by the sinkless DST dimer was inve
gated, e.g., in Ref. 33, where in particular the influence
chaotic dynamics occurring in the stochastic layer due t
perturbation of the DST solution was considered.

The initial conditions for the vibronic degrees of freedo
which we have chosen are meant to take into account dif
ent physical possibilities to prepare the excitation and to p
vide enough variety to estimate the degree to which the
citonic variables depend on the details of the oscillator ini
state. The resulting solutions will be referred to in the f
lowing way.

~1! Bare exciton: The first initial state we consider corre
sponds to a sudden creation of the exciton on the sink
molecule when the vibrations are initially in an unrelax
stateqi(0)50, i.e., displaced from their ground states, a
pi(0)50. The total energy for this initial condition is 0.

~2! Polaron: The second possibility is to assume a slo
excitation such that initially the vibrational degrees of fre
dom are already relaxed to their new ground state with e
ton. This is the initial condition which would be implied b
the DST approximation: q1(0)52g/v2, q2(0)50,
pi(0)50. The total energy of the polaron is2g2/2v2, i.e.,
lower than the energy of the bare exciton.

~3! Polaron with additional vibrational energy@Polaron
(2) and Polaron (1)#: The different initial energies make
direct comparison between the bare exciton and the pola
difficult. Therefore we have taken into account a third po
sibility for the initial condition. Again we choose the con
figuration coordinate of the vibrations in the minimum of t
potential after the exciton has been created. We supply, h
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ever, an initial momentum such that the total energy is 0
for the bare exciton case. For this momentum we have
different possible directions, i.e., the polaron (6) is speci-
fied byq1(0)52g/v2, q250, p1(0)56g/v, p2(0)50.

We have performed a numerical integration of t
coupled system of Eqs.~6!–~9! for the different described
initial conditions. We display results for the total occupati
probabilityR(t) and the relative site occupation differenc
expressed by cosu(t) for various values of the oscillator fre
quency ranging from the high-frequency~DST! limit in Figs.
1–3 to the deeply adiabatic region in Fig. 8. We restrict
sink rate and the vibrational coupling to three representa
cases:~i! weak sinkg50.1/weak couplingp51 ~Fig. 1!; ~ii !
weak sinkg50.1/strong couplingp53 ~Figs. 2, 4, 6, and 8!;
~iii ! strong sinkg53/strong couplingp53 ~Figs. 3, 5, and
7!. For each set of parameters the results for the differ
initial conditions will be displayed in the same graph. Th
can be distinguished by the different line shapes annota
e.g., in Fig. 1~a!.

B. Time evolution in the DST approximation

Using the results of Sec. III A we can obtain a quite s
isfactory description of the time evolution in the DST a
proximation that agrees with our numerical findings repor
in Ref. 30. We have to distinguish three different cases w
respect to the parametersp andg

~i! Nearly linear regime g21p2,1. In this case through-
out the whole time evolution the only fixed points present
the stable elliptic centersA6 from Sec. III.A. The relative
site occupation difference cosu will therefore oscillate with a

FIG. 1. Time dependence of the total occupation~a! and of the
relative site occupation difference~b! for g50.1, p51, and
r510. Different oscillator initial conditions for the full dynamic
model and the DST dynamics can hardly be distinguished for
parameter set. They are shown in this and all the following figu
with the line types indicated in the upper part. In the bottom p
cosu51 corresponds to the sink site and cosu521 to the sinkless
site where the exciton is created. The lower/upper horizontal
shows the location of the fixed pointB2 at the time of the creation
of the exciton (R51) and after its complete decay (R50), respec-
tively.
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mean value cosu50. The decay of the total occupation pro
ability is then approximately given by@Eq. ~27!#

R~t!;e2gt, ~42!

and is therefore very much like the case of the linear dim
An illustration for the described behavior is provided

Fig. 1, which is withp51 andg50.1 at the fringe of region
~i!. Since the transition between the parameter region
smooth, we find in Fig. 1~a! a straight line indicating an
exponential decay with some oscillations superimposed.
mean decay rate obtained from the figure is in good co
spondence to Eq.~42! very close to 0.1 and the period of th
oscillations in Fig. 1~b! is very close to 2p. This is the value
for the free transfer of the excitation and corresponds to
asymptotic value for the stability exponent of the poin
A6. However, the solution is actually not in the vicinity o
one of these points. Rather it oscillates with a large am
tude and can therefore not be expected to be correctly
scribed by a linearization around a fixed point. For instan
the time dependence of the stability exponent~26! is not
reflected in the solution.

~ii ! Weak sink g,1 and strong coupling g21p2.1. In
this case there exists the attractive fixed pointB2 from Sec.
III A when the system starts its evolution atR(t50)51. As
a numerical example consider the DST curve of Fig. 2 wh
is the thick gray line. The system approaches the attra
after a timet;1/g and then decays on it according to E
~34!. This is in general a nonexponential decay which is v
much different from Eq.~42!. If we assume strong nonlin
earity p@1, Eq. ~34! can be approximated and results in

R~t!5A12
g

p2
t. ~43!

There will be oscillations around this mean behavior with
amplitude decreasing as the attractor is approached. The
quencyV of these oscillations is given by the imaginary pa

FIG. 2. Time dependence of the total occupation~a! and of the
relative site occupation difference~b! for g50.1, p53, and
r510.
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of the stability exponent in Eq.~30! and decreases approxi-
mately asV;pR for strong nonlinearity. Indeed, the oscil-
lations around the mean in Fig. 2~b! have a period which can
be seen to increase starting fromT;2.4 which is close to the
value 2.2 obtained from the imaginary part of Eq.~30!. Then
the oscillations die out att;30 thus confirming the attrac-
tive character of the fixed pointB2.

When the total occupation has decreased such t
g21(pR)2;1, the attractorB2 does not exist anymore and
the system will start oscillating with equal mean site occ
pation probabilities around one of the fixed pointsA6 as in
~i!. The timet0 for the crossover from the algebraic deca
~43! to an exponential behavior with decay rateg is approxi-
mately given by

t05
p221

g
. ~44!

~iii ! Strong sink g.1. Here the attractorB2 does exist
throughout the evolution of the system. If the nonlinearity
very large there might be initially a nonexponential behavi
as in~ii !, but this will turn into an exponential decay as soo
as the total occupation has decreased sufficiently
g@pR. Under the assumptionp@g which is, however, not
satisfied in the numerical example Fig. 3, the approxima
crossover time is obtained from Eq.~43! as

t05
p22g

g
. ~45!

In the asymptotic regime one has from Eq.~34!

R~t!;exp~2@g2Ag221#t!. ~46!

The DST solution represented by the thick gray line in Fig.
relaxes after a very short time to the attractorB2 whose
initial and final position is marked by dotted horizontal lines
Due to the largerg compared to Fig. 2 the initial oscillations

FIG. 3. Time dependence of the total occupation~a! and of the
relative site occupation difference@~b!—DST, bare exciton, and po-
laron ~0! only# for g53, p53, andr510.
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aroundB2 can hardly be observed. The crossover to cons
relative site occupation probabilities and exponential de
occurs att;20.

C. Deviations from the DST approximation at large
but finite oscillator frequency

The three different scenarios for the time evolution in t
DST approximation which were described in the previo
section remain valid for the full system with the oscillat
frequency not too low, since the fixed points of Sec. III
still represent quasistationary decay modes. Using the
merical results displayed in Fig. 1–5 we will demonstra
this, discussing at the same time deviations from the D
solutions.

FIG. 4. Time dependence of the total occupation~a! and of the
relative site occupation difference@~b!—DST, bare exciton, and po
laron ~0! only# for g50.1, p53, andr51.

FIG. 5. Time dependence of the total occupation~a! and of the
relative site occupation difference@~b!—DST, bare exciton, and po
laron ~0! only# for g53, p53, andr51.
nt
y

s
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The degree of deviations from the DST solution will d
pend on the value of the parameterr and on the initial con-
ditions for the oscillator. In particular for intermediate osc
lator frequency it can be expected that the DS
approximation describes the actual solution better the clo
to it the initial condition for the oscillator is chosen. Indee
the polaron~0! ~dashed thick gray line!, which is prepared in
a DST state, cannot be distinguished at all from the D
curve in the plots for high oscillator frequencyr510 ~Figs.
1–3! and follows it very closely in the plots for the interme
diate frequencyr51 ~Fig. 5!. For small nonlinearityp51
~Fig. 1! the same holds true for the other three solutio
which are prepared with higher energy than the DST solut
and in this case the initial conditions have no crucial infl
ence on the dynamics down to the intermediate oscilla
frequencyr51 ~not displayed!.

A systematic, though small deviation from the DST so
tion can be observed for stronger nonlinearity in the Figs
3, and 5. Here, a self-trapped state is approached by
polaron (6) and the bare exciton solution as described
the DST case, but besides the familiar slowly decaying
cillations we find also oscillations of higher frequency whi
do not disappear completely. This behavior was to be
pected from the stability analysis of the fixed pointB2 for
the complete system, where we found from Eq.~30! besides
the stability exponents of the DST solution a pairl56 ir
describing fast oscillations. However, the location of t
fixed point and the center of the oscillations in Figs. 2, 3, a
5 are not exactly the same. The full dynamic model tends
oscillate around a state which is even more localized t
predicted and consequently it decays slightly slower. Mo
over, the period of the fast oscillations is of the order
2p/r but does not quite agree with this value and is actua
close to half of it. We will come back to this point when w
discuss the adiabatic case in the next section.

Unlike in the figures discussed so far, a qualitative diffe
ence in the behavior of the three solutions prepared with t
energy 0 is observed forp53 and g50.1 when they are
compared to the low-energy DST and polaron~0! solutions.
In Fig. 4~b! beside the latter two the bare exciton is show
for which the oscillations around the initially existing sel
trapped stateB2 are so large that this state is hardly reco
nized at all. It disappears att;10 and thus, much earlie
than for the DST and polaron~0! case. The other two polaro
solutions which are not displayed resemble the bare exci
This behavior can be understood from the fact that the s
tem with g50.1 is very similar to the sinkless case whic
has been shown to be strongly chaotic forr51 andp above
the bifurcation value 1.21 Due to the chaos, the system e
plores the energetically accessible phase space very fas
this is reflected in the strong and irregular oscillations of
relative site occupation leading to a rapid exciton decay
behavior like that for the bare exciton, which compared
the low-energy DST and polaron~0! solutions is in a high-
energy state, can be expected for any state prepared init
with a vibrational excess energy. In particular, an opti
excitation of the dimer, which creates an electronic exc
tion on both sites with unrelaxed oscillator configuration
belongs to this class. For strong nonlinearity excitations
this kind are expected to leave the inital state very rapid
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D. Time evolution in the adiabatic case

The conclusion of Sec. III B was that there is an expon
tial decay once the system is close to the attractive adiab
state. However, there are two important limitations to t
conclusion.

First, the initial state of the exciton has to be close to o
of the adiabatic states. We consider the initially complet
localized state of the exciton cosu521, i.e., the initial oscil-
lator coordinate should correspond to a strongly localiz
adiabatic state. According to Eq.~40! this is the case if
g212pr2Q(0)2@1. For the bare excitonQ(0)50 this is
satisfied for large sink rateg and then the total occupatio
will decay close to the linear dimer and independent of
actual strengthp of the coupling. For the polaron we have

g212pr2Q~0!25g21p2@1 ~47!

and the exciton can be close to an adiabatic state even
small sink rate provided the coupling to the oscillator
strong enough. The total probability decays in this case

R~t!;expS 2
g/2

g21p2
t D ~48!

which is initially very close to what is predicted from th
quasistationary decay modeB2 ~34!. The largest possible
decay rate is according to Eq.~48! 1/4p and it is realized for
p5g.

The second condition for an exponential decay of the
cupation probability is that the oscillator dynamics is ac
ally sufficiently slow to be completely disregarded during t
lifetime of the exciton. According to Eq.~48! this means

r!
g/2

g21p2
, ~49!

but the restriction of the exciton to one of the adiabatic sta
prescribed by the oscillator is justified wheneverr!1, and
this can be a much weaker condition. So if in the adiaba
regime the condition~49! is not satisfied, no self-containe
equation for the decay of the exciton is available.

This is the situation in Fig. 6. The parameterr50.1 is
sufficiently small for the application of the adiabatic appro
mation. Consequently, in part~b! of the figure the polaron
~–! solution can be seen to follow the evolution of one of t
adiabatic states, namely the energetically lower state
tained from the solution of Eq.~36!. Initially, some decaying
oscillations around the adiabatic state can be observed w
are in good agreement with the stability exponents~37!.
When the adiabatic state enters the region cosu.0 it be-
comes a repeller and one observes increasing oscillat
around it until the variableQ has completed one full perio
at t;80 and the relaxation to the attractor starts again.

The same behavior can be observed for the other
polaronic solutions. The excitation decays rapidly as soon
the exciton is driven by the oscillator to the sink site. The
fore in this case the lifetime of the excitation is basica
determined by the frequency of the oscillator and its init
conditions. Since the polaron~–! has an initial momentum
which is directed towards increasing polarization, the exci
remains for a long initial period localized on the site witho
sink. This period is shorter for the polaron~1! which has a
-
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momentum towards decreasing polarization and con
quently the polaron~–! has a longer lifetime. The polaron~0!
has no momentum att50 and decays initially at a rate in
between the other two polarons. Due to the lacking vib
tional energy the oscillator coordinate for the polaron~0!
changes its position only very slowly such that the polar
~0! is the longest living solution.

Comparing in Fig. 6~a! the polaron~0! to the DST exciton
we find a good agreement up to the crossover time for
DST solution. Then the DST exciton can be seen to de
faster than the polaron~0!. The reason is that the initially
localized state of the exciton has for the two solutions d
ferent sources. For the DST solution it results from se
trapping on the attractive fixed pointB2 which keeps the
exciton localized as long as it is far from its threshold
existence. Once this threshold is reached, the exciton
comes delocalized and decays rapidly. In contrast, the in
localization of the polaron~0! is not due to self-trapping but
simply a consequence of the fact that the system was
pared in a DST state which it leaves only very slowly as
follows the oscillator position. This interpretation is furth
confirmed by the observation that the initial agreement
tween the DST and the polaron~0! solution ceases to exist a
soon as the parameters do not support a self-trapped sta
the DST case. The polaronic solutions are unaffected by
and still display an initial tendency towards localization
the sinkless site~not displayed!. Among them the polaron
~1! again decays fastest while the polaron~–! is the longest
living solution.

The situation is similar in Fig. 7. The DST exciton relax
due to the strong sink quite fast to the final location of t
fixed pointB2 and then decays without further oscillation
while the polaron~0!, due to its inertness, remains for
longer time close to its initial position and decays con
quently slower than the DST solution. All the polarons
well as the bare exciton keep oscillating around a mean va

FIG. 6. Time dependence of the total occupation for all init
conditions~a! and of the relative site occupation difference for t
polaron~–! ~b!. With the sparse bold dots the time dependence
the two adiabatic states is indicated. The parameters areg50.1,
p53, andr50.1.
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which is slightly below the location of the fixed pointB2. In
fact Fig. 7~b! looks very much like the plots forg53 and
p53 at high and intermediate frequency Fig. 3~b! and Fig.
5~b!, just the deviation from the location of the pointB2 is
larger and the oscillations are slower. But now we can p
vide a more satisfactory explanation for this behavior us
the adiabatic states. The polarons as well as the bare ex
follow after a very short relaxation the adiabatic state
cosu,0. As an example for this behavior the adiabatic st
for the polaron~–! is displayed in Fig. 5~b! with sparse fat
dots. The location of the adiabatic state can be seen from
~39! to depend on the squared amplitude of the oscilla
coordinate. The localization is weakest forQ50, when the
adiabatic state coincides with the pointB2. The quadratic
rather than linear dependence onQ is the reason why the
adiabatic oscillations in the relative site occupation obser
in Fig. 5~b! have a mean value belowB2 and a frequency
which is exactly half that of the oscillator.

In contrast to all the other solutions, the bare exciton
mains completely unaffected by the nonlinearity in the ad
batic case. Here, the oscillator is prepared atQ50 and there
it stays during the whole lifetime of the excitation provide
the adiabatic parameterr is sufficiently small. Consequently
the vibronic coupling has no effect on the exciton and
oscillates independent onp around cosu50 for g,1 ~Fig. 6!
or relaxes to cosu5A121/g2 otherwise~Fig. 8!. When the
coupling parameterp is small, the bare exciton is well ap
proximated by the DST solution. In the adiabatic regim
r!1 the bare exciton shows among the different conside
solutions at least initially the fastest decay.

Finally we would like to discuss an example in which t
condition ~49! for an exponential decay of the polaron sol
tions is satisfied~Fig. 8!. In this case the polarons do no
differ very much from each other and clearly follow an e
ponential law at a rate very close to that predicted by
~48!. Since we chosep5g for the figure, the lifetime of the

FIG. 7. Time dependence of the total occupation~a! and of the
relative site occupation difference~b! for g53, p53, andr50.1.
In the bottom plot for the polaron~–! solution beside the relative
site occupation the time dependence of the lower adiabatic sta
displayed with sparse bold dots.
-
g
ton
t
e

q.
r

d

-
-

t

d

.

polarons is exactly twice that of the bare exciton. The lit
remaining difference between the polaronic solutions refle
the residual change in the oscillator position during the li
time of the excitation which enhances the localization of
exciton for the polaron~–! and diminishes it for the polaron
~1! while there is no such effect for the polaron~0!.

V. CONCLUSIONS

We have studied the decay of an exciton coupled to
larization vibrations on a dimer. Quasistationary dec
modes were identified which allow us to explain the ba
properties of the system. Using numerical simulations
deviations from the predicted behavior were investigated

The model exhibits a rich variety of dynamical regim
depending on the parameters and the initial conditions.
found effects such as the time-dependent bifurcation and
associated crossover in the decay regime which are g
inely due to the interplay between the sink and the vib
tional coupling and cannot be explained by considering o
of these mechanisms alone.

The tendency to form an initially localized exciton sta
on the site without sink is enhanced by both, vibration
coupling, and trapping due to the sink. For high and int
mediate oscillator frequency the system changes its beha
profoundly when the threshold for an initially self-trappe
state is reached, while there is no such effect in the adiab
regime.

The relation between the DST approximation and a mix
quantum-classical description, taking the oscillator dynam
explicitly into account, was clarified. For high oscillator fre
quency the influence of the oscillator initial condition
weak and the two models behave very much the same. In
adiabatic regime the bare exciton is close to the DST so
tion provided that the coupling is weak.

Throughout our numerical investigations the exciton w
supposed to be initially localized at the site without sin
This corresponds to the experimental situation, e.g., in p
tosynthetic units. Of course there might exist applications
the model for which the exciton is created in a different sta
but it is beyond the scope of the present paper to discus
possible cases in detail. In general we can say that the fi
point analysis of Sec. III remains valid and can again be u
to discuss the time evolution of the system. However, wh
doing so one must check whether the assumption of a q
sistationary decay is really justified. For example in the c
of a symmetric creation of the exciton over the two dim
sites and forg21p2.1, the condition~33! is not satisfied

is

FIG. 8. Time dependence of the total occupation forg53,
p53, andr50.001.
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initially and hence the results of Sec. III A are not applicab
in the most interesting initial stage of the dynamics. On
other hand, the asymptotic quasistationary decay regime
large time is independent on the initial condition and ag
determined by the stable fixed pointB2 for g.1 or byA6

for g,1. Moreover, all our results for the adiabatic regim
can be easily extended to include different initial conditio
of the exciton, since in this case the initial condition of t
oscillator is the decisive one for the decay dynamics.
note that this latter observation means that a careful des
tion of the exciton creation process is indispensable fo
satisfactory description of the system. Finally we would li
to mention that other interesting possibilities to extend
-
a

in

t

d

g-

rs
,

.
,

y

e
or
n

s

e
ip-
a

e

model discussed in this paper are the inclusion of dissipa
and/or quantum fluctuations into the description of the os
lator.
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