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Transfer and decay of an exciton coupled to vibrations in a dimer
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Transfer and decay dynamics of an exciton coupled to a polarization vibration in a dimer is investigated in
a mixed quantum-classical picture with the exciton decay incorporated by a sink site. Using a separation of
time scales, it is possible to explain analytically the most important characteristics of the model. If the vibronic
subsystem is fast, these are the enhancement of nonlinear self-trapping due to the sink and the slowing down
of the exciton decay for large coupling or sink strength. Numerical results obtained recently for the discrete
self-trapping(DST) approximation to the model are quantitatively explained and dynamic effects beyond this
approximation are found. If the vibronic subsystem is slow, the behavior of the system follows closely the
predictions of the adiabatic approximation. In this regime, the exciton decay crucially depends on the initial
conditions of the vibronic subsystem. In the transition regime between the adiabatic and DST approximation,
complex dynamics is observed by numerical computation. We discuss the correspondence to the chaotic
behavior of the excitonic-vibronic coupled dimer without trep0163-18207)06317-(

[. INTRODUCTION portant consequences for the excitation transfévlemory
functions were also used to obtain characteristics entering the
The purpose of this paper is to study the interplay be-CTRW description including a sink An interesting feature
tween a coherent transfer regime of an exciton and two proef the exciton dynamics in the presence of a very strong sink
cesses leading to the loss of the linear character of the exdis the inhibition of the transfer towards the sink Sit@:1®
ton transfer, namely trapping of the exciton at a sink siteThis leads to arincreasingexciton life time with increasing
with a prescribed sink rat€ and the coupling to intramo- sink rate.
lecular polarization vibrations. A lot of work has been done The coupling between electronic and vibronic degrees of
on exciton transfer theories during the last decades. Begirfreedom in molecular and condensed media is another basic
ning with the microscopic treatment by Haken and Reintkermechanism influencing transfer properties of electronic exci-
and Grover and Silbéya number of theories such as the tations in these systems. The investigation of its conse-
continuous time random walkCTRW),2 the Pauli master quences started from the polaron problem in solid st@ies,
equation(PME),* the generalized master equatiBME),®  e.g., Ref. 14, and references therein; for exciton-phonon in-
the stochastic Liouville equatiofSLE), and the Haken- teraction see Ref. A5and continued with the study of the
Strobl-Reineker(HSR) model (see Ref. 6, and references influence of the vibronic bath variables on the excitation
therein were developed and mainly directed to obtainingtransfer properties in the framework of the generalized mas-
equations which describe the coupled coherent and incoheter equatioh and stochastic Liouville equation approachies.
ent motion of the excitation. With the development of the theory of dynamical systems
Trapping of quasiparticles due to a sink site constitutes ait has become attractive to analyze the implications of
important phenomenon in many molecular systems. In phoelectronic-vibronic couplings employing concepts and meth-
tosynthesis, for instance, an exciton in a harvesting antennads of this field. Using such a dynamic system approach we
transfers its energy to a reaction center, where it can bstudy the detailed picture of the time evolution of a small
trapped. Electron transfer processes then follow. Pearlsteinumber of relevant variables of the system, which are as-
and Zuber were the first who recognized that the consesumed to interact weakly with the environment. Recent ex-
guences of a sink on the energy transfer processes are diffggerimental developments in the field of ultrashort time-
ent in the coherent and incoherent reginiese Ref. 7 and resolved spectroscopisee, e.g., Ref. 16seem to make a
references thereinCapek and Sze€ pointed out the neces- direct observation of this time evolution possible in the near
sity of a transformation of the memory functions in presencduture.
of a sink. They also gave a prescription for a proper inclu- A remarkable feature of the simplest excitonic-vibronic
sion of the sink into the HSR model. This found application,coupled model—the dimer—is the possibility of self-trap-
e.g., in computer simulations of the excitation transfer inping, i.e., unequal time averaged occupation probabilities on
photosynthetic systenis® Recently, a form of purely coher- the two sites of the configuration. The easiest way to obtain
ent memory functions was derived and shown to have imthis effect from a coupling to vibrational degrees of freedom
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leads to the two-site discrete self-trappingDST) negligible. The model we use will be specified and devel-
equatiod’*° which is a nonlinear but self-contained equa- oped further in Sec. I, where we also indicate the modifica-
tion of motion for the excitonic site occupation amplitudes.tions leading to the DST equation.
More sophisticated approaches take the dynamics of the vi- Section Il is devoted to the derivation of various self-
brations explicitly into account by using a mixed quantum-contained equations for the total occupation probability
classical descriptidi?! or by treating the coupled system based on some separation between the different time scales
guantum mechanicalf? The effect of dissipation on self- of thg system. In particular, we wi_II ggnerallize the analy_sis of
trapping was also studied by various authfore> th_e f|xed_ pollnts for the excnonlc—wbrom.c cqupled dlmgr
The investigation of the exciton transfer on relatively Without sink" to the present system and in this way obtain

small molecular aggregates such as dimers or triades is &N overall descri_ptipn of the phase_space Wh.iCh a.‘"(.)\.NS us to
much interest for clarifying the applicability of exciton trans- understand qualitatively the dynamics for various initial con-

fer theories to experimental situations such as described iﬂ't'ons' We shall also point out in Sec. IIl A what is inherited

Refs. 26 and 27. Moreover they may serve as a reasonabfg Our more complex model from the DST approximation

first approximation in order to understand, at least qualitaf”lnd which dyqam|c eﬁept; are beyond .'t' Slncg the mixed
antum-classical description we are using in this paper can

tively, some processes in very complicated systems such ustified best f I illator f .
photosynthetic units with their antenna systems and reactio € Justiied best Tor smajl osciliator frequencies, we pay

centeré® which can hardly be treated as a whole. Considefuch attention to this adiabatic regime, too. As we shall see,
the assumption of slow vibrations is just the antipode of the

for example the photosynthetic membrane of purple o :
bacterig?® The reaction center is surrounded by ringlike coreDST case and Fherefore a qualitatively new behavior can be
expected from i{Sec. Il B).

structures LH1 of bacteriochlorophylles. Peripheral ring sub- . :
phy b 9 Using the results of Sec. Ill as well as numerical compu-

units LH2 which are placed around and inbetween the LH]t i il di the time d d f the total
structures, help to facilitate the energy transfer from the an-ations we will discuss the imé deépencdence or the total oc-
upation probability and the relative site occupation prob-

tenna to LH1 and then to the reaction center. Experimenta(f -~ . . it o
investigation during the last years has shdtthat the exci- gb|l|t|es for some solutions with specified initial cpndmons
ton transfer inside and also between the LH2 and LH1 ringén Sec. IV. A summary of our results can be found in Sec. V.
takes place within a time of the order of some tens of fem-

toseconds and a few picoseconds, respectively. Hence the Il. DESCRIPTION OF THE MODEL

last step—the transfer of the exciton from the LH1 subunits
to the reaction center, which takes a time of the order of ) ] ) _
some tens of picoseconds, is much slower and essentially e consider the dynamics of an exciton moving on a
determines the total time from the exciton creation until its™olecular dimer. At each of the two monomers the exciton is
destruction at the reaction center by a charge separation. It fllowed to interact with an intramolecular vibronic degree of
generally accepted that the exciton comes probably by aﬁegdom_. Thqs, the Ha}m|lt0n|§1n of our model contains exci-
incoherent hop at a contact place from LH2 to LH1 and therfonic, vibronic, and Interaction parts denoted by,
spreads very quickly over LH1 within a time of only several Hvib. @ndHiq;, respectively

hundert femtoseconds. Therefore the interesting last step in
the scenario can be modeled as transfer inside a dimer. The H=Hexct Hyip+ Hine. @
monomer where the exciton is initially created represents they _ describes a two site model

whole ring LH1, and the other monomer is a sink site corre-

sponding to the reaction center. In some bacteria the very

large time needed for the energy transfer on this dimer has Hexe= 20 €nCiCnt 2 VomCiCrm 2
simple geometrical reasons such as a large distance from the 3 nem

LH1 ring to the reaction center. However, this does not seenyith n,m=1,2.c, is the probability amplitude of the exciton
to be a satisfactory explanation in all cases and therefore it iy occupy thenth molecule and/,,, the transfer matrix ele-
interesting to study other possible mechanisms leading to ment due to dipole-dipole interaction. In a standard two site
very large exciton life time such as the above-mentionednodel, thee, are real quantities and correspond to the local
self-trapping due to electronic-vibronic coupling and thesijte energies of the exciton. Here, we allewto contain a
slowing down of the transfer towards the sink for large trap-negative imaginary part in order to describe the decay of the
ping rates. exciton on the sink site 2. Since we are not interested in the

Although the influences of vibronic coupling and trapping effect of a site energy difference on the exciton dynamics in
on transport properties have been investigated separately {fe present context, we set

great detail, the combination of both, which can be important

in the application of the transfer theory, has rarely been ad- T

dressed in the past. In a recent pdPeve have studied the =0, e=-i3, 3
interplay between vibrational coupling and trapping due to a

sink site for a dimer and a trimer in the framework of the which is equivalent to the extended sink model for the exci-
DST approximation. In the present paper we focus our interton decay introduced in Ref. 8 on the density matrix level.
est on the exciton dynamics in a molecular dimer but explic-This model has been shown to solve the problem of a con-
itly include the coupling to vibrations using a mixed sistent description of exciton trapping at a sink meeting basic
quantum-classical descriptiéh?* which is justified when- physical requirements such as positive occupation probabili-
ever the quantum fluctuations in the vibronic subsystem arées.

A. The Hamiltonian
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The vibrational parH,;, is taken as the sum of the ener- ables and free parameters as much as possible. Therefore we
gies corresponding to intramolecular vibrations at each of thavill now rewrite the equations of motio(6)—(9) using ap-
monomers for which we use the harmonic approximation propriate dimensionless variables and parameters.

The excitonic subsystem can be described by a point on

1 . . . . . i

H.. :2 (P2 + 0P 4) the Bloch sphere which is usually given in Cartesian coordi
vib 2 P @nGn)- nates. Here we prefer to parametrize the Bloch sphere in

_ _ . spherical coordinateR, 6, and ¢. They can be defined in
dn, Pn, and w, are the coordinate, the canonic conjugateerms of the density matrix of the two-site system
momentum and the frequency of the intramolecular vibration

) =cmCh (N,m=1,2
of the nth molecule, respectively. Pmn=CnCn ( )

The interaction Hamiltonian takes into account that the
exciton energy depends on the molecular configuration of the
monomers which is expressed by the coordinatesUsing R cO=prp—py; (0<O<m), (10)
a first-order expansion ig,, one has

R=p11tp2,

e’R sing=2p;, (—m<o=<m).

— *
Hint_; YnUnCn Cn s G Due to the trapping of the exciton the radius of the Bloch

sphereR(t) which is the total probability to find an exciton

wherey, are some coupling constants. In order to restrict theyn either of the two sites is not constant but a monotonically
number of free parameters as much as possible we will agtecreasing function of time witR(0)=1.

sume that the dimer is symmetric except for the additional Besjdes the total occupation probabillythe difference
sink term on site 2, i.e.w;=w;=w, y1=72=7, andVi,  of the occupation of the two sites is of interest. It is deter-

=V =-V. _ _ ~mined by the angl@ since we have
In what follows we will use a mixed quantum-classical
description of the dynamics, i.e., we treat the vibronic de- , l—cosd , l+cosd
grees of freedom in the classical approximation while retain- |cq|“= > R [ > R (13)

ing the quantum wave function for the excitonic two site

system. The approximation can be justified over a finite in-The phasep has no direct physical interpretation. We note
terval in time which increases as the oscillator frequencieshat ¢ is not well defined at the poiné=0 and#= . This
and coupling constants decrease. When this time range egan be circumvented by directly considering the time depen-
ceeds the lifetime of the exciton the mixed quantum-classicalence of the density matrix at these points and will not affect

picture describes correctly the decay of the excitation. the following.
Using units withA=1 we obtain from Eqs(1)—(5) the When deriving the equations of motion for the new vari-
equations of motion ables from(6)—(9) one observes that only the difference
] d,— (s couples to the excitonic degrees of freedom. There-
id/dtc; = yqic1— Ve, (6)  fore we can introduce a dimensionless difference coordinate
r and the conjugate momentum
id/dtcz=(—i—+ yqz)cz—Vcl, (7)
2 1
Q=\V(d—qy), P= sy PPy @2
d/dtd,=py, (®) 2V
5 5 and reduce the number of independent variables in this way
d/dtp,=—w*d,— v/cq| % (9 py two. The reduced equations of motion for the remaining

We believe that the excitonic-vibronic coupled dimer as in-five variables are obtained after the introduction of a dimen-

troduced in this section is a very basic model and represenfionless time

a topic of interest in its own right. We will therefore not

restrict the discussion by fixing the parameter values using 7=2V1 (13

the particular realization which we described in the Introduc-and dimensionless parameters

tion. In fact the available experimental data also do not allow

us to do so with sufficient accuracy which is due to the Y w r

complicated structure of the photosynthetic units and the pzm, r:N, QZW (14)
rather crude approximation by a simple dimer. Instead we

will try to discuss the properties of our model covering thedescribing the strength of the electronic-vibronic coupling,
largest possible range of values for the relevant parameterthe frequency ratio of the two interacting subsystems and the

which will be specified in the next subsection. strength of the sink, respectively. We find
B. Reduced equations of motion R=— g(co¥+1)R, (15
For a numerical investigation Eg&%)—(9) are well suited . ] )
and we have integrated them in order to obtain the results 6=gsind+sing, (16)

that will be presented in Sec. IV. The analytical treatment of )
Sec. lll, however, requires us to reduce the number of vari- ¢ = cotfcosp + \/ﬁrQ, (17)
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O=P, (18) The DST equation is known to reproduce at least qualita-
tively rﬁslome remarkable features which the full dynamic
: systeni™ displays for an arbitrary value of, e.g., the bifur-
P=—r?Q- Jp/2rRcosy. (19 cation in the phase space for=1.%7 the resulting possibility
In these equationé ) denotesd/d . of self-trapped solutions for coupling strengths above this
value®® and the possibility of dynamical chaos when an ex-
ternal perturbation is applied. We can therefore consider
the results obtained in Ref. 30 within the DST approximation
One standard way to simplify the dynamics of excitonic-for a dimer with sink as a guiding line for the effects that can
vibronic coupled systems is to assume that the vibronic debe expected in the present more complete treatment.
grees of freedom instantaneously adapt to the state of the
excitonic subsystem and always remain in the ground state
prescribed by it. Applied to Eq96)—(9), this assumption
results in the DST equations mentioned in the introduction. A. Fixed points for quasistationary total occupation
Within our effective dynamic modegl15)—(19) the DST

C. The DST approximation

IIl. QUASISTATIONARY DECAY MODES

Beside the free exciton transfer time and the oscillator

approximation can be justified assuming a separation (.)f tlmﬁeriod there is a third relevant time scale which controls the
scales. The time scale for tliigee) transfer of the excitation ecay of the excitation but is not necessarily given by the

bitwefhn the tWt(.) S'testf trtm_e dimer hasttbeen r.loer?“Zd?d to i(iuverse sink rate & as we shall see. It is the aim of the
when he equations of motion were writtén using the Irnen'present section to derive quasistationary solutions of the

sionless timer Eq.(13). A.nother relevaqt charact_erls_t|c time equations of motior(15—(19) and the corresponding self-
of our system is the period of the oscillator which-sLir. contained equation for the decay of the total occupation
; : . 5robabi|ity R(7) under the assumption that that the exciton
”.‘“Ch faster t_han the exciton, i.€2-1. In this case the. 0s- decay is much slower than the oscillator dynamics. The op-
cillator coordma_te c_ompletes many cycles durln_g a_t|me Ofposite case of an oscillator which is slower than the excita-
the order 1 which is relevant_ for the slow_excnonlc SUb'tion decay will be treated in the next subsection.

system. Consequently, dynamic self-averaging over the fast |, 1o following we discuss the fixed points of Eq6)—

oscillator coordinate occurs ard in Eq. (17) can be re- (19) ith R(7) treated as a slowly varying parameter. Ac-
placed by its time average. For the harmonic oscillator

(Q.P) this average is given for arbitrary amplitude by the cording to Eq.(15), this is justified when either the sink rate

il d hich is d ied by th is very small or the quasistationary state has a site occu-
oscillator ground state which is determined by the state of4iinn difference which is strongly biased towards the site
the excitonic subsystem and which represents at the sa

. h v fixed poi £ th i q ) . thout sink cog~—1. The exact condition for the applica-
time the only fixed point of the oscillator dynamics, I.e., bility of our approach will be given below. The equations
formally we can introduce the DST approximation by requw—(lg) and (19) yield for a fixed pointP=0 and Q=Qpsr,

ing quasistationarity in the vibronic variabl€s=P=0. Af-  je the location of the fixed points is the same for the system
ter substitution of the time average with the full oscillator dynamics included and for the DST
equations. Equationg€l6) and (17) allow for two different
1\ﬁ pairs of fixed points on the Bloch sphere classified in what
Qost=— 1\ 5Rcodd (20 follows as detrapped and self-trapped states. The stability

_ exponents for any of these points can be obtained from a
for Q, Eq.(17) is replaced by linearization of the equations of moti¢h6)—(19) around the
fixed point which yields the characteristic equation

¢=cotf cosp— pRcosp. (22)
Together with Eqs(15) and (16) this equation governs the 0=(N2+r?)| [N +sing cotﬁ][)\—gcosﬁ]Jr—C(.Jsqu
DST dynamics of the model. sirf
An analytical justification for the averaging procedures —r2pRcosp sing. 22)

applied in this and the following sections can be given using
mathematical tools that were developed in the theory of non-
linear differential equationssee, e.g., Ref. 32and will not
be discussed here. Instead we confirm the resulting equation For sufficiently small sink ratg<1 we obtain two fixed
(21 by the numerical simulations far=>1 presented at the points at
end of this paper.

The derivation of the DST approximation using fast oscil-
lator dynamics is questionable although it seems straightfor-
ward within the mixed quantum-classical description to
which this paper is confined. However, the assumption cosy=0. (24)
r>1 means that the mixed quantum-classical description it-
self loses its justification and should be replaced by a fulBecause of Eq(24) the occupation probabilities for the two
quantum treatment. More consistent ways to obtain the DSTEites are the same and we call the fixed poiitsdetrapped
limit are based on dissipation due to a quantum heat’bath states. The poirA™ at cogh>0 can be considered as a gen-
and therefore beyond the scope of our model. eralization of the bonding state in the system without sink

1. Detrapped states

sing=—g, cosp==*+1—¢g? (23
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whereas the poinA~ at cosp<<O corresponds to the anti- the total occupation probabilitR which is a function of
bonding state. The stability exponents of these fixed pointéme. If g<1 the fixed pointsB~ will disappear for large

are given by times whenR—0 and we can speak of a dynamic bifurca-
tion. On the other hand, wheg>1 the detrapped statésdo
r’+cog¢ r’—cos¢)\? not exist anymore and there is no bifurcation in the course of
RZZ—Ti (T +r2pRcos¢. time.
(25) Without sink the fixed point8 ™= are stable elliptic centers

N . _and in their vicinity there exist solutions which remain self-
For A™ the argument of the square root is always positivetrrapped for all times. In the present case the stability expo-

and the pair of stability exponents corresponding to the neganents have to be determined from the quartic equation
tive sign in Eq.(25) is purely imaginary. The other pair

consists of two imaginary or two real exponents with oppo- ~ 0=(r?+\2)([\ —gcos#]>+ p?R?) — (rpRsind)?, (30)
site signs such that the fixed poiat™ is stable elliptic if ) ]
(pR)2+g?<1 and unstable hyperbolic otherwise. which does not allow for an easy solution. We shall see

For A~ the stability is determined by the argument of the Pelow, that the fixed point8~ due to their time dependence
square root in Eq(25). If it is positive, the point is a stable dp not represent quaS|stat|onary. solutions unless the bifurca-
elliptic center and this is always the case in the adiabatidion parameter sif¢=(pR’+¢’ is far enough above the
regimer —0, in the opposite DST case- or for arbitrary blfurcathn va[ue 1. Therefore we simplify E(BO) under the
parameters at large times since tHer-0. Only for suffi- assumption sit¢<1 and drop the second term. Then, there
ciently largep the argument of the square root may tempo-are tV\_/o pairs o_f soll_Jtlons for _the stability exponents. On_e of
rarily be negative. The stability exponents then acquire realnem is purely imaginark = *ir and the other one contains
parts with opposite signs and the poiat renders unstable @ real part as well:
hyperbolic. )

For the DST case>1 one pair of stability exponents A=gcosf=ipR. (3D
which is given byh=*ir corresponds to the fast oscilla-
tions around the DST solution whereas the other pair of ex
ponents

Again, for r—oo the first pair describes the oscillations

around the DST solution and the other one the stability of the

DST solution which can alternatively be obtained from a
\2=cosph(pR— cosp) (26) Iinegrization of Egs(16) and (21) without further approxi-

mations as
describes the stability of the DST solution itself.
We note, that the positions of the two fixed poiAtS do A=gcos9+i|cos|pR. (32

not depend orR and are thus constant in time. For the full

system withR time dependent they represent, therefore, spelNote that= in Eq. (28) stands for the two different fixed

cial time-dependent states in which the distribution of thePoints, whereas the- in Egs.(31) and(32) corresponds to

excitation over the two sites is constant, just the total occutwo different stability exponents of the same fixed point.

pation decreases exponentia”y at a rgte The character of the fixed pOin§ is determined by the
real part of\. For B with an occupation bias towards the
R=-gR. (27 sink site (cog>0) we have a repeller, whereas the point
, . , B~ with a low occupation probability at the sink site
When these fixed points are stable, a state prepared in the{'éosﬂ<0) is a stable attractor.
vicinity will remain there and decay at a mean ratavith It is less clear than for the detrapped states that the fixed
some oscillations superimposed. points B* which were obtained under the assumption of a

constant total occupation have some interpretation for the
full system since their location does dependRyr). How-

For (pR)2+g?=1 there exist two other fixed poin®~ ever, we will show now that at leag™ can represent an
with biased site occupation probabilities, i.e., self-trappedattractor and a quasistationary solution for the complete

2. Self-trapped states

states: equations of motior{15)—(19) when we are sufficiently far
away from its threshold of existence, i.e., when the bifurca-
1 tion parameter is sufficiently large
sing= ————, co¥Y==*+1-sirfg, (29
V(pPR)*+g?
siff= ———><1. 33
sing=—gsingd, cosp=pRsing. (29 g°+(pR)? (33

The existence of these two fixed points corresponds exactlifor this purpose we have to show that the change in the
to the range of parameters for which the fixed poiitis  position of B~ is much slower than the relaxation towards
hyperbolic and for pR)?>+g?=1 the pointsA™ and B~ this fixed point. The latter occurs on a time scale given by
merge into a single one. So we have established a generakq. (31) as 14, while the oscillations around the fixed point
zation of the pitchfork bifurcation of the system without have a period Z/r and will be averaged out provided this
sink2! The difference is that the bifurcation parameter notime is small enough.

longer depends exclusively on the coupling strength The velocity of the fixed point location can be estimated
Rather it contains along with the strength of the sing and  after inserting Eq(15) into Eqgs.(28) and (29). We obtain
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. sSin*é(1+ cos) nonstationary process leading to the disappearance of the ex-
|6=g(pR)? [cosd] citon before the oscillator has gone through a large number
of cycles.
g(pR)? Opposite to the derivation of the DST equation we can
-~ Sir g now assume that the exciton completes many oscillations on

the time scale of the oscillator. Again we want to exploit this
g. fact by averaging over the variables of the fast subsystem
< ES'”Be’ and replacing them by their mean value, but in contrast to the
harmonic oscillator of the DST case, the equations of motion

Sif6(1+ cosh) for the excitonic variables have two fixed points for a given
|¢|:(ng)2— Q which are obtained by setting the left-hand side of Eqgs.
cosp (17) and(16) to zero. This results in
2
9 ZpRsin“a sing=—gsind, cosp=—2prQtand (35)
and combining these two equations we find
g .
<3sin’e g%sir 0+ 2pr2Qitarto=1. (36)

The latter equation determines the location of the fixed
points which depends parametrically @n The stability ex-
ponents can be given in the form

and conclude that the position Bf* always changes slowly
when sifd<1 and in particular the relaxation towards the
attractor is much faster. If, moreovey/2 sirfé<r the oscil-
lations around the fixed point average out in Ep) and we _ w

can conside{R(7), 0[R(7)], ¢[R(7)]} as an attractor for A=geoss=iV2pr|Qicos]. S

the full system. This condition is automatically satisfied Equation(36) is a biquadratic equation in cési.e., the two
whenr>1 (e.g., in the DST regime but in the adiabatic fixed points have opposite signs for doPue to Eq.(37)
regimer <1 the assumption of quasistationarity ®f may  this means that one of them is a stable attractor, the other one
not be valid or restricted to a short interval in time. This casea repeller. Instead of writing down the explicit solution of

is considered in the next subsection. Once the system is clogg. (36), which is quite a lengthy expression though easily
to the attractorB™ the excitation decay is approximately found, we would like to mention two limiting cases.

governed by the equation First we note, that ag— 0 the two fixed points approach
the well known lower and upper adiabatic states of the sys-
. g/2 3 tem without trap
R (pPR)*+g° R (34 J2p
prQ _
If, moreover, the sink rate is dominaptR<g we obtain cosﬁ:tm, cosp=+1 (38)

from Eq. (34) the interesting effect that the decay rate-

creasesfor increasing sink ratey. The reason is that the (see, e.g., Ref. 22 for the adiabatic potenjialhe second
location of B~ is strongly shifted to the site without sink important limiting case corresponds to a strong localization
such that the probability to find the exciton on the sink siteof the exciton on one of the two dimer sites (6es*1).
becomes very small. This behavior has previously been studissumingg?+2p r? Q?>1 the solution approaches

ied without coupling to vibration3. When we have

pR/g—0, which is always the case for—o, Eq. (34) im- ) 1
plies an exponential decay of the exciton with the rate sing= m (39

1/2g. From Egs.(27) and (34) we conclude that the fastest
quasistationary decay of the excitation is realized for smalln particular, for a very large sink ratthe dependence on
electronic-vibronic coupling and a sink rage=1. Q disappears and we have

Self-trapping on the site with sink is not immediately de-
stroyed when the sink becomes effective. Though the state
B* is a repeller, the solution can oscillate with slowly in-
creasing amplitude around this fixed point provided tha
not too large. In this casB* can control the dynamics for [N order to be able to replace the time average for the exci-

some finite time which then leads to anhancecexcitation ~ tonic variables by the discussed fixed points we have to as-
decay. sume that the time scale given by E§7) for the relaxation

is sufficiently short, or that the oscillations around the fixed
point do average out. Due to the nonlinear equations for the
excitonic variables and in contrast to the derivation of the
In the previous subsection we considered quasistationafpST equation we have, in this latter case, to assume that the
dynamics of the excitation under the assumption that themplitude of the oscillations is small, i.e., the system has to
decay of the exciton represents the slowest process in tHee prepared close to one of the adiabatic states. If so, even
system. This assumption breaks down when the system is ithhe adiabatic state with c6s:0, which is in fact a repeller,
the adiabatic regime<1. Then the decay is an essentially can be considered quasistationary for some limited time.

1
sing= 6<1, sing=—1. (40

B. The adiabatic regime
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A self-contained equation for the decay of the total exci- (4
tation probabilityR(7) can be derived under the assumption
that the exciton is located close to the attractive quasistation-
ary state. Then cgésmay be replaced by the value prescribed
by the oscillator coordinat&® according to Eq(36) and is
constant provided the oscillator dynamics is sufficiently slow
to be completely disregarded during the lifetime of the exci-
ton or if the position of the fixed point according to E40)
does not depend on time due to a strong trap. Either case

DST meme
Polaron (Q) w--
Bare Exciton —
Polaron (+) -
Polaron (-) -

R(T)

70 80 90 100

leads to an exponential decay of the excitation. (b) ﬂ ” ﬁ ﬂ ' ﬂ ﬂ
IV. THE TIME EVOLUTION OF THE SYSTEM S ]
>
A. Parameter regions and initial conditions § 2T 1
In this section we turn to the investigation of the time -0.6 v U V U U U U U U
evolution of particular solutions starting from explicitly 1 . NV Vv X ]
specified initial conditions. According to the experimental 0 10 20 30 40 50 60 70 80 90 100

situation in photosynthetic units described in the Introduc-
tion, where the exciton is always created at the site without

sink, we set initially FIG. 1. Time dependence of the total occupatianand of the

relative site occupation differencé) for g=0.1, p=1, and
r=10. Different oscillator initial conditions for the full dynamic
model and the DST dynamics can hardly be distinguished for this

This | lized initial diti Iso b lized i parameter set. They are shown in this and all the following figures
IS localized Iniial condition can also be realized in Com-y i, the jine types indicated in the upper part. In the bottom plot,

P'ete'y diff_erent experimental settings, €.g., when an eXCitoQoa‘):l corresponds to the sink site and ées-1 to the sinkless
in a dimer is created using a femtosecond laser pulse with thge \yhere the exciton is created. The lower/upper horizontal line

appropriate duration and polarizatiahMorQover, we would  shows the location of the fixed poiit at the time of the creation
like to mention that the results of the previous section can bgg the exciton R=1) and after its complete decaR€ 0), respec-

applied in the most straightforward way for the special casgjvely.
(41). The evolution for different initial conditions and the

associated optical emission due to the spontaneous decay @fer, an initial momentum such that the total energy is O as
excitons described by the sinkless DST dimer was inVGStifor the bare exciton case. For this momentum we have two
gated, e.g., in Ref. 33, where in particular the influence Ofjifferent possible directions, i.e., the polarort ) is speci-
chaotic dynamics occurring in the stochastic layer due to gjed by g,(0)= — y/w?, 4,=0, p;(0)=* y/w, p,(0)=0.
perturbation of the DST solution was considered. We have performed a numerical integration of the
The initial conditions for the vibronic degrees of freedom COUpIEd system of qus)_(g) for the different described
which we have chosen are meant to take into account diffefitial conditions. We display results for the total occupation
ent physical possibilities to prepare the excitation and to propropability R(7) and the relative site occupation difference
vide enough variety to estimate the degree to which the eXaxpressed by ca7) for various values of the oscillator fre-
citonic variables depend on the details of the oscillator |n|t|alquency ranging from the high-frequen@ST) limit in Figs.
lowing way. _ o ) sink rate and the vibrational coupling to three representative
(1) Bare exciton The first initial state we consider corre- casesl(i) weak sinkg=0.1/weak coupling=1 (Fig. 1); (ii)
sponds to a sudden creation of the exciton on the sinklesgeak sinkg=0.1/strong coupling =3 (Figs. 2, 4, 6, and B
molecule when the vibrations are initially in an unrelaxed(m) strong sinkg = 3/strong couplingp=3 (Figs. 3, 5, and
stateq;(0)=0, i.e., displaced from their ground states, and7) ko each set of parameters the results for the different
pi(0)=0. The total energy for this initial condition is 0. jnjtial conditions will be displayed in the same graph. They

(2) Polaront The second possibility is to assume a slowcan pe distinguished by the different line shapes annotated,
excitation such that initially the vibrational degrees of free-e_g_, in Fig. 1a).

dom are already relaxed to their new ground state with exci-
ton. This is the initial condition which would be implied by
the DST approximation: q;(0)=—vy/w?, g,(0)=0,
pi(0)=0. The total energy of the polaron isy?/20?, i.e., Using the results of Sec. Ill A we can obtain a quite sat-
lower than the energy of the bare exciton. isfactory description of the time evolution in the DST ap-
(3) Polaron with additional vibrational energjPolaron  proximation that agrees with our numerical findings reported
(—) and Polaron (+)]: The different initial energies make a in Ref. 30. We have to distinguish three different cases with
direct comparison between the bare exciton and the polarorespect to the parametegpsandg
difficult. Therefore we have taken into account a third pos- (i) Nearly linear regime g+ p?<1. In this case through-
sibility for the initial condition. Again we choose the con- out the whole time evolution the only fixed points present are
figuration coordinate of the vibrations in the minimum of the the stable elliptic center&™ from Sec. lll.A. The relative
potential after the exciton has been created. We supply, howsite occupation difference césvill therefore oscillate with a

c1(0)=1, c,(0)=0. 41

B. Time evolution in the DST approximation
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FIG. 3. Time dependence of the total occupatianand of the
relative site occupation differen¢éb)—DST, bare exciton, and po-
laron (0) only] for g=3, p=3, andr =10.

FIG. 2. Time dependence of the total occupatianand of the
relative site occupation differencéb) for g=0.1, p=3, and
r=10.

of the stability exponent in Eq30) and decreases approxi-

mately as()~ pR for strong nonlinearity. Indeed, the oscil-

lations around the mean in Fig( have a period which can

R(7)~e 97 42) be seen to increase starting frdm- 2.4 which is close to the
' value 2.2 obtained from the imaginary part of E80). Then

and is therefore very much like the case of the linear dimerthe oscillations die out at~30 thus confirming the attrac-
An illustration for the described behavior is provided by tive character of the fixed poirg™.

Fig. 1, which is withp=1 andg=0.1 at the fringe of region When the total occupation has dec_reased such that

(i). Since the transition between the parameter regions i§°+(PR)*~1, the attractoB™ does not exist anymore and

smooth, we find in Fig. @) a straight line indicating an the system will start oscillating with equal mean site occu-

exponential decay with some oscillations superimposed. Thgation probabilities around one of the fixed poiAsS as in

mean decay rate obtained from the figure is in good correli). The timer, for the crossover from the algebraic decay

spondence to Eq42) very close to 0.1 and the period of the (43) to an exponential behavior with decay ratés approxi-

oscillations in Fig. 1b) is very close to 2. This is the value mately given by

for the free transfer of the excitation and corresponds to the

asymptotic value for the stability exponent of the points _Pz—l

A=. However, the solution is actually not in the vicinity of 7o~ g

one of these points. Rather it oscillates with a large ampli-

tude and can therefore not be expected to be correctly de- (jii) Strong sink g~1. Here the attractoB~ does exist

scribed by a linearization around a fixed point. For instancethroughout the evolution of the system. If the nonlinearity is

the time dependence of the stability expon€®®) is not  very large there might be initially a nonexponential behavior

reflected in the solution. as in(ii), but this will turn into an exponential decay as soon
(i) Weak sink g<1 and strong coupling &+p?>1.In  as the total occupation has decreased sufficiently for

this case there exists the attractive fixed p@ntfrom Sec. g>pR. Under the assumptiop>g which is, however, not

Il A when the system starts its evolutionR{7=0)=1. As  satisfied in the numerical example Fig. 3, the approximate

a numerical example consider the DST curve of Fig. 2 whichcrossover time is obtained from E@3) as

is the thick gray line. The system approaches the attractor

after a timer~1/g and then decays on it according to Eq. p’—g

(34). This is in general a nonexponential decay which is very To= : (45)

much different from Eq(42). If we assume strong nonlin- g

earity p>1, Eq.(34) can be approximated and results in  |n the asymptotic regime one has from Hg4)

R(T):W ll_p%T_ (43) R(T)NGXF(—[Q— Vg _1]7')- (46)

The DST solution represented by the thick gray line in Fig. 3
There will be oscillations around this mean behavior with anrelaxes after a very short time to the attrac®r whose
amplitude decreasing as the attractor is approached. The fratitial and final position is marked by dotted horizontal lines.
guencyQ of these oscillations is given by the imaginary part Due to the largeg compared to Fig. 2 the initial oscillations

mean value cas=0. The decay of the total occupation prob-
ability is then approximately given biyEq. (27)]

(44)
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The degree of deviations from the DST solution will de-
pend on the value of the parameteand on the initial con-
ditions for the oscillator. In particular for intermediate oscil-
lator frequency it can be expected that the DST
approximation describes the actual solution better the closer
to it the initial condition for the oscillator is chosen. Indeed,
the polaron(0) (dashed thick gray linewhich is prepared in
a DST state, cannot be distinguished at all from the DST
curve in the plots for high oscillator frequency 10 (Figs.
1-3) and follows it very closely in the plots for the interme-
diate frequency =1 (Fig. 5. For small nonlinearityp=1
(Fig. 1) the same holds true for the other three solutions
which are prepared with higher energy than the DST solution
and in this case the initial conditions have no crucial influ-
ence on the dynamics down to the intermediate oscillator
frequencyr =1 (not displayed

A systematic, though small deviation from the DST solu-
tion can be observed for stronger nonlinearity in the Figs. 2,
3, and 5. Here, a self-trapped state is approached by the
polaron () and the bare exciton solution as described for
the DST case, but besides the familiar slowly decaying os-
cillations we find also oscillations of higher frequency which

aroundB~ can hardly be observed. The crossover to constarff® Not disappear completely. This behavior was to be ex-
relative site occupation probabilities and exponential decapected from the stability analysis of the fixed poit for
occurs atr~ 20. the complete system, where we found from E2{) besides
the stability exponents of the DST solution a pak *ir
describing fast oscillations. However, the location of the
fixed point and the center of the oscillations in Figs. 2, 3, and
) ) . o 5 are not exactly the same. The full dynamic model tends to
The three different scenarios for the time evolution in thegscillate around a state which is even more localized than
DST approximation which were described in the previouspredicted and consequently it decays slightly slower. More-
section remain valid for the full system with the oscillator gyer, the period of the fast oscillations is of the order of
frequency not too low, since the fixed points of Sec. Ill A 27/r but does not quite agree with this value and is actually
still represent quasistationary decay modes. Using the Nigjose to half of it. We will come back to this point when we
mencal l’eSU|tS dISplayed n F|g 1-5 we W|” demonstratediscuss the adiabatic case in the next Section_
this, discussing at the same time deviations from the DST ynlike in the figures discussed so far, a qualitative differ-
solutions. ence in the behavior of the three solutions prepared with total
energy O is observed fgqp=3 andg=0.1 when they are
@) I compared to the low-energy DST and polaf@i solutions.
psT —— In Fig. 4(b) beside the latter two the bare exciton is shown

Polaron (0} =-=-

Bare Exciton — for which the oscillations around the initially existing self-
Polaron ({(+) - _ . _
Polaron (=) = | trapped stat~ are so large that this state is hardly recog-
nized at all. It disappears at~10 and thus, much earlier

than for the DST and polard) case. The other two polaron

solutions which are not displayed resemble the bare exciton.

0.01 — L — This behavior can be understood from the fact that the sys-

0 10 20 30 40 50 60 70 80 90 100 . . . . .

T tem with g=0.1 is very similar to the sinkless case which

(b) -0.-94 T — has been shown to be strongly chaoticiferl andp above

the bifurcation value #! Due to the chaos, the system ex-

-0.96 : plores the energetically accessible phase space very fast and

{ ] this is reflected in the strong and irregular oscillations of the

-0.98 U v | relative site occupation leading to a rapid exciton decay. A

behavior like that for the bare exciton, which compared to

L the low-energy DST and polardi®) solutions is in a high-

0 10 20 30 20 50 60 70 80 90 100 energy state, can be expected for any state prepared initially

B with a vibrational excess energy. In particular, an optical

excitation of the dimer, which creates an electronic excita-

FIG. 5. Time dependence of the total occupatianand of the ~ tion on both sites with unrelaxed oscillator configurations,

relative site occupation differen§é)—DST, bare exciton, and po- belongs to this class. For strong nonlinearity excitations of
laron (0) only] for g=3, p=3, andr=1. this kind are expected to leave the inital state very rapidly.

FIG. 4. Time dependence of the total occupatignand of the
relative site occupation differen¢éo)—DST, bare exciton, and po-
laron (0) only] for g=0.1,p=3, andr=1.

C. Deviations from the DST approximation at large
but finite oscillator frequency

R(T)
(=]
-

cos WT)




55 TRANSFER AND DECAY OF AN EXCITON COUPLED TO ... 11 317

D. Time evolution in the adiabatic case

The conclusion of Sec. Il B was that there is an exponen-
tial decay once the system is close to the attractive adiabatic
state. However, there are two important limitations to this
conclusion.

First, the initial state of the exciton has to be close to one
of the adiabatic states. We consider the initially completely
localized state of the exciton cés —1, i.e., the initial oscil-
lator coordinate should correspond to a strongly localized
adiabatic state. According to E@40) this is the case if (b

~
[

0.8
g2+2pr?Q(0)?>1. For the bare excitoi®(0)=0 this is 0.6 |
satisfied for large sink ratg and then the total occupation - 8‘21 i
will decay close to the linear dimer and independent of the =
actual strengtip of the coupling. For the polaron we have 8 gz [
g?+2pr2Q(0)2=g?+p?>1 (47) o8 |
-1 HA 1
and the exciton can be close to an adiabatic state even for o 10 20 30

small sink rate provided the coupling to the oscillator is

strong enough. The total probability decays in this case as
g/2
R(7)~exp — 2 2" (48)  polaron(-) (b). With the sparse bold dots the time dependence of
grp the two adiabatic states is indicated. The parameterg&ar@.1,

which is initially very close to what is predicted from the P=3, andr=0.1.
guasistationary decay mod&~ (34). The largest possible
decay rate is according to E@8) 1/4p and it is realized for mMomentum towards decreasing polarization and conse-
p=g. quently the polarori—) has a longer lifetime. The polard)

The second condition for an exponential decay of the ochas no momentum at=0 and decays initially at a rate in
cupation probability is that the oscillator dynamics is actu-between the other two polarons. Due to the lacking vibra-
ally sufficiently slow to be completely disregarded during thetional energy the oscillator coordinate for the polar@

FIG. 6. Time dependence of the total occupation for all initial
conditions(a) and of the relative site occupation difference for the

lifetime of the exciton. According to Eq48) this means changes its position only very slowly such that the polaron
(0) is the longest living solution.
g/2 Comparing in Fig. @) the polaron0) to the DST exciton
r< W (49 we find a good agreement up to the crossover time for the

DST solution. Then the DST exciton can be seen to decay
but the restriction of the exciton to one of the adiabatic stategaster than the polarof0). The reason is that the initially
prescribed by the oscillator is justified whenevetl, and localized state of the exciton has for the two solutions dif-
this can be a much weaker condition. So if in the adiabatiderent sources. For the DST solution it results from self-
regime the conditior{49) is not satisfied, no self-contained trapping on the attractive fixed poifd~ which keeps the
equation for the decay of the exciton is available. exciton localized as long as it is far from its threshold of

This is the situation in Fig. 6. The parameter0.1 is  existence. Once this threshold is reached, the exciton be-
sufficiently small for the application of the adiabatic approxi- comes delocalized and decays rapidly. In contrast, the initial
mation. Consequently, in patb) of the figure the polaron localization of the polaroi0) is not due to self-trapping but
(-) solution can be seen to follow the evolution of one of thesimply a consequence of the fact that the system was pre-
adiabatic states, namely the energetically lower state obpared in a DST state which it leaves only very slowly as it
tained from the solution of Ed36). Initially, some decaying follows the oscillator position. This interpretation is further
oscillations around the adiabatic state can be observed whiaonfirmed by the observation that the initial agreement be-
are in good agreement with the stability expone(83). tween the DST and the polarg®) solution ceases to exist as
When the adiabatic state enters the regionfeds it be-  soon as the parameters do not support a self-trapped state for
comes a repeller and one observes increasing oscillatiorike DST case. The polaronic solutions are unaffected by this
around it until the variabl€) has completed one full period and still display an initial tendency towards localization on
at 7~80 and the relaxation to the attractor starts again.  the sinkless siténot displayegl Among them the polaron

The same behavior can be observed for the other twé+) again decays fastest while the polare) is the longest
polaronic solutions. The excitation decays rapidly as soon akving solution.
the exciton is driven by the oscillator to the sink site. There- The situation is similar in Fig. 7. The DST exciton relaxes
fore in this case the lifetime of the excitation is basically due to the strong sink quite fast to the final location of the
determined by the frequency of the oscillator and its initialfixed pointB~ and then decays without further oscillations,
conditions. Since the polarof+) has an initial momentum while the polaron(0), due to its inertness, remains for a
which is directed towards increasing polarization, the excitodonger time close to its initial position and decays conse-
remains for a long initial period localized on the site without quently slower than the DST solution. All the polarons as
sink. This period is shorter for the polar¢r) which has a  well as the bare exciton keep oscillating around a mean value



11 318 HOLGER SCHANZ, IVAN BARV]K, AND BERND ESSER 55

T

DS e

polaron (Q) s

Bare Exciton —
Polaron {(+) -—-

Polaron {-) ===

Polaron {0) =
Bare Exciton —
Polaron (+) -
Polaron (-) ==

R(T)
o
-

R(T)

0.01 . ) . .
0 10 20 30 40 50 60 70 80 90 100 70 80 90 100
> A
(b) -0.94 :
FIG. 8. Time dependence of the total occupation ¢or 3,
e 0% p=3, andr=0.001.
=1
S -0.98 b g 1 polarons is exactly twice that of the bare exciton. The little
| remaining difference between the polaronic solutions reflects
a e the residual change in the oscillator position during the life-
0 10 20 30 40 50 60 70 80 90 100 time of the excitation which enhances the localization of the

exciton for the polarorf—) and diminishes it for the polaron

(+) while there is no such effect for the polar@).
FIG. 7. Time dependence of the total occupatignand of the

relative site occupation differendb) for g=3, p=3, andr=0.1.
In the bottom plot for the polarof-) solution beside the relative
site occupation the time dependence of the lower adiabatic state is We have studied the decay of an exciton coupled to po-
displayed with sparse bold dots. larization vibrations on a dimer. Quasistationary decay

o ) i ) modes were identified which allow us to explain the basic
which is slightly below the location of the fixed poiBf . In - properties of the system. Using numerical simulations the
fact Fig. 1b) looks very much like the plots fog=3 and  deviations from the predicted behavior were investigated.
p=23 at high and intermediate frequency FigbBand Fig. The model exhibits a rich variety of dynamical regimes
5(b), just the deviation from the location of the poit is  depending on the parameters and the initial conditions. We
larger and the oscillations are slower. But now we can profound effects such as the time-dependent bifurcation and the
vide a more Satisfactory eXplanation for this behavior Usin%ssociated crossover in the decay regime which are genu_
the adiabatic states. The polarons as well as the bare excitq»,ﬁ@y due to the interplay between the sink and the vibra-
follow after a very short relaxation the adiabatic state attionaj Coup"ng and cannot be exp]ained by Considering one
co$9<0. As an example for this behavior the adiabatic stateyf these mechanisms alone.

for the polaron(-) is displayed in Fig. &) with sparse fat The tendency to form an initially localized exciton state
dots. The location of the adiabatic state can be seen from Egn the site without sink is enhanced by both, vibrational
(39) to depend on the squared amplitude of the oscillatotoupling, and trapping due to the sink. For high and inter-
coordinate. The localization is weakest Qr=0, when the  mediate oscillator frequency the system changes its behavior
adiabatic state coincides with the poft. The quadratic profoundly when the threshold for an initially self-trapped
rather than linear dependence @Qnis the reason why the state is reached, while there is no such effect in the adiabatic
adiabatic oscillations in the relative site occupation observegegime.
in Fig. 5b) have a mean value belo®~ and a frequency The relation between the DST approximation and a mixed
which is exactly half that of the oscillator. quantum-classical description, taking the oscillator dynamics
In contrast to all the other solutions, the bare exciton reexplicitly into account, was clarified. For high oscillator fre-
mains completely unaffected by the nonlinearity in the adiaquency the influence of the oscillator initial condition is
batic case. Here, the oscillator is prepare@at0 and there weak and the two models behave very much the same. In the
it stays during the whole lifetime of the excitation provided adiabatic regime the bare exciton is close to the DST solu-
the adiabatic parameteris sufficiently small. Consequently, tion provided that the coupling is weak.
the vibronic coupling has no effect on the exciton and it Throughout our numerical investigations the exciton was
oscillates independent gnaround co8=0 forg<1 (Fig. 6)  supposed to be initially localized at the site without sink.
or relaxes to cag=1—1/g? otherwise(Fig. 8. When the  This corresponds to the experimental situation, e.g., in pho-
coupling parametep is small, the bare exciton is well ap- tosynthetic units. Of course there might exist applications of
proximated by the DST solution. In the adiabatic regimethe model for which the exciton is created in a different state,
r<1 the bare exciton shows among the different consideretiut it is beyond the scope of the present paper to discuss all
solutions at least initially the fastest decay. possible cases in detail. In general we can say that the fixed
Finally we would like to discuss an example in which the point analysis of Sec. Il remains valid and can again be used
condition (49) for an exponential decay of the polaron solu- to discuss the time evolution of the system. However, when
tions is satisfiedFig. 8). In this case the polarons do not doing so one must check whether the assumption of a qua-
differ very much from each other and clearly follow an ex- sistationary decay is really justified. For example in the case
ponential law at a rate very close to that predicted by Eqof a symmetric creation of the exciton over the two dimer
(48). Since we chosp=g for the figure, the lifetime of the sites and forg?+p?>1, the condition(33) is not satisfied

V. CONCLUSIONS



55 TRANSFER AND DECAY OF AN

initially and hence the results of Sec. Il A are not applicable
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model discussed in this paper are the inclusion of dissipation

in the most interesting initial stage of the dynamics. On theand/or quantum fluctuations into the description of the oscil-
other hand, the asymptotic quasistationary decay regime fdator.
large time is independent on the initial condition and again

determined by the stable fixed poiBt for g>1 or by A*

for g<1. Moreover, all our results for the adiabatic regime
can be easily extended to include different initial conditions
of the exciton, since in this case the initial condition of the
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