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Energy oscillations of scattered waves for disorder-induced crossing resonance
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We investigate the energy dynamics of compounded states, which arise in a system of waves linearly
coupled via a random interaction. Randomness of the interaction causes energy flow from the coherent wave to
scattered states of the second patrticipating wave. If disorder-induced crossing resonance occurs, we discovered
that there is also a current from scattered waves to the coherent component. The interference of these flows
causes the distinctive temporal oscillation of the energy of scattered WS@%63-18207)02417-X

[. INTRODUCTION dom interaction can extend far beyond the geometric optical
limit. In Ref. 6 well-defined compounded states with wave-
The term “crossing resonance” describes a wide class ofengths much longer than the correlation radius have been
phenomena occurring when the dispersion curves of two exdiscovered. The main peculiarity of these excitations is that
citations intersect each other in the absence of an interactiothey consist of a coherent component of one wave and a
Even a weak interaction between these excitations removescattered component of the second participating wave. These
the degeneracy giving rise to new compounded excitationstates were shown to exhibit unusual dispersion and relax-
Such crossing resonances as magnetoelastic resohancaton properties.
polaritons? and others play an important role in the solid  This phenomenon opens a direction in the field of wave
state physics of ordered materials and have been studied propagation through random media because the additional
detail. kind of excitation and materials become involved in the
Recently, interest in the behavior of such compoundedtudy. Though a zero-mean random interaction may seem to
states indisorderedmaterials has arisen. The influence of be an exotic one, it may exist in various physical systems. A
disorder on polaritons has been considered in a humber ahagnetoelastic resonance in zero-mean magnetostrictive
papers® It was implicitly assumed in all of these papers alloy€ gives one opportunity for application of the mode?.
that only electromagnetic parameters of the medium werénother example may be the interaction between light and
random. In this case peculiarities of the influence of disordeexcitations that are normally inactive in an ideal crystal. A
on phenomena related to crossing resonances cannot fullandom distortion of the ideal structure results in the appear-
manifest themselves. The only difference between this situance of a local random coupling parameter with a zero-mean
ation and the case of pure electromagnetic waves propagatalue®!
ing through a random medium is a more complicated disper- In the present paper we discuss another effect that can
sion law. exist in systems with DICR. We are interested here in the
Since the interaction plays a crucial role in crossing resoprocess of energy exchange between a coherent part of the
nances, one can assume that randomness of the coupling gampounded state and its scattered partner. We consider an
rameter should significantly change the manifestation of thignitially excited coherent wave with an acousticlike disper-
phenomenon in disordered materials. In order to emphasizgon law and with a fixed wave number. The dependence of
this point, a model with a random zero-mean interaction hashe scattering energy of the second participating wave upon
been considered in Ref. 6. In this model the coupling oftime is the main subject for the study. In the ordinary case of
waves is provided by fluctuations only. This causest@ a single wave excited in a random media the solution of this
chasticor disorder-induced crossing resonan@@ICR). The  problem would be trivial. Only an exponential decay of the
main result of Ref. 6 is the discovery that a random couplingcoherent component accompanied by a corresponding in-
can generate well-defined compounded excitations. This faarease of the scattered energy would be found in this case. In
is not surprising in the geometric optical limit. In this casethe model considered in this paper the situation is more in-
waves have the opportunity to interact due to an approxiteresting and unusual. Alongside the routine exponential re-
mately homogeneous coupling parameter while traveling daxation we find a distinctive dynamical stage of a temporal
distance much greater than their wavelengths. As a resulgvolution of the system. We show that it appears in the form
compounded states with dispersion laws dependent on posif an oscillatory exchange of the energy between coherent
tion arise’ The surprising thing is that the impact of a ran- and scattered components of the compounded states. This
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behavior is effective for a time less than the relaxation time The spatial component®; of the vectorP are considered
of the coherent component and it exists only if conditions foras random functions with zero mean and with given correla-

DICR are fulfilled. tion properties
Similar energy oscillations are typical phenomena in de-
terministic systems with cross resonances. In polariton phys- (P))=0,
ics they are known, for example, as nutation or Rabi oscilla-
tions. They reflect the coherent nature of the interaction (Pi(ry)Pj(r2))=N®;K(ry—ry). 5

e et v an et Here A is the s flucuaton of the couplng parameter
g P reflects tensor properties of the correlations, and

coherency of scattered waves over longer distances than 'n&jr “r,) is a normalized K(0)=1] scalar function that
systems with other kinds of disorder. In other words, we Olealntr(;duczes a characteristic scale to the inhomogeneities b
here with an interesting phenomenon where the interactior?neans of correlation radius 9 y
destroys the coherency due to its random nature and, at the The total energy of the System with Lagrangid has

same time, stabilizes the scattered waves.

the form
Il. MODEL AND GENERAL EXPRESSION 1 ., 1 ., 1 [du 21 [a¢\?
FOR SCATTERED ENERGY E—j SP1U"F 5 P2 +§d1<§ +§dz(y)
We consider the model, which may be described by a 1 au
Lagrangian of the form + §m¢2+ P&—¢> dv. (6)
r
2 2 2 2
[::J [Epl(ﬂ_u) + lp2<@> _}dl(a_u) — Edz(%) The terms with the spatial gradient after integrating and ne-
27 \ot) 27\ ot)  277\or) 277\ or glecting surface parts become
1 2 2
— Imd2— 3 Ju Jcu
Sme?—PVug|drdt. ) f (_) dv:—J 0 Yav, @
ar or
This Lagrangian describes two scalar waves, one of which 5 5
. . . (? (9
has an acoustic dispersion law f (a_(f dV=—f ¢deV- ®

wk=vlk, (2) ) . .
) . Using the equations of motion
and the second wave, which has an optical spectrum

d%u Pu 9

2_ 2. 22 4 T
= w2+ v2K2, 3 d =—(Pi¢), 9
e€=wytv; 3 Prg 52T g i®
where 5 )
TS rmp—d, ol _p M 10
2 dl 2 m 2 d2 pZW md)_ Zo»,_rf__ io»,_ri! ( )
vi=—, wu=—, UF=—. 4
P1 P2 P2 following from Lagrangian(1), these terms can be turned

The parameterg,,p, and d,,d,,m represent densities and into the form
force parameters, respectively. 5

These waves are linearly coupled due to the last term in d j (‘7_“) dv= _j u
Eq. (1). Unlike the model considered in Ref. 6 we introduce ! or

.0
Plu—g(Pqﬁ)}dV. (11)

dv. (12

Jdu d

Pp - +u=-(Pg)

g dv, (14)

the gradient form of the interaction with a vector coupling )
parameteP. This form of interaction corresponds to magne- d - Ju
toelastic coupling between elastic and spin wai/¥'s-> The dzf (E) dv= _f d’{pz‘fﬁ meé+P—r
direction of the coupling parameter should be assigned to the ) ) ] o ]
equilibrium direction of the magnetization, and the modulus/nNserting these expressions into the original equation for the
of P is a magnetostriction parameter. To apply the model t¢nergy one can obtain
a magnetoelastic resonance one should also substitute 2 5 5 5
squares of frequencies by the corresponding frequenciesg_ = [ (‘9_”) — a_u [(ﬁ) — QH

E dVipy U—>|+p2 d—=|(
themselves. 2 ot ot ot ot

Lagrangian(1) can describe the polariton problem as (13

well, if one replaces fthe spatial gradi_ent_in the in_teractior\,\,here we have omitted the terms
term by a corresponding temporal derivative. In this dase
may be interpreted as a random local dipole moment cou- 1
pling an electromagnetic wave and optical phonbris w- Esurfzzf
k space this alteration can be done by means of a simple
replacement of a correspondik§term byw?. The results of  which can obviously be reduced into the total derivative of
the calculations shall not be affected considerably due to thi®¢u and neglected. Equatiqi3) is an exact representation
replacement. for the energy, which is more convenient for further use than
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the original equatioii6). The absence of the interaction term <a(w k)):iwﬁ- (K)(Gy(w,k)) (20)
in this expression is a consequence of the linear nature of ' n
coupling.
The Fourier-transformed expression for the energy takeg/here the Green’s function itself can be expressed in terms
the form of the mass operatd®,(w,k) in the usual way:
Ez—lf dw,dw,d3K p1U(wq,K)U(wy, — k) G K= 1 21
2 < u(wv )>_ w2_ _Qu(w’k)‘ ( )

+pad(w1,K) d(w;, —K) Jws(01— wy)expit(w; + wy),
(15  We approximate the mass operator by the first term in its
expansion in terms of the effective coupling paramétiee

where the caret indicates the Fourier transform of the correg o urret approxma’ﬂoﬁ)

sponding value and,,w, andk are frequencies and a wave
number, respectively. This expression contains two terms,

one of which relates to the energy of the acoustic wave and . KiKi

the second which represents the energy of the optical wave. Qu(w,k)= ”_f d3k1G¢(w,k1)S(k—k1). (22)
Each of these terms depends upon time, but their sum must p1p2

be a constant according to the energy conservation law. To

analyze the evolution of the optical scattered energy on

should calculate the value ftis important to note that two approximations made for the

correlation functionz ,, Eq.(18), and for the Green’s func-
e - _ tion, Eqg. (22), are consistent in a sense that used together
Zy=(¢(w1,K) P(w2,~K)), (16 they preserve the energy of the system.
where bracketg- - -) indicate averaging over realizations of  If the initially excited statep;y(k), has the form
the random function representing the coupling parameter.
Equations of motion of the modé®) with initial conditions

read as Uin(K) = ugcogKor ), (23
ou
u(r,t)]i=o=Uin(r), ot =0, we can deduce the following expression for the scattered
=0 opticlike part of the energy:
P
¢(r!t):O|t201 E :Ol (17) 2
t=0
E V——zq)kkjjdd w »
lead to the following expression fat,,: ¢ Ty 2 1o “1Ee201 Z(wl 2

1 . X(Gy(w1,ko)(Gu(wz, —ko))e' (@172
Z¢=——2G¢,(wl,k)G¢((u2,—k)J ([kiP(k—kq)]

P2 xf P*KGy(@1,K)G y(ws, —K)S(k—ko),  (24)
X [koP(k—kp) Ju(wy,kq)U( w3, k) yd3kydks,

18 . .

(18 where the amplitudel, determines the total energy of the
whereG 4(w,k) denotes the initial Green’s function for the system,
optical waves which has the form

Gylw,k)= 1 5. (19 Eo=fUjp10gV, (25)
e

In order to evaluate Eq18) we replace the acoustic wave andkj fixes the wavelength of the originally excited wave.
amplitudeu(w,k) by its average valu€u(w,k)). This ap-  The notationd/ andS(k) are used in Eqg24) and(25) for
proximation takes into account all processes of second ordahe total volume of the system and the spectral density of the
in terms of the effective coupling parameter. The procedurénhomogeneities, respectivelthe spectral density is defined
is valid fort< 7, wherer is the relaxation time of the coher- as the Fourier transform of the correlation funcjion
ent acoustic wave. When the time becomes greaterliha Using Eq.(22), we can transform Eq24) for the energy
coherent component almost disappears and an equilibriuinto the form
mix of the incoherent participating waves occurs. In this case
the approximation breaks down. Ug

The average amplitudéu(w,k)) can be expressed in Es=p1V f dwldwz <Gu(w1 ko) Gu(wz,—ko))
terms of the acoustical averaged Green’s function
(Gy(w,k)): X[Qu(®@1,Ko) = Qulwy ko) Iexdit(wi+wz)].  (26)
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FIG. 1. Dispersion curves of compounded states in the case of ﬂ
DICR. The solid lines show parts of the branches, which tend to the
initial acoustic dispersion curve in the off-resonance region. The
dashed lines depict the states that arise due to DICR. These states
exist in the vicinity of the resonance point only. Wave numbers and 23
frequencies are normalized by the resonance wave nukybend §0-5'
the resonance frequenay; , respectively. K

The dynamics of the energy is determined by the poles of
the integrand in Eq(26). These are poles of the averaged 100 200 300
Green’s functions and a pole at;=— w,. Evaluation of
integrals in Eq(26) requires calculation of residues at these (®)
poles. The pole of the averaged Green’s function determines
the modification of the initial dispersion law and damping of
the excitations. The dispersion equations determining the
pole have been analyzed in detail in Ref. 6. It was found that
the behavior of the system depends on the relation between
the effective interaction and relaxation parametarsand
I', respectively, at the resonance point. These parameters ar
given according to the expressions

N vy K
A=—, T=-2"0,\kZ+I2, 27

wy vy ki

Time

ﬁBrgy

where w, is the resonance frequency akd is the corre- 50 100 150 200 250
sponding wave number, atd is the correlation wave num-
ber that is reciprocal to the correlation radils;-1/r ..

If A<T, the dispersion equation has only one well-
defined solution and DICR does not occur. The dispersion
curve in this case only slightly differs from the original one. k|G, 2. Dependence of the energy of the scattered waves upon
In the case of opposite inequality one can find two solutiongime when DICR is suppresséd) and when DICR is in effectb),
to the dispersion equations. Both of them are well definedc). Here (b) and (c) correspond to resonant and off-resonant re-
within the resonance region. Consequently, a modified disgions, respectively. The parameters,/v;=5%x10"% and
persion curve forms two branches separated by aXa  k./k =250 are the same for all figures.
the resonance poirtFig. 1). The gap is given by

() Time

from the resonance point these parts become poorly defined.
A=JAZ-TZ (28) It should be emphasized that the nonzero average amplitude
of the acoustic component is the same on both of these
Two parts of these branches turn into the original acoustidranches and the average amplitude of the optical partner on
dispersion curve far from the resonance point and are welboth branches is equal to zero. It allows one to conclude that
defined everywhere. The other two parts exist only in theboth these branches relate to the same excitation rather than
vicinity of the resonance region and represent the abovetwo different excitations. We call this excitation a quasia-
mentioned additional solutions. They resemble part of theoustic wave.
initial dispersion curve of the second participating wave. Far This situation differs from the case of a resonance caused
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by a deterministic interaction, where two different branches The dynamics of energy is drastically changed in the off-
correspond to two different excitations with different ratios resonance regiofFig. 2(c)]. In this case, not only does the

of component amplitudes. The second excitation in the caseumber of oscillations decrease, but the curve’s shape is also
of DICR also exists and has a dispersion curve with a routinaffected. Within each oscillation the energy of the coherent
single mode shape, which is only slightly altered from thewave is no longer fully converted to the energy of the scat-

original optical curve. tered waves. As a result the total picture more closely re-
The analysis of the dispersion curves conducted in Ref. 8embles the usual exponential relaxation.
gives us a base for calculating the integi26). The general The most astonishing aspect of these calculations is that

expression for the energy, however, is rather cumbersomine energy oscillations survive when the resonance wave-
and we do not present it here. Since we are mainly interestel@éngth is two orders of magnitude greater than the correlation
in the frequency region near the resonance point, we discusadius. We use the value of the parametgrk, =250 to
only simple formulas revealing the energy dynamics at resoebtain these graphs. For this situation one might expect that
nance. Nevertheless, we use the general expression to plitte total averaging and elimination of the influence of inho-
the temporal dependence of the energy in Fig. 2. mogeneities occur on the scale of a wavelength. It does not
If DICR does not occur, the dynamics of the energy fol- happen because of the factor/v 4 in Eq. (27) for the relax-
lows the usual exponential law, which may be described byation parametef’. This factor is normally very smaltfor
the expression polaritons, for example, it is of order of 18). It reduces the
influence of the second factdt, /k, , which reflects a ten-
dency to suppress a random interaction in the case of long
' waves. In the limikk— 0 the last tendency of course prevails,
(29 as it should.

2

—A

2_A2 -
2003!?( >t

and cosi=(I'>— A2)/A.
A graph in Fig. Za), showing the behavior of the energy
in this situation, demonstrates a routine relaxation only.
DICR appears whed >T". The appearance of the gap A model of two waves linearly coupled by a random zero-
changes the dynamics of the energy drastically. The expresnean interaction has been considered. The main result of this
sion describing this dynamics takes the form paper is the discovery of an oscillatory exchange of energy
between coherent and scattered components of mixed qua-
siacoustic states. These states appear in the case of disorder-
induced crossing resonance. Such a behavior is effective
only for times less than the relaxation time of the coherent
where co¥=A/A. From Eq.(30) one can see that the relax- component and reflects the shape of the dispersion law of the
ation controlled by the paramet&r is accompanied by os- coherent quasiacoustic wave. This dispersion law consists of
cillations with frequency. If A>T, the intervalT<t<rof  two branches separated by a gap. The period of the energy
the distinct dynamic behavior of the energy exists whereoscillations is determined by the gap and is usually much
=1/l is the relaxation time and@l=2/A. Within this in-  greater than the period of the waves.
terval the usual flow of the energy from the coherent com- The oscillations survive even if the resonance wavelength
ponent to the incoherent one is accompanied by the opposité much greater than the correlation radius. Although a ran-
current from the scattered waves to the coherent componerflom interaction becomes insufficient to cause DICR and en-
The interference of these flows gives rise to the oscillationsergy oscillations in the case of extremely long waves, there
The shape of the oscillations is shown in Figb)2 This  still exists a wide interval of wavelengths where such oscil-
graph has been obtained from the general formula describingtions do occur, even when these wavelengths are much
the dynamics of the energy for any value of the wave vectorgreater than the correlation radius.
Parameters of the system were chosen, however, to be very The energy oscillations discussed in this paper closely
close to the resonance point. One can see that relaxatidg@semble well-known similar processes in deterministic sys-
increases the minima of the energy with each oscillation, butems. We should emphasize, however, that in our case one is
does not change the maxima, which are always equal to théealing with energy exchange between deterministher-
initial energy injected into the system. This means that aent wave and randomizegscattered wavesia a zero-mean
resonance the energy of the coherent wave transfers fu||y|te_ractlon. Establlshlng a well-defined quas_lcoherent behav-
into the energy of the scattered wavksing each period of 10r in such a system supports the general idea that fluctua-
oscillation A part of this energy recycles back to the coher-tions of a coupling parameter play a special role among other
ent wave, and the remainder accumulates in the scatterd¥pssible random parameters of the system. Scattered states
waves. caused by a random interaction possess long-lasting correla-
In the larget limit both Egs.(29) and (30), as well as tions which would not be expected for such systems.
corresponding graphs, show that the functionsaturates to
one. This is an artifact of the approximations. We ha\_/e ne- ACKNOWLEDGMENTS
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transformation of the coherent acoustic energy entirely into This work was supported by the International Science
the scattered opticlike energy. However, this fact is impor+Foundation and Russian Government under Grant No.
tant since it proves the consistency of the approximationgd60100, by the NSF under Grant No. DMR-9632789, by a
with the energy conservation law. CUNY collobarative grant, and by PSC-CUNY.

[lI. CONCLUSION

A
Et‘f“lf , (30

A2
Es=Eol1—exp—TI't) Pcos2
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