
PHYSICAL REVIEW B 1 MAY 1997-IVOLUME 55, NUMBER 17
Energy oscillations of scattered waves for disorder-induced crossing resonance
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We investigate the energy dynamics of compounded states, which arise in a system of waves linearly
coupled via a random interaction. Randomness of the interaction causes energy flow from the coherent wave to
scattered states of the second participating wave. If disorder-induced crossing resonance occurs, we discovered
that there is also a current from scattered waves to the coherent component. The interference of these flows
causes the distinctive temporal oscillation of the energy of scattered waves.@S0163-1829~97!02417-X#
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I. INTRODUCTION

The term ‘‘crossing resonance’’ describes a wide class
phenomena occurring when the dispersion curves of two
citations intersect each other in the absence of an interac
Even a weak interaction between these excitations remo
the degeneracy giving rise to new compounded excitatio
Such crossing resonances as magnetoelastic resona1

polaritons,2 and others play an important role in the so
state physics of ordered materials and have been studie
detail.

Recently, interest in the behavior of such compound
states indisorderedmaterials has arisen. The influence
disorder on polaritons has been considered in a numbe
papers.3–5 It was implicitly assumed in all of these pape
that only electromagnetic parameters of the medium w
random. In this case peculiarities of the influence of disor
on phenomena related to crossing resonances cannot
manifest themselves. The only difference between this s
ation and the case of pure electromagnetic waves propa
ing through a random medium is a more complicated disp
sion law.

Since the interaction plays a crucial role in crossing re
nances, one can assume that randomness of the couplin
rameter should significantly change the manifestation of
phenomenon in disordered materials. In order to empha
this point, a model with a random zero-mean interaction
been considered in Ref. 6. In this model the coupling
waves is provided by fluctuations only. This causes asto-
chasticor disorder-induced crossing resonance~DICR!. The
main result of Ref. 6 is the discovery that a random coupl
can generate well-defined compounded excitations. This
is not surprising in the geometric optical limit. In this ca
waves have the opportunity to interact due to an appro
mately homogeneous coupling parameter while travelin
distance much greater than their wavelengths. As a re
compounded states with dispersion laws dependent on p
tion arise.7 The surprising thing is that the impact of a ra
550163-1829/97/55~17!/11287~6!/$10.00
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dom interaction can extend far beyond the geometric opt
limit. In Ref. 6 well-defined compounded states with wav
lengths much longer than the correlation radius have b
discovered. The main peculiarity of these excitations is t
they consist of a coherent component of one wave an
scattered component of the second participating wave. Th
states were shown to exhibit unusual dispersion and re
ation properties.

This phenomenon opens a direction in the field of wa
propagation through random media because the additi
kind of excitation and materials become involved in t
study. Though a zero-mean random interaction may seem
be an exotic one, it may exist in various physical systems
magnetoelastic resonance in zero-mean magnetostric
alloys8 gives one opportunity for application of the model.9,10

Another example may be the interaction between light a
excitations that are normally inactive in an ideal crystal.
random distortion of the ideal structure results in the appe
ance of a local random coupling parameter with a zero-m
value.11

In the present paper we discuss another effect that
exist in systems with DICR. We are interested here in
process of energy exchange between a coherent part o
compounded state and its scattered partner. We conside
initially excited coherent wave with an acousticlike dispe
sion law and with a fixed wave number. The dependence
the scattering energy of the second participating wave u
time is the main subject for the study. In the ordinary case
a single wave excited in a random media the solution of t
problem would be trivial. Only an exponential decay of t
coherent component accompanied by a corresponding
crease of the scattered energy would be found in this cas
the model considered in this paper the situation is more
teresting and unusual. Alongside the routine exponential
laxation we find a distinctive dynamical stage of a tempo
evolution of the system. We show that it appears in the fo
of an oscillatory exchange of the energy between cohe
and scattered components of the compounded states.
11 287 © 1997 The American Physical Society
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behavior is effective for a time less than the relaxation ti
of the coherent component and it exists only if conditions
DICR are fulfilled.

Similar energy oscillations are typical phenomena in
terministic systems with cross resonances. In polariton ph
ics they are known, for example, as nutation or Rabi osci
tions. They reflect the coherent nature of the interact
between different waves. A similar behavior in random s
tems brings the idea that a random interaction can keep
coherency of scattered waves over longer distances tha
systems with other kinds of disorder. In other words, we d
here with an interesting phenomenon where the interac
destroys the coherency due to its random nature and, a
same time, stabilizes the scattered waves.

II. MODEL AND GENERAL EXPRESSION
FOR SCATTERED ENERGY

We consider the model, which may be described b
Lagrangian of the form

L5E F12 r1S ]u

]t D
2

1
1

2
r2S ]f

]t D
2

2
1

2
d1S ]u

]r D
2

2
1

2
d2S ]f

]r D 2
2
1

2
mf22P¹uf Gd3r dt. ~1!

This Lagrangian describes two scalar waves, one of wh
has an acoustic dispersion law

vk5v1k, ~2!

and the second wave, which has an optical spectrum

e25v0
21v2

2k2, ~3!

where

v1
25

d1
r1
, v0

25
m

r2
, v2

25
d2
r2
. ~4!

The parametersr1,r2 and d1,d2,m represent densities an
force parameters, respectively.

These waves are linearly coupled due to the last term
Eq. ~1!. Unlike the model considered in Ref. 6 we introdu
the gradient form of the interaction with a vector coupli
parameterP. This form of interaction corresponds to magn
toelastic coupling between elastic and spin waves.9,10,12The
direction of the coupling parameter should be assigned to
equilibrium direction of the magnetization, and the modu
of P is a magnetostriction parameter. To apply the mode
a magnetoelastic resonance one should also subs
squares of frequencies by the corresponding frequen
themselves.

Lagrangian ~1! can describe the polariton problem
well, if one replaces the spatial gradient in the interact
term by a corresponding temporal derivative. In this casP
may be interpreted as a random local dipole moment c
pling an electromagnetic wave and optical phonons.11 In v-
k space this alteration can be done by means of a sim
replacement of a correspondingk2 term byv2. The results of
the calculations shall not be affected considerably due to
replacement.
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The spatial componentsPi of the vectorP are considered
as random functions with zero mean and with given corre
tion properties

^Pi&50,

^Pi~r1!Pj~r2!&5l2F i j K~r12r2!. ~5!

Here l is the rms fluctuation of the coupling paramete
F i j reflects tensor properties of the correlations, a
K(r12r2) is a normalized@K(0)51# scalar function that
introduces a characteristic scale to the inhomogeneities
means of correlation radiusr c .

The total energy of the system with Lagrangian~1! has
the form

E5E F12 r1u̇
21

1

2
r2ḟ

21
1

2
d1S ]u

]r D
2

1
1

2
d2S ]f

]r D 2
1
1

2
mf21P

]u

]r
fGdV. ~6!

The terms with the spatial gradient after integrating and
glecting surface parts become

E S ]u

]r D
2

dV52E u
]2u

]r2
dV, ~7!

E S ]f

]r D 2dV52E f
]2f

]r2
dV. ~8!

Using the equations of motion

r1
]2u

]t2
2d1

]2u

]r2
5

]

]r i
~Pif!, ~9!

r2
]2f

]t2
1mf2d2

]2f

]r2
52Pi

]u

]r i
, ~10!

following from Lagrangian~1!, these terms can be turne
into the form

d1E S ]u

]r D
2

dV52E uFr1ü2
]

]r
~Pf!GdV, ~11!

d2E S ]f

]r D 2dV52E fFr2f̈1mf1P
]u

]r GdV. ~12!

Inserting these expressions into the original equation for
energy one can obtain

E5
1

2E dVH r1F S ]u

]t D
2

2u
]2u

]t2 G1r2F S ]f

]t D
2

2f
]2f

]t2 G J ,
~13!

where we have omitted the terms

Esurf5
1

2E FPf
]u

]r
1u

]

]r
„Pf)GdV, ~14!

which can obviously be reduced into the total derivative
Pfu and neglected. Equation~13! is an exact representatio
for the energy, which is more convenient for further use th
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the original equation~6!. The absence of the interaction ter
in this expression is a consequence of the linear natur
coupling.

The Fourier-transformed expression for the energy ta
the form

E52
1

2E dv1dv2d
3k@r1û~v1 ,k!û~v2 ,2k!

1r2f̂~v1 ,k!f̂~v2 ,2k!#v2~v12v2!expi t ~v11v2!,

~15!

where the caret indicates the Fourier transform of the co
sponding value andv1 ,v2 andk are frequencies and a wav
number, respectively. This expression contains two ter
one of which relates to the energy of the acoustic wave
the second which represents the energy of the optical w
Each of these terms depends upon time, but their sum m
be a constant according to the energy conservation law
analyze the evolution of the optical scattered energy
should calculate the value

Zf5^f̂~v1 ,k!f̂~v2 ,2k!&, ~16!

where bracketŝ•••& indicate averaging over realizations
the random function representing the coupling parame
Equations of motion of the model~9! with initial conditions
read as

u~r ,t !u t505uin~r !,
]u

]t U
t50

50,

f~r ,t !50u t50 ,
]f

]t U
t50

50, ~17!

lead to the following expression forZf :

Zf52
1

r2
2Gf~v1 ,k!Gf~v2 ,2k!E ^@k1P̂~k2k1!#

3@k2P̂~k2k2!#u~v1 ,k1!u~v2 ,k2!&d
3k1d

3k2 ,

~18!

whereGf(v,k) denotes the initial Green’s function for th
optical waves which has the form

Gf~v,k!5
1

v22ek
2 . ~19!

In order to evaluate Eq.~18! we replace the acoustic wav
amplitudeu(v,k) by its average valuêu(v,k)&. This ap-
proximation takes into account all processes of second o
in terms of the effective coupling parameter. The proced
is valid for t,t, wheret is the relaxation time of the coher
ent acoustic wave. When the time becomes greater thant the
coherent component almost disappears and an equilib
mix of the incoherent participating waves occurs. In this c
the approximation breaks down.

The average amplitudêu(v,k)& can be expressed i
terms of the acoustical averaged Green’s funct
^Gu(v,k)&:
of
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^û~v,k!&5 ivûin~k!^Gu~v,k!&, ~20!

where the Green’s function itself can be expressed in te
of the mass operatorQu(v,k) in the usual way:

^Gu~v,k!&5
1

v22vk
22Qu~v,k!

. ~21!

We approximate the mass operator by the first term in
expansion in terms of the effective coupling parameter~the
Bourret approximation13!

Qu~v,k!5
F i j k

ikj

r1r2
E d3k1Gf~v,k1!S~k2k1!. ~22!

It is important to note that two approximations made for t
correlation functionZf , Eq. ~18!, and for the Green’s func-
tion, Eq. ~22!, are consistent in a sense that used toget
they preserve the energy of the system.

If the initially excited state,uin(k), has the form

uin~k!5u0cos~k0r !, ~23!

we can deduce the following expression for the scatte
opticlike part of the energy:

Ef5V
p

r2

u0
2

2
l2F i j k0

i k0
j E dv1dv2v1v2

2~v12v2!

3^Gu~v1 ,k0!&^Gu~v2 ,2k0!&e
it ~v11v2!

3E d3kGf~v1 ,k!Gf~v2 ,2k!S~k2k0!, ~24!

where the amplitudeu0 determines the total energy of th
system,

E05
1
4u0

2r1vk
2V, ~25!

andk0 fixes the wavelength of the originally excited wav
The notationsV andS(k) are used in Eqs.~24! and~25! for
the total volume of the system and the spectral density of
inhomogeneities, respectively~the spectral density is define
as the Fourier transform of the correlation function!.

Using Eq.~22!, we can transform Eq.~24! for the energy
into the form

Ef5r1V
u0
2

4 E dv1dv2

v1v2
2

v11v2
^Gu~v1 ,k0!&^Gu~v2 ,2k0!&

3@Qu~v1 ,k0!2Qu~v2 ,k0!#exp@ i t ~v11v2!#. ~26!
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The dynamics of the energy is determined by the pole
the integrand in Eq.~26!. These are poles of the averag
Green’s functions and a pole atv152v2. Evaluation of
integrals in Eq.~26! requires calculation of residues at the
poles. The pole of the averaged Green’s function determ
the modification of the initial dispersion law and damping
the excitations. The dispersion equations determining
pole have been analyzed in detail in Ref. 6. It was found t
the behavior of the system depends on the relation betw
the effective interaction and relaxation parametersL and
G, respectively, at the resonance point. These parameter
given according to the expressions

L5
l

v r
, G5

v2
v1

kc
kr
v2Akc21kr

2, ~27!

wherev r is the resonance frequency andkr is the corre-
sponding wave number, andkc is the correlation wave num
ber that is reciprocal to the correlation radius,kc;1/r c .

If L,G, the dispersion equation has only one we
defined solution and DICR does not occur. The dispers
curve in this case only slightly differs from the original on
In the case of opposite inequality one can find two solutio
to the dispersion equations. Both of them are well defin
within the resonance region. Consequently, a modified
persion curve forms two branches separated by a gapD at
the resonance point~Fig. 1!. The gap is given by

D5AL22G2. ~28!

Two parts of these branches turn into the original acou
dispersion curve far from the resonance point and are w
defined everywhere. The other two parts exist only in
vicinity of the resonance region and represent the abo
mentioned additional solutions. They resemble part of
initial dispersion curve of the second participating wave. F

FIG. 1. Dispersion curves of compounded states in the cas
DICR. The solid lines show parts of the branches, which tend to
initial acoustic dispersion curve in the off-resonance region. T
dashed lines depict the states that arise due to DICR. These s
exist in the vicinity of the resonance point only. Wave numbers a
frequencies are normalized by the resonance wave numberkr and
the resonance frequencyv r , respectively.
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from the resonance point these parts become poorly defi
It should be emphasized that the nonzero average ampli
of the acoustic component is the same on both of th
branches and the average amplitude of the optical partne
both branches is equal to zero. It allows one to conclude
both these branches relate to the same excitation rather
two different excitations. We call this excitation a quas
coustic wave.

This situation differs from the case of a resonance cau
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d

FIG. 2. Dependence of the energy of the scattered waves u
time when DICR is suppressed~a! and when DICR is in effect~b!,
~c!. Here ~b! and ~c! correspond to resonant and off-resonant
gions, respectively. The parametersv2 /v15531024 and
kc /kr5250 are the same for all figures.
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by a deterministic interaction, where two different branch
correspond to two different excitations with different rati
of component amplitudes. The second excitation in the c
of DICR also exists and has a dispersion curve with a rou
single mode shape, which is only slightly altered from t
original optical curve.

The analysis of the dispersion curves conducted in Re
gives us a base for calculating the integral~26!. The general
expression for the energy, however, is rather cumbers
and we do not present it here. Since we are mainly intere
in the frequency region near the resonance point, we dis
only simple formulas revealing the energy dynamics at re
nance. Nevertheless, we use the general expression to
the temporal dependence of the energy in Fig. 2.

If DICR does not occur, the dynamics of the energy f
lows the usual exponential law, which may be described
the expression

Ef5E0F12exp~2Gt !
L2

G22L2cosh
2SAG22L2

2
t1C̃D G ,

~29!
and coshC̃5(G22L2)/L.

A graph in Fig. 2~a!, showing the behavior of the energ
in this situation, demonstrates a routine relaxation only.

DICR appears whenL.G. The appearance of the ga
changes the dynamics of the energy drastically. The exp
sion describing this dynamics takes the form

Ef5E0F12exp~2Gt !
L2

D2cos
2S D

2
t1C D G , ~30!

where cosC5D/L. From Eq.~30! one can see that the relax
ation controlled by the parameterG is accompanied by os
cillations with frequencyD. If D.G, the intervalT,t,t of
the distinct dynamic behavior of the energy exists wh
t51/G is the relaxation time andT52p/D. Within this in-
terval the usual flow of the energy from the coherent co
ponent to the incoherent one is accompanied by the oppo
current from the scattered waves to the coherent compon
The interference of these flows gives rise to the oscillatio

The shape of the oscillations is shown in Fig. 2~b!. This
graph has been obtained from the general formula descri
the dynamics of the energy for any value of the wave vec
Parameters of the system were chosen, however, to be
close to the resonance point. One can see that relaxa
increases the minima of the energy with each oscillation,
does not change the maxima, which are always equal to
initial energy injected into the system. This means that
resonance the energy of the coherent wave transfers
into the energy of the scattered wavesduring each period of
oscillation. A part of this energy recycles back to the cohe
ent wave, and the remainder accumulates in the scatt
waves.

In the large-t limit both Eqs. ~29! and ~30!, as well as
corresponding graphs, show that the functionEf saturates to
one. This is an artifact of the approximations. We have
glected the scattered part of the acoustic energy that imp
transformation of the coherent acoustic energy entirely i
the scattered opticlike energy. However, this fact is imp
tant since it proves the consistency of the approximati
with the energy conservation law.
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The dynamics of energy is drastically changed in the o
resonance region@Fig. 2~c!#. In this case, not only does th
number of oscillations decrease, but the curve’s shape is
affected. Within each oscillation the energy of the coher
wave is no longer fully converted to the energy of the sc
tered waves. As a result the total picture more closely
sembles the usual exponential relaxation.

The most astonishing aspect of these calculations is
the energy oscillations survive when the resonance wa
length is two orders of magnitude greater than the correla
radius. We use the value of the parameterkc /kr5250 to
obtain these graphs. For this situation one might expect
the total averaging and elimination of the influence of inh
mogeneities occur on the scale of a wavelength. It does
happen because of the factorv2 /v1 in Eq. ~27! for the relax-
ation parameterG. This factor is normally very small~for
polaritons, for example, it is of order of 1025). It reduces the
influence of the second factorkc /kr , which reflects a ten-
dency to suppress a random interaction in the case of l
waves. In the limitk→0 the last tendency of course prevail
as it should.

III. CONCLUSION

A model of two waves linearly coupled by a random zer
mean interaction has been considered. The main result of
paper is the discovery of an oscillatory exchange of ene
between coherent and scattered components of mixed
siacoustic states. These states appear in the case of diso
induced crossing resonance. Such a behavior is effec
only for times less than the relaxation time of the coher
component and reflects the shape of the dispersion law o
coherent quasiacoustic wave. This dispersion law consist
two branches separated by a gap. The period of the en
oscillations is determined by the gap and is usually mu
greater than the period of the waves.

The oscillations survive even if the resonance wavelen
is much greater than the correlation radius. Although a r
dom interaction becomes insufficient to cause DICR and
ergy oscillations in the case of extremely long waves, th
still exists a wide interval of wavelengths where such os
lations do occur, even when these wavelengths are m
greater than the correlation radius.

The energy oscillations discussed in this paper clos
resemble well-known similar processes in deterministic s
tems. We should emphasize, however, that in our case on
dealing with energy exchange between deterministic~coher-
ent wave! and randomized~scattered waves! via a zero-mean
interaction. Establishing a well-defined quasicoherent beh
ior in such a system supports the general idea that fluc
tions of a coupling parameter play a special role among o
possible random parameters of the system. Scattered s
caused by a random interaction possess long-lasting cor
tions which would not be expected for such systems.
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