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We develop a detailed microscopic analysis of electron transport in normal diffusive conductors in the
presence of proximity-induced superconducting correlations. We calculated the linear conductance of the
system, the profile of the electric field, and the densities of states. In the case of transparent metallic boundaries
the temperature-dependent conductance has a nonmonotonic ‘‘reentrant’’ structure. We argue that this behavior
is due to nonequilibrium effects occurring in the normal metal in the presence of both superconducting
correlations and the electric field. Low transparent tunnel barriers suppress nonequilibrium effects and destroy
the reentrant behavior of the conductance. If the wire contains a loop, the conductance shows Aharonov-Bohm
oscillations with a periodF05h/2e as a function of the magnetic fluxF inside the loop. The amplitude of
these oscillations also demonstrates the reentrant behavior. It vanishes atT50 and decays as 1/T at relatively
large temperatures. The latter behavior is due to low-energy correlated electrons which penetrate deep into the
normal metal and ‘‘feel’’ the effect of the magnetic fluxF. We point out that the density of states and thus the
‘‘strength’’ of the proximity effect can be tuned by the value of the flux inside the loop. Our results are fully
consistent with recent experimental findings.@S0163-1829~97!02002-X#
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I. INTRODUCTION

Recent progress in nanolithographic technology has
vived interest in both experimental and theoretical investi
tions of electron transport in various mesoscopic proxim
systems consisting of superconducting and normal met
layers. In such systems the Cooper pair wave function o
superconductor penetrates into a normal metal at a dist
which increases with decreasing temperature.1 At sufficiently
low temperatures this distance becomes large and the w
normal metal may acquire superconducting properties.
though this phenomenon was already understood more
30 years ago and intensively investigated during the p
decades, recently novel physical features of metallic prox
ity systems have been discovered2–8and studied theoretically
~see Refs. 9–21 and further references therein!.

In this paper we study the influence of the proximity e
fect on the transport properties of a diffusive conductor
the limit of relatively low temperatures and voltages. W
will assume that this conductor is brought in direct cont
with a superconducting reservoir which serves as an effec
injector of Cooper pairs into a normal metal. We will sho
that if the system contains no tunnel barriers, there are
different physical regimes which determine the system c
ductance in different temperature intervals. It is well know
that the proximity-induced superconducting correlation
tween electrons in a diffusive normal metal survives a
distance of orderjN;AD/T, whereD5vFl imp/3 is the dif-
fusion coefficient. AsT is lowered the proximity-induced
550163-1829/97/55~2!/1123~15!/$10.00
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superconductivity expands into the normal metal and, con
quently, the ‘‘normally conducting’’ part of the system e
fectively shrinks in size. This effect results in an increase
the conductance of a normal metal. At sufficiently low tem
perature the lengthjN becomes of the order of the size of th
normal layer and the system behavior becomes sensitiv
the physical choice of the boundary condition at the edge
the normal wire opposite to that attached to a supercond
tor.

One possible choice of this boundary condition cor
sponds to the assumption that a nontransparent barrie
present at the edge of this wire. Then electrons cannot
fuse out of the wire, the proximity-induced superconducti
correlation survives everywhere in the system, and a real
in the quasiparticle spectrum develops in theN metal.22 The
value of this gap is of the order of«g;min(D,D/L2), where
D is the bulk superconducting gap andL is the length of the
normal wire.

Another possible situation corresponds to the presenc
a large normal reservoirN8 directly attached to theN wire
by means of a highly transparent contact. In this case eve
very low T the proximity-induced Cooper pair amplitude
essentially nonhomogeneous in theN metal. Indeed, close to
a superconductor this amplitude is large, whereas in the
cinity of a normal reservoir it is essentially suppressed. Th
strictly speaking, the wholeN wire cannot be characterize
by the real gap in its quasiparticle spectrum. In the abse
of a potential barrier betweenN andN8 this gap is obviously
equal to zero at theNN8 interface and, as will be demon
1123 © 1997 The American Physical Society
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strated, everywhere in the normal metal. Nevertheless
turns out that the density of states in theN metal shows a sof
pseudogap which is again of the order of«d . In other words,
the spatially averaged normalized density of statesNN(«) in
the N wire at small«&«d is smaller than its normal stat
value NN,N(0) but always remains nonzero. It increas
with increasing « and reaches the valueNN5N(0) at
«*«d . This is the key point for understanding the low
temperature behavior of the conductance of our system
the temperature increases from zero, higher and higher
ues of« contribute to the current, and the system cond
tance, due to the increase ofNN with «, increases withT.
This regime takes place until the temperature reaches
valueT;«d where the crossover to a high-temperature
havior takes place. Note that similar behavior of the norm
metal conductance in the presence of proximity-induced
perconductivity has been recently found by Nazarov a
Stoof.23

An interesting feature of the system without tunnel ba
ers is that atT50 its conductanceexactly coincides with
that of a normal metal with no proximity effects. This resu
has been first obtained by Artemenko, Volkov, and Zaitse24

for the case of a normal-superconducting constriction.
though this result has already been around for many ye
the physical meaning of this result, if any, still needs to
understood. At first sight the linear conductance of the s
tem atT50 should be smaller than in the normal state b
cause of the presence of the~pseudo!gap in the normal den
sity of states~DOS! NN at low energies. Why is this not th
case?

In order to answer this question we should recall the w
known fact that in the presence of nonequilibrium effects
current flowing in a superconductor depends not only on
normal DOS but is characterized by a set of generali
DOS.25 Our problem is just a particular example of a no
equilibrium superconductor: On the one hand, supercond
ing correlations penetrate into the normal metal and the C
per pair amplitude is nonzero there; on the other hand, in
absence of low transparent tunnel barriers the electric fi
also penetrates into theN metal and drives the quasipartic
distribution function out of equilibrium. We will argue tha
in this situation one of the generalized DOS@below we de-
fine it asNS(«)#, which is nonzero in theN layer due to the
presence of proximity-induced superconducting correlati
at low energies, plays an important role and also contribu
to the system conductance. In other words, in the presenc
the electric field inside the systemboth uncorrelated and
correlated electrons contribute to a dissipative current. This
is the reason why in the presence of proximity-induced
perconductivity the system conductance is never smaller
its normal state value although the normal DO
NN(«),N(0) at low energies.26

We would like to emphasize that the situation is entire
different in the presence of low transparent tunnel barrie
Provided their resistances are much larger than that of
N metal the whole voltage drop takes place at these bar
and the electric field does not penetrate into theN layer. In
this case only uncorrelated electrons contribute to the d
pative current and therefore only the normal DOSNN mat-
ters. As a result the temperature dependence of the sy
conductance changes. We will demonstrate that with
it
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creasing barrier transparency a crossover takes plac
which the effective conductance decreases monotonic
with T, characteristic of two serialNIS8 tunnel junctions
(S8 is now the diffusive normal conductor with th
proximity-induced gap!.

Note that both types of behavior, namely, reentrant a
monotonically decreasing withT conductance, have been ob
served in the experiments.3,7,8Furthermore, we would like to
point out that both densities of statesNN(«) andNS(«) can
be investigated in one experiment. We will come back to t
point further below.

When the system contains a mesoscopic loop of a nor
metal, the conductance as a function of the magnetic
through the loop shows oscillations with periodF05h/2e
~superconducting flux quantum!. Although the Cooper pair
amplitude~and thus the supercurrent! in the ring is exponen-
tially small atT@ed , the amplitude of these oscillations de
cays only as}1/T. This again illustrates an important differ
ence in the behavior of kinetic~conductance! and
thermodynamic~supercurrent! quantities. Below we will ar-
gue that in the systems considered here even at largeT@ed
the behavior of the first quantity is dominated by correla
low-energy electrons withe&ed penetrating far into the nor
mal metal whereas the only important contribution of ele
trons withe;T is to the second one. Again the presence
the electric field inside theN metal is crucially important for
this effect. At lowT the oscillation amplitude again show
the reentrant behavior and vanishes in the limitT→0 as
T2. Clear experimental evidence for a 1/T decay of the con-
ductance oscillations has been recently reported in Ref.

Finally we point out that by making use of the geome
with a metallic loop one can easily tune the densities
states of the system by applying a magnetic fluxF inside
this loop. We will show that, e.g., forF5F0/2 the proxim-
ity effect in the normal region ‘‘after’’ the loop is completel
suppressed and the normal DOSNN(e)5N(0) there. This
effect can be investigated experimentally and used for furt
studies of proximity-induced superconductivity in norm
metallic structures.

The structure of our paper is as follows. In Sec. II w
briefly describe the general kinetic approach based on qu
classical Green functions in the Keldysh technique and
fine the physical quantities of interest. Then a detailed an
sis of these quantities@conductance~Sec. III!, DOS ~Sec.
IV !, and electric field~Sec. V!# will be presented. Section
VI and VII are devoted to the extension of our analysis to
proximity systems containing mesoscopic normal me
loops with a magnetic flux. The main results of the pres
paper are summarized in Sec. VIII. Further details related
different geometric realizations of the proximity system
with loops are presented in the Appendix.

II. KINETIC ANALYSIS

A. General formalism

Let us consider a quasi-one-dimensional normal cond
tor of length 2L with a superconducting strip of thicknes
2ds attached to a normal metal on top of it and two norm
reservoirs attached to its ends~see Fig. 1!. The lengthL is
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55 1125COHERENT CHARGE TRANSPORT IN METALLIC . . .
assumed to be much larger than the elastic mean free p
l imp but much shorter than the inelastic one. This geometric
realization has a direct relation to that investigated in th
experiments.3,5,8 Two large normal reservoirsN8 are as-
sumed to be in thermodynamic equilibrium at the potentia
V and 0, respectively. In contrast to the case of a ballist
constriction27,28 the potential drop within the system is dis-
tributed between the interfaces and the conductor itself. T
general approach to calculate the conductance of these str
tures was developed in Refs. 9, 10, and 12. In what follow
we shall apply this method to analyze the temperature depe
dence of theNS proximity structure of Fig. 1.

Such an experimental realization allows one to prepare
structure without effective tunnel barriers in the direction o
the current flow. Even with ‘‘perfect’’ samples in a usua
sandwich geometry, a natural barrier shows up due to t
inevitable mismatch of Fermi velocities between differen
materials. This could well be one of the reasons why in pre
vious experiments with sandwichlike structures the reentra
behavior of the conductance was not detected.29

The electron transport through the metallic system can b
described by the equations for a matrix of quasiclassic
Green functionsǦin the contact:30,31

Ǧ5S ĜR ĜK

0 Ĝ D , ~1!

where ĜA, ĜR, and ĜK are, respectively, the impurity-
averaged advanced, retarded, and Keldysh Green functio
These functions are in turn matrices in the Nambu space:

ĜR5ŝzg
R1 i ŝyf

R, ĜA52~ĜR!*

and

ĜK5ĜRf̂2 f̂ ĜA.

Here the distribution function f̂5 f l1ŝzf t , where
f l5tanh(«/2T) and f t describes deviation from equilibrium.
Taking advantage of the normalization condition for the nor
mal and the anomalous Green functions (gR)22( f R)251 it
is convenient to parametrizegR5coshu, f R5sinhu, where
u[u11 iu2 is a complex function. Deep in the bulk super-
conductor it is equal tous51/2ln@(D1«)/(D2«)#2ip/2 for
«,D and us5(1/2)ln@(«1D)/(«2D)#/2 for «.D @here and
below we omit the indicesR(A)#.

The currentI and the electrostatic potentialf are ex-
pressed throughǦ as

FIG. 1. The experimental system under consideration.
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2 E

2`

`

d«Sp@ŝzǦ]xǦ#K, ~2!

f~x!5E
0

`

d«TrĝK~x,«!5E
0

`

d« f t~x,«!n«~x!, ~3!

wheren is the the density of states,n«(x)5Re@g«
R(x)#, and

S is the cross-sectional area of theN conductor.
Being expressed in terms of the functionu(«,x) the

equations30,31 for the Green functions and the distributio
function for theN metal take a particularly simple form

D]x
2u12i«sinhu50, ~4!

]x@D~cosh2u1!]xf t#50, ~5!

x is the coordinate along theN conductor. Here we neglecte
the processes of inelastic relaxation and put the pair pote
in the normal metal equal to zeroDN50 assuming the ab
sence of electron-electron interactions there.

Before we come to a detailed solution of the problem
us point out that the conclusion about the anomalous beh
ior of the system conductance can be reached already f
the form of Eq.~5!. Indeed it is quite clear from Eq.~5! that
the effective diffusion coefficientDeff5Dcosh2u1 increases
in the N regions with proximity-induced superconductivit
and, therefore, the electric field is partially expelled fro
these regions. This energy-dependent field modulation
controlled by the solution foru(«,x) and is directly related
to the physical origin of the anomalous temperature dep
dence of the system conductance discussed below.

Equations~4! and ~5! should be supplemented by th
boundary conditions at the interfaces of the normal me
N. Assuming that the anomalous Green function of the la
normal reservoirsN8 is equal to zero from32,10we obtain

jN* gB]xu56sinhu,

jN* gBcoshu1]xf t56coshu2„f t2 f t~x50,2L !…, ~6!

where gB5Rb /rNjN* is the interface resistance paramet
Rb is the specific resistance of the interface between thN
conductor and theN8 reservoirs,rN is the resistivity of the
N metal, andjN*5ADN/2pTc is the temperature-independe
characteristic length scale inN @note that the coherenc
length inN, jN(T)5ADN/2pT, is T dependent#.

In general we should also fix the boundary condition
the interface between theN metal and the superconducto
For the case of perfect transparency of this interface and
a typical thickness of the normal layerwN;AS, Cooper pairs
easily penetrate into it due to the proximity effect and t
Green functions of theN metal at relatively low energies fo
d<x<d12ds are equal to those of a bulk superconduc
u5us ~the influence of finite transparency of theNS contact
will be discussed below!. In this sense the region of a norm
metal situated directly under the superconductor can be
treated as a piece of a superconductorS8 and the solution of
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Eqs.~4! and~5! needs to be found only for 0,x,d ~without
loss of generality we will stick to a symmetric configur
tion!.

Cooper pairs penetrate into the normal conductor also
the case of an imperfectly transparentNS interface. As dem-
onstrated below, the energy gap is induced in theS8 region
in this case. As a result, for a sufficiently longN wire, which
is only considered here, the presence of the barrier at
NS interface will not influence the results derived for th
system conductance.
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B. Physical quantities of interest

Proceeding along the same lines as in Ref. 12 we arriv
the final expression for the current,

I5
1

2RE0
`

d«F tanhS «1eV

2T D2tanhS «2eV

2T D GD~«!, ~7!

where D(«) defines the effective transparency of th
system,12
D~«!5
11r

r /@coshu1~x50,«!cosu2~x50,«!#1~1/L !*0
Ldxsech2u1~x,«!

, ~8!
has
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whereR5Rb1RN , r5Rb /RN[gBjN* /L, andRN is the re-
sistance of theN metal.

Let us consider the case of a sufficiently long norm
conductord2@D/D. Then at low temperaturesT!D the in-
teresting energy interval is restricted to«!D. For such val-
ues of« the contribution of theS8 part of the normal con-
ductor shows no structure and can be easily taken
account with the aid of the obvious relations

E
0

L

dxsech2u1~x,«!5E
0

d

dxsech2u1~x,«!1dssech
2us,1

~9!

and sech2us,15(12«2/D2) ~no barrier at theNS interface!
or sech2us,15(12«2/DgN

2 ) ~the barrier is present at theNS
interface!. Due to this, we will discuss only the properties
theN part (0,x,d). For the sake of completeness we w
also demonstrate the effect of finiteds at the end of our
calculation.

For the differential conductance of theN part 0<x<d
normalized to its normal~‘‘nonproximity’’ ! value in the zero
bias limit Eq.~7! yields

ḠN5SRdIdV D
V50

5
1

2TE0
`

d«D~«!sech2~«/2T!. ~10!

Analogously the normalized zero-bias electrostatic poten
distribution reads

f0~x!5 limV→0

f~x!

V

5
1

2TdE0
`

d«D~«!n«~x!sech2~«/2T!

3E
x

d

dx8sech2@u1~x8!#. ~11!

The normal density of states is given by the norm
Green’s function via the standard relationne(x)
5N(0)Re@ge(x)# which enters into the conductance in th
form cosh2u15(Reg)21(Imf )2 together with a ‘‘correlation
DOS’’ he(x)5N(0)Im@ f e(x)#. The importance of the latte
l

to

al

l

quantity for understanding the effects discussed here
been already pointed out in the Introduction. We will discu
the features of these local densities as well as the avera
ones:

NN~e!5E dx̄ne~ x̄!, NS~e!5E dx̄he~ x̄!.

As already mentioned the ‘‘correlation DOS’’h belongs
to the set of generalized densities of states familiar from
standard theory of nonequilibrium superconductivity.25,34 It
reflects the presence of superconducting correlations at
energies. E.g., in a BCS superconductor this function rea

h5
DQ~D2e!

AD22e2

.

In our case this function is not only energy, but also spa
dependent due to the fact that the proximity-induced sup
conducting correlation decays inside the normal metal.
its physical meaning remains the same as in standard
equilibrium superconductivity theory:25 h plays a role when-
ever the quasiparticle distribution function of a supercond
tor is driven out of equilibrium. This happens, e.g., in t
well-known problems of charge relaxation34 and charge
imbalance.35 It happens also here due to a simultaneous p
ence of the electric field and the proximity-induced sup
conducting correlation in the normal metal.

C. Influence of finite barrier transparency
at the top NS interface

Let us consider the effect of a tunnel barrier at theNS
interface in more detail.

Under the assumption that theN wire thickness is small
wN!jN* the equation foru in the region 0<x<2ds under-
neath the superconducting terminal can be derived by
method of Ref. 36:

D]x
2u12i «̃sinhu1D̃cosu50, ~12!

where the effective order parameterD̃5sinus/gB
NS the effec-

tive energy«̃5«1cosus/gB
NS and gB

NS5(Rb /rN)(wN /jN*
2)
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is the interface transparency parameter. Hereus is the solu-
tion in Swhich is set equal to the bulk value tan21( iD/«), a
good approximation for thinN film, wN!jN* . With these
substitutions Eq.~12! in theN film has a form similar to that
in a superconductor. This equation is valid f
gB
NS.(wN /jN* )

2, i.e., for sufficiently small transparency o
theNS interface:^D&, l N /wN .

As follows from Eq.~12!, superconducting properties o
theN layer are described in terms of the energy-depend
coherence length

jN~e!5$\DN/2@gB
222e222igB

21ecosuS#
1/2%1/2, ~13!

which determines an exponential decay ofNN(x,e) with x .
The expression forjN(e) has a pole at the gap energ

e5DgN , which signals the decay of quasiparticles enter
N at e,DgN . At high energye@pTc /gB

NS the well-known
resultjN(e)5(\DN/2e)1/2 is reproduced, whereas at low e
ergies e!pTc /gB

NS one obtainsjN5(\DNgB
NS/2pTc)

1/2.
Thus the effective length scale inN increases with the de
crease of theSN interface transparency.

It is straightforward to calculate the gap energyDgN as-
suming the ‘‘rigid’’ boundary conditionsus5tan21( iD/«)
either from the pole ofjN(e) or, making use of the solution
u5tanh21@sinhus/(coshus2i«gB

NS)# and calculating the quasi
particle density of statesNN(«)5Re(coshu). Subsituting the
expression forus into this solution one arrives at the equ
tion for the energy gap

t312Ct21~C221!t22C50, ~14!

where t5A12(DgN /D)
2 andC5pTc /gB

NSD. The general
solution is rather cumbersome; therefore here we pre
only its asymptotic forms.

The gap is given byDgN /D5122(gB
NSD/pTc)

2 for large
transparency of theNS interface, gB

NSD/pTc!1, and by
DgN5D/(11gB

NSD/pTc) for small transparency
gB
NSD/pTc@1. In the latter case~the McMillan limit!, the

expression for the gap may be written
DgN5pTc /gB

NS[\vFN^D&/4wN . The gap originates from
the finite average lifetimetN52wN /^D&vFN for quasiparti-
cles in theN layer with respect to Andreev scattering fro
S, since a contribution of gapless quasiparticle trajecto
parallel to theNS interface is eliminated in the diffusive
regime. The dependence ofDgN on gB

NS in the whole range
of transparencies is presented in Fig. 2. Note that und
substitutionwN5p/kF the above expressions reproduce t
result of Ref. 33 for a gap induced in a two-dimension
electron gas in contact with a superconductor. We also n
that in the case of two superconducting terminals attache
N the gap aquires a phase factorDgN→cos(w/2)DgN , w be-
ing the phase difference between the terminals.

At the subgap energies«<DgN the solution inN is u.
1/2ln@(DgN1«)/(DgN2«)#2ip/2 whereas above the gap,
«.DgN , u.1/2ln@(«1DgN)/(«2DgN)#, in complete analogy
with the solutions in a bulk superconductor but with reduc
gap. Therefore the results for conductance ofN depend on
the relation between the gapDg and the Thouless energ
«d5D/d2. Since for the case of a sufficiently longN wire,
which is the only one considered in this paper, the condit
nt

g

nt

s

a

l
te
to

d

n

DgN@ «d is satisfied, the presence of the barrier at theNS
interface does not influence our results for the system c
ductance.

III. CONDUCTANCE

A. Perfectly transparent boundaries

The analysis of the problem can be significantly simp
fied in the case of perfectly transparent interfaces (gB50).
In this case the boundary conditions are

u~0!50, ~15!

u~d!5uS , ~16!

for the contact to the normal and the superconducting re
voirs, respectively. The effective transparency of theN part
then reads

D~«!5S 1dE0ddxsech2@u1~x!# D 21

. ~17!

As was already pointed out for relatively long norm
conductors and at lowT only the energies«!D give an
important contribution to the conductance. In this case
typical energy scale is defined by the Thouless ene
ed5D/d2!D,DgN . For these energies we can s
uS52 ip/2. Let us first putT50. Then the thermal distri-
bution factor sech2(«/2T)/(2T) reduces to ad function and
we have

ḠN~T50!5D~0!; ~18!

i.e., we only need the solution of Eq.~4! with boundary
conditions~15! at «50, which isu52 i (p/2)x̄. This does
not depend onD, and so the correlations are destroyed by
influence of the boundary conditions but not by thermal e
citation or by impurity scattering. From here, we can calc
late the conductance

ḠN~T50!51; ~19!

FIG. 2. Reduced gap on the normal side of theNS boundary in
the presence of barriers.
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i.e., atT50 the system conductance exactly coincides w
its normal state value~cf. Refs. 24 and 23!. This result, how-
ever, by no means implies the destruction of the proxim
induced superconductivity in theN layer. Later on, we will
demonstrate that the DOS and the electrical field are c
pletely different from their values in the normal state and
fact only due to the additional contribution of correlat
electrons the system conductance does not fall below its
mal state value.

In the caseT!«d we can calculateu perturbatively. From
D]x

2u522i«sinhu0(x) and Eq.~15! we get

u52
8

p2

«

«d
@ x̄2sin~ x̄p/2!#2 i

p

2
x̄.

Keeping only leading order terms ine/ed , we get

s̄N511A
T2

ed
2 , ~20!

where

A5
64

3p4 S 562
8

p2D'0.049

is a universal constant. This means that for low temperatu
ḠN(T) grows quadratically on the scale of«d and ap-
proaches the crossover towards the high-temperature re
discussed below.

In the limit T@ed ~where we still haveT!D), the con-
tribution of the low-energy components to the therma
weighted integral forḠN(T) is }1/T as we will see below
and can therefore be neglected. We only have to take
account the solutions of Eq.~4! for energiese@ed . It is well
known ~see, e.g., Ref. 12!, that for this energy range th
solution of Eq.~4! together with Eq.~15! reads

tanh@u~ x̄!/4#5tanhS ip8 Dek~ x̄21!, ~21!

where k5dA22i«/D. By using obvious substitutions an
multiple-argument relations for hyperbolic functions, we a
rive at the following identity:

E
x̄

1

dx̄sech2@u1~ x̄!#5~12 x̄!24A«d
«

3E
0

Re~k!~12 x̄ ! q~y!dy

@11q~y!#2
, ~22!

whereq(y)54(312A2)e22ysin2y/(e22y1312A2)2.
For calculatingD(«) we can, as the integrand becom

exponentially small fory>Re(k)@1, take the upper bound
to infinity, such that it becomes a universal constant. Fr
there we can calculate the conductance in this limit

ḠN~T!511BA«d
T
, ~23!

where againB50.42 is a universal constant.
These results have a simple physical interpretation. Su

conductivity penetrates into the normal part up
jN5AD/2pT, whereas the rest stays normal, and so the t
h

-
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es

me

to

-
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al

voltage drops over a reduced distanced2jN . Thus the re-
sistance of the structure is reduced according to Ohm’s l
In terms of the conductance, this means

ḠN511B8
jN
d
, ~24!

which is equivalent to Eq.~23!.
Let us point out that at both ends of theN metal the local

effective diffusion constantDeff5cosh2u1D is not enhanced
~see Fig. 3! in comparison to its normal state value, becau
either the Cooper pair amplitude~at theNN8 boundary! or
the electric field~at theNSboundary! is equal to zero due to
the imposed boundary conditions. Inside theN metal the
valueDeff becomes higher due to nonequilibrium effects
the presence of superconducting correlations (hÞ0). This
effect is small at very low energies and becomes more p
nounced at«;«d .

For temperatures comparable to«d the problem was
treated numerically. The results show excellent agreem
with our analytical expressions obtained in the correspond
limits.

The numerical results~see Fig. 4! confirm that for
«d!D the universal scaling withT/«d is excellently fulfilled,
the conductance peak with the height of about 9% tak
place atT'5«d ~cf. Ref. 23!. This peak becomes smaller
we take into account the influence of finitedS keepingd
fixed ~Fig. 5!. The qualitative features, however, remain t
same.

B. Tunnel barriers

Let us now assume that a tunnel barrier, is present at
N8-N interface. If one lowers the transparency of this barr
a crossover takes place to the behavior, demonstrating m
tonically decreasing conductance withT ~Fig. 6!, which is
typical for two serialNIS tunnel junctions. Figure 6 demon
strates the crossover with increasingr5gBjN* /d. The inset
shows the Arrenius plot for the case ofgBjN* /d@1 which
illustrates the activated tunnel-like behavior.

FIG. 3. Local effective diffusion constant.
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55 1129COHERENT CHARGE TRANSPORT IN METALLIC . . .
Formally this is due to the term
r /coshu1(x50,«)cosu2(x50,«) in the denominator of Eq.~8!,
i.e., the contribution of the barrier at theN8-N interface. In
the small transparency limitr@1, expression~8! reduces to
the standard tunnel formula. The physical reason for
behavior is evident. Forr!1 the presence of a tunnel barri
is not important, the electric field penetrates inside the n
mal metal, and we come back to the picture discussed ab
for perfectly transparent boundaries in which both norm
and correlation DOS play a significant role. If, however, t
resistance of a tunnel barrier dominates over the Drude
sistance of the normal metal,r@1, the whole voltage drop is
concentrated at the barrier, nonequilibrium effects in theN
metal are absent, and therefore only the normal densit
states enters into the system conductance.

FIG. 4. Conductance in the case of transparent barriers

FIG. 5. Conductance normalized to the total length of the n
mal wire.h:5dS /d, ed51025D.
is

r-
ve
l

e-
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An additional effect is that a real gap instead of a s
pseudogap develops in the case of low transparent tu
barriers. The crossover between these two regimes is
cussed in more detail below.

Note that both types of behavior, namely, nonmonoto
and monotonically decreasing withT conductance, have
been observed in the experiments.3

IV. DENSITY OF STATES

A. Averaged density

From our approximate solutions of the preceding sectio
the densities of states can be easily calculated. Fore50 we
haveNN5NS5N(0)(2/p). At low energiese!ed there are
quadratic corrections

NN/S5N~0!F 2p 6A1/2S e

ed
D 2G ,

with

A15
64

p5 S 12
8

p2D'0.0396

and

A25
16

p4 S 11
2

p5D'0.198.

For high energies, the densities approach their nor
values, again with square-root correctionsNN

5N~0!~12B1Aed /e! and NS5B2Aed /e with B1'0.321
andB2'0.75.

Together with our numerical data~see Fig. 7!, this dem-
onstrates the presence of a soft pseudogap in the densi
states below the energyed . Similar results have also bee
discussed in Ref. 22.
-

FIG. 6. Conductance in the presence of tunneling barrie
gbjN* /d50,1,2,5,̀ ~top to bottom!.
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1130 55A. A. GOLUBOV, F. K. WILHELM, AND A. D. ZAIKIN
B. Spatial dependence and tunneling experiments

It is also interesting to investigate the spatial depende
of the DOS in the normal layer. Figure 8 show local norm
DOS NN calculated for perfectly transparent (gB50) and
nontransparent (gB5`) NN8 interfaces, respectively, at dif
ferent distances from theNSboundary:x/d5 0.1, 0.2, . . . , 1.
The difference between these two cases is quite obvi
Whereas forgB50 the normal DOS at low energies is a
ways finite, becoming larger at larger values ofx, for
gB5` a real gap in the density of states clearly shows up
all energies. Similar results have been recently discusse
Refs. 38–40. The overall behavior of the local correlat
DOS at each value ofx is similar to its average value.

It is important to emphasize that bothn(x) andh(x) are
measurable quantities and can be directly probed in exp
ments. Recently the spatial and energy dependence o
normal DOS has been studied in tunneling experiment41

The data41 show qualitative agreement with theoretical pr
dictions. The results obtained here suggest that much b
agreement can be achieved if one takes into account sm
ing of the proximity-induced gap in the normal metal due
the diffusion of normal electrons from the external circ
~which plays the role of theN8 reservoir! through theNN8
boundary. For nontransparentNN8 boundaries (gB5`) this
process can be neglected and a real gap develops in thN
metal @Fig. 8~b!#. As no such gap was found in Ref. 41, w
believe that diffusion of normal excitations into theN layer
from the external circuit should plays an important role
these experiments. In other words, the experimental situa
appears to be closer to that described by the boundary
dition gB50 with a soft pseudogap@Fig. 8~a!# than to the
casegB5` ~see, e.g., Ref. 40!. The dependence of this e
fect on the size of theN layer is depicted in Fig. 9.

Making use of the Usadel equation one can easily reco
simple analytic expressions for the density of states at a
tancex0 away from theNS boundary. For aN wire of the
total lengthd at e!ed we obtain

FIG. 7. Averaged normal and correlation DOS. Solid line, tra
parent interfaces; dashed line, strong tunneling barrier at theN8-N
interface.
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NN~e,x0!

N~0!
5a1

e2

ed
2b, ~25!

wherea andb describe the size effect,

a5sinS p

2

x0
d D ,

b5
32

p4aF12
x0
d

2cosS p

2

x0
d D G2.

Thus for x0!d the normal DOS at zero energy an
x5x0 is proportional to 1/d. Neglecting the charging effect
~which in principle can also be important41! for the differen-
tial conductance of the tunneling probe we find

RT

dI

dVU
V50

5a1
2p2

3

T2

ed
2 b. ~26!

-

FIG. 8. Local DOS for differentN-N8 boundaries.~a! Transpar-
ent and~b! non-transparent.
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55 1131COHERENT CHARGE TRANSPORT IN METALLIC . . .
These results demonstrate that the depairing effect of
N8 reservoir needs to be taken into account on an eq
footing with the pair breaking due to inelastic scattering.40,41

Let us also point out that one can also extract informat
about the correlation DOS by making two kinds of measu
ments with the same sample. Indeed, by measuring the
ductance of the system~or a part of it! with no tunnel barriers
one obtains information about the combination ofNN and
NS entering the expression for the system conductanceG,
whereas performing the tunnel experiments41 one probes
only the normal DOSNN . Then the correlation DOS can b
easily recovered.

V. ELECTRIC FIELD AND CHARGE

In this section we shall discuss only the case of perfe
transparent interfaces.

From our solutions we can calculate the electric field a
the charge by using Eq.~11! and Poisson’s equation. Th
field shows essentially nonmonotonic behavior. AtT50 we
haveE( x̄)5cos(x̄p/2)2(p/2)(x̄21)sin(x̄p/2). At high tem-
peraturesT@ed , the field is constantE51 far from the
superconductor where no correlation remains (12 x̄@je)
and it changes linearly near the superconductor:E( x̄)
5B4(12 x̄)AT/ed with B4'2.59; however, it still over-
shoots in between these regimes~see Fig. 10!.

We see that close to the superconductor the electric fi
monotonicly decreases with temperature as supercondu
ity becomes stronger there. Farther from theNS boundary
the field shows a complicated behavior overshooting the n
mal state value~the total voltage drop is fixed! in the region
where superconducting correlation starts decaying either
to thermal effects~highT) or due to the presence of a norm
reservoir~low T). The local resistivity is maximally lowered
there and the layer of polarization charges is formed~see Fig.
10!. These results emphasize again the importance of n
equilibrium effects for understanding the behavior of the s
tem conductance.

FIG. 9. Size effect on the local normal DOS. Here, the den
of states at a fixed distancex50.5 from theNSboundary is plotted
for different values of the total lengthL of theN part.
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VI. EXTENSION TO SYSTEMS CONTAINING A LOOP

Recently, the properties of proximity wires containing
loop ~see, e.g., Fig. 11! have attracted much experimental6–8

and theoretical43,46 interest.
If the wire was a real superconductor, the magnetic fl

would induce a supercurrent into the ring. As a function
F, this current has the period of thesuperconductingflux
quantumF05h/2e.

To describe these type of systems, our kinetic scheme
to be extended in several places.

We define the Green’s functions in the loop as

G5coshue ,

F5sinhuee
iwe,

we5xe22eE
0
xWd lWAW ~ lW !,

y

FIG. 10. Electrostatics within the wire.~a! Distribution of the
electrical field.~b! Distribution of the electrical charge.
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1132 55A. A. GOLUBOV, F. K. WILHELM, AND A. D. ZAIKIN
where the integration goes around the loop. In the prese
of a vector potential, we have to introduce gaug
independent derivatives

¹→¹22ieAW .

This means that instead of solving the Usadel equation w
a vector potential, we can perform a gauge transforma
and map onto a system without a magnetic field hav
phasex instead off. As the definition of the Green’s func
tions has to be unique everywhere in the loop, we h
limx→01w(x)5 limx→02w(x)(mod2p) or

lim
x→01

x~x!2 lim
x→02

x~x!5
2eF

\
~mod2p!

after gauge transformation. Here,F is the magnetic flux in
the ring.

This mapping shows that the magnetic field induce
supercurrentj e

S ~screening current! into the system. We wan
to neglect any conversion between this supercurrent and
dissipative current, and so both are conserved sepera
This allows the application of the kinetic scheme which h
been developed for systems without a phase gradient12 but
can be generalized to any system where the dissipative
rent is conserved.

The Usadel equation then reads42,21

D
d2

dx2
ue522i esinhue1

D
2 S dxe

dx D 2sinh2ue ~27!

and has to be solved together with the equation for the c
servation of the supercurrent:

d

dx
j e
S50, j e

S5usinhueu2
dxe

dx
. ~28!

In order to match the Green’s functions at branch
points we use the standard continuity condition as no tun
barriers are assumed to be there. From the Usadel equati
matrix form,

D¹~ ǧe¹ǧe!1 i e@tz ,ǧe#50,

follows, for any branching point~see also Ref. 43!,

(
i51

N

Aiǧe

]

]xi
ǧe50,

where the sum runs over matching branches,]/]xi denotes
the derivative in the direction of branchi , and Ai is the
cross-section area of branchi . Using our definitions, we ge

(
i
Ai

]ue

]xi
50, (

i
Ai

]xe

]xi
50. ~29!

These conditions are equivalent to current conservation,
so this is a ‘‘Green’s functions Kirchhoff law.’’ ForN51
Zaitsev’s boundary condition45 for a normal-vacuum bound
ary is reproduced;N52 is equivalent to the trivial statemen
that the Green’s function derivatives are continuous withi
branch.
ce
-

th
n
g

e

a

he
ly.
s

r-

n-

el
in

nd

a

For the calculation of the total transparencyD51/m, we
can use the fact that themi fulfill Ohm’s law just by their
definition:

m5
d1m11d4m41~1/d2m211/d3m3!

21

d11~1/d211/d3!
211d4

.

VII. MAGNETORESISTANCE OSCILLATIONS

Equations~27! and ~28! together with boundary condi
tions ~6! and branching conditions~29! have been solved
numerically and also analytically in some limiting cases. F
the numerical solution, the problem was mapped onto a s
pler boundary value problem without any fitting point. A
the system of equations is unstable, we used the relaxa
method45 instead of the shooting method.

For convenience, we have chosend15d25d35d4 and
A152A252A35A4, which simplifies the conditions~29!.
The effect of geometry on the conductance oscillations w
be discussed in the Appendix~see, also, Fig. 11!. The Thou-
less energy of just one branch will be labeled
ed5D/di

2 .

A. T-dependent amplitude ofh/2e oscillations

For T50, only quasiparticles with the energye50 con-
tribute to the conductance. From Eqs.~27! and ~6! we can
conclude thatue50 is a purely imaginary function, and so th
total conductance of the system is equal to its normal s
value, being independent ofF. In other words, there exist no
conductance oscillations atT50 ~cf. Ref. 37 and 46!.

At nonzero temperatures the system conductance dep
on the magnetic flux inside the loop with the period equal
the flux quantumF0 ~see Fig. 12!. With the aid of simple
analytic arguments~see the Appendix! one can conclude tha
at low temperatures the amplitude of the conductance os
lations increases asT2 ~see Fig. 13!.

In order to establish the temperature dependence of
amplitude at higherT@ed it is convenient to make use of th
fact that for electrons with sufficiently large energie
e*ed , the superconducting correlation is destroyed alrea
before they reach the loop. Thus at such energies the tr
parency of the whole structureD(e) should be insensitive to
the particular value of the flux inside the loop. In oth
words, calculating the flux-dependent part of the system c
ductance we can take into account only the contribution

FIG. 11. The system under consideration.S andN are, respec-
tively, superconducting and normal reservoirs. The wire is made
normal conducting material.
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low-energy quasiparticles which remain correlated in
loop area. E.g., for the amplitude of the conductance osc
tions we get

DG~T!5Gh/4e~T!2G0~T!

5
1

2TE0
`

de@Dh/4e~e!2D0~e!#sech2~e/2T!

'
1

2TE0
ec
de@Dh/4e~e!2D0~e!#sech2~e/2T!

'
ec
2T

DDav, ~30!

whereec is the cutoff parameter of ordered , andDDav is a
constant.

The results of our numerical analysis fully support t
simple analytic arguments presented above. The sys
transparencyD(e) is depicted in Fig. 14~a! for different val-
ues of the fluxF. The valueD(e) depends onF only at low

FIG. 12. h/2e-periodic structure of the conductance, normaliz
to the zero-field conductance.

FIG. 13. Oscillation amplitude.
e
a-

m

energies, whereas fore*ed all curves merge. In accordanc
to our simple estimate~30! this leads to a 1/T decay of the
oscillation amplitudeDG at largeT @see Figs. 14~b! and 12#.
Also theT2 behavior ofDG in the low-temperature limit is
recovered~Fig. 12!.

The 1/T behavior ofDG has also been found in recen
experiments.6,7 We would like to point out that a slow
power-law decay of the conductance due to a domina
contribution of low-energy quasiparticles just emphasizes
physical difference between kinetic and thermodynam
quantities, like the supercurrent, which decays exponenti
with increasingT.

B. Flux-dependent DOS

As was already discussed the simultaneous presenc
correlated electrons and the electric field in the normal m
causes nontrivial nonequilibrium effects, the description
which involves two densities of statesn(x) andh(x). In the

FIG. 14. Temperature dependence of tranport properties at
ferent fluxes.~a! Transparency and~b! conductance.
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presence of the normal metal loop with the magnetic fl
F in our system there appears a possibility to tune b
normal and correlation DOS by changing the value ofF. For
the system depicted in Fig. 11 these densities of states ca
easily calculated. As one might expect for the region
tween the superconductor and the loop~between pointsA
andB) this dependence is quite weak and both DOS pra
cally coincide with those calculated above for a wire witho
the loop. On the other hand, in the region between the l
and the normal reservoirN8 ~between pointsC andD) the
quantitiesn(x) andh(x) are very sensitive to the fluxF.

The normal and correlation DOS for pointC ~Fig. 11! are
presented in Fig. 15. We see that with increasing value of
magnetic flux the proximity-induced pseudogap decrea
and vanishes completely as the flux approaches the v
F0/2. For such a value ofF the proximity effect in the
region ‘‘after’’ the loop is completely destroyed, th
pseudogap is fully suppressed, and the normal DOS c
cides withN(0) at all energies. Accordingly the correlatio

FIG. 15. Flux dependence of the two densities of states in p
C of the system.~a! Normal and~b! correlations.
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DOS vanishes atF5F0/2. Thus in this case the resistanc
of the region between pointsC andD is equal to its normal
state value at allT.

These results demonstrate that ‘‘the strength’’ of the pr
imity effect in our system can be regulated by the exter
magnetic flux. This might serve as an additional experim
tal tool for investigation of proximity-induced supercondu
tivity in normal metalic structures. In particular we believ
that it would be interesting to repeat the tunneli
experiments41 in the presence of the loop with the magne
flux. Such experiments would provide a direct probe of t
dependence of the densities of states onF @Fig. 15~a!#.

VIII. SUMMARY AND OUTLOOK

We have used a microscopic kinetic analysis to desc
the transport properties of superconductor-normal m
proximity structures. In the case of transparent intermeta
boundaries we demonstrated a reentrant behavior of the
tem conductance with temperature. This behavior was att
uted to nonequilibrium effects occurring in the normal me
in the presence of proximity-induced superconductivity a
the electric field. We argued that under these conditions b
uncorrelated ~‘‘normal’’ ! and correlated~‘‘superconduct-
ing’’ ! electrons contribute to the system conductance wh
is henceforth defined by a combination of two densities
states: the normal DOSNN and the correlation DOSNS . The
latter is known to play an important role whenever the qu
siparticle distribution function in a superconductor is driv
out of equilibrium.25

We studied the energy dependence of both these qu
ties and demonstrated that if the normal metal is brough
direct contact to a superconductor on one side and a la
normal reservoirN8 on the other side, the normal DOSNN
shows a soft pseudogap at energies below the Thouless
ergyed . This effect is due to an interplay between correlat
and uncorrelated electrons penetrating into theN layer, re-
spectively, from a superconductor and a normal reservoi
a low transparency tunnel barrier is present at theNN8 in-
terface, the diffusion of normal excitations into theN metal
is suppressed, the influence of a superconductor prevails,
a real gap in the density of states develops.

Low transparent tunnel barriers also prevent the elec
field from penetration into theN layer, thus suppressing non
equilibrium effects there. We demonstrated that with the
of a proper combination of the systems with and witho
tunnel barriers one can directly probe both energy and sp
dependences of both densities of statesNN andNS in one
experiment.

We extended our analysis to proximity systems conta
ing the normal metal loop with the magnetic fluxF. We
demonstrated that the conductance of such systems as a
tion ofF oscillates with the period equal to the flux quantu
F05h/2e. The amplitude of these oscillationsDG also
shows the reentrant behavior being equal to zero atT50,
increasing asT2 atT&ed and decaying as 1/T atT*ed . We
argued that even at high temperatures,T@ed , low-energy
electrons withe&ed are only responsible for the conduc
tance oscillations leading to the power-law decay ofDG at
largeT. We pointed out that the densities of statesNN and
NS can be tuned~decreased! by applying the magnetic flux

nt
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55 1135COHERENT CHARGE TRANSPORT IN METALLIC . . .
F. In particular, if the flux in the loop is equal to the half o
the flux quantumF5F0, the proximity effect in the region
‘‘after’’ the loop is completely suppressed, the normal DO
NN5N(0) at all energies, andNS50. This effect can be also
directly probed in tunneling experiments and used for furt
studies of proximity-induced superconductivity in norm
metallic systems.

An interesting subject is the sensitivity of the abov
discussed conductance anomalies to the symmetry of the
der parameter in the superconducting terminals. Rece
the proximity effect in normal-metal–insulator–d-wave su-
perconductor (N-I -S) junction was studied in Ref. 47 for th
case of a cleanN metal. The formation of subgap boun
states near interface was shown. Although the influence
disorder inN metal has not yet been studied, it is cle
qualitatively, that the behavior of theN-metal conductance

FIG. 16. Size effects onto the conductance oscillations. Sm
d15d451.2, d25d350.6. Medium: d15d25d35d451. Large:
d15d450.8, d25d351.4. ~a! Transparency and~b! amplitude of
the conductance oscillations.
r
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-
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of
,

will be sensitive to the angle-averaged densities of states
superconductor near theNS interface. Then the bound state
would certainly influence the conductance anomalies d
cussed in the present paper, although our qualitative con
sion concerning the reentrant conductance behavior rem
unchanged. Quantitative study of these effects will be
subject of future work.
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ll: FIG. 17. Transport quantities for the system wi
A15A25A35A4 andd15d25d35d4 displaying the cross-section
effect. ~a! Transparency and~b! conductance.
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APPENDIX: A CLOSER LOOK AT THE h/2e
OSCILLATIONS

Here we present further details related to the effect
geometry on the behavior of the proximityNS systems con-
taining a mesoscopic normal metal loop with the magne
flux ~see Fig. 11!. In the three subsections we will kee
A152A252A35A4 for simplicity allowing different values
for the di but restricting ourself to symmetric loop
d25d3.

1. Low-temperature behavior

For examining the low-energy range, which is domina
for the conductance oscillations at any temperature as st
above, we proceed perturbatively from the casee50,
f50 first to finite flux, then to finitee. As the Usadel equa
tion is quadratic indx/dx, the valueu does not distinguish
between the upper and the lower branches of the ring~2 or 3
in Fig. 11!, and so we will not make a difference in th
notation.

We start frome50, F50, whereu is purely imaginary
and therefore yieldsD51. For a finite value of the flux bu
e50, we get a purely imaginary correction and therefo
Df,051. This correction is quadratic in the flux as the righ
hand side of the equation is quadratic in the phase. The fi
energy correction at zero flux is a real function and is q
dratic in e.

Thus proceeding perturbatively we find Reu}eF2, and
from the expansion

u52 i
px

2dS
1 if2gd1 ,d2 ,d3 ,d4~x!1ehd1 ,d2 ,d3 ,d4~x!

1ef2kd1 ,d2 ,d3 ,d4~x!1 i ef2l d1 ,d2 ,d3 ,d4~x!,

with dS5d11d21d4, in the leading order we get

D~e!5S 1dS
E
0

dS dx

cosh2@u1~x!# D 21

5F 1dS
E
0

dS
dxS 12

e2

2
~h1F2k!2D 1O~e4,f4!G21

5
1

dS
S 11

e2

2
~ld1 , . . . ,d4

2f2md1 , . . . ,d4
!1O~e4,f4!,

where the coefficients are defined as

l5E
0

dS
dxh2~x!, m54E

0

dS
dxh~x!k~x!.
f

c

t
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e
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-

Thus at lowT both the transparency and the conductan
depend quadratically on energy and flux. Further analy
expressions are presented in Ref. 48.

It is remarkable that ford350 due to Eq.~6! we have
sinhu50 at pointC. Therefore, the current conservation co
dition ~28! can be fulfilled for j50, x56f/2 ~different
signs refer to different branches!, and so the phase gradient
zero almost everywhere and the Usadel equation does
contain the phase any more. Thus no magnetoresistanc
cillations occur in this case.

2. Cutoff energy

Let us estimate the cutoff energyec .
Consider the casee@ed11d2

5D/(d11d2)
2. For F50

we again have, Eq.~21!, u54arctan@(ip/8)e2kRx#, and so for
smallf we can proceed perturbutavely. As the supercurr
is exponentially small, we can approximate the phase pro
as

dx

dx
5

1

2sinhk1d2
ek1~x2d12d2/2!,

and so the influence of the magnetic flux is concentra
within a distance max$jN,e ,d2% from point C ~see Fig. 11!.
However, asu is exponentially small there, the oscillation
of the transparency are exponentially suppressed, so we
estimateec<ed11d2

, which depends only on the sum of the

length, but not ond1 alone~see also Fig. 16!.
The key feature of Fig. 16~b! is the strong flux depen

dence for systems with small rings. This fact can be a
recovered from the Usadel equation: Ford2!d one esti-
matesdx/dx'F/2F0d2. As this enters quadratically and i
the end we have to integrate over the ring only once,
contribution of the ring is roughly}1/d2.

3. Cross-section effect

For the sake of simplicity, we have restricted ourselves
to now to the case 2A25A15A3. As this condition might
not be fulfilled in real experiments it is worthwhile to chec
whether the main features of our analysis survive for ot
values ofA1,2,3. In order to do that we performed calcula
tions also for the caseA15A25A3. The results are similar to
those obtained before, showing an additional dip structur
the transparency at intermediate energies@Fig. 17~a!# and a
slightly deformedG in the same energy interval@Fig. 17~b!#.
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