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We develop a detailed microscopic analysis of electron transport in normal diffusive conductors in the
presence of proximity-induced superconducting correlations. We calculated the linear conductance of the
system, the profile of the electric field, and the densities of states. In the case of transparent metallic boundaries
the temperature-dependent conductance has a nonmonotonic “reentrant” structure. We argue that this behavior
is due to nonequilibrium effects occurring in the normal metal in the presence of both superconducting
correlations and the electric field. Low transparent tunnel barriers suppress nonequilibrium effects and destroy
the reentrant behavior of the conductance. If the wire contains a loop, the conductance shows Aharonov-Bohm
oscillations with a periodb,=h/2e as a function of the magnetic fluk inside the loop. The amplitude of
these oscillations also demonstrates the reentrant behavior. It vanishe®aand decays as T/at relatively
large temperatures. The latter behavior is due to low-energy correlated electrons which penetrate deep into the
normal metal and “feel” the effect of the magnetic fldx. We point out that the density of states and thus the
“strength” of the proximity effect can be tuned by the value of the flux inside the loop. Our results are fully
consistent with recent experimental findingS0163-1827)02002-X

[. INTRODUCTION superconductivity expands into the normal metal and, conse-
guently, the “normally conducting” part of the system ef-
Recent progress in nanolithographic technology has refectively shrinks in size. This effect results in an increase of
vived interest in both experimental and theoretical investigathe conductance of a hormal metal. At sufficiently low tem-
tions of electron transport in various mesoscopic proximityperature the lengtiy becomes of the order of the size of the
systems consisting of superconducting and normal metallisormal layer and the system behavior becomes sensitive to
layers. In such systems the Cooper pair wave function of #he physical choice of the boundary condition at the edge of
superconductor penetrates into a normal metal at a distandlee normal wire opposite to that attached to a superconduc-
which increases with decreasing temperafube sufficiently ~ tor.
low temperatures this distance becomes large and the whole One possible choice of this boundary condition corre-
normal metal may acquire superconducting properties. Alsponds to the assumption that a nontransparent barrier is
though this phenomenon was already understood more thepresent at the edge of this wire. Then electrons cannot dif-
30 years ago and intensively investigated during the paduse out of the wire, the proximity-induced superconducting
decades, recently novel physical features of metallic proximeorrelation survives everywhere in the system, and a real gap
ity systems have been discovetetand studied theoretically in the quasiparticle spectrum develops in Menetal?” The
(see Refs. 9-21 and further references therein value of this gap is of the order @fg~min(A,D/L2), where
In this paper we study the influence of the proximity ef- A is the bulk superconducting gap ahds the length of the
fect on the transport properties of a diffusive conductor innormal wire.
the limit of relatively low temperatures and voltages. We Another possible situation corresponds to the presence of
will assume that this conductor is brought in direct contacta large normal reservoll’ directly attached to th&l wire
with a superconducting reservoir which serves as an effectivby means of a highly transparent contact. In this case even at
injector of Cooper pairs into a normal metal. We will show very low T the proximity-induced Cooper pair amplitude is
that if the system contains no tunnel barriers, there are twessentially nonhomogeneous in tRemetal. Indeed, close to
different physical regimes which determine the system cona superconductor this amplitude is large, whereas in the vi-
ductance in different temperature intervals. It is well knowncinity of a normal reservoir it is essentially suppressed. Thus,
that the proximity-induced superconducting correlation bestrictly speaking, the whol®&l wire cannot be characterized
tween electrons in a diffusive normal metal survives at &y the real gap in its quasiparticle spectrum. In the absence
distance of ordegy~ DIT, whereD=v¢lin /3 is the dif-  of a potential barrier betweed andN’ this gap is obviously
fusion coefficient. AsT is lowered the proximity-induced equal to zero at th& N’ interface and, as will be demon-
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strated, everywhere in the normal metal. Nevertheless, itreasing barrier transparency a crossover takes place in
turns out that the density of states in tanetal shows a soft which the effective conductance decreases monotonically
pseudogap which is again of the ordersgf. In other words, with T, characteristic of two seriaNIS' tunnel junctions
the spatially averaged normalized density of st&igée) in (S’ is now the diffusive normal conductor with the
the N wire at smalle<gq is smaller than its normal state proximity-induced gap

value Ny<<N(0) but always remains nonzero. It increases Note that both types of behavior, namely, reentrant and
with increasinge and reaches the valubly=N(0) at monotonically decreasing wifh conductance, have been ob-
g=eq. This is the key point for understanding the low- served in the experiments:® Furthermore, we would like to
temperature behavior of the conductance of our system. Agoint out that both densities of stathig(¢) andNg(g) can

the temperature increases from zero, higher and higher vahe jnvestigated in one experiment. We will come back to this
ues ofe contribute to the current, and the system conduc-poim further below.

tance, due to the increase Ny with &, increases withr. When the system contains a mesoscopic loop of a normal
This regime takes place until the temperature reaches thgea| the conductance as a function of the magnetic flux
value T~e&4 where the crossover to a high-temperature bethrough the loop shows oscillations with peridel,=h/2e

ha\?olr takgs p:lace. Nottﬁ that similar ?ehav!or.tof'thde no(rjma superconducting flux quantymAlthough the Cooper pair
metal conductance in the presence of proximity=inauced Suz ., ;v qe(and thus the supercurreri the ring is exponen-

perconductivity has been recently found by Nazarov an ially small atT> ¢4, the amplitude of these oscillations de-

Stoof? ) g ; )
An interesting feature of the system without tunnel barri-c&YS orjly as1/T. Thls.agam |IIu§trat.es an important differ-
ence in the behavior of kinetic(conductance and

ers is that aff=0 its conductancexactly coincides with . - .
that of a normal metal with no proximity effects. This result thérmodynamidsupercurrentquantities. Below we will ar-

has been first obtained by Artemenko, Volkov, and Zaftsey 9ue that in the systems considered here even at [Brgey

for the case of a normal-superconducting constriction. Althe behavior of the first quantity is dominated by correlated
though this result has already been around for many year{ow-energy electrons witke= e4 penetrating far into the nor-
the physical meaning of this result, if any, still needs to bemal metal whereas the only important contribution of elec-
understood. At first sight the linear conductance of the systrons withe~T is to the second one. Again the presence of
tem atT=0 should be smaller than in the normal state be_the electric field inside thdl metal is Crucially important for
cause of the presence of th:Beungap in the normal den- this effect. At lowT the oscillation amplitude again shows
sity of stategDOS) Ny, at low energies. Why is this not the the reentrant behavior and vanishes in the lifit-0 as
case? T2. Clear experimental evidence for alldecay of the con-

In order to answer this question we should recall the well-ductance oscillations has been recently reported in Ref. 6.
known fact that in the presence of nonequilibrium effects the Finally we point out that by making use of the geometry
current flowing in a superconductor depends not only on thavith a metallic loop one can easily tune the densities of
normal DOS but is characterized by a set of generalizegtates of the system by applying a magnetic fibxinside
DOSZ Our problem is just a particular example of a non- this loop. We will show that, e.g., fob =®/2 the proxim-
equilibrium superconductor: On the one hand, superconducity effect in the normal region “after” the loop is completely
ing correlations penetrate into the normal metal and the Cocsuppressed and the normal D®&(e)=N(0) there. This
per pair amplitude is nonzero there; on the other hand, in theffect can be investigated experimentally and used for further
absence of low transparent tunnel barriers the electric fielgtudies of proximity-induced superconductivity in normal
also penetrates into tHé metal and drives the quasiparticle metallic structures.
distribution function out of equilibrium. We will argue that ~ The structure of our paper is as follows. In Sec. Il we
in this situation one of the generalized DQi&low we de-  briefly describe the general kinetic approach based on quasi-
fine it asNg(e)], which is nonzero in thé&\l layer due to the classical Green functions in the Keldysh technique and de-
presence of proximity-induced superconducting correlationéine the physical quantities of interest. Then a detailed analy-
at low energies, plays an important role and also contributesis of these quantitiebconductance(Sec. 1), DOS (Sec.
to the system conductance. In other words, in the presence 6¥), and electric fieldSec. ] will be presented. Sections
the electric field inside the systetwth uncorrelated and VI and Vil are devoted to the extension of our analysis to the
correlated electrons contribute to a dissipative currefitis ~ pProximity systems containing mesoscopic normal metal
is the reason why in the presence of proximity-induced suloops with a magnetic flux. The main results of the present
perconductivity the system conductance is never smaller thapaper are summarized in Sec. VIII. Further details related to
its normal state value although the normal DOSdifferent geometric realizations of the proximity systems
Ny(g)<N(0) at low energie&® with loops are presented in the Appendix.

We would like to emphasize that the situation is entirely
different in the presence of low transparent tunnel barriers.

Provided their resistances are much larger than that of the Il. KINETIC ANALYSIS

N metal the whole voltage drop takes place at these barriers
and the electric field does not penetrate into khéayer. In

this case only uncorrelated electrons contribute to the dissi- Let us consider a quasi-one-dimensional normal conduc-
pative current and therefore only the normal DS mat-  tor of length 2. with a superconducting strip of thickness
ters. As a result the temperature dependence of the systedd, attached to a normal metal on top of it and two normal
conductance changes. We will demonstrate that with dereservoirs attached to its en¢isee Fig. 1L The lengthL is

A. General formalism
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vDS (= . v
x=0 l=—— deSH 6,Ga,G1K, 2
| — o0
N* N N N° ¢(x)=desTrQK(x,s)zdesft(x,s)ve(x), 3)
0 0
dn 2ds dn

wherev is the the density of states,(x) = Re[g?(x)], and
= = S is the cross-sectional area of theconductor.

2L Being expressed in terms of the functigi{e,x) the
equation®3! for the Green functions and the distribution
function for theN metal take a particularly simple form

assumed to be much larger than the elastic mean free path

limp Ut much shorter than the inelastic one. This geometrical D26+ 2iesinhg=0, (4)
realization has a direct relation to that investigated in the

experiments:>® Two large normal reservoirdl’ are as-

sumed to be in thermodynamic equilibrium at the potentials a,[ D(coslto;)d,f]=0, 5)

V and 0, respectively. In contrast to the case of a ballistic )
constrictio”?® the potential drop within the system is dis- X is the coordinate along th¢ conductor. Here we neglected

tributed between the interfaces and the conductor itself. ThEhe processes of inelastic relaxation and put the pair potential
general approach to calculate the conductance of these strdé-the normal metal equal to zetby=0 assuming the ab-
tures was developed in Refs. 9, 10, and 12. In what follows$ence of electron-electron interactions there.
we shall apply this method to analyze the temperature depen- Before we come to a detailed solution of the problem let
dence of theN'S proximity structure of Fig. 1. us point out that the conclusion about the anomalous behav-
Such an experimental realization allows one to prepare ¥ of the system conductance can be reached already from
structure without effective tunnel barriers in the direction ofthe form of Eq.(5). Indeed it is quite clear from E5) that
the current flow. Even with “perfect” samples in a usual the effective diffusion coefficienDgi=Dcosld, increases
sandwich geometry, a natural barrier shows up due to th# the N regions with proximity-induced superconductivity
inevitable mismatch of Fermi velocities between differentand, therefore, the electric field is partially expelled from
materials. This could well be one of the reasons why in prethese regions. This energy-dependent field modulation is
vious experiments with sandwichlike structures the reentrargontrolled by the solution fop(e,x) and is directly related
behavior of the conductance was not deteéfed. to the physical origin of the anomalous temperature depen-
The electron transport through the metallic system can béence of the system conductance discussed below.

described by the equations for a matrix of quasiclassical Equations(4) and (5) should be supplemented by the
Green function€Sin the contacf?3! boundary conditions at the interfaces of the normal metal

N. Assuming that the anomalous Green function of the large
&R &K normal reservoird’ is equal to zero froff"1°we obtain

é = 0 e ’ (1)

FIG. 1. The experimental system under consideration.

& vy 0= = sinh,

where G*, GR, and GK are, respectively, the impurity-
averaged advanced, retarded, and Keldysh Green functions. &\ vscoshy,d,f = = cosh,(f,—f(x=0,2)), (6)
These functions are in turn matrices in the Nambu space:
. . where yg=R,/p\&Y is the interface resistance parameter,
GR=a9%+ig,fF,  Gh=—(GF)* R, is the specific resistance of the interface betweenNthe
and conductor and thé&\’ reservoirs,py is the resistivity of the
N metal, andéy, = VDn/27 T, is the temperature-independent
GK=GRF—iGA characteristic length scale iN [note that the coherence
. length inN, &(T)=yD\/2%T, is T dependent
Here the distribution function f=f,+a,f;, where In general we should also fix the boundary condition at
fi=tanhg/2T) andf; describes deviation from equilibrium. the interface between thd metal and the superconductor.
Taking advantage of the normalization condition for the nor-For the case of perfect transparency of this interface and for
mal and the anomalous Green fUﬂCUO@?XZ—_(fR)Z: 1it  atypical thickness of the normal layex,~ /S, Cooper pairs
is convenient to parametrizg®=costy, fR=sinhg, where easily penetrate into it due to the proximity effect and the
6=6,+i0, is a complex function. Deep in the bulk super- Green functions of th&l metal at relatively low energies for
conductor it is equal tds=1/2IN(A+e)/(A—g)]-im2 for  g<x<d+2d, are equal to those of a bulk superconductor
e<A and 5= (1/2)In(e+A)/(e=A))/2 for e>A [here and 9= g_ (the influence of finite transparency of thS contact
below we omit the indiceR(A)]. will be discussed belo|n this sense the region of a normal
The current| and the electrostatic potentigh are ex-  metal situated directly under the superconductor can be also
pressed througls as treated as a piece of a supercondu@brand the solution of
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Egs.(4) and(5) needs to be found only forOx<d (without B. Physical quantities of interest
loss of generality we will stick to a symmetric configura-  proceeding along the same lines as in Ref. 12 we arrive at
tion). _the final expression for the current,

Cooper pairs penetrate into the normal conductor also in
the case of an imperfectly transpar®b interface. As dem-
onstrated below, the energy gap is induced in $haegion - tan,.(8+ev _tam.(s_ev)
in this case. As a result, for a sufficiently lohgwire, which 2RJo 2T 2T
is only considered here, the presence of the barrier at the
NS interface will not influence the results derived for the where D(e) defines the effective transparency of the
system conductance. systemt?

[’

de

D(e), (7)

1+r
N r/[coshd;(x=0,e)coh,(x=0,e)]+ (1/L)f5dxsecﬁ01(x,s) '

D(s) (8)

whereR=R,+ Ry, r=Ry/Ry=17ygéN/L, andRy is the re-  quantity for understanding the effects discussed here has
sistance of théN metal. been already pointed out in the Introduction. We will discuss
Let us consider the case of a sufficiently long normalthe features of these local densities as well as the averaged

conductord?>D/A. Then at low temperaturéé<A the in-  ones:

teresting energy interval is restricted4e<A. For such val-

ues ofe the contribution of thes’ part of the nqrmal con- NN(E):J dxv (%), NS(E)ZJ dx7.(%).
ductor shows no structure and can be easily taken into

account with the aid of the obvious relations As already mentioned the “correlation DOS# belongs

L d to the set of generalized densities of states familiar from the
f dxseci?rel(x,s)=f dxsecR 6y (x,e)+dssech b, standard theory of nonequilibrium superconductidiy? It
0 0 reflects the presence of superconducting correlations at low
©) energies. E.g., in a BCS superconductor this function reads
and sechds = (1—e%/A?) (no barrier at theN'S interface
or sechs,=(1—e?/AZ,) (the barrier is present at tHeS
interfacg. Due to this, we will discuss only the properties of
the N part (0<x<d). For the sake of completeness we will
also demonstrate the effect of finith at the end of our
calculation.
For the differential conductance of th¢ part O<x<d
normalized to its normaf‘nonproximity” ) value in the zero
bias limit Eq.(7) yields

_AB(A—¢)

n A2—62

In our case this function is not only energy, but also space
dependent due to the fact that the proximity-induced super-
conducting correlation decays inside the normal metal. But
its physical meaning remains the same as in standard non-
equilibrium superconductivity theofy: 5 plays a role when-
— [(RdI 1 (= ever the quasiparticle distribution function of a superconduc-
N:(d_v) :ﬁJ’O deD(e)secti(e/2T). (100  tor is driven out of equilibrium. This happens, e.g., in the
v=0 well-known problems of charge relaxatitdnand charge
Analogously the normalized zero-bias electrostatic potentiaimbalance® It happens also here due to a simultaneous pres-
distribution reads ence of the electric field and the proximity-induced super-
conducting correlation in the normal metal.

im0
bo(x) =limy_o Vv C. Influence of finite barrier transparency
1 at the top NS interface
= mf deD(e) v, (x)sech(e/2T) Let us consider the effect of a tunnel barrier at th&
0 interface in more detail.

d Under the assumption that tie wire thickness is small
Xf dx’sech[ 6,(x")]. (1)  wy<¢£( the equation ford in the region G<x=<2dg under-
X neath the superconducting terminal can be derived by the

The normal density of states is given by the normalmethOOI of Ref. 36:

Green’s function via the standard relation(x) D20+ 2i5sinhd+ Acosi=0 12
=N(0)Rd g.(x)] which enters into the conductance in the X ¢ ~ ' (12
form cosK6,=(Reg)?+ (Imf)? together with a “correlation where the effective order parametks siné,/yh° the effec-
DOS” 7.(x)=N(0)Im[f(x)]. The importance of the latter tive energye=e+cosfs/vy> and yj>=(Ry/pn) (Wn/E52)
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is the interface transparency parameter. Herés the solu- 1.0 —
tion in S which is set equal to the bulk value tal{iA/e), a
good approximation for thiN film, wy<¢&y . With these
substitutions Eq(12) in theN film has a form similar to that
in a superconductor. This equation is valid for
YE=>(wy/£X)?, i.e., for sufficiently small transparency of 06} ]
the NS interface:(D)<Iy/wy.

As follows from Eq.(12), superconducting properties of
the N layer are described in terms of the energy-dependent
coherence length

08} -

Ag/A

0.4} -

0.2F i
En(€)={AD\/2 y5°— €2— 2i yg tecosfs| VA2, (13

which determines an exponential decayNaf(x,e) with x . 0.0] Tz 3 4 &

The expression fogy(e) has a pole at the gap energy NS
€=Ag4n, Which signals the decay of quasiparticles entering
N at e<Agy. At high energye> wTc/yg® the well-known FIG. 2. Reduced gap on the normal side of M boundary in
resultéy(e) = (7D y/2€)*? is reproduced, whereas at Iow en- e presence of barriers.
ergies e<7T./yy> one obtainséy=(ADyyh 27 T)Y2
Thus the effective length scale M increases with the de- Agn> &4 is satisfied, the presence of the barrier at M@

crease of th&N interface transparency. interface does not influence our results for the system con-
It is straightforward to calculate the gap enemjyy as-  ductance.

suming the “rigid” boundary conditionsds=tan (iA/g)
either from the pole o&y(e€) or, making use of the solution
¢9=tanh‘l[sinhesl(cosms—is;%‘%] and calculating the quasi-
particle density of stately(e)=Re(cosl#). Subsituting the A. Perfectly transparent boundaries
expression ford, into this solution one arrives at the equa-
tion for the energy gap

Ill. CONDUCTANCE

The analysis of the problem can be significantly simpli-
fied in the case of perfectly transparent interfacgg=0).
In this case the boundary conditions are

t3+2Ct?+(C2—1)t—2C=0, (14)
NS 6(0)=0, (15)
Wheret=\/1—(AgN/A)2 and C==T./yg"A. The general
solution is rather cumbersome; therefore here we present 0(d)= 65, (16)

only its asymptotic forms.

The gap is given by g\ /A = 1—2(y’g‘SA/7rTC)2 forlarge  for the contact to the normal and the superconducting reser-
transparency of the\S interface, yESA/ 7T.<1, and by voirs, respectively. The effective transparency of khg@art
A’%g:A/(lJr Yy8°A/wT)  for small  transparency, then reads
vg Al7mT>1. In the latter caséthe McMillan limit), the 1 .
expression for the gap may be written as _[ T f
AgNszC/ygszhuFMD)MwN. The gap originates from D(e) (d desecﬁ[al(x)]) ' (17
the finite average lifetimey=2wy/(D)vgy for quasiparti-
cles in theN layer with respect to Andreev scattering from  As was already pointed out for relatively long normal
S, since a contribution of gapless quasiparticle trajectoriegonductors and at low only the energies <A give an
parallel to theNS interface is eliminated in the diffusive important contribution to the conductance. In this case the
regime. The dependence Af;\ on ygsin the whole range typical energy scale is defined by the Thouless energy
of transparencies is presented in Fig. 2. Note that under adzD/d2<A,AgN. For these energies we can set
substitutionwy = 7/kg the above expressions reproduce thefs= —im/2. Let us first putT=0. Then the thermal distri-
result of Ref. 33 for a gap induced in a two-dimensionalbution factor secks/2T)/(2T) reduces to & function and
electron gas in contact with a superconductor. We also notere have
that in the case of two superconducting terminals attached to

N the gap aquires a phase factigy— cos@/2)A,y, ¢ be- Gn(T=0)=D(0); (18
ing the phase difference between the terminals. _ _ .
At the subgap energies<A 4y the solution inN is 6= i.e., we only need the solution of E¢4) with boundary

1/2IN(Agn+e)/(Agy—e)]—im/2 whereas above the gap, at conditions(15) at e=0, which is t9=.—i(77'/2)x. This does
e>Agn, 0=1/2INM(e+Ag)/(e—Agn)], in complete analogy not depend orD, and so the corrgl_atlons are destroyed by the
with the solutions in a bulk superconductor but with reducednfluence of the boundary conditions but not by thermal ex-
gap. Therefore the results for conductanceNoflepend on  citation or by impurity scattering. From here, we can calcu-
the relation between the gap, and the Thouless energy late the conductance

eq=D/d?. Since for the case of a sufficiently long wire, _

which is the only one considered in this paper, the condition Gn(T=0)=1; (19
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i.e., atT=0 the system conductance exactly coincides with

its normal state valué&f. Refs. 24 and 23 This result, how- ,
ever, by no means implies the destruction of the proximity- Eﬂg.id
induced superconductivity in thid layer. Later on, we will 13 1 ceeee e=10% AP
demonstrate that the DOS and the electrical field are com- —_— e=1018: / \\ H }
pletely different from their values in the normal state andin | ——-- e=10, / Vi
fact only due to the additional contribution of correlated / Vot
. 1.2 ¢ / s
electrons the system conductance does not fall below its nor- / .
mal state value. S / i |‘
In the casel <e4 we can calculat® perturbatively. From o // ,’ Vi
Da20=— 2iesinhdp(X) and Eq.(15) we get 1y / iy
// 1 \\ ‘.
8 & _ m__ L / \
0=— — —[xX—=sin(xm/2)]—i=X. 2o "j;‘/ ~~~~~~ \!
m £4 2 1.0
Keeping only leading order terms kley, we get
. T2 0.9 : : : :
on=1+A—, (20) 00 02 04 06 08 10
Ed x/d
where FIG. 3. Local effective diffusion constant.
64 (5 8 .
= F(6_ —|~0.049 voltage drops over a reduced distartte &y . Thus the re-
a a

sistance of the structure is reduced according to Ohm’s law.
is a universal constant. This means that for low temperature®§ terms of the conductance, this means

Gn(T) grows quadratically on the scale efy; and ap- o £
proaches the crossover towards the high-temperature regime Gy=1+B’ _N, (24)
discussed below. d

t _blnt_the “1r‘mtthT>| €4 (where we still havteT<:A)ﬂ,1th(tahcon- ! which is equivalent to Eq23).

ribution of the low-eneérgy components 1o the thermally | o yg point out that at both ends of thiemetal the local

weighted integral foiG(T) is «1/T as we will see below  effactive diffusion constanDes=cosi?¢,D is not enhanced
and can therefore be neglected. We only have to take int@see Fig. 3in comparison to its normal state value, because
account the solutions of E¢4) for energiese> €q. Itis well  gither the Cooper pair amplitudat the NN’ boundary or
known (see, e.g., Ref. 32 that for this energy range the he glectric fieldat theN S boundary is equal to zero due to
solution of Eq.(4) together with Eq(15) reads the imposed boundary conditions. Inside tNemetal the
i value D becomes higher due to nonequilibrium effects in
tanf a(x_)/4]:tan|‘(§) ek(x=1) (21)  the presence of superconducting correlations:(Q). This
effect is small at very low energies and becomes more pro-

where k=d\/— 2ie/D. By using obvious substitutions and hounced at~gq.
multiple-argument relations for hyperbolic functions, we ar- For temperatures comparable tg the problem was

rive at the following identity: treated numerically. The results show excellent agreement
with our analytical expressions obtained in the corresponding
1__ — — £q limits.
f7dxsecr°r[ 61(x)]=(1-x)—4 . The numerical resultysee Fig. 4 confirm that for
£4<<A the universal scaling witfi/ e 4 is excellently fulfilled,
Rek)(1-x) q(y)dy the conductance peak with the height of about 9% taking
X f a2 (22 place atT~5e4 (cf. Ref. 23. This peak becomes smaller if
0 [1+a(y)] : : = .
we take into account the influence of finitey keepingd
whereq(y) =4(3+22)e Vsirfyl(e 2 +3+22)2. fixed (Fig. 5. The qualitative features, however, remain the

For calculatingD (&) we can, as the integrand becomessame.
exponentially small foy=Re(k)>1, take the upper bound
to infinity, such that it becomes a universal constant. From

B. Tunnel barriers
there we can calculate the conductance in this limit

Let us now assume that a tunnel barrier, is present at the
. e N’-N interface. If one lowers the transparency of this barrier
Gn(T)=1+B \/; (23 a crossover takes place to the behavior, demonstrating mono-
tonically decreasing conductance with(Fig. 6), which is
where agairB=0.42 is a universal constant. typical for two serialN 1S tunnel junctions. Figure 6 demon-
These results have a simple physical interpretation. Supestrates the crossover with increasing ygéy/d. The inset
conductivity penetrates into the normal part up toshows the Arrenius plot for the case gg&y/d>1 which
én=+D/27T, whereas the rest stays normal, and so the totallustrates the activated tunnel-like behavior.
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FIG. 6. Conductance in the presence of tunneling barriers.

FIG. 4. Conductance in the case of transparent barriers. Yot /d=0,1,2,5 (top to bottom,

An additional effect is that a real gap instead of a soft
pseudogap develops in the case of low transparent tunnel

i.e., the contribution of the barrier at ti'-N interface. In  barriers. The crossover between these two regimes is dis-

the small transparency limit>1, expression(8) reduces to cussed in more detail below.
the standard tunnel formula. The physical reason for this Note that both types of behavior, namely, nonmonotonic

behavior is evident. Far<1 the presence of a tunnel barrier and monotonically decreasing with conductance, have
is not important, the electric field penetrates inside the norbeen observed in the experimetits.

mal metal, and we come back to the picture discussed above
for perfectly transparent boundaries in which both normal

and correlation DOS play a significant role. If, however, the )
resistance of a tunnel barrier dominates over the Drude re- A. Averaged density
sistance of the normal metai>1, the whole voltage drop is From our approximate solutions of the preceding sections,

concentrated at the barrier, nonequilibrium effects in khe the densities of states can be easily calculated.eFdd we
metal are absent, and therefore only the normal density diaveNy=Ng=N(0)(2/7). At low energiese<ey there are

states enters into the system conductance. quadratic corrections

Formally this is due to the term
r/cosh,(x=0,e)cosh,(x=0,¢) in the denominator of Ed8),

IV. DENSITY OF STATES

2 €\?
Nn/s= N(O)[; iAl/z( f_d> },

0.10 |
0.08 LI with
64
A;=—|1——|~0.0396
0.06 || T
g and
w
0.04 16
=—| 1+ —|~0.198.
A, o 1 5 0.198
0.02 For high energies, the densities approach their normal
values, again with  square-root correctionsNy
r\ :N(O)(l_Bl\/Ed/E) and NS:Bz\/Gd/E with 81%0321
andB,~0.75.

0.00 : : : ‘
0x10™ 2x10™ 4x10™ 6x10™ 8x10™ 1x10°
T/A

Together with our numerical dataee Fig. 7, this dem-
onstrates the presence of a soft pseudogap in the density of

FIG. 5. Conductance normalized to the total length of the nor-States below the energyy. Similar results have also been

mal wire. 7: =dg/d, eg=10"°A.

discussed in Ref. 22.
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FIG. 7. Averaged normal and correlation DOS. Solid line, trans-
parent interfaces; dashed line, strong tunneling barrier aNthN
interface.

B. Spatial dependence and tunneling experiments

It is also interesting to investigate the spatial dependence
of the DOS in the normal layer. Figure 8 show local normal
DOS Ny calculated for perfectly transparenyd=0) and
nontransparent¥z=) NN’ interfaces, respectively, at dif-
ferent distances from th¢Sboundaryx/d= 0.1,0.2..., 1.

The difference between these two cases is quite obvious:
Whereas foryg=0 the normal DOS at low energies is al-
ways finite, becoming larger at larger values xf for
yg=0° a real gap in the density of states clearly shows up at
all energies. Similar results have been recently discussed in
Refs. 38-40. The overall behavior of the local correlation
DOS at each value of is similar to its average value. (b) eley

It is important to emphasize that botlfx) and n(x) are
measurable quantities and can be directly probed in experi- FIG. 8. Local DOS for differenN-N’ boundaries(a) Transpar-
ments. Recently the spatial and energy dependence of theat and(b) non-transparent.
normal DOS has been studied in tunneling experim&nts.

The dat4' show qualitative agreement with theoretical pre- Nn(€,Xo) €
dictions. The results obtained here suggest that much better W: at ?,3, (25)
agreement can be achieved if one takes into account smear- d

ing of the proximity-induced gap in the normal metal due to\\here o and 8 describe the size effect,

the diffusion of normal electrons from the external circuit

(which plays the role of thé\’ reservoij through theNN’ X

boundary. For nontranspareldfN’ boundaries {g==) this a=sin(— —°>,

process can be neglected and a real gap develops iN the 2d

metal[Fig. 8b)]. As no such gap was found in Ref. 41, we

believe that diffusion of normal excitations into thelayer 32
from the external circuit should plays an important role in B= i
these experiments. In other words, the experimental situation

appears to be closer to that described by the boundary con- Thus for xo<d the normal DOS at zero energy and
dition yg=0 with a soft pseudogaffig. 8] than to the  y_y is proportional to 1d. Neglecting the charging effects
caseyg== (see, e.g., Ref. 40The dependence of this ef- (ynich in principle can also be importdf for the differen-

N(e,x)

2

2

d 2d

XO 7TXO
1- ——cos(

fect on_the size of th&\ layer is depicted in Fig. 9. _ tial conductance of the tunneling probe we find
Making use of the Usadel equation one can easily recover
simple analytic expressions for the density of states at a dis- di 2.2 T2

tancex, away from theN S boundary. For a\ wire of the
total lengthd at e<e4 we obtain

RTd—szoza"l‘T?d'ﬂ. (26)
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------ Tle=10.
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These results demonstrate that the depairing effect of the e Tle=1000. |
N’ reservoir needs to be taken into account on an equal ’ i
footing with the pair breaking due to inelastic scatteftfg! 5 i
Let us also point out that one can also extract information 8 ,\f!
; : : T S— e S0
about the correlation DOS by making two kinds of measure- £ 000 sl W
ments with the same sample. Indeed, by measuring the con- o ‘ :
ductance of the systefor a part of i} with no tunnel barriers a R A
one obtains information about the combinationMy§ and i
Ng entering the expression for the system conducta@¢ce ‘.E
whereas performing the tunnel experiméhtsne probes i
only the normal DOy . Then the correlation DOS can be ":
easily recovered. i
0200 02 04 o6 08 1|lo
V. ELECTRIC FIELD AND CHARGE ) ' ' ' x/d ' ) )

In this section we shall discuss only the case of perfectly
transparent interfaces. N

From our solutions we can calculate the electric field andf'ectrical field.(b)
the charge by using Eq11) and Poisson’s equation. The
field shows essentially nonmonotonic behavior. TAt0 we
haveE(x) = coskm/2) — (7/2) (x— 1) sinfm/2) . At high tem-
peraturesT> ¢4, the field is constanE=1 far from the
superconductor where no correlation remains- gk &,)
and it changes linearly near the superconductB(x)

FIG. 10. Electrostatics within the wiréa) Distribution of the
Distribution of the electrical charge.

VI. EXTENSION TO SYSTEMS CONTAINING A LOOP

Recently, the properties of proximity wires containing a
loop (see, e.g., Fig. Dlhave attracted much experimefital
and theoretic4P*®interest.

Che If the wire was a real superconductor, the magnetic flux
=B4(1-Xx)VT/eq with B,~2.59; however, it still over- would induce a supercurrent into the ring. As a function of
shoots in between these reginsse Fig. 1D @, this current has the period of treuperconductinglux

We see that close to the superconductor the electric fielquantum®,=h/2e.
monotonicly decreases with temperature as superconductiv- To describe these type of systems, our kinetic scheme has
ity becomes stronger there. Farther from ti& boundary to be extended in several places.
the field shows a complicated behavior overshooting the nor- We define the Green’s functions in the loop as
mal state valudthe total voltage drop is fixgdn the region

where superconducting correlation starts decaying either due G=coshi,,
to thermal effectghigh T) or due to the presence of a normal
reservoir(low T). The local resistivity is maximally lowered F =sinhu_ e ¢«

there and the layer of polarization charges is forrsst Fig.
10). These results emphasize again the importance of non-
equilibrium effects for understanding the behavior of the sys-

Yo—26 J RdTA(T),
tem conductance. 0
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where the integration goes around the loop. In the presence
of a vector potential, we have to introduce gauge-
independent derivatives

V—V-2ieA.

This means that instead of solving the Usadel equation with
a vector potential, we can perform a gauge transformation
and map onto a system without a magnetic field having
phasey instead of¢. As the definition of the Green'’s func-
tions has to be unique everywhere in the loop, we have FIG. 11. The system under considerati@andN are, respec-
limy_ o+ @(X) =limy_,o— ¢(x)(mod2m) or tively, superconducting and normal reservoirs. The wire is made of
normal conducting material.
2ed
lim x(xX)— lim x(x)= —(m0d277) .
X Ot X 0— For the calculation of the total transpareri@y- 1/m, we

) ) ) ~can use the fact that ths; fulfill Ohm’s law just by their
after gauge transformation. Her®, is the magnetic flux in  gefinition:

the ring.
This mapping shows that the magnetic field induces a 1
supercurrenj® (screening currehinto the system. We want - damy -+ dgmy + (1/d,m, + 1/d3ms)
to neglect any conversion between this supercurrent and the d; +(1/d,+ 1/d3) ~*+d,
dissipative current, and so both are conserved seperately.
This allows the application of the kinetic scheme which has
been developed for systems without a phase gradient Vil. MAGNETORESISTANCE OSCILLATIONS
can be generalized to any system where the dissipative cur- Equations(27) and (28) together with boundary condi-
rent is conserved. _ tions (6) and branching condition§29) have been solved
The Usadel equation then re&@é' numerically and also analytically in some limiting cases. For
42 Dldy |2 the numerical solution, the problt_am was mapp_ed onto a sim-
D-—5u, = —2iesinhu + — ﬁ) sinh2u, 27) pler boundary value_ prob_lem without any fitting point. As_
dx 2\ dx the system of equations is unstable, we used the relaxation
method?® instead of the shooting method.
For convenience, we have chosdp=d,=d;=d, and
Ai1=2A,=2A;=A,, which simplifies the condition$29).
The effect of geometry on the conductance oscillations will

and has to be solved together with the equation for the con
servation of the supercurrent:

d . > )
Je =|sinhu|? Xf_ (28) be discussed in the Appendigee, also, Fig. )1 The Thou-
dx d less energy of just one branch will be labeled as
— 2
In order to match the Green’s functions at branchinged D/d?.
points we use the standard continuity condition as no tunnel
barriers are assumed to be there. From the Usadel equation in A. T-dependent amplitude ofh/2e oscillations
matrix form, For T=0, only quasiparticles with the energy=0 con-
DV(§.Vg.)+ie 7,,8.]=0, tribute to the conductance. I.:rom. Edqg7) anq (6) we can
conclude thati__ is a purely imaginary function, and so the
follows, for any branching pointsee also Ref. 43 total conductance of the system is equal to its normal state

N value, being independent df. In other words, there exist no
. 0. conductance oscillations at=0 (cf. Ref. 37 and 46
Z i9e (9_9 =0, At nonzero temperatures the system conductance depends
- on the magnetic flux inside the loop with the period equal to
where the sum runs over matching branch#gy; denotes the flux quantumd, (see Fig. 12 With the aid of simple
the derivative in the direction of brandh and A; is the  analytic argumentésee the Appendixone can conclude that
cross-section area of branchUsing our definitions, we get at low temperatures the amplitude of the conductance oscil-
lations increases @& (see Fig. 1B
du, IX e In order to establish the temperature dependence of this
z i(g_xi =0, E i(y_xi =0. (29 amplitude at higheT> ¢, it is convenient to make use of the
fact that for electrons with sufficiently large energies,
These conditions are equivalent to current conservation, ane= €4, the superconducting correlation is destroyed already
so this is a “Green’s functions Kirchhoff law.” FoON=1 before they reach the loop. Thus at such energies the trans-
Zaitsev's boundary conditidnfor a normal-vacuum bound- parency of the whole structui2(e) should be insensitive to
ary is reproduced\ =2 is equivalent to the trivial statement the particular value of the flux inside the loop. In other
that the Green’s function derivatives are continuous within avords, calculating the flux-dependent part of the system con-
branch. ductance we can take into account only the contribution of
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FIG. 12. h/2e-periodic structure of the conductance, normalized 0.10
to the zero-field conductance.
— =0
low-energy quasiparticles which remain correlated in the 0.08 b g:ﬂ;g:
loop area. E.g., for the amplitude of the conductance oscilla- e
tions we get
0.06 1
AG(T)=Gryse(T) = Go(T) o
15
1 ) <
=57 f . de[ Dpjsel €) — Do(€)]sech(e/2T) 0.04
1 €c
~o7 . de[Dye(€) — Dol €)]sech(e/2T) 0.02
“c AD
T oTA av 0.00 :
2T 0 2 4 6 8 10
wheree, is the cutoff parameter of ordey, andAD,, is a (o) Te,

constant.
The results of our numerical analysis fully support the FIG. 14. Temperature dependence of tranport properties at dif-
simple analytic arguments presented above. The systeffirent fluxes(a) Transparency anth) conductance.

transparency) (¢€) is depicted in Fig. 1&) for different val-
ues of the flux®. The valueD(€) depends o only at low

AG/G

10

-1

—— Numerical curve

10°

FIG. 13. Oscillation amplitude.

10

energies, whereas fa= €4 all curves merge. In accordance
to our simple estimat€30) this leads to a I decay of the
oscillation amplitudeA G at largeT [see Figs. 1) and 13.
Also the T? behavior ofAG in the low-temperature limit is
recoveredFig. 12.

The 1T behavior ofAG has also been found in recent
experiment$’ We would like to point out that a slow
power-law decay of the conductance due to a dominating
contribution of low-energy quasiparticles just emphasizes the
physical difference between kinetic and thermodynamic
quantities, like the supercurrent, which decays exponentially
with increasingT.

B. Flux-dependent DOS

As was already discussed the simultaneous presence of
correlated electrons and the electric field in the normal metal
causes nontrivial nonequilibrium effects, the description of
which involves two densities of stategx) and z(x). In the
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DOS vanishes a®=®,/2. Thus in this case the resistance
of the region between points andD is equal to its normal
state value at afT.

These results demonstrate that “the strength” of the prox-
imity effect in our system can be regulated by the external
See magnetic flux. This might serve as an additional experimen-
Iy tal tool for investigation of proximity-induced superconduc-
tivity in normal metalic structures. In particular we believe

-
o

= /
z ; — @=0 ) . . .
% - ®=0.20,/2 that it would be interesting to repeat the tunneling
z ©=0.40,/2 experiment$! in the presence of the loop with the magnetic
-—-- ©=0.60,2 flux. Such experiments would provide a direct probe of the
- ©=0.80,2 dependence of the densities of statesIofiFig. 15a)].
VIIl. SUMMARY AND OUTLOOK
We have used a microscopic kinetic analysis to describe
0.8 0 2 4 the transport properties of superconductor-normal metal
(@ ele proximity structures. In the case of transparent intermetallic
d

boundaries we demonstrated a reentrant behavior of the sys-
tem conductance with temperature. This behavior was attrib-
uted to nonequilibrium effects occurring in the normal metal

is henceforth defined by a combination of two densities of
states: the normal DOSy and the correlation DOSg. The
latter is known to play an important role whenever the qua-
siparticle distribution function in a superconductor is driven
out of equilibrium?®

We studied the energy dependence of both these quanti-
ties and demonstrated that if the normal metal is brought in
direct contact to a superconductor on one side and a large
normal reservoiN’ on the other side, the normal DQ§,
shows a soft pseudogap at energies below the Thouless en-
0.2 : ergy e4. This effect is due to an interplay between correlated
and uncorrelated electrons penetrating into khéayer, re-
spectively, from a superconductor and a normal reservoir. If
g low transparency tunnel barrier is present at He' in-
terface, the diffusion of normal excitations into tNemetal
is suppressed, the influence of a superconductor prevails, and
] . a real gap in the density of states develops.
presence of the normal metal loop with the magnetic flux | o transparent tunnel barriers also prevent the electric
@ in our system there appears a possibility to tune bothie|d from penetration into thil layer, thus suppressing non-
normal and correlation DOS by changing the valudofFor  equilibrium effects there. We demonstrated that with the aid
the system depicted in Fig. 11 these densities of states can e a proper combination of the systems with and without
easily calculated. As one might expect for the region betunnel barriers one can directly probe both energy and spatial
tween the superconductor and the loggetween pointsA  dependences of both densities of statgsand Ng in one
andB) this dependence is quite weak and both DOS practiexperiment.
cally coincide with those calculated above for a wire without We extended our analysis to proximity systems contain-
the loop. On the other hand, in the region between the loopng the normal metal loop with the magnetic fldx. We
and the normal reservoM’ (between point< andD) the  demonstrated that the conductance of such systems as a func-
guantitiesy(x) and n(x) are very sensitive to the flub. tion of ® oscillates with the period equal to the flux quantum

The normal and correlation DOS for poi@t(Fig. 11) are ~ ®o=h/2e. The amplitude of these oscillation&G also
presented in Fig. 15. We see that with increasing value of thehows the reentrant behavior being equal to zerd-aD,
magnetic flux the proximity-induced pseudogap decreaseisicreasing aJ? at T<ey and decaying as T/atT=¢,. We
and vanishes completely as the flux approaches the valugued that even at high temperaturés; eq, low-energy
®y/2. For such a value ofb the proximity effect in the electrons withe<ey are only responsible for the conduc-
region “after” the loop is completely destroyed, the tance oscillations leading to the power-law decay\@ at
pseudogap is fully suppressed, and the normal DOS coirlarge T. We pointed out that the densities of stadgg and
cides withN(0) at all energies. Accordingly the correlation Ng can be tuneddecreasedby applying the magnetic flux

—— ®=0
-~ =0.20,2 in the presence of proximity-induced superconductivity and
N ®=0.40,2 the electric field. We argued that under these conditions both
04 & ° -~ ®=0.60,2 | uncorrelated (“normal”) and correlated(“superconduct-
W T @=080,2 ing”) electrons contribute to the system conductance which
\ \

N(E)/N(0)
(=]
n

0.0 r

FIG. 15. Flux dependence of the two densities of states in poin
C of the system(a) Normal and(b) correlations.



55 COHERENT CHARGE TRANSPORT IN METALLIC ... 1135

0.20
— ®=0
— ®=0/2, big ring 010
ots | | O=d,/2, small ring
. -——- ®=0 /2, medium ring
< 0.10 | D:;E
3 N 0.05
’l/
I
I
0.05 H|!i
i
0.00 ; o0
(@) efe, ?
0.06 noe
™ —— Bigring
i ———- Small ring
5':." I Medium ring 0.06 ,-" T
0.04 i |
o "‘. S .04
g <
u i
00z | :1,' ———— ®=h/8e
0.02 i/
0.00 ; : :
0.00 : ‘ : :
0 2 4 & 8 10 ° 1 e, C
o Th, (b) Tle,

FIG. 16. Size effects onto the conductance oscillations. Small; FIG.  17. Transport quantities for the system with
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d,=d,=0.8, d,=d;=1.4. (a) Transparency an¢b) amplitude of effect. (@) Transparency an¢b) conductance.

the conductance oscillations.
will be sensitive to the angle-averaged densities of states in a

®. In particular, if the flux in the loop is equal to the half of superconductor near th¢S interface. Then the bound states
the flux quantumd =®,, the proximity effect in the region would certainly influence the conductance anomalies dis-
“after” the loop is completely suppressed, the normal DOScussed in the present paper, although our qualitative conclu-
Nn=N(0) at all energies, ans=0. This effect can be also sion concerning the reentrant conductance behavior remains
directly probed in tunneling experiments and used for furthetinchanged. Quantitative study of these effects will be the
studies of proximity-induced superconductivity in normal subject of future work.
metallic systems.

. An interesting subject is thg sensitivity of the above- ACKNOWLEDGMENTS
discussed conductance anomalies to the symmetry of the or-
der parameter in the superconducting terminals. Recently, We acknowledge useful discussions with C. Bruder, W.
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perconductor I{-1-S) junction was studied in Ref. 47 for the trashov, G. Schm, B. Spivak, A. F. Volkov, B. J. van Wees,
case of a clealN metal. The formation of subgap bound and T. A. Costi. This work was supported by the Deutsche
states near interface was shown. Although the influence dforschungsgemeinschaft within the Sonderforschungsbere-
disorder inN metal has not yet been studied, it is clear,ich 195. A.A.G acknowledges partial support by RFFI Grant
qualitatively, that the behavior of thd-metal conductance No. 96-02-1956.
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APPENDIX: A CLOSER LOOK AT THE h/2e Thus at lowT both the transparency and the conductance
OSCILLATIONS depend quadratically on energy and flux. Further analytic

Here we present further details related to the effect of XPressions are presented in Ref. 48.
geometry on the behavior of the proximiysS systems con- It is remarkable that fod;=0 due to Eq.(6) we .have
taining a mesoscopic normal metal loop with the magneticinfu=0 at pointC. Therefore, the current conservation con-
flux (see Fig. 11 In the three subsections we will keep dition (28) can be fulfilled forj=0, xy=* ¢/2 (different
A,=2A,=2A,=A, for simplicity allowing different values Signs refer to different branchiesind so the phase gradient is

for the d, but restricting ourself to symmetric loops zero almost everywhere and the Usadel equation does not
d,=ds. contain the phase any more. Thus no magnetoresistance os-

cillations occur in this case.
1. Low-temperature behavior

For examining the low-energy range, which is dominant 2. Cutoff energy
for the conductance oscillations at any temperature as stated i
above, we proceed perturbatively from the caseO, Let us estimate the cutoff energy. 5
¢ =0 first to finite flux, then to finitec. As the Usadel equa- ~ CONsider the cas@> e, ..q,=D/(d,+dz)". For =0
tion is quadratic indy/dx, the valueu does not distinguish we again have, Eq21), u=4arctavﬁ(i7-r/8)e*ka], and so for
between the upper and the lower branches of the(@ngr 3  small ¢ we can proceed perturbutavely. As the supercurrent
in Fig. 11, and so we will not make a difference in the is exponentially small, we can approximate the phase profile
notation. as

We start frome=0, ®=0, whereu is purely imaginary
and therefore yield®=1. For a finite value of the flux but
e=0, we get a purely imaginary correction and therefore dy 1
Dyo= 1 This correctio_n is_ quadratic_ in_ the flux as the rightf ax 25m—H<1d2
hand side of the equation is quadratic in the phase. The finite
energy correction at zero flux is a real function and is qua-

gka(x—dy—d/2).

dratic ine. and so the influence of the magnetic flux is concentrated
Thus proceeding perturbatively we find Ree®?, and  within a distance ma¥y,d,} from point C (see Fig. 11
from the expansion However, asu is exponentially small there, the oscillations
of the transparency are exponentially suppressed, so we can
L S estimatee. < €d,+dy which depends only on the sum of these
u=-l E”L"ﬁ 9d, 0y dg,dy(X) + €Ng; 4, a5,0,(X) length, but not ord, alone(see also Fig. 16
The key feature of Fig. 16) is the strong flux depen-
+e¢2kd1,d2,d3,d4(x)+ie¢2Id1,d21d3,d4(x), dence for systems with small rings. This fact can be also
) . . recovered from the Usadel equation: Fay<<d one esti-
with dy=d; +d,+dy, in the leading order we get matesdy/dx~®/2d,d,. As this enters quadratically and in
the end we have to integrate over the ring only once, the
1 (ds dx -1 contribution of the ring is roughly:1/d,.
PO=1a s coshlu(0]

1 (ds €2 3. Cross-section effect
= —f dx(l——(thflbzk)2
dz 0 2

-1
4 44
+0(e" ¢ )} For the sake of simplicity, we have restricted ourselves up
to now to the case R,=A;=Aj3. As this condition might
€ ) 4 .4 not be fulfilled in real experiments it is worthwhile to check
I+ 5 (Nay, = P Hay, . a) TO(E,97),  whether the main features of our analysis survive for other
values ofA; , 3. In order to do that we performed calcula-
where the coefficients are defined as tions also for the cas&;=A,=A3. The results are similar to
s s tirw]ose obtained befor_e, showcipg an ad(g':g?nallg(i;))]strugture in
_ 2 _ the transparency at intermediate enerdiglg. 17a)] and a
A fo dxPr(x),  p 4fo dxREOk()- slightly deformedG in the same energy intervefFig. 17b)].

dy
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