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Dislocation kink migration energies and the Frenkel-Kontorowa model
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An analytic solution of the Peierls pinning energy in the discrete Frenkel-Kontorow&K) model is used
to obtain estimates of the second-order Peierls stoesscontrolling dislocation kink motion. From the
Dorn-Rajnak model the kink migration energy is shown to be the Peierls pinning eBgrigythe FK model.
The required parameters are related to features of the generalized stacking fault surface. Examples illustrate use
of the approach[S0163-1827)12317-7

[. INTRODUCTION plex materials by a simple extension of the PN-DR models,
provided only that the appropriate cross section of the gen-
Modern structural(intermetallics, metal silicidesand eralized stacking faulfgsf) energy surface is known.
electronic(silicon, GaAs, CdTematerials are complex and Let us return to Fig. 1, which shows a kinked dislocation
not readily amenable to the atomistic methods which haveyith Burgers vectob in a material with highWpy. The low
been so successful in their description of simpler materialsenergy dislocation line channels are chosen to lie parallel to
Although increasingly sophisticated quantum mechanicathe x axis and are separated hy=h. The shape of the kink
techniques are currently being developed by a number gk then described by(x), with y(—=)=0 andy(=)=h.
workers, there is an immediate need for a rapid, low-costyy,, is periodic iny with periodh. The DR formalism makes
and reliable means to estimate the fundamental mechanicgle assumption that the dislocation line eneidfy) is a
properties of these complex materials. In particular, methodgimple sum of the intrinsi€unperturbeiline energyl’, and
which link the quantum mechanical capabilities of modernihe PN energy, that is
physics to the continuum mechanical scale are needed.
In recent work the authors have demonstrated, using sili- L(y)=To+WppnY). (1)
con as an example, that these means are available in some

measure for dislocations. For example, it was shown that the Equation (1) leads to the following Hamiltonian for the
values obtained from atomistic computation$.The PN- H= dx. 2

Peierls-Nabarr¢gPN) model? used with a generalized stack- DR kink:
d 2) 172
2",
based Dorn-RajnatlDR) kink pair formalisnf was shown to

ing fault energy surfacecalculated from first principléscan
predict a Peierls stress which is in good agreement with the J‘oo

provide an explanation for the unexpected preference in silii, the limit dy/dx<1, Eq.(2) can be rewritten as
con for slip on the glide, rather than shuffle planes, and to '

[F(y)

—0o0

predict an activation enthalpy for kink pair nucleation in 1 = [ dy)2 w0
agreement with experime#t. H= EFOJ’ ax dx+f Wpn y(x)]dx. 3
Il. KINKS IN DISLOCATIONS This Hamiltonian can be viewed as a functional of the dis-

. o . ) ) tinct variablesy(x) andy’=dy/dx:
In materials with significant Peierls stress, dislocations do

not move by rigid translation, but rather by the nucleation .

and propagation of kink pairs. A kink pair is created when Hzf F{y(x),y’ (x);x}dx. 4
part of the dislocation line is activated to a neighboring low o
energy channe(see Fig. 1L The energy barrier to be over-
come is called the PN enerd¥py. As is well known'® the
kink pair mechanism for dislocation motion admits two lim-
iting cases. At high stresses, the rate-controlling mechanism, y

Euler’s equation,

is the nucleation of kink pairs. At low stresses, the periodic | ——==—=——— T
potential through which an individual kink must move may %b h \\
be large enough to control the process; this is referred t0 aS| ————re - e ———- Y —o-0-

the kink migration regime and its resistive stress at 0 K, x <>
o,p, IS commonly termed the second-order Peierls stress.
This paper will show thatr,p can be estimated for com- FIG. 1. A kink pair in a dislocation.
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tions for narrow and wide solitons are in excellent agreement

UNSTABLE with numerical results for relaxed-profile solitotfst” dem-
onstrating the validity of the assumption of a rigid disloca-
tion profile.

The classical Hamiltonian for the FK model is
K e ] oo
STABLE H=3 2 Oy 2 W), (9

wherey,, is the displacement of theth particle andk is the
spring constant of the interparticle interactiaM. is the pe-

riodic potential, which in the classic FK model is sinusoidal

. ) . with amplitudeW, and periodh, as
FIG. 2. Stable and unstable soliton configurations.

) W§ 2wy
JF d gF W (y)— 1- cos——/, (10
~ dxav O 5

y y whereh, the period of the substrate energy, is the Burgers
determines the kink shapg(x) which minimizesH. This  vector of the FK kink. Equation§9) and (10) can be com-

can be written as bined and rewritten as
d?y  dWpy H 1 & 1
Poge =gy © 275 2 (=) 47 2 2 (1-cos2m{y),

Multiplying both sides of Eq(6) by dy/dx and integrating (1D
yields the equation where we defin€,=y,/h and

To(dy 2—W ) (7) A= i (12)
which shows that the approximatialy/dx<1 is equivalent This dimensionless parameter measures the relative strength
to requiring thatWpy /T g<<1. of the springs and the periodic restoring forces. The equilib-

Equations(2)—(7) describe a continuous mass kink, the rium configurations of the chain are obtained by solving for
energy of which is invariant to translation along the disloca-the set of difference equations
tion line. In order to determine the mobility of the kink in a
crystal lattice, the discreteness of the lattice must be restored
by converting Eq(3) into a sum over atomic sites. If at the
same time we sef=(h, andx=na, where n is an integer
anda is the repeat distance of atomic planes along the dis:
location line (see Fig. 1, the discretized Hamiltonian be-

W .
gn+1_2§n+§n—1:XZS|n2W§n- (13

If the variation of, from particle to particle is small, Eq.
(13) can be replaced by the familiar sine-Gordon equation,

comes 42 o
’ L - X = 2)\23|n27-r§ (19
a
(Toh%a) 2, ; (dn) - l"ohzr,;;oc WenLh¢(n) ] Equations(6) and(14) are identical, as are Eq&) and(11),

(8) provided that the PN energipy is sinusoidal. All we need
to do is substitutex with I'y/a, and Wy by aW,, where

. 11 . . . .
As is known,” when the PN energy is sinusoidal, E§) is W, is the amplitude of the PN energy, so that

identical with the Hamiltonian of the Frenkel-Kontorowa

(FK) model*?!® and Eq.(6) reduces to the sine-Gordon I'oh?
equation. A= (W (15
ll. THE FRENKEL-KONTOROWA MODEL The one-soliton solution to E@14) is

The Frenkel-KontorowaFK) model?!® is perhaps the 2
simplest model of a dislocation, consisting of a string of {(n—a)= ;tan_le”(“_“m, (16)
atoms connected by springs and subjected to a periodic sinu-
soidal potentialsee Fig. 2 It is also representative of soli- where « is the location of the center of the soliton. The
tons or domain walls in one- and two-dimensionaldisplacement is O for (n—a)=—, 3 at (n=«), and 1 for
lattices'*® An accurate analytic solution is available for the (n—a)=+%. From this equation it is clear that is the
key quantity, the pinning potential of the solitonlike defectswidth of the domain wall, or soliton, in the chain measured
in the chain. This energy, known as the Peierls potentiain units of particle numben therefore measures the number
Ep,is calculated here by assuming that, as it moves irof atomic planes over which the kink spreads along xhe
the lattice, the soliton profile remains undeformed. The soludirection, so its width is given b¥a.
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IV. THE PEIERLS PINNING POTENTIAL If we assume that{,, ;— ¢,) can be replaced by the leading
term in the Taylor expansion @f,, which is what is done in

Equation(16) defines a continuous mass soliton with no . DR model,

Peierls pinning potential. To obtaie, we have to restore

discreteness to the chain. We first assume that, in an actual o )

domain wall, the particle displacements follow the profile W, :E 2 (%) (25)
(16), which actually has been observed to be true to fairly elas™ 2 4 dn/’

good accuracy(see, for instance, Ref. 18We make this

assumption not only for the equilibrium stable position, but/ntegration of Eq(16) gives

also for the soliton displaced hy. Ep is obtained from the

energy difference between the stable minimum energy con- d¢n 2_ 1

figuration (@=1/2) and the maximum energy saddle point dn| " aneticos2niy), (26

configuration @=0). The two configurations are shown in
Fig. 2. and henceWg .= Wy, given in Eq.(17), or, within this
We calculate the energy variation of the domain wall inapproximation the total energy of the soliton
two steps. We first consider the contribution of the periodicWr(@) =Wejad @) + Wpe( @) is given by
potentlal Wyer, and then the elastic energy in the chain
W, ., both expressed in units afb?. =
(i) The periodic potential contributioto the chain energy WT(“)_ 2:1 smh,.rm)\msz”m“- (27)
is
" We see that the average energy of the soliton i3 Z)( the
1 known continuum approximation vald

Woer= 232 n;w (1~ cos2m{y). (17 The Peierls pinning potentid,, is the difference between
. the maximum and minimum energy configurations, so we
Substituting Eq(16), we get have
Woo( @)= L i {1—cog 4tan lem"~ @/} = m
pe 4N* ' Ep=8 2 ———. (28)
(18 m odd Sinharm\
Using the identities cdg=1/(1+tarfy), and cos¥ This is a very rapidly converging series. Keeping only the
=8cody—8cosdy+1, Eq.(18) can be rewritten as leading term, which itself can be simplified, we find that
1 Ep=16e" ™. (29

Wper(a) 2)\2 E (19

n== cosftm(n—a)/\ - The same exponential factor has been obtained previously by

9,20

This is an even function of period unity, which has a Fourierdifferent means?*°The predictions of E¢29) can be com-

series of the form pared with a numerical calculation which has allowed relax-
ation of the chain as it is placed in the two configurations
shown in Fig. 117 As Table | shows, the agreement is good

Wpel @) = + E a,cos2rma, (20 (correct order of magnitudealready for\=2, and conver-
gence is rapid. In the same spirit, the second-order Peierls
where stress can be estimated to leading order, accurate to about
10%. This gives, recalling that the units used since (Ed)
120 1 for the energy arech?, or I';h?/a,

cog2mma)da.

an=2| 2 o cosfa(n—a)ix i
(21) azp:?(a—;) =16me ™ «. (30)
max

With the change of variable= « —n, this becomes

o Interestingly this model predicts the same functional depen-
o — 1 cos2mmt dt (22)  dence of stress on width as does the Peierls-Nabarro rAbdel.
m— Y2 ﬁ ! i i
N?J . cositart/\ For very narrow kinksX<1), E,, can be calculated using
the observation that only a few particles will contribute to
eitherWpe, or Weas. From Eq.(19), the leading contribution
to E, from W, will be

yielding the following Fourier series:

Wpel @)= 21 SlnhWm)\cosZwma. (23) L1 .

Woe( 0)= 272 cosR0 ~ 212" (31)

(ii) The elastic energy in the chais given by
To get the contribution fronW,,s, we start from Eq(24),

1 < : ; ; —1
_- — 72 24 substitute Eq.(16), and use the identity tartx—tan ly
elas—2 2 (Lnea= (24 =tan }(x—y)/(1+xy), valid for xy>—1, to obtain
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TABLE I. Comparison of Peierls pinning potential values from numerical relaxation calculaiohs
umns 2 and 6, from Ref. 1%with the predictions of Eq(35) (column 3 and Eq.(29) (columns 4 and )7 all
in units of kh? [for the Frenkel-Kontorow&FK) model or I';h?/a (for the kink mode).

A Ep 1U(2\?)—1/4  16expEm\) A Ep 16expEm\)
0.5 1.76756 1.7500 3.33 6.0 0.955%810°7 1.042x 1077
1.0 0.30810 0.2500 0.691 7.0 0.4248210°% 0.450x 1078
15 0.75965x 107! - 144 x 107 8.0 0.18748< 10°° 0.195x 10°°
2.0 0.18898x 1071 - 0.299x 107! 9.0 0.82391x 107 0.841x 10"
2.5  0.44179x 1072 - 0.621x 1072 10.0 0.36096x 107 %2 0.363x 107 '?
3.0 0.98679x 1073 - 1.291x 107 11.0 0.15807x 10~ 0.157x 107 %
4.0 0.46564x 104 - 0.558x 107% 12.0 0.722x 107'®> 0.680x 1071®
50 0.21271x 107° - 0.241x 107°
2 I sinh(7/2)\) 2 of two neighboring particles is replaced by the first term in
Wepd @)= ) n_zm tanﬁlcosr( A2+ 2(n=a)]| the Taylor series of the displacement.

This derivation neglects the entropic effects which are
(32 part of the thermodynamic free energy. Calculation of the
For the unstable configuratiorv&0), in the limit A—0, entropy would require a knowledge of the vibrational modes

two terms will contribute significantly and equally=0 and  in the stable and unstable configurations. The vibrational
n=—1, to yield modes of the FK kinks have been studied eaffér The

entropy could then be obtained by an application of the
transition-state theory of Vineyafd,as has been done re-

2
4 m\° 1
tan tanhz—)\) ~a (33 cently on related defect<®

For the stable configuratior= 1/2), in the same limit, only
one term will contribute significantlyp=0, corresponding
to the main stretched bond straddling the soliton core: In this section we examine the application of the FK

model to kink migration. For the line enerdy, of the dis-
W, E _ _22 tan‘lsinhzl (34) locations we will approximate the elastic expression for the

2 T A
Or, the Peierls pinning potentié, is given by

2
Welas(o) = 2( ;2

V. APPLICATION TO KINK MIGRATION

21
~5

self-energy of a dislocatiodb?In(R/b) (where R is the
screening lengthwith the conventional value aJb?/2 for
metals. For silicon, which has a much lower dislocation den-
1 1 sity and therefore a much larger screening length, we adopt
Epzﬁ 7 (35 the value ofJb? for the line energy.For most purposes, we
shall retain the assumption of the FK model that the PN
again in agreement with the numerical results of Ref. 17 agnergy is sinusoidah, the kink width, is then given by Eq.
seen in Table I. (15), the kink migration energie€,, from Table I. For
We can conclude from the above results that the Peierls>2, Ey and the second-order P&,r are given, respec-
potentials obtained with the assumptions of a rigid kink pro-tively, by Eqgs.(29) and (30).
file are in good agreement for all widths with the relaxation We apply first the FK model to kinks in silicon, for which
results. Equation$29) and (30) are expected to give good the y surface is knowrt,and therefore a realistic PN energy
results forh>2. In these formulas the relative displacementcan be calculatedIn addition, comparative atomistic work

TABLE II. The kink migration energie&,, and second-order Peierls stressgs for selected kinks in glide and shuffle dislocations in
silicon, with a dislocation line along110) (see Sec. Y. Shown in order of appearance are the Peierls eneljigsobtained from the
appropriatey surface sectiorfRefs. 4 and § J, the anisotropic elastic dislocation energy factdrsihe Burgers vectordh, distances
between equivalent dislocation line channelsdistances between glide planes intersecting the dislocatiodljetislocation line energies,
equal in this case tdb? (Ref. 9; A, kink widths given by Eq(15); E,.. the kink pair nucleation energies from Ref.By,, the kink
migration energy; the first-order Peierls stressgs from the PN model from Ref. 5; and the second-order Peierls stresges

W, J b h a I'y A Enuc Ewm o1p Oop
evA™) (vA® A A A (VAT (eV) V) () ()
30° glide partial 0.343 0.433 222 333 384 2.13 153 2.10 0.628 0.561 0.471
90° glide patrtial 0.323 0.536 222 333 384 2.64 1.75 - 0.509 0.450 0.358
Shuffle screw 0.148 0.400 3.84 333 384 5.90 387 239 %43 0103 3.05x 1074

Shuffle 60° 0.116 0.501 3.84 333 384 7.39 4.89 - 7210°° 0.076 1.55x 107°
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TABLE lIl. The kink migration energie€,, and second-order Peierls stresses for kinks in (100
{110@ dislocations inB2 NiAl. The quantities shown are the same as in Table IlI, but in this case Peierls
energies\V,, first-order Peierls stressesp, and kink pair nucleation energi&s, . are taken from Ref. 35,
andT'y=Jb%/2; andE,, ando,p are from Eqs(29) and(30), respectively.

WO J b h a FO A Enuc EM g1p Oop
evA™) evA) A A A (evA™ €ev)  (eV) () (J)

(100 line  0.013 0.064 2.88 4.07 2.88 0.27 455 1.56 X1®° 0.161 3.1x107°

(110 line  0.013 0.050 2.88 2.88 4.07 0.21 2.00 0.87 0.03 0.280x3.@ 2

(111 line  0.0087 0.045 2.88 2.35 2.49 0.19 3.09 0.63 x10% 0.251 3.x%10°3

is available® Silicon is also of particular interest because it is The migration energies are negligible for shuffle set disloca-
the simplest directionally bonded material, and because thertéons. The small values for these kinks are due to the large
is extensive experimental information on its deformationBurgers vector, which makes the dislocation stiffer and the
properties. The results are shown in Table Il. For completekink wider.

ness, the Peierls energi#4, and first-order Peierls stresses  Second, we consider kink migration B2 ordered NiAl.

oy1p from Ref. 5 and the kink pair nucleation energi§,.  In contrast with covalent materials, the kink migration en-
from Ref. 9 are also inclut_je_d\ for the glide partials is  ergy in metals is expected to be sméfichottky, using a
smaller than two. The predictions of Eq29) and(30) for  semiempirical elastic calculation, estimates a migration en-
Ew and o,p, respectively, are therefore not the values tOergy of order 0.5 K& Duesbery, with an atomistic model,

retain for these dislocations. Focusing, in this discussion, 0R,q4s 4 migration stress of less than 1@ in potassiuri).
the 30° partial with the smallest=1.53 (similar results ap- 11,4 y surface for NiAl has been calculated from first

ply to the 90° partig| we see, comparing columns 2 and 4 in principles* and PN-DR model results are availaBteDislo-

Table I, that corrections of the order of a factor of 2 apply, _.. . o
reducingEy, from 0.804 eV to 0.430 eV. There is a similar ;?gorgzr\;g:;ig;s E)l:rgIE;sSti\éegte?gron?a':i)gageyciﬁ?‘}oPlsgrfsa e-
effect for ozp, obtained by applying stress to the reIaXGdstricted orientations of the applied stress. For reasons which

kinks until they move.o,p is found to decrease from . .
0.514) to 0.27. There is another source of correction to &€ Not clearly understood, most observed dislocations have

consider, which in large part compensates for these gdnixed character, witf{111) I|pe d'|rect|ons rather than the
creases, the departure of the PN energy from a sinusoid&f00 screw or(110 edge directions. We have calculated
function. The impact of this change on the solutions for kinkfor these dislocations the kink widthsand migration ener-
profiles in the FK model has been discussed by Peyrard ar@gfes Ev, and the second order Peierls stressgs. These
Remoissene®® Repeating our calculations with their kink are shown in Table Ill, along with the PN energlés, the
solutions, and including relaxation, we find that the devia-Kink nucleation energie€,., and the first-order Peierls
tions, which are present in silicon, causg ando,p for the  stressesr;p from Ref. 35. It is clear from Table Il that,
30° partial to increaséfrom the relaxed sinusoidal cgs®  although the(100) screw dislocation has the smallest first-
0.628 eV and 0.471, respectively. We intend to give more and second-order Peierls stresses,(ttlH) edge and111)
details on the effects of these approximations in a futuremixed dislocations have much smaller kink pair nucleation
publication. energies, and of these latter two el 1) mixed dislocation

The atomistic work of Bulatov, Yip, and Argdi,using  has a much smaller second-order Peierls stress.
an empirical potential model of Si, yields very similar values

for theEy, of the 30° glide partial; 0.74 eV for the right kink,

and Q.82 (_aV for th(_a I_eft kink. Considering that the gsf s.urface V. SUMMARY AND CONCLUSIONS
obtained in the Stillinger-Weber potential model of Si used
in Ref. 27 has for the relevaf211) direction, a maximum Recent work by the authors on the estimation of disloca-

noticeably larger than in the corresponding local-density aption properties in complex materials by the use of approxi-
proximation (LDA) result?® we have good agreement be- mate mechanical models combined with first-principles gen-
tween the two predictions. eralized stacking fault energy surfaces has been extended to
Measurements indicate that the activation enthalpy fogover the calculation of dislocation kink migration energies
dislocation motion in silicon is about 2.2 é¥ Conventional and stresses. The results are compatible with experimental

thinking is that the kink migration energy may be responsibleyork on silicon and explain unusual features of plastic de-
for as much as a half of this figure, 1.1-1.2 ' The  formation in NiAl

values in Table Il are consistent with the total activation

energy for glide, bearing in mind that the calculation takes

into account only the_ most important features of the me- ACKNOWLEDGMENTS
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