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Dislocation kink migration energies and the Frenkel-Kontorowa model

B. Joós*
Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5

M. S. Duesbery†
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An analytic solution of the Peierls pinning energyEP in the discrete Frenkel-Kontorowa~FK! model is used
to obtain estimates of the second-order Peierls stresss2P controlling dislocation kink motion. From the
Dorn-Rajnak model the kink migration energy is shown to be the Peierls pinning energyEP in the FK model.
The required parameters are related to features of the generalized stacking fault surface. Examples illustrate use
of the approach.@S0163-1829~97!12317-7#
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I. INTRODUCTION

Modern structural~intermetallics, metal silicides! and
electronic~silicon, GaAs, CdTe! materials are complex an
not readily amenable to the atomistic methods which h
been so successful in their description of simpler materi
Although increasingly sophisticated quantum mechan
techniques are currently being developed by a numbe
workers, there is an immediate need for a rapid, low-co
and reliable means to estimate the fundamental mecha
properties of these complex materials. In particular, meth
which link the quantum mechanical capabilities of mode
physics to the continuum mechanical scale are needed.

In recent work the authors have demonstrated, using
con as an example, that these means are available in s
measure for dislocations. For example, it was shown that
Peierls-Nabarro~PN! model1,2 used with a generalized stack
ing fault energy surface3 calculated from first principles4 can
predict a Peierls stress which is in good agreement with
values obtained from atomistic computations.5–7 The PN-
based Dorn-Rajnak~DR! kink pair formalism8 was shown to
provide an explanation for the unexpected preference in
con for slip on the glide, rather than shuffle planes, and
predict an activation enthalpy for kink pair nucleation
agreement with experiment.9

II. KINKS IN DISLOCATIONS

In materials with significant Peierls stress, dislocations
not move by rigid translation, but rather by the nucleati
and propagation of kink pairs. A kink pair is created wh
part of the dislocation line is activated to a neighboring lo
energy channel~see Fig. 1!. The energy barrier to be over
come is called the PN energyWPN. As is well known,

10 the
kink pair mechanism for dislocation motion admits two lim
iting cases. At high stresses, the rate-controlling mechan
is the nucleation of kink pairs. At low stresses, the perio
potential through which an individual kink must move m
be large enough to control the process; this is referred t
the kink migration regime and its resistive stress at 0
s2P , is commonly termed the second-order Peierls stres

This paper will show thats2P can be estimated for com
550163-1829/97/55~17!/11161~6!/$10.00
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plex materials by a simple extension of the PN-DR mode
provided only that the appropriate cross section of the g
eralized stacking fault~gsf! energy surface is known.

Let us return to Fig. 1, which shows a kinked dislocati
with Burgers vectorbW in a material with highWPN. The low
energy dislocation line channels are chosen to lie paralle
the x axis and are separated byy5h. The shape of the kink
is then described byy(x), with y(2`)50 and y(`)5h.
WPN is periodic iny with periodh. The DR formalism makes
the assumption that the dislocation line energyG(y) is a
simple sum of the intrinsic~unperturbed! line energyG0 and
the PN energy, that is

G~y!5G01WPN~y!. ~1!

Equation~1! leads to the following Hamiltonian for the
DR kink:

H5E
2`

` FG~y!H 11S dydxD
2J 1/22G0Gdx. ~2!

In the limit dy/dx!1, Eq. ~2! can be rewritten as

H5
1

2
G0E

2`

` S dydxD
2

dx1E
2`

`

WPN@y~x!#dx. ~3!

This Hamiltonian can be viewed as a functional of the d
tinct variables,y(x) andy85dy/dx:

H5E
2`

`

F$y~x!,y8~x!;x%dx. ~4!

Euler’s equation,

FIG. 1. A kink pair in a dislocation.
11 161 © 1997 The American Physical Society



e
a
a
or
e
r
di
-

a
n

o
in
-
a
e
ts
tia
i
lu

ent

a-

al

ers

ngth
lib-
for

.
n,

e

ed
er
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]F

]y
2

d

dx

]F

]y8
50, ~5!

determines the kink shapey(x) which minimizesH. This
can be written as

G0

d2y

dx2
5
dWPN

dy
. ~6!

Multiplying both sides of Eq.~6! by dy/dx and integrating
yields the equation

G0

2 S dydxD
2

5WPN~y!, ~7!

which shows that the approximationdy/dx!1 is equivalent
to requiring thatWPN/G0!1.

Equations~2!–~7! describe a continuous mass kink, th
energy of which is invariant to translation along the disloc
tion line. In order to determine the mobility of the kink in
crystal lattice, the discreteness of the lattice must be rest
by converting Eq.~3! into a sum over atomic sites. If at th
same time we sety5zh, andx5na, where n is an intege
anda is the repeat distance of atomic planes along the
location line ~see Fig. 1!, the discretized Hamiltonian be
comes

H

~G0h
2/a!

5
1

2 (
n52`

` S dz

dnD
2

1
a2

G0h
2 (
n52`

`

WPN@hz~n!#.

~8!

As is known,11 when the PN energy is sinusoidal, Eq.~8! is
identical with the Hamiltonian of the Frenkel-Kontorow
~FK! model,12,13 and Eq. ~6! reduces to the sine-Gordo
equation.

III. THE FRENKEL-KONTOROWA MODEL

The Frenkel-Kontorowa~FK! model12,13 is perhaps the
simplest model of a dislocation, consisting of a string
atoms connected by springs and subjected to a periodic s
soidal potential~see Fig. 2!. It is also representative of soli
tons or domain walls in one- and two-dimension
lattices.14,15An accurate analytic solution is available for th
key quantity, the pinning potential of the solitonlike defec
in the chain. This energy, known as the Peierls poten
EP ,

16,17 is calculated here by assuming that, as it moves
the lattice, the soliton profile remains undeformed. The so

FIG. 2. Stable and unstable soliton configurations.
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tions for narrow and wide solitons are in excellent agreem
with numerical results for relaxed-profile solitons,16,17 dem-
onstrating the validity of the assumption of a rigid disloc
tion profile.

The classical Hamiltonian for the FK model is

H5
k

2 (
n52`

`

~yn112yn!
21 (

n52`

`

W8~yn!, ~9!

whereyn is the displacement of thenth particle andk is the
spring constant of the interparticle interaction.W8 is the pe-
riodic potential, which in the classic FK model is sinusoid
with amplitudeW0 and periodh, as

W8~y!5
W08

2 S 12cos
2py

h D , ~10!

whereh, the period of the substrate energy, is the Burg
vector of the FK kink. Equations~9! and ~10! can be com-
bined and rewritten as

H

kh2
5
1

2 (
n52`

`

~zn112zn!
21

1

4l2 (
2`

`

~12cos2pzn!,

~11!

where we definezn5yn /h and

l5S kh2

2W08
D 1/2. ~12!

This dimensionless parameter measures the relative stre
of the springs and the periodic restoring forces. The equi
rium configurations of the chain are obtained by solving
the set of difference equations

zn1122zn1zn215
p

2l2sin2pzn . ~13!

If the variation ofzn from particle to particle is small, Eq
~13! can be replaced by the familiar sine-Gordon equatio

d2z

dn2
5

p

2l2sin2pz. ~14!

Equations~6! and~14! are identical, as are Eqs.~8! and~11!,
provided that the PN energyWPN is sinusoidal. All we need
to do is substitutek with G0 /a, andW08 by aW0, where
W0 is the amplitude of the PN energy, so that

l5S G0h
2

2W0a
2D 1/2. ~15!

The one-soliton solution to Eq.~14! is

z~n2a!5
2

p
tan21ep~n2a!/l, ~16!

where a is the location of the center of the soliton. Th
displacementz is 0 for (n2a)52`, 1

2 at (n5a), and 1 for
(n2a)51`. From this equation it is clear thatl is the
width of the domain wall, or soliton, in the chain measur
in units of particle number.l therefore measures the numb
of atomic planes over which the kink spreads along thex
direction, so its width is given byla.
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IV. THE PEIERLS PINNING POTENTIAL

Equation~16! defines a continuous mass soliton with
Peierls pinning potential. To obtainEP we have to restore
discreteness to the chain. We first assume that, in an a
domain wall, the particle displacements follow the profi
~16!, which actually has been observed to be true to fa
good accuracy~see, for instance, Ref. 18!. We make this
assumption not only for the equilibrium stable position, b
also for the soliton displaced bya. EP is obtained from the
energy difference between the stable minimum energy c
figuration (a51/2) and the maximum energy saddle po
configuration (a50). The two configurations are shown
Fig. 2.

We calculate the energy variation of the domain wall
two steps. We first consider the contribution of the perio
potentialWper, and then the elastic energy in the cha
Welas, both expressed in units ofkb2.

~i! The periodic potential contributionto the chain energy
is

Wper5
1

4l2 (
n52`

`

~12cos2pzn!. ~17!

Substituting Eq.~16!, we get

Wper~a!5
1

4l2 (
n52`

`

$12cos@4tan21ep~n2a!/l#%.

~18!

Using the identities cos2y51/(11tan2y), and cos4y
58cos4y28cos2y11, Eq. ~18! can be rewritten as

Wper~a!5
1

2l2 (
n52`

`
1

cosh2p~n2a!/l
. ~19!

This is an even function of period unity, which has a Four
series of the form

Wper~a!5
a0
2

1 (
m51

`

amcos2pma, ~20!

where

am52E
0

1

(
n52`

1`
1

2l 2
1

cosh2p~n2a!/l
cos~2pma!da.

~21!

With the change of variablet5a2n, this becomes

am5
1

l2E
2`

1` cos2pmt

cosh2pt/l
dt, ~22!

yielding the following Fourier series:

Wper~a!5
1

lp
1 (

m51

`
2m

sinhpml
cos2pma. ~23!

~ii ! The elastic energy in the chainis given by

Welas5
1

2 (
n52`

`

~zn112zn!
2. ~24!
al

y

t

n-
t

c

r

If we assume that (zn112zn) can be replaced by the leadin
term in the Taylor expansion ofzn , which is what is done in
the DR model,

Welas5
1

2 (
n52`

` S dzn
dn D 2. ~25!

Integration of Eq.~16! gives

S dzn
dn D 25 1

2l2~12cos2pzn!, ~26!

and henceWelas5Wper, given in Eq. ~17!, or, within this
approximation the total energy of the solito
WT(a)5Welas(a)1Wper(a) is given by

WT~a!5
2

lp
1 (

m51

`
4m

sinhpml
cos2pma. ~27!

We see that the average energy of the soliton is 2/(lp), the
known continuum approximation value.13

The Peierls pinning potentialEp is the difference between
the maximum and minimum energy configurations, so
have

Ep58 (
m odd

`
m

sinhpml
. ~28!

This is a very rapidly converging series. Keeping only t
leading term, which itself can be simplified, we find that

Ep516e2pl. ~29!

The same exponential factor has been obtained previousl
different means.19,20The predictions of Eq.~29! can be com-
pared with a numerical calculation which has allowed rela
ation of the chain as it is placed in the two configuratio
shown in Fig. 1.17 As Table I shows, the agreement is goo
~correct order of magnitude! already forl52, and conver-
gence is rapid. In the same spirit, the second-order Pe
stress can be estimated to leading order, accurate to a
10%. This gives, recalling that the units used since Eq.~11!
for the energy arekh2, or G0h

2/a,

s2P5
1

h2 S ]WT

]a D
max

516pe2plk. ~30!

Interestingly this model predicts the same functional dep
dence of stress on width as does the Peierls-Nabarro mod21

For very narrow kinks (l<1),Ep can be calculated using
the observation that only a few particles will contribute
eitherWper orWelas. From Eq.~19!, the leading contribution
to Ep fromWper will be

Wper~0!5
1

2l2

1

cosh20
5

1

2l2 . ~31!

To get the contribution fromWelas, we start from Eq.~24!,
substitute Eq.~16!, and use the identity tan21x2tan21y
5tan21(x2y)/(11xy), valid for xy.21, to obtain
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TABLE I. Comparison of Peierls pinning potential values from numerical relaxation calculations~col-
umns 2 and 6, from Ref. 17! with the predictions of Eq.~35! ~column 3! and Eq.~29! ~columns 4 and 7!, all
in units ofkh2 @for the Frenkel-Kontorowa~FK! model# or G0h

2/a ~for the kink model!.

l Ep 1/(2l2)21/4 16exp(2pl) l Ep 16exp(2pl)

0.5 1.76756 1.7500 3.33 6.0 0.955283 1027 1.0423 1027

1.0 0.30810 0.2500 0.691 7.0 0.424623 1028 0.4503 1028

1.5 0.759653 1021 - 1.44 3 1021 8.0 0.187483 1029 0.1953 1029

2.0 0.188983 1021 - 0.2993 1021 9.0 0.823913 10211 0.8413 10211

2.5 0.441793 1022 - 0.6213 1022 10.0 0.360963 10212 0.3633 10212

3.0 0.986793 1023 - 1.2913 1023 11.0 0.158073 10213 0.1573 10213

4.0 0.465643 1024 - 0.5583 1023 12.0 0.7223 10215 0.6803 10215

5.0 0.212713 1025 - 0.2413 1025
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Welas~a!5
2

p2 (
n52`

1` F tan21
sinh~p/2l!

cosh~p/2l!@112~n2a!#G
2

.

~32!

For the unstable configuration (a50), in the limit l→0,
two terms will contribute significantly and equally,n50 and
n521, to yield

Welas~0!52S 2p2D S tan21tanh
p

2l D 2' 1

4
. ~33!

For the stable configuration (a51/2), in the same limit, only
one term will contribute significantly,n50, corresponding
to the main stretched bond straddling the soliton core:

WelasS 12D5
2

p2 S tan21sinh
p

2l D 2' 1

2
. ~34!

Or, the Peierls pinning potentialEp is given by

Ep5
1

2l2 2
1

4
, ~35!

again in agreement with the numerical results of Ref. 17
seen in Table I.

We can conclude from the above results that the Pei
potentials obtained with the assumptions of a rigid kink p
file are in good agreement for all widths with the relaxati
results. Equations~29! and ~30! are expected to give goo
results forl.2. In these formulas the relative displaceme
s

ls
-

t

of two neighboring particles is replaced by the first term
the Taylor series of the displacement.

This derivation neglects the entropic effects which a
part of the thermodynamic free energy. Calculation of t
entropy would require a knowledge of the vibrational mod
in the stable and unstable configurations. The vibratio
modes of the FK kinks have been studied earlier.22,23 The
entropy could then be obtained by an application of
transition-state theory of Vineyard,24 as has been done re
cently on related defects.4,25

V. APPLICATION TO KINK MIGRATION

In this section we examine the application of the F
model to kink migration. For the line energyG0 of the dis-
locations we will approximate the elastic expression for
self-energy of a dislocationJb2ln(R/b) ~where R is the
screening length! with the conventional value ofJb2/2 for
metals. For silicon, which has a much lower dislocation d
sity and therefore a much larger screening length, we ad
the value ofJb2 for the line energy.9 For most purposes, we
shall retain the assumption of the FK model that the
energy is sinusoidal.l, the kink width, is then given by Eq
~15!, the kink migration energiesEM from Table I. For
l.2, EM and the second-order PSs2P are given, respec-
tively, by Eqs.~29! and ~30!.

We apply first the FK model to kinks in silicon, for whic
theg surface is known,4 and therefore a realistic PN energ
can be calculated.5 In addition, comparative atomistic wor
in

,

TABLE II. The kink migration energiesEM and second-order Peierls stressess2P for selected kinks in glide and shuffle dislocations
silicon, with a dislocation line alonĝ110& ~see Sec. V!. Shown in order of appearance are the Peierls energiesW0, obtained from the
appropriateg surface section~Refs. 4 and 5!; J, the anisotropic elastic dislocation energy factors;b, the Burgers vectors;h, distances
between equivalent dislocation line channels;a, distances between glide planes intersecting the dislocation line;G0, dislocation line energies
equal in this case toJb2 ~Ref. 9!; l, kink widths given by Eq.~15!; Enuc, the kink pair nucleation energies from Ref. 9;EM , the kink
migration energy; the first-order Peierls stressess1P from the PN model from Ref. 5; and the second-order Peierls stressess2P .

W0 J b h a G0 l Enuc EM s1P s2P

~eV Å21) ~eV Å23) ~Å! ~Å! ~Å! ~eV Å21) ~eV! ~eV! (J) (J)

30° glide partial 0.343 0.433 2.22 3.33 3.84 2.13 1.53 2.10 0.628 0.561 0.471

90° glide partial 0.323 0.536 2.22 3.33 3.84 2.64 1.75 - 0.509 0.450 0.358

Shuffle screw 0.148 0.400 3.84 3.33 3.84 5.90 3.87 2.39 1.433 1023 0.103 3.053 1024

Shuffle 60° 0.116 0.501 3.84 3.33 3.84 7.39 4.89 - 7.273 1025 0.076 1.553 1026
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TABLE III. The kink migration energiesEM and second-order Peierls stressess2P for kinks in ^100&
$110% dislocations inB2 NiAl. The quantities shown are the same as in Table II, but in this case Pe
energiesW0, first-order Peierls stressess1P , and kink pair nucleation energiesEnuc are taken from Ref. 35,
andG05Jb2/2; andEM ands2P are from Eqs.~29! and ~30!, respectively.

W0 J b h a G0 l Enuc EM s1P s2P

~eV Å21) ~eV Å23) ~Å! ~Å! ~Å! ~eV Å21) ~eV! ~eV! (J) (J)

^100& line 0.013 0.064 2.88 4.07 2.88 0.27 4.55 1.56 1.031025 0.161 3.131025

^110& line 0.013 0.050 2.88 2.88 4.07 0.21 2.00 0.87 0.03 0.280 5.931022

^111& line 0.0087 0.045 2.88 2.35 2.49 0.19 3.09 0.63 1.1031023 0.251 3.231023
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is available.6 Silicon is also of particular interest because it
the simplest directionally bonded material, and because t
is extensive experimental information on its deformati
properties. The results are shown in Table II. For comple
ness, the Peierls energiesW0 and first-order Peierls stresse
s1P from Ref. 5 and the kink pair nucleation energiesEnuc
from Ref. 9 are also included.l for the glide partials is
smaller than two. The predictions of Eqs.~29! and ~30! for
EM and s2P , respectively, are therefore not the values
retain for these dislocations. Focusing, in this discussion
the 30° partial with the smallestl51.53 ~similar results ap-
ply to the 90° partial!, we see, comparing columns 2 and 4
Table I, that corrections of the order of a factor of 2 app
reducingEM from 0.804 eV to 0.430 eV. There is a simila
effect for s2P , obtained by applying stress to the relax
kinks until they move.s2P is found to decrease from
0.514J to 0.27J. There is another source of correction
consider, which in large part compensates for these
creases, the departure of the PN energy from a sinuso
function. The impact of this change on the solutions for ki
profiles in the FK model has been discussed by Peyrard
Remoissenet.26 Repeating our calculations with their kin
solutions, and including relaxation, we find that the dev
tions, which are present in silicon, causeEM ands2P for the
30° partial to increase~from the relaxed sinusoidal case! to
0.628 eV and 0.471J, respectively. We intend to give mor
details on the effects of these approximations in a fut
publication.

The atomistic work of Bulatov, Yip, and Argon,27 using
an empirical potential model of Si, yields very similar valu
for theEM of the 30° glide partial; 0.74 eV for the right kink
and 0.82 eV for the left kink. Considering that the gsf surfa
obtained in the Stillinger-Weber potential model of Si us
in Ref. 27 has for the relevant^211& direction, a maximum
noticeably larger than in the corresponding local-density
proximation ~LDA ! result,28 we have good agreement b
tween the two predictions.

Measurements indicate that the activation enthalpy
dislocation motion in silicon is about 2.2 eV.29 Conventional
thinking is that the kink migration energy may be responsi
for as much as a half of this figure, 1.1–1.2 eV.30,31 The
values in Table II are consistent with the total activati
energy for glide, bearing in mind that the calculation tak
into account only the most important features of the m
chanical aspects of kink migration, and does not cons
possible electromechanical interaction terms. Our migra
energies represent about a third of the nucleation energie
glide set dislocations, instead of a half as usually assum
re
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The migration energies are negligible for shuffle set dislo
tions. The small values for these kinks are due to the la
Burgers vector, which makes the dislocation stiffer and
kink wider.

Second, we consider kink migration inB2 ordered NiAl.
In contrast with covalent materials, the kink migration e
ergy in metals is expected to be small~Schottky, using a
semiempirical elastic calculation, estimates a migration
ergy of order 0.5 K;32 Duesbery, with an atomistic mode
finds a migration stress of less than 1027m in potassium33!.
The g surface for NiAl has been calculated from fir
principles34 and PN-DR model results are available.35 Dislo-
cations with the Burgers vector^100& lying in $110% planes
are responsible for plastic deformation except for some
stricted orientations of the applied stress. For reasons w
are not clearly understood, most observed dislocations h
mixed character, witĥ 111& line directions rather than the
^100& screw or^110& edge directions. We have calculate
for these dislocations the kink widthsl and migration ener-
giesEM , and the second order Peierls stressess2P . These
are shown in Table III, along with the PN energiesW0, the
kink nucleation energiesEnuc, and the first-order Peierls
stressess1P from Ref. 35. It is clear from Table III that
although thê 100& screw dislocation has the smallest firs
and second-order Peierls stresses, the^110& edge and̂ 111&
mixed dislocations have much smaller kink pair nucleat
energies, and of these latter two the^111& mixed dislocation
has a much smaller second-order Peierls stress.

VI. SUMMARY AND CONCLUSIONS

Recent work by the authors on the estimation of dislo
tion properties in complex materials by the use of appro
mate mechanical models combined with first-principles g
eralized stacking fault energy surfaces has been extende
cover the calculation of dislocation kink migration energi
and stresses. The results are compatible with experime
work on silicon and explain unusual features of plastic d
formation in NiAl.
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