PHYSICAL REVIEW B VOLUME 55, NUMBER 2 1 JANUARY 1997-1l

Theory of phase-locking in generalized hybrid Josephson-junction arrays
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A recently proposed scheme for the analytical treatment of the dynamics of two-dimensional hybrid
Josephson-junction arrays is extended to a class of generalized hybrid arrays with “horizontal” shunts involv-
ing a capacitive as well as an inductive component. This class of arrays is of special interest, because the
internal cell coupling has been shown numerically to favor in-phase synchronization for certain parameter
values. As a result, we derive limits on the circuit design parameters for realizing this state. In addition, we
obtain formulas for the flux-dependent frequency including flux-induced switching processes between the
in-phase and antiphase oscillation regime. The treatment covers unloaded arrays as well as arrays shunted via
an external load.S0163-18207)00502-X]

[. INTRODUCTION competition of external and internal synchronization.
We start with an exposition of the problem including the

Two-dimensional2D) Josephson-junction arrays are con- basic equations in Sec. Il. In Secs. Ill and IV these equations
sidered as strong candidates for tunable microwave oscillsare solved by an analytical approximation, combining ideas
tors. Since the pioneering works by Benz and Burrotighs of the strong-coupling method appropriate for small-
there were some attempts to fabricate arrays of this®type inductance Josephson-junction cBliswith the standard
as well as to understand them theoretic&ff/(For two re- Weak-coupling procedure of the slowly varying phésé"
cent reviews on 2D Josephson-junction arrays, seéor the treatment of intercell coupling. While Sec. Iil con-
Lachenmantf and Boot'.) While radiation output of two- tains lowest-order results corresponding to vanishing cell in-
dimensional arrays should be much larger than that of oneductance, Sec. IV includes the effects caused by a small, but
dimensional arrayéfor quadratic arrays in the matched casenonvanishing inductance being essential for understanding
typically ~N?2, with N=number of rows, compared to being the intercell coupling. Section V contains several results in-
~N, with N=number of junctions, for one-dimensional cluding a comparison with numerical simulations. The inter-
array$*9) observations point more to the opposite direction.Play with an external load is treated in Sec. VI, and Sec. VI
While in one-dimensional arrays there were observed up téontains several more general conclusions relevant for the
160 wW,** the output power reported in two-dimensional layout of two-dimensional Josephson-junction arrays.
arrays is several orders of magnitude smaller with a maxi-
mum of around 400 nV§141®

Potentially, there can be several reasons responsible for
this discrepancy. Besides low critical currents/normal resis- For making the problem accessible to an analytical treat-
tances, mismatch to the external load, or parameter tolement, we have to make several propositions. Figure 1 shows
ances some more basic problems might be responsible fehe circuit under consideration. To make the physical mecha-
this. Indeed, some recent theoretical investigations showjisms more transparent, the external shtinis removed in
that the radiating in-phase mode is neutrally stable in anhe beginning, and will only be included in Sec. VI. Despite
unshunted array without external ffuand, even worse, that its simplicity this model has all the main features present in
it is unstable even for a small flux entering the ¢élAs a
result, the natural state of at least the simple model circuit .
studied in Ref. 16 is a nonradiating one with both cells os- TQZ'O s

¥

Il. THE MODEL AND THE BASIC EQUATIONS

cillating against each other. The situation can be improved
by adding an appropriate external shunt synchronizing in- 1
phase via its long-range interaction, but generally there re-
mains a tendency that pairs of cells lock antiphase and drop

o)
N

out of the radiating mode. r c

A recently proposed layotft removes this difficulty by
introducing an additional capacitive shunt in the “horizon- 21 ire 2
tal” branches thus turning the internal coupling to favor the ®

in-phase state. It is the aim of the present investigation, to
give this idea an analytical foundation and derive some rig- }
orous results, notably on the parameter boundaries separating

in-phase from antiphase oscillations. In addition, we study

the interplay with an external load leading to a rather com- FIG. 1. The generalized Josephson-junction hybrid array model
plex picture of possible stability regions as a result of thecircuit under investigation.
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larger arrays, too: It is truly two-dimensional with a possible 1

flux entering the cells. Notice, that unlike conventional hy- lo=5(i1ti12), 9)
brid arrayS*® the horizontal branch contains a more general

shunt consisting not only of the usual inductive connection, FUR R T (10)
but of a parallel capacitance and resistance. Numerical re- itz 2

sults obtained before indicate that an intrinsic shunt of this e

type can favor in-phase locking even in an externally un- W=+ (1D
shunted array. Here, we will confirm and extend this resultThese have to be supplemented by Kirchhoff's voltage law
by developing an analytical formalism which should be ap-
plicable to larger two-dimensional arrays with the same gen-
eral structure as well.

Some more restrictions have to be put on the arfgy: ) ) . ) )
Josephson junctions are described by the resistively shuntéfe would like to point out that while the inductive branch
junction (RSJ model?? (ii) All junctions are considered to Ccarrying current, is part of both superconducting loops thus
be identical.(iii ) Junctions are overdamped with a McCum- contributing to the flux quantization condition®), the
ber parameter set to zertiv) Self-inductance is taken into branchi,. enters only via the ordinary Kirchhoff's lad2).
account while mutual inductance is neglectéd. The nor-  As a result, it is impossible to simply substitute the three

+r: N 1
| -l —
| rc Ic

: i.=0. (12)

malized ring inductance between the two loops elementd, c, andr by a single impedancg from the be-
ginning.
=27 LI (1) Before, it has proven useful in the treatment of strongly

) o coupled SQUID cel® to combine the Josephson phases
is supposed to be small€1). From the beginning, one has ithin each cell via

to understand that the inductance of the horizontal connec-

tion acts in a twofold way. At first, it contributes to both ring 1

inductances thus determining the superconducting quantum 2k=§(¢>kz+ b1, (13
interference devicéSQUID) coupling within each loop. At

second, it is part of the shunt common to both loops and as 1

such it influences the intercell coupling. With E@) we Ak=§(¢kz—¢k1)- (19
request the SQUID coupling to be strong, which is a neces-

sary prerequisite for our approximation scheme to work. Onn addition, we introduce the circular currents

the other hand, we will not fix the ratio between the induc- .

tive and the capacitive horizontal impedances from the be- = (Ig—ig)/2. (15
gmlrr]lmt?]é following, we will exploit some more normalized With the help of Eqs(13)~(15) we finally obtain the system

guantities as follows, :

Ek+Sinsz0$k:io, (16@
2e . .
s= 7 IcRat, 2 A+ sinA coS =iy, (16b)
e=27d/ D, 3 Aj+Ay— =0, (169
2e A= Ay=liy=1(i—i1+i), (160
C:_|CR|2\|C1 (4)
f .oor, 1
|rc+|_|rc+E|rc:(|1_|2) (163
r=RI/Ry, (5)

_ which our analytical approximation scheme is based on. As
i=1/lc, (6) there are seven equations for the seven variables

with 1 the junction critical currentRy is the normal resis- SioAilioire, this is a well-posed problem.

tance of one of thdidentica) junctions,® is the external
flux per cell, and the last normalization being valid for all IIl. ANALYTICAL APPROXIMATION SCHEME
currents entering the calculation. Adopting these normaliza- AND LOWEST-ORDER RESULTS
tions, the circuit can be described by the RSJ equations for o, strategy for solving systeifi6) will be based on a
the Josephson phases, perturbative treatment valid for smdll(for the basic idea
) . ) o compare our earlier papé). Thus, we start solving Eqé16)
¢ij+singy =iy, ({i,j}={1,2) (7 for1=0, and only later include corrections| exploiting the
lowest-order results obtained before. This procedure is fa-
vored by the fact that enters Eq(16d) only. We start by
=i — evaluating Eq(16d) in conjunction with Eq.(160). The so-
b2~ dinm e+l =0 ® lutions for A, can be used to evalual®, from Eq. (163.
(minus sign refers té=1) and Kirchhoff's current laws Next, we find the'[; (not theA,, which are already known in

in conjunction with the two flux quantization conditions
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this ordej from Eq. (16b). Finally, with the ring currenta’;"k 1 2

on the right-hand side of Eq16¢ known we can evaluate 1Z(Zo)|=/ f2+(g—|§o> (24)

the currenti,. by solving the corresponding differential 0

equation. All other quantities, likg or i, are secondary and

can be derived from the seven variables mentioned so faﬁnd the phase angg,

Afterwards, we insert the lowest-order result on the right-

hand side of Eq(16d) and start a second cycle in the same r ) [£o—1lcly

sequence. Coaﬂ(fo): |Z(§O)| ) Slnlﬁ(fo): m (25)
The procedure described above gives the following

lowest-order results. First, the Josephson phase differences in

both loops are found to be identical, For later purposes we neeg=i+i,. rather than;, be-
cause it is jusf; which potentially may split the oscillation
Ay o=ol2. (170  phases between cell 1 and cell 2 via Ef§6d). Combining

Eq. (23) with Eq. (22) after some algebra we obtain
In the following, comma-delimited indices refer to the order

of approximation. From Eq163a), the Josephson phases are

found to coincide with the corresponding solutions for an L AL =l . 01— 5,
autonomous junctiol?, 0T i+ 2o |Z(§0)|S|n(<p/2)3| 2
61+ 6
™ go ZOS_ 5k Xco{ g S— 1 2 — )
-z tan x(&o) | (26)
20 5 +2 arctar6i0+cos(¢/2) an— . (18 0 5 0

with the important modification that the frequenéy be-  \yhere we introduced thec impedancgz| with
comes flux dependent according to

Lo=\i3—cod(¢l2). (19 12020)] = AP ——s 27)
(cZo)

Next, the circular currents can be evaluated from Eq.
(16b). Note, that this equation originating from the original 54
Josephson equations does not lead to a differential equation,
because the constant Josephson phase differéncare al-

ready known. The result is . ricés
i =Sin(¢/2)cOs 0. (20) (Lol o 29
It is a trivial task to evaluate Eq20) using Eq.(18); in the 2ctt (1)cim]
further calculation we will only need the lowest harmonics of cosy(£o) = r'cdot (1edo—12o) _
the circular currents, 1Z(Z0)IN1+(rcgo)?
e do . ; [In principle, one could evaluaig directly from an equation
ko™ 2i0+ gOS'n((P/Z)S'ruOS %)- @D Gimilar to Eq.(16e of course, and we checked that the result

is the same. The procedure described here has the advantage

of additionally providing an expression for the current flow-

ing through the capacitive ling.

i_0=i°20— i10=4. do sin(<p/2)sin( 61~ 52) To summarize, we observe the following lowest-order re-
’ ’ ' o+ 4o 2 sults: All four junctions oscillate with the same flux-

dependent frequencgz():\/ioz—cosz(cp/Z). Because of Eq.

, (22) (17), the junctions within each cell are exactly in phase,

while the relative phase between cell 1 and celg®en by

Qfl and &,, respectivelyis undetermined, up to now. If both
ells are in phase, there is no current through the horizontal

rlli_ne, because of the dif¥,— 8,)/2] present in Eq(22). On

the other hand, the horizontal current reaches its maximum if

both cells oscillate antiphase with — §,= .

The corresponding difference of the ring currents,

o1+ 6
xcos(gos— 12 2

enters the horizontal connection thus acting as a drivin
force for the oscillatory circuit according to E(L66. This
equation can be solved with standard methods. The statio
ary oscillating solution reads

o 4185
0= T 1Z(Z0) G0+ o)

o o/2)s (51— 52)
sin(g/2)sin 2 IV. INDUCTANCE EFFECTS
) 61+ 6, Now we are ready to include inductance effects. Again
Xsinl {os— ——5— —#(Lo) |- (23 starting with Eqs(16¢ and(16d), we insert the lowest-order
result Eq.(26) on the right-hand side of E@16d). This leads
Here, we introduced the series circuit impedadceith to
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fo 12 . 62— 6 : Loz _(62)—(0
A1/2=A1/2'0+|A1,2‘1=§i2|ﬁ%SII’(@/Z)SIH% §o(§_§o_<52>):—“oﬁ %SW'((P/Z)SIHM%
61+ 6 85)— (6
xcos(gos— 1; 2 x| (29) XSih(qo/Z)CO{#-f-)( , (36b

Note, that the first index in Eq29) refers to cell 1 and cell where() denotes the time average over one Josephson os-
2, respectively, while the second one indicates the order dfillation. The difference of Egs(369 and (36b) gives an
evaluation; the+ sign refers taA,. This has to be inserted €volution equation for the phase differena®,
into Eqg. (169, .

iol 2] . .
_ (8)= v msmz(go/Z)cosX sir{ ). (37)

S HCOY Ay o+ 1Ay )SinS =i (30) 07 =0
Equation(37) is the basic equation determining the possible

For evaluating these equations the cosine on the left-hanphase differences between the oscillations of both cells as
side is expanded according to well as the corresponding regions of stability.

COg Ay ot 1Ay ) ~COA o~ 1A} 1SINA 6. (31 V. PHASE-LOCKING, STABILITY
AND OSCILLATION FREQUENCY
After transferring the correction termy| to the right-hand ) ) i )
We will not go into the question of general solutions of

side of Eq.(30) one makes the crucial observation, that it , .
acts in a similar way as, for example, an external shunt syn_Eq- (37) but concentrate on phase-locking, being character-

chronizing the cell$® ized by a time-independent phase shift between cell 1 and

The resulting equations are evaluated with the convenSell 2;
tional phase-slip methogsee, for instance, Refs. 19921 S
According to this procedure which has proven useful in the (6°%9)=0. (38)

treatment of linear arrays before, the up to now ConstanWithin the range 6 6< 2 there are Obvious|y 0n|y two
phasess; and §, are considered as time dependent, possibilities for Eq(38) to be valid,

5= 6u(s), (32) (8°=0 and (&%=, (39

with the subsidiary condition that this time dependence is:[he fII’St'OQe descr!ﬁmg m—p?ars]e os|(|:|llat|ons and the second
only an adiabatic one one antiphase oscillations of the cells. N

! The crucial question of the range of stability of these two
solutions can be answered on the basis of the evolution equa-

8<p. (33)  tion (37), too. The ansatz

Physically, this means that the phases are required to be (8)=(5"" +ae (40)
nearly constant during one Josephson oscillation.

With these assumptions, the same anga8r with 6,(s) (lal<[1]) leads to the Lyapunov coefficient

and{ instead of¢, leads to the sum voltages, , il |z
=2 usinz( @/2)cosy cog 5. (41)
5 iot <o 2]
'zk Lol£— ) (34 One recovers that the stability is solely determined by the

o+ cos ¢/2)co8 (s i) cosy; all the remaining factors, except, are positive defi-

Writing ¢ instead of{, we have allowed for a possible hite. In detail, the

(smal) deviation of the actual oscillation frequency from in-phase solution( 5°)=0 is stable for cog<0,

Lo- Inserting Eq(34) into (30) leads to the reduced equations (42)
i ) ) while the
Lo(— Lo 8 =1 sin(@/2)Ay 4 cod ¢/2) +ioCOL LS~ b)) ].
(35 antiphase solutior( §°°)=r is stable for cog>0.
(43)
After averaging over one time period and applying some ] ) N ] ]
algebra we arrive at the following system of equati¢fus Before further evaluating this condition we will consider
details see, for instance, Refs. 16 and 19)_21 the OSCi||ati0n frequency Wh|Ch can be derived from Eq
(369 [or Eq. (36b)]. With
. z 85)— (6 — -
Lo(¢{=Lo=(o) =lig—— iog %sin(svlz)sin—( 2) 2< ) (61)=(8z)=const=0, (44)
ot o

one easily recovers
X Sin of2 <52>_<51>+ 36 _ -
sin(g/2)cog —————+x/, (363 {"= o= \i2—co(¢l2). (45)
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& g5l FIG. 2. The boundary between in-phase and
-“% antiphase oscillations. Solid line: analytical ap-
§ & proximation. Crosses: numerical simulation. Pa-
25 rametersiz=1.5r=0.1,0=1.0.
2 -
15 F
i+
05 -
0 1 1 1
0 0.5 1 1.5 2
Inductance /
Evaluating the antiphase frequency with with the cells oscillating anti-phase if the left hand side is
positive and in-phase if it is negative. In other words, the
(01) ()= (46)  transition between both regimes lies in the vicinity of the

resonance curve of tHec-r connection with deviations be-
coming important for small. Figure 2 shows the boundary
) io|2r sirt(¢/2) between the two regimes for a frequengy 1.11 in com-
CM=¢o\ 1= o |- (47)  parison to numerical results.
1Z|*(i0+ ¢o) T . . o
0 summarize, the in-phase regime is favored for not too

Thus, if both cells oscillate in-phase their frequency is idendarger as long as the inductive impedance dominates over
tical to the autonomous oscillation frequency. On the othethe capacitive one, while for the capacitive impedance domi-
hand, if the cells oscillate antiphase the frequency will benating the cells oscillate antiphase. There is a simple physi-
lower than{,. The physical reason for this behavior can becal explanation for this: Anti-phase oscillations are caused
understood by comparing with othéven linearly oscillat- by the flux coupling via the joint inductive line carrying
ing systems: If the binding8n our case realized by the hori- currenti,. For a sufficiently large capacitive shunt, the cur-
zontal impedangeare not loaded, the oscillation frequency rent prefers the capacitive way which does not produce any
remains the same as for uncoupled oscillators; if the bindingsuch flux.
are loadedi.e., in case of an ac current flowing through the  In conventional hybrid arrajshorizontal lines are purely
horizontal ling the system oscillates with a different fre- inductive. Formally, this limit can be observed letting
quency. c—0. In this case the capacitive impedance goes to infinity

Unfortunately, one has to respect a certain limit of valid-while the correction~r2c tends to zero. Then, there is no
ity of Eq. (47). Using the method of slowly varying phase we possibility for the current to be shunted, and the cells remain
have adopted the supposition mentioned before that the frén the antiphase regim@. The more general question, for

needs a bit more algebra. The result is

guency must not deviate too much frafg, which parameter valuds c, andr there are no transitions
can be answered on the basis of E&f)). This equation does
{=~{o- (48 only have real solutions fof if

Thus, the correction in Eq47) is required to be small com-
pared to the frequency itself. A rough estimate valid for
ip>1.15 leads to the condition

I>r2c. (51)

For all smallerl, the current in the inductive line is strong
I2<r . (49) enough to keep the cells oscillating antiphase.
Considering the circuit parameteirg, |, etc. as constant

Our experience shows that usually a factor of 2. . .3 is sufand leaving the external fluy as the only free parameter
ficient for this condition to be fulfilled. one can observe flux-induced transitions between both re-

Now we return to the question of antiphasén-phase gimes. The difference between the frequendi@sand 72"
transitions described by Eq$42) and (43), respectively. leads to a hysteresis, which has been observed in numerical
Considering the numerator of gpsone observes that the simulations beforé’ In more detail, in-phase antiphase
boundary separating in-phase and antiphase oscillations ¢fansitions are observed at

the cells is given by
@?=2 arccof* \ig— "], (52

1
- _ 267 =
(cg 1¢)+r7ce=0 (50 where we introduced the transition frequency
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3 FIG. 3. Frequency against flux with a transi-
tion from antiphase to in-phase oscillations. Pa-
rametersi,=1.5r=0.11=0.2c=4.0. (a) Ana-

lytical approximation(b) Numerical simulation.

Thus, if there are any transitions between both regimes at
all, for small values of the external flux the cells oscillate

0.5 1 1.5 25
Flux ¢
o5 } 5 25 3
Flux ¢
(= = (53
lc—r?c?

as can be easily deduced from E0). The transition from
the antiphase to the in-phase regime needs a bit more algrrading to the hysteresis mentioned above. Figure 3 shows a
bra. It can be determined from the requirement, that the amp|ot of frequency against flux in comparison with the out-
tiphase frequency Eq47) be equal to the transition fre- come of a numerical simulation. The frequencies are in ex-
quency Eg.(53). Unfortunately, the resulting equation cejient agreement, and even the transition points, which de-

cannot be solved in closed form. However, as a first approxi

mation, one can equate the-irantitransition frequencys3)
with Eq. (47) and evaluate fotp, substitutingl— " on the
right-hand side of Eq(47),

o¥=2 arcco% + \/

ig—({")2—2igl/cr(ip+ ™M)

1-2igl/cr(ig+ ™M

(54

It can be deduced, that® is always larger thag'™. A better _ , . , _ _
result for ¢ is obtained by graphically finding the transition NiSm causing the hysteresis observed in numerical simula-

frequency on the curve dt=¢".

with the lower antiphase frequency switching to in-phase
oscillations at ¢®. Because ofp?>¢? (for 0<ep<m)
switching back to the antiphase state occurs at a lower flux,

pend rather sensibly on the parameters, are located within the
same region.

This last result concerning hysteresis has to be taken with
some care. It was obtained by combining the antiphase fre-
qguency formula(47) with Eq. (50) and evaluating fore.
However, Eq.(50) as originating from Eq(37) is already a
first-order result, thus inserting E7) might not be fully
justified, while second-order terms i{87) are neglected.
Nonetheless, it gives a plausible explanation for the mecha-

tions.
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VI. LONG-RANGE SYNCHRONIZATION The load current Eq(57) provides the additional contri-
VIA AN EXTERNAL LOAD bution to Eq.(56) and, as a result, the phase-slip equations
(36) get an additional term, too. After performing the time

It has been well-known for a long time that SynChron'Za'averages we get

tion in a one-dimensional array can be achieved and con
trolled by shunting the array via an external 1ddd? In a

similar manner one may hope to be able to control row lock- s (r— s — (&)= — iol L | —sirf(¢l2)
ing in two-dimensional arrays, too. For studying this mecha- iot o 2|
nism within our model we now add the external load already . : _ B
indicated in Fig. 1. As a result, we have to supplement the XLsing+sin((d1) = (52) = x)]
basic equation$16). At first, we add the mesh rule for the 1 &
load current , t3 T+ Zo |ZL|COSZ(<P/2)

- - .1 X [sing—sin((d1) —(82) = )]

=i —ryi,——i_=0. 55

2, Bl iy (559 (599

Here,r , I, andc, are the load impedances normalized in il & |
the same manner as Ed4), (4), and (5). In addition, the  £o({—Zo—(8,))= 2 ity msmz(go/Z)[sing/er sin({51)

load current couples back to the junctions, thus supplement-
ing Eq. (1639, { 1 2

o 1
21t SIM oA =T~ 5L (56 x[sin¢L+sin<<61>—<6z>—wo]. (59

By subtracting Eqs(59a and (59b), we finally get the evo-

As has been observed in the study of similar One'Htlon equation for the averaged oscillation phase difference,

dimensional synchronization problems before, the reciproca
impedance 1Z, |<1 provides another perturbation param-

eter for a sufficiently large load; thus we evaluate the system ( '5> = 1 —co(el2)cosp,
perturbatively, neglecting terms-1/|Z,|. To lowest order ot 4o\1ZL]
with respect tdZ, | the load current vanishes, and we end up B
with the results described in Sec. Ill. Based on the lowest- +igl=rsir( ¢/2) Cos()snf}( 5). (60)
order Josephson oscillatio8) and the corresponding volt- |Z|
agesZo we obtain the first-ordefwith respect to 1Z,|) Despite the relatively complicated interplay between cell in-
load current o, teraction via the horizontal line and long-range coupling via
the external load there remain only the same two phase-
| _4cosel2) Lo ﬂos( 01— 6, sin( Los— 6116, locking solutions as before,
Oz ietdo 2 0 2
(8°"=0 and (8°“=m, (61)
wL) (57) the stability of which is determined by the Lyapunov coeffi-
cient
with
1 1 |Z|
1 2 A= ety |co§(<p/2)coap,_+|ol| |sm2(go/2)cosx
1Z.(&o)|= \/(rL+1)2+ W"Lgo) , (583 0750 =L
L=0 X cog 5'°%K), (62)
sing (L) = , (58b) In-phase oscillations of the cells are stable if the term in
1ZL(Lo) parentheses is lower than zero, while antiphase oscillation
are stable if it is greater than zero. Thus, the desired stability
e Lo—114o for the in-phase mode is reached for
cosf({o) ERTATA (580

1 2|
Its structure is obviously quite similar to that of the horizon- 1z |CO$2(‘P/2)COS/’L+'0| |z|SInZ ¢l2)co<0. (63

tal current Eq.(22). However, one should note two differ-

ences:(i) While the load current is maximal fap=0, the  Equation (63) shows a rather complex parameter depen-
horizontal current reaches its maximum fpr= /2. (i) The  dence, relating the seven parameterd, c, r., I, c_,
horizontal current vanishes if both cells oscillate in-phaseand ¢. Its physical meaning is best discovered considering
while the load current vanishes for both cells oscillating an-several limiting cases.

tiphase. (i) For a sufficiently large external load,
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FIG. 4. Transition between in-phase and an-
tiphase state caused by the internal inductive cou-
pling present in a hybrid array. Parameters:
ip.=15r,.=1.0/,=1.0,c, =2.0. Solid line: ana-
lytical approximation, boxes: numerical simula-
tion, open dots: numerical simulation with induc-
tance regularly distributed around loops.

Inductance 1

2
Flux ¢

Fd The influence of changing parameters can be nicely illus-
m<lo|ﬁ, (64) trated by performing a second simulation with exactly the
same parameter set, but distributing ring inductainoegu-
the relative phase of the cells is determined by the interndarly around the loops. The result denoted by the dots in Fig.
coupling alone. This has to be compared to the case of twé clearly deviates from that obtained for inductance concen-
externally loaded separate celfsin this case—as for linear trated on the horizontal line considered before. This can be
arrays—the relative phase depends on the character of tiigken as a strong indication that the coupling is not provided
external load only: While for inductively dominated loads by the loop inductances but by the inductance on the line
the cells are locked in-phase, they are locked antiphase f@ommon to both cells.
capacitively dominated loads, independently of the magni-
tude of the external load. VIl. CONCLUSIONS
(ii) The contributions from the external load and from the
internal shunt show a different flux dependence. For suffi- Although our work is devoted to the study of a simple
ciently small values of external flux the last term can pemodel circuit several results are expected to be valid for
neglected, and the locking regime is controlled by the loadarger arrays, too. At first, the short-range coupling between
only. On the other hand, for flux values of around half a fluxneighboring cells leads to an antiphase synchronization in
quantum the first term becomes negligible, and the internafonventional Josephson-junction hybrid arrays. This may be
horizontal line determines the phase difference of the cells0ne reason for explaining the very small radiation output in
(i) For|—0, the second term can be neglected, and th&€D Josephson-junction arrays obtained so far. Second, we
result agrees with that obtained for two separate cell$how a way to improve the situation by adding a capacitive
before? as it should be. In this limit the cells internally shunt parallel to the horizontal lines. In this way, the flux-
decouple, while the external coupling remains in force. ~ generating current potentially responsible for the antiphase
(iv) The usual hybrid arrays without the interfRdC line coupling is redirected through the capacitive line which is

are contained as a limiting case. For o, the in-phase con- Not part of a flux quantization condition.
dition, Eq.(63), reduces to Combining Fig. 2 with some already known facts on syn-

chronization in strongly coupled SQUID céfishe follow-

1 o ing design criteria for generalized hybrid 2D Josephson-
57C0SY COS(@/2) +igl SinP(¢/2)<O0. (65  junction arrays can be derivedi) For synchronizing
1Z,] otion arrays ¢ rve

horizontal lines in-phase the ring inductances have to be kept
It states, that for sufficiently large inductances, small (<1). (ii) In-phase synchronization between neigh-
boring cells in vertical direction is observed for
o cosj | >1/cs?+r%c. Based on this, we will derive some estimates
I>1%=— iotar(¢/2)[Z,]" (66 for reasonable and!. For a givenl, the boundary between

in- and antiphase oscillations is given by Ef0). Figure 2
ordinary pure inductive hybrid arrays may switch to the an-shows already that the additional terar restricts the pos-

tiphase state even for inductive external loads. siblel by setting a lower bound. This bound is obtained from
The indicated transition was indeed observed in a numeri-

cal simulation(boxes in Fig. 4 Having in mind that Eq(65) dl

is the result of several approximations, concerning the exter- dc =0 (67)

nal shunt as well as the internal inductive coupling, the
agreement is remarkably good. as
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1 If the arrays are externally loaded, which is usually done
r= ol resp. |=2r/¢. (68  via an inductive load, the parameters have to be chosen in
such a manner to respect E§3). The best way for obtain-
Thus, for obtaining in-phase oscillations the condition ing in-phase synchronization is to make both contributions to
/| the Lyapunov-coefficient lower than zero separately, which
r<>— (69) is possible because the parameters of the external load can be
2 chosen independently of those from the internal shunt. In
has to be respected. Because of ) this means general, one should select values such, {hathe external
load is dominated by its inductive contributid(i,) the inter-
c>£ (70) nal horizontal shunts are dominated by the inductive imped-
e ance, too. Because of the frequency dependence of the char-

acters of the shunts, one has to make sure that these
u(fpnditions are met for all values of external flux.

Of course, the circuit studied here has several features
requiring a more detailed investigation, either analytically or
'numerically. Usually one exploits shunted tunnel junctions
for building arrays, thus one may ask for the influence of

1~0.8, c~3.0, r~0.2. (72) _nonvanishing McCumber pa_rameters. On thg othe_r hand, the

influence of parameter splitting needs to be investigated, and
Of course, all these estimates should be considered as very addition, in real arrays, noise comes into p|ay While this
rough, and on the other hand, one has to check carefully hoyst aspect is to be expected to play only a minor role within
large these quantities on chip actually are. the small inductance loops, it will be sure to have some

On the other hand, we would like to point out that thesejnfluence on the coupling between the cells.
suggestions are based on an analytical approximation scheme
and are founded on solid formulas. Of course, it still has to
be shown rigorously that they can be transferred to larger ACKNOWLEDGMENTS
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