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Theory of phase-locking in generalized hybrid Josephson-junction arrays

M. Basler,* W. Krech,† and K. Yu. Platov‡

Friedrich-Schiller-Universita¨t Jena, Institut fu¨r Festkörperphysik, Max-Wien-Platz 1, D-07743 Jena, Germany
~Received 24 May 1996!

A recently proposed scheme for the analytical treatment of the dynamics of two-dimensional hybrid
Josephson-junction arrays is extended to a class of generalized hybrid arrays with ‘‘horizontal’’ shunts involv-
ing a capacitive as well as an inductive component. This class of arrays is of special interest, because the
internal cell coupling has been shown numerically to favor in-phase synchronization for certain parameter
values. As a result, we derive limits on the circuit design parameters for realizing this state. In addition, we
obtain formulas for the flux-dependent frequency including flux-induced switching processes between the
in-phase and antiphase oscillation regime. The treatment covers unloaded arrays as well as arrays shunted via
an external load.@S0163-1829~97!00502-X#
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I. INTRODUCTION

Two-dimensional~2D! Josephson-junction arrays are co
sidered as strong candidates for tunable microwave osc
tors. Since the pioneering works by Benz and Burrough1,2

there were some attempts to fabricate arrays of this typ3–5

as well as to understand them theoretically.6–9 ~For two re-
cent reviews on 2D Josephson-junction arrays,
Lachenmann10 and Booi11.! While radiation output of two-
dimensional arrays should be much larger than that of o
dimensional arrays~for quadratic arrays in the matched ca
typically ;N2, with N5number of rows, compared to bein
;N, with N5number of junctions, for one-dimension
arrays6,12! observations point more to the opposite directio
While in one-dimensional arrays there were observed up
160mW,13,11 the output power reported in two-dimension
arrays is several orders of magnitude smaller with a ma
mum of around 400 nW.2,14,15

Potentially, there can be several reasons responsible
this discrepancy. Besides low critical currents/normal re
tances, mismatch to the external load, or parameter to
ances some more basic problems might be responsible
this. Indeed, some recent theoretical investigations sh
that the radiating in-phase mode is neutrally stable in
unshunted array without external flux6 and, even worse, tha
it is unstable even for a small flux entering the cell.16 As a
result, the natural state of at least the simple model cir
studied in Ref. 16 is a nonradiating one with both cells
cillating against each other. The situation can be impro
by adding an appropriate external shunt synchronizing
phase via its long-range interaction, but generally there
mains a tendency that pairs of cells lock antiphase and d
out of the radiating mode.

A recently proposed layout17 removes this difficulty by
introducing an additional capacitive shunt in the ‘‘horizo
tal’’ branches thus turning the internal coupling to favor t
in-phase state. It is the aim of the present investigation
give this idea an analytical foundation and derive some
orous results, notably on the parameter boundaries separ
in-phase from antiphase oscillations. In addition, we stu
the interplay with an external load leading to a rather co
plex picture of possible stability regions as a result of
550163-1829/97/55~2!/1114~9!/$10.00
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competition of external and internal synchronization.
We start with an exposition of the problem including th

basic equations in Sec. II. In Secs. III and IV these equati
are solved by an analytical approximation, combining ide
of the strong-coupling method appropriate for sma
inductance Josephson-junction cells18 with the standard
weak-coupling procedure of the slowly varying phase19–21

for the treatment of intercell coupling. While Sec. III con
tains lowest-order results corresponding to vanishing cell
ductance, Sec. IV includes the effects caused by a small,
nonvanishing inductance being essential for understand
the intercell coupling. Section V contains several results
cluding a comparison with numerical simulations. The int
play with an external load is treated in Sec. VI, and Sec.
contains several more general conclusions relevant for
layout of two-dimensional Josephson-junction arrays.

II. THE MODEL AND THE BASIC EQUATIONS

For making the problem accessible to an analytical tre
ment, we have to make several propositions. Figure 1 sh
the circuit under consideration. To make the physical mec
nisms more transparent, the external shuntZL is removed in
the beginning, and will only be included in Sec. VI. Desp
its simplicity this model has all the main features presen

FIG. 1. The generalized Josephson-junction hybrid array mo
circuit under investigation.
1114 © 1997 The American Physical Society
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55 1115THEORY OF PHASE-LOCKING IN GENERALIZED . . .
larger arrays, too: It is truly two-dimensional with a possib
flux entering the cells. Notice, that unlike conventional h
brid arrays5,8 the horizontal branch contains a more gene
shunt consisting not only of the usual inductive connecti
but of a parallel capacitance and resistance. Numerica
sults obtained before indicate that an intrinsic shunt of t
type can favor in-phase locking even in an externally u
shunted array. Here, we will confirm and extend this res
by developing an analytical formalism which should be a
plicable to larger two-dimensional arrays with the same g
eral structure as well.

Some more restrictions have to be put on the array:~i!
Josephson junctions are described by the resistively shu
junction ~RSJ! model.12 ~ii ! All junctions are considered to
be identical.~iii ! Junctions are overdamped with a McCum
ber parameter set to zero.~iv! Self-inductance is taken into
account while mutual inductance is neglected.~v! The nor-
malized ring inductance between the two loops

l52pI CL/F0 ~1!

is supposed to be small (l!1). From the beginning, one ha
to understand that the inductance of the horizontal conn
tion acts in a twofold way. At first, it contributes to both rin
inductances thus determining the superconducting quan
interference device~SQUID! coupling within each loop. At
second, it is part of the shunt common to both loops and
such it influences the intercell coupling. With Eq.~1! we
request the SQUID coupling to be strong, which is a nec
sary prerequisite for our approximation scheme to work.
the other hand, we will not fix the ratio between the indu
tive and the capacitive horizontal impedances from the
ginning.

In the following, we will exploit some more normalize
quantities as follows,

s5
2e

\
I CRNt, ~2!

w52pF/F0 , ~3!

c5
2e

\
I CRN

2C, ~4!

r5R/RN , ~5!

i5I /I C , ~6!

with I C the junction critical current,RN is the normal resis-
tance of one of the~identical! junctions,F is the external
flux per cell, and the last normalization being valid for a
currents entering the calculation. Adopting these normal
tions, the circuit can be described by the RSJ equations
the Josephson phases,

ḟ i j1sinf i j5 i i j , ~$ i , j %5$1,2%! ~7!

in conjunction with the two flux quantization conditions

f i22f i12w7 l i l50 ~8!

~minus sign refers toi51) and Kirchhoff’s current laws
-
l
,
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i 05
1

2
~ i 111 i 12!, ~9!

ī5 i 112 i 215 i 222 i 12, ~10!

i l5 ī1 i rc . ~11!

These have to be supplemented by Kirchhoff’s voltage la

ï l1
r

l
i̇ rc1

1

lc
i rc50. ~12!

We would like to point out that while the inductive branc
carrying currenti l is part of both superconducting loops thu
contributing to the flux quantization conditions~8!, the
branchi rc enters only via the ordinary Kirchhoff’s law~12!.
As a result, it is impossible to simply substitute the thr
elementsl , c, andr by a single impedanceZ from the be-
ginning.

Before, it has proven useful in the treatment of strong
coupled SQUID cells18 to combine the Josephson phas
within each cell via

Sk5
1

2
~fk21fk1!, ~13!

Dk5
1

2
~fk22fk1!. ~14!

In addition, we introduce the circular currents

i k
°5~ i k22 i k1!/2. ~15!

With the help of Eqs.~13!–~15! we finally obtain the system

Ṡk1sinSkcosDk5 i 0 , ~16a!

Ḋk1sinDkcosSk5 i k
° , ~16b!

D11D22w50, ~16c!

D12D25 l i l5 l ~ i 2
°2 i 1

°1 i rc!, ~16d!

ï rc1
r

l
i̇ rc1

1

lc
i rc5~ ï 1

°2 ï 2
° ! ~16e!

which our analytical approximation scheme is based on.
there are seven equations for the seven variab
Sk ,Dk ,i k

° ,i rc , this is a well-posed problem.

III. ANALYTICAL APPROXIMATION SCHEME
AND LOWEST-ORDER RESULTS

Our strategy for solving system~16! will be based on a
perturbative treatment valid for smalll ~for the basic idea
compare our earlier paper18!. Thus, we start solving Eqs.~16!
for l50, and only later include corrections; l exploiting the
lowest-order results obtained before. This procedure is
vored by the fact thatl enters Eq.~16d! only. We start by
evaluating Eq.~16d! in conjunction with Eq.~16c!. The so-
lutions for Dk can be used to evaluateSk from Eq. ~16a!.
Next, we find thei k

° ~not theDk , which are already known in
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1116 55M. BASLER, W. KRECH, AND K. YU. PLATOV
this order! from Eq. ~16b!. Finally, with the ring currentsi k
°

on the right-hand side of Eq.~16e! known we can evaluate
the current i rc by solving the corresponding differentia
equation. All other quantities, likei l or ī , are secondary and
can be derived from the seven variables mentioned so
Afterwards, we insert the lowest-order result on the rig
hand side of Eq.~16d! and start a second cycle in the sam
sequence.

The procedure described above gives the follow
lowest-order results. First, the Josephson phase differenc
both loops are found to be identical,

Dk,05w/2. ~17!

In the following, comma-delimited indices refer to the ord
of approximation. From Eq.~16a!, the Josephson phases a
found to coincide with the corresponding solutions for
autonomous junction,12

Sk,05
p

2
12 arctanS z0

i 01cos~w/2!
tan

z0s2dk
2 D , ~18!

with the important modification that the frequencyz0 be-
comes flux dependent according to

z05Ai 022cos2~w/2!. ~19!

Next, the circular currents can be evaluated from E
~16b!. Note, that this equation originating from the origin
Josephson equations does not lead to a differential equa
because the constant Josephson phase differencesDk are al-
ready known. The result is

i k
°5sin~w/2!cosSk,0 . ~20!

It is a trivial task to evaluate Eq.~20! using Eq.~18!; in the
further calculation we will only need the lowest harmonics
the circular currents,

i k,0
° 522

z0
i 01z0

sin~w/2!sin~z0s2dk!. ~21!

The corresponding difference of the ring currents,

ī ,05 i 2,0
° 2 i 1,0

° 54
z0

i 01z0
sin~w/2!sinS d12d2

2 D
3cosS z0s2

d11d2
2 D , ~22!

enters the horizontal connection thus acting as a driv
force for the oscillatory circuit according to Eq.~16e!. This
equation can be solved with standard methods. The sta
ary oscillating solution reads

i rc,052
4l z0

2

uZ~z0!u~ i 01z0!
sin~w/2!sinS d12d2

2 D
3sinS z0s2

d11d2
2

2c~z0! D . ~23!

Here, we introduced the series circuit impedanceZ with
r.
-

g
in

r

.

n,

f

g

n-

uZ~z0!u5Ar 21S 1

cz0
2 l z0D 2 ~24!

and the phase anglec,

cosc~z0!5
r

uZ~z0!u
, sinc~z0!5

l z021/cz0
uZ~z0!u

. ~25!

For later purposes we needi l5 ī1 i rc rather thani rc , be-
cause it is justi l which potentially may split the oscillation
phases between cell 1 and cell 2 via Eq.~16d!. Combining
Eq. ~23! with Eq. ~22! after some algebra we obtain

i l ,052
4z0
i 01z0

uz~z0!u
uZ~z0!u

sin~w/2!sin
d12d2
2

3cosS z0s2
d11d2
2

2x~z0! D , ~26!

where we introduced therc impedanceuzu with

uz~z0!u5Ar 21
1

~cz0!
2 ~27!

and

sinx~z0!5
rlc z0

2

uZ~z0!uA11~rcz0!
2
,

~28!

cosx~z0!5
r 2cz01~1/cz02 l z0!

uZ~z0!uA11~rcz0!
2
.

@In principle, one could evaluatei l directly from an equation
similar to Eq.~16e! of course, and we checked that the res
is the same. The procedure described here has the adva
of additionally providing an expression for the current flow
ing through the capacitive line.#

To summarize, we observe the following lowest-order
sults: All four junctions oscillate with the same flux
dependent frequencyz05Ai 022cos2(w/2). Because of Eq.
~17!, the junctions within each cell are exactly in phas
while the relative phase between cell 1 and cell 2~given by
d1 andd2, respectively! is undetermined, up to now. If both
cells are in phase, there is no current through the horizo
line, because of the sin@(d12d2)/2# present in Eq.~22!. On
the other hand, the horizontal current reaches its maximu
both cells oscillate antiphase withd12d25p.

IV. INDUCTANCE EFFECTS

Now we are ready to include inductance effects. Aga
starting with Eqs.~16c! and~16d!, we insert the lowest-orde
result Eq.~26! on the right-hand side of Eq.~16d!. This leads
to
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55 1117THEORY OF PHASE-LOCKING IN GENERALIZED . . .
D1/25D1/2,01 lD1/2,15
w

2
62l

z0
i 01z0

uzu
uZu

sin~w/2!sin
d22d1
2

3cosS z0s2
d11d2
2

2x D . ~29!

Note, that the first index in Eq.~29! refers to cell 1 and cel
2, respectively, while the second one indicates the orde
evaluation; the1 sign refers toD1. This has to be inserted
into Eq. ~16a!,

Ṡk1cos~Dk,01 lDk,1!sinSk5 i 0 . ~30!

For evaluating these equations the cosine on the left-h
side is expanded according to

cos~Dk,01 lDk,1!'cosDk,02 lDk,1sinDk,0 . ~31!

After transferring the correction term; l to the right-hand
side of Eq.~30! one makes the crucial observation, that
acts in a similar way as, for example, an external shunt s
chronizing the cells.19

The resulting equations are evaluated with the conv
tional phase-slip method~see, for instance, Refs. 19–21!.
According to this procedure which has proven useful in
treatment of linear arrays before, the up to now const
phasesd1 andd2 are considered as time dependent,

dk5dk~s!, ~32!

with the subsidiary condition that this time dependence
only an adiabatic one,

ḋ!z0 . ~33!

Physically, this means that the phases are required to
nearly constant during one Josephson oscillation.

With these assumptions, the same ansatz~18! with dk(s)

andz instead ofz0 leads to the sum voltagesṠk ,

Ṡk5
z0~z2 ḋk!

i 01cos~w/2!cos~zs2dk!
. ~34!

Writing z instead of z0 we have allowed for a possibl
~small! deviation of the actual oscillation frequency fro
z0. Inserting Eq.~34! into ~30! leads to the reduced equation

z0~z2z02 ḋk!5 l sin~w/2!Dk,1@cos~w/2!1 i 0cos~zs2dk!#.
~35!

After averaging over one time period and applying so
algebra we arrive at the following system of equations~for
details see, for instance, Refs. 16 and 19–21!

z0~z2z02^ḋ1&!5 l i 0
z0

i 01z0

uzu
uZu

sin~w/2!sin
^d2&2^d1&

2

3sin~w/2!cosS ^d2&2^d1&
2

1x D , ~36a!
of

nd

t
n-

-

e
nt

s

be

e

z0~z2z02^ḋ2&!52 l i 0
z0

i 01z0

uzu
uZu

sin~w/2!sin
^d2&2^d1&

2

3sin~w/2!cosS ^d2&2^d1&
2

1x D , ~36b!

where^ & denotes the time average over one Josephson
cillation. The difference of Eqs.~36a! and ~36b! gives an
evolution equation for the phase difference^d&,

^ḋ&5
i 0l

i 01z0

uzu
uZu

sin2~w/2!cosx sin̂ d&. ~37!

Equation~37! is the basic equation determining the possib
phase differences between the oscillations of both cells
well as the corresponding regions of stability.

V. PHASE-LOCKING, STABILITY
AND OSCILLATION FREQUENCY

We will not go into the question of general solutions
Eq. ~37! but concentrate on phase-locking, being charac
ized by a time-independent phase shift between cell 1
cell 2,

^ḋ lock&50. ~38!

Within the range 0<d,2p there are obviously only two
possibilities for Eq.~38! to be valid,

^d lock&50 and ^d lock&5p, ~39!

the first one describing in-phase oscillations and the sec
one antiphase oscillations of the cells.

The crucial question of the range of stability of these tw
solutions can be answered on the basis of the evolution e
tion ~37!, too. The ansatz

^d&5^d lock&1aelt ~40!

(uau!u1u) leads to the Lyapunov coefficient

l5
i 0l

i 01z0

uzu
uZu

sin2~w/2!cosx coŝ d lock&. ~41!

One recovers that the stability is solely determined by
cosx; all the remaining factors, exceptd lock, are positive defi-
nite. In detail, the

in-phase solution̂ d lock&50 is stable for cosx,0,
~42!

while the

antiphase solution̂d lock&5p is stable for cosx.0.
~43!

Before further evaluating this condition we will consid
the oscillation frequency which can be derived from E
~36a! @or Eq. ~36b!#. With

^d1&5^d2&5const50, ~44!

one easily recovers

z in5z05Ai 022cos2~w/2!. ~45!
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FIG. 2. The boundary between in-phase a
antiphase oscillations. Solid line: analytical a
proximation. Crosses: numerical simulation. P
rameters:i 051.5,r50.1,w51.0.
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Evaluating the antiphase frequency with

^d1&2^d2&5p ~46!

needs a bit more algebra. The result is

zanti5z0S 12
i 0l

2r sin2~w/2!

uZu2~ i 01z0!
D . ~47!

Thus, if both cells oscillate in-phase their frequency is ide
tical to the autonomous oscillation frequency. On the ot
hand, if the cells oscillate antiphase the frequency will
lower thanz0. The physical reason for this behavior can
understood by comparing with other~even linearly! oscillat-
ing systems: If the bindings~in our case realized by the hor
zontal impedance! are not loaded, the oscillation frequenc
remains the same as for uncoupled oscillators; if the bindi
are loaded~i.e., in case of an ac current flowing through t
horizontal line! the system oscillates with a different fre
quency.

Unfortunately, one has to respect a certain limit of val
ity of Eq. ~47!. Using the method of slowly varying phase w
have adopted the supposition mentioned before that the
quency must not deviate too much fromz0,

z'z0 . ~48!

Thus, the correction in Eq.~47! is required to be small com
pared to the frequency itself. A rough estimate valid
i 0.1.15 leads to the condition

l 2!r . ~49!

Our experience shows that usually a factor of 2. . .3 is s
ficient for this condition to be fulfilled.

Now we return to the question of antiphase↔ in-phase
transitions described by Eqs.~42! and ~43!, respectively.
Considering the numerator of cosx one observes that th
boundary separating in-phase and antiphase oscillation
the cells is given by

S 1cz
2 l z D1r 2cz50 ~50!
-
r
e

s

-

e-

r

f-

of

with the cells oscillating anti-phase if the left hand side
positive and in-phase if it is negative. In other words, t
transition between both regimes lies in the vicinity of t
resonance curve of thel -c-r connection with deviations be
coming important for smalll . Figure 2 shows the boundar
between the two regimes for a frequencyz51.11 in com-
parison to numerical results.

To summarize, the in-phase regime is favored for not
large r as long as the inductive impedance dominates o
the capacitive one, while for the capacitive impedance do
nating the cells oscillate antiphase. There is a simple ph
cal explanation for this: Anti-phase oscillations are caus
by the flux coupling via the joint inductive line carryin
currenti l . For a sufficiently large capacitive shunt, the cu
rent prefers the capacitive way which does not produce
such flux.

In conventional hybrid arrays8 horizontal lines are purely
inductive. Formally, this limit can be observed lettin
c→0. In this case the capacitive impedance goes to infin
while the correction;r 2c tends to zero. Then, there is n
possibility for the current to be shunted, and the cells rem
in the antiphase regime.16 The more general question, fo
which parameter valuesl , c, and r there are no transitions
can be answered on the basis of Eq.~50!. This equation does
only have real solutions forz if

l.r 2c. ~51!

For all smallerl , the current in the inductive line is stron
enough to keep the cells oscillating antiphase.

Considering the circuit parametersi 0 , l , etc. as constan
and leaving the external fluxw as the only free paramete
one can observe flux-induced transitions between both
gimes. The difference between the frequenciesz in and zanti

leads to a hysteresis, which has been observed in nume
simulations before.17 In more detail, in-phase→antiphase
transitions are observed at

w ia52 arccos@6Ai 022z tr2#, ~52!

where we introduced the transition frequency
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FIG. 3. Frequency against flux with a trans
tion from antiphase to in-phase oscillations. P
rameters:i 051.5,r50.1,l50.2,c54.0. ~a! Ana-
lytical approximation.~b! Numerical simulation.
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1

Alc2r 2c2
~53!

as can be easily deduced from Eq.~50!. The transition from
the antiphase to the in-phase regime needs a bit more a
bra. It can be determined from the requirement, that the
tiphase frequency Eq.~47! be equal to the transition fre
quency Eq. ~53!. Unfortunately, the resulting equatio
cannot be solved in closed form. However, as a first appr
mation, one can equate the in→antitransition frequency~53!
with Eq. ~47! and evaluate forw, substitutingz→z tr on the
right-hand side of Eq.~47!,

wai52 arccosS 6Ai 0
22~z tr!222i 0l /cr~ i 01z tr!

122i 0l /cr~ i 01z tr!
D . ~54!

It can be deduced, thatwai is always larger thanw ia. A better
result forwai is obtained by graphically finding the transitio

frequency on the curve atz5z tr.
e-
n-

i-

Thus, if there are any transitions between both regime
all, for small values of the external flux the cells oscilla
with the lower antiphase frequency switching to in-pha
oscillations at wai. Because ofwai.w ia ~for 0,w<p)
switching back to the antiphase state occurs at a lower fl
leading to the hysteresis mentioned above. Figure 3 show
plot of frequency against flux in comparison with the ou
come of a numerical simulation. The frequencies are in
cellent agreement, and even the transition points, which
pend rather sensibly on the parameters, are located within
same region.

This last result concerning hysteresis has to be taken w
some care. It was obtained by combining the antiphase
quency formula~47! with Eq. ~50! and evaluating forw.
However, Eq.~50! as originating from Eq.~37! is already a
first-order result, thus inserting Eq.~47! might not be fully
justified, while second-order terms in~37! are neglected.
Nonetheless, it gives a plausible explanation for the mec
nism causing the hysteresis observed in numerical sim
tions.
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VI. LONG-RANGE SYNCHRONIZATION
VIA AN EXTERNAL LOAD

It has been well-known for a long time that synchroniz
tion in a one-dimensional array can be achieved and c
trolled by shunting the array via an external load.19,22 In a
similar manner one may hope to be able to control row lo
ing in two-dimensional arrays, too. For studying this mec
nism within our model we now add the external load alrea
indicated in Fig. 1. As a result, we have to supplement
basic equations~16!. At first, we add the mesh rule for th
load currenti L ,

(
k51,2

S̈k2 l L ï L2r L i̇ l2
1

cL
i L50. ~55!

Here,r L , l L , andcL are the load impedances normalized
the same manner as Eqs.~1!, ~4!, and ~5!. In addition, the
load current couples back to the junctions, thus supplem
ing Eq. ~16a!,

Ṡk1sinSkcosDk5 i 02
1

2
i L . ~56!

As has been observed in the study of similar on
dimensional synchronization problems before, the recipro
impedance 1/uZLu!1 provides another perturbation param
eter for a sufficiently large load; thus we evaluate the sys
perturbatively, neglecting terms; l /uZLu. To lowest order
with respect touZLu the load current vanishes, and we end
with the results described in Sec. III. Based on the lowe
order Josephson oscillations~18! and the corresponding volt

agesṠk,0 we obtain the first-order~with respect to 1/uZLu)
load currenti L,0 ,

i L,05
4 cos~w/2!

uZLu
z0

i 01z0
cosS d12d2

2 D sinS z0s2
d11d2
2

2cLD ~57!

with

uZL~z0!u5A~r L11!21S 1

cLz0
2 l Lz0D 2, ~58a!

sincL~z0!5
r L11

uZL~z0!u
, ~58b!

coscL~z0!5
1/cLz02 l Lz0

uZL~z0!u
. ~58c!

Its structure is obviously quite similar to that of the horizo
tal current Eq.~22!. However, one should note two differ
ences:~i! While the load current is maximal forw50, the
horizontal current reaches its maximum forw5p/2. ~ii ! The
horizontal current vanishes if both cells oscillate in-pha
while the load current vanishes for both cells oscillating a
tiphase.
-
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-
-
y
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t-

-
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m

t-

,
-

The load current Eq.~57! provides the additional contri
bution to Eq.~56! and, as a result, the phase-slip equatio
~36! get an additional term, too. After performing the tim
averages we get

z0~z2z02^ḋ1&!52
i 0l

2

z0
i 01z0

uzu
uZu

sin2~w/2!

3@sinc1sin~^d1&2^d2&2x!#

1
1

2

z0
i 01z0

1

uZLu
cos2~w/2!

3@sincL2sin~^d1&2^d2&2cL!#,

~59a!

z0~z2z02^ḋ2&!5
i 0l

2

z0
i 01z0

uzu
uZu

sin2~w/2!@sinc1sin~^d1&

2^d2&2x!#1
1

2

z0
i 01z0

1

uZLu
cos2~w/2!

3@sincL1sin~^d1&2^d2&2cL!#. ~59b!

By subtracting Eqs.~59a! and ~59b!, we finally get the evo-
lution equation for the averaged oscillation phase differen

^ḋ&5
1

i 01z0
S 1

uZLu
cos2~w/2!coscL

1 i 0l
uzu
uZu

sin2~w/2!cosx D sin̂ d&. ~60!

Despite the relatively complicated interplay between cell
teraction via the horizontal line and long-range coupling
the external load there remain only the same two pha
locking solutions as before,

^d lock&50 and ^d lock&5p, ~61!

the stability of which is determined by the Lyapunov coef
cient

l5
1

i 01z0
S 1

uZLu
cos2~w/2!coscL1 i 0l

uzu
uZu

sin2~w/2!cosx D
3coŝ d lock&. ~62!

In-phase oscillations of the cells are stable if the term
parentheses is lower than zero, while antiphase oscilla
are stable if it is greater than zero. Thus, the desired stab
for the in-phase mode is reached for

1

uZLu
cos2~w/2!coscL1 i 0l

uzu
uZu

sin2~w/2!cosx,0. ~63!

Equation ~63! shows a rather complex parameter depe
dence, relating the seven parametersr , l , c, r L , l L , cL ,
andw. Its physical meaning is best discovered consider
several limiting cases.

~i! For a sufficiently large external load,
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FIG. 4. Transition between in-phase and a
tiphase state caused by the internal inductive c
pling present in a hybrid array. Parameter
i 051.5,r L51.0,l L51.0,cL52.0. Solid line: ana-
lytical approximation, boxes: numerical simula
tion, open dots: numerical simulation with induc
tance regularly distributed around loops.
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uZLu
! i 0l

uzu
uZu

, ~64!

the relative phase of the cells is determined by the inte
coupling alone. This has to be compared to the case of
externally loaded separate cells.23 In this case—as for linea
arrays—the relative phase depends on the character o
external load only: While for inductively dominated load
the cells are locked in-phase, they are locked antiphase
capacitively dominated loads, independently of the mag
tude of the external load.

~ii ! The contributions from the external load and from t
internal shunt show a different flux dependence. For su
ciently small values of external flux the last term can
neglected, and the locking regime is controlled by the lo
only. On the other hand, for flux values of around half a fl
quantum the first term becomes negligible, and the inte
horizontal line determines the phase difference of the ce

~iii ! For l→0, the second term can be neglected, and
result agrees with that obtained for two separate c
before,23 as it should be. In this limit the cells internall
decouple, while the external coupling remains in force.

~iv! The usual hybrid arrays without the internalR-C line
are contained as a limiting case. Forr→`, the in-phase con-
dition, Eq. ~63!, reduces to

1

uZLu
coscLcos

2~w/2!1 i 0l sin
2~w/2!,0. ~65!

It states, that for sufficiently large inductances,

l. l cr52
coscL

i 0tan
2~w/2!uZLu

, ~66!

ordinary pure inductive hybrid arrays may switch to the a
tiphase state even for inductive external loads.

The indicated transition was indeed observed in a num
cal simulation~boxes in Fig. 4!. Having in mind that Eq.~65!
is the result of several approximations, concerning the ex
nal shunt as well as the internal inductive coupling, t
agreement is remarkably good.
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The influence of changing parameters can be nicely ill
trated by performing a second simulation with exactly t
same parameter set, but distributing ring inductancel regu-
larly around the loops. The result denoted by the dots in F
4 clearly deviates from that obtained for inductance conc
trated on the horizontal line considered before. This can
taken as a strong indication that the coupling is not provid
by the loop inductances but by the inductance on the
common to both cells.

VII. CONCLUSIONS

Although our work is devoted to the study of a simp
model circuit several results are expected to be valid
larger arrays, too. At first, the short-range coupling betwe
neighboring cells leads to an antiphase synchronization
conventional Josephson-junction hybrid arrays. This may
one reason for explaining the very small radiation output
2D Josephson-junction arrays obtained so far. Second,
show a way to improve the situation by adding a capacit
shunt parallel to the horizontal lines. In this way, the flu
generating current potentially responsible for the antiph
coupling is redirected through the capacitive line which
not part of a flux quantization condition.

Combining Fig. 2 with some already known facts on sy
chronization in strongly coupled SQUID cells18 the follow-
ing design criteria for generalized hybrid 2D Josephs
junction arrays can be derived.~i! For synchronizing
horizontal lines in-phase the ring inductances have to be k
small (l!1). ~ii ! In-phase synchronization between neig
boring cells in vertical direction is observed fo
l.1/cz21r 2c. Based on this, we will derive some estimat
for reasonablec and l . For a givenl , the boundary between
in- and antiphase oscillations is given by Eq.~50!. Figure 2
shows already that the additional term;r restricts the pos-
sible l by setting a lower bound. This bound is obtained fro

dl

dc
50 ~67!

as
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r5
1

cz
resp. l52r /z. ~68!

Thus, for obtaining in-phase oscillations the condition

r,
z l

2
~69!

has to be respected. Because of Eq.~68! this means

c.
2

l z
. ~70!

Obviously, the requirement to have a smalll for horizontal
in-phase synchronization leads to the demand to have a
ficiently high capacitancec.2/l z as well as a small resis
tancer, l z/2. A reasonable compromise might, for instanc
be

l'0.8, c'3.0, r'0.2. ~71!

Of course, all these estimates should be considered as
rough, and on the other hand, one has to check carefully h
large these quantities on chip actually are.

On the other hand, we would like to point out that the
suggestions are based on an analytical approximation sch
and are founded on solid formulas. Of course, it still has
be shown rigorously that they can be transferred to lar
arrays as well. Some preliminary results from numeric
simulations indeed indicate this. We hope that the gen
procedure described here can be transferred to larger ar
of the type considered here as well, and some work is on
way to actually extend it to a ladder configuration.
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If the arrays are externally loaded, which is usually do
via an inductive load, the parameters have to be chose
such a manner to respect Eq.~63!. The best way for obtain-
ing in-phase synchronization is to make both contributions
the Lyapunov-coefficient lower than zero separately, wh
is possible because the parameters of the external load ca
chosen independently of those from the internal shunt.
general, one should select values such, that~i! the external
load is dominated by its inductive contribution,~ii ! the inter-
nal horizontal shunts are dominated by the inductive imp
ance, too. Because of the frequency dependence of the c
acters of the shunts, one has to make sure that th
conditions are met for all values of external flux.

Of course, the circuit studied here has several featu
requiring a more detailed investigation, either analytically
numerically. Usually one exploits shunted tunnel junctio
for building arrays, thus one may ask for the influence
nonvanishing McCumber parameters. On the other hand,
influence of parameter splitting needs to be investigated,
in addition, in real arrays, noise comes into play. While th
last aspect is to be expected to play only a minor role with
the small inductance loops, it will be sure to have som
influence on the coupling between the cells.
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