PHYSICAL REVIEW B VOLUME 55, NUMBER 17 1 MAY 1997-|

Effect of the vortex core on the magnetic field in hard superconductors

A. Yaouanc and P. Dalmas de &ier
Commissariat d’Energie Atomique, Dgartement de Recherche Fondamentale sur la Mat@ondense,
Service de Physique Statistique, Matisrae et Supraconductivit€-38054 Grenoble cedex 9, France

E. H. Brandt
Max-Planck-Institut fu Metallforschung, D-70506 Stuttgart, Germany
(Received 31 January 1997

Using approximate analytical and numerical solutions of the conventional Ginzburg-Landau equations we
calculate the small-angle neutron-scattering cross section and the variance of the field distribution as measured
by muon-spin rotation for superconductors with large Ginzburg-Landau parame@ur results prove that a
proper account of the finite size of the vortex core is important, even at relatively low fields. This finding
provides a natural explanation for the recently observed field dependence of the foeRdactor and of the
YBa,Cu30¢ g5 penetration deptH.S0163-182807)04418-4

The study of the vortex state in high temperature and R
heavy fermion superconductors is presently a subject of in- B(r)+cur[A curl B()]=®0>, 8(r—r,)z. (1)
tense investigation. Numerous publications are devoted to v
the measurement of the magnetic penetration lengsince  Here d,=2.07x 10715 Tm? is the quantum of flux, the sum
this is one way to probe the nature of the low-energy excijs gver the vorticess(r) is the two-dimensionab function,
tations and the symmetry of the pairing state. Among they 3 is the unit vector along the vortex cores. The eigenval-
possible e>_<per|mental techniques avallable.to investigate thﬁes of the tensoA are expressed in terms of penetration
vortex lattice, small-angle neutron-scatteri@@ANS) and | N .2 2

. ; ; , . engthsA,=\3, Ap=M\g, andA.=\;. Here\,, \p, and

muon-spin rotation £ SR) experiments are unique since they . .
directly probe the bulk of the material and allow us to deter-c are the penetration 'ef?gths for currents flowing along the
mine not only the field and temperature dependence lofit ~ & D, andc axes, respectively. .
also its value at low temperature; see the recent Refs. 1-6. When the vortices form a regular lattice it is
To extract quantitative information from SANS apdSR ~ convenient to introduce the Fourier componeri¢G)
measurements, a detailed theory of the magnetic field inside /B(r)exp(-iG-r)d’r/S of the periodic magnetic field
the superconductor is needed, going beyond the LondoB(r)=Z=gB(G)exp(G-r), whereG are the vectors of the
model which treats the vortex cores as mathematical singueciprocal lattice and the surface of the vortex lattice unit
larities. The finite core size was considered in Refs. 7—9. cell. The London equation is then easily solved for the cases

In this paper we compute the Fourier components of thef main interest, namel\B,,; parallel to eitheg, b, orc. For
magnetic field in a type-Il superconductor containing anthese three geometries one finds
ideal vortex lattice. We disregard pinntfgand vortex

“phases” such as the glassy or liquid staté$? When ac- ®, 1
counting for the finite size of the vortex cores within the BA(G)= §m 2
y X

Ginzburg-LandauGL) theory we find an unexpected large
reduction of all Fourier components down to very low induc-and B,(G) =B, (G) =0. Therefore, as expected, there is no
tions B. Although our results are based on the conventionatransverse field component. Equati¢® means, for ex-
GL theory, they still are of relevance for the analysis ofample, that if Belc we write this equation withx=a,
unconventional superconductors such as Higtsupercon- y=b, andz=c. In this way we recover the result of Ref. 17
ductors and heavy fermion superconductors. For example, ifor a uniaxial superconductor, in which two penetration
recent reports''* the effect of the finite size of the vortex lengths are equal.
core is described as if these compounds were conventional Equation(1) disregards the effect of the finite size of the
superconductors. vortex core, which removes the logarithmic infinity of
We define an orthogonal reference framey(z), with B,(r) atr, and thus reduces the amplitude of the higher
the external magnetic fiele,; applied along the axis cho-  Fourier components. AB<B,, this effect is accounted for
sen along one of the three main ax&sb, andc of the by multiplication of the London solutiof®) by a cutoff fac-
penetration-length tensor such that the vortices are also alorigr. Here a general remark seems appropriate. There is no
z. For superconductors with large GL parametergeneral theory oB(r) valid at arbitrary temperature, and
k=N\/&>1 (¢ is the coherence lengtlat not too large fields even if it existed(if the BCS-Gorkov-Eliashberg theory
Bex<B:> (Bcs is the upper critical fieldwe may approxi- would apply and could be solvedhe material parameters
mate the vortex fields by the London model. The Londonentering such a theory are not known with sufficient accu-
field B(r) caused by straight vortices located at sitgs racy, e.g., the anisotropic electron mean free pathhe
satisfies®1® shape of the Fermi surface, and the coupling constant. Even
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FIG. 1. Definition of the primitive cell vectora, andb, and (')' s i i é — ; — ""' — ;
angle« of a distorted vortex lattice in real space.is 7/2 minus Magnetic field (T)
the angle defined in Fig. 2 of Ref. 3.
when we use the Ginzburg-LandéBL) theory to obtain a FIG. 2. Form factor for the reflectiofil,0] from the vortex

lJattlce of CeRy as a function of the applied field. The points taken
from Ref. 6 have been obtained using either a field cooling or
zero-field cooling procedure. The lines are fits to Ef.

cutoff, we find that a general analytical solution does no
exist, not even in the limitkt— o, which would be sufficient
here. If the GL theory is applicable it applies down to
B=0. Below we derive the low-field cutoff factor from ap-
proximate analytical solutions of the GL theory and from a
numerical solution. We are considering first an isotropic su-,
perconductor.

The best analytical GL expression available was obtaine
by Clent for isotropic superconductors at low inductions

order parameter due to the overlap of vortex cores, respec-
tively. For the cases of interest here> 10) the two varia-
tional parameters have simple functional dependences on
p=B/Bc; and «: 97

: S : f2=1-b*, (58)
B<B,.,. Using a Lorentzian trial function for the order pa-
rameter|(r)|? of an isolated vortex, Clem finds for large
k>1 0.7 4\1/ 27112
E,=¢ \/2—T (1+b%HY{1-2b(1—b)?]¥2 (5b)

®o gKa(g)

BAG) =35 1725 g=vV2&G*+N"9)Y2  (3)  In Egs.(5) ®/S=B=bB,, is the mean induction, which

for 2bk?>1 may be equated tBqy.

HereK,(x) = —K{(x) is a modified Bessel function with the ~ For x>1 the argument oK, in the denominatorof Eq.
limits K1(X)=1/x— (x/2)In(1.7139K) (x<1) and (4) is much smaller than 1, thus we may use(x)~ 1/x.
K, (x) = (m/2x)Y%exp(=x) (x>1). From Eq.(3) we recover Since for highT. superconductors and typic8l,; values,
the London solution if the cores size shrinks to zero. Theb is never larger than a few %, we may also neglect the field
cutoff factorgK,(g) in Eq. (3) may be approximated for all dependence of., and§,, putting f.~1 andé,~v2¢. For
g values by exptv2£G) or, less accurate but convenient for the analysis of measurements performed on heavy fermion
computations, by exp{2¢2G?) as suggested in Ref. 18. The superconductors, the field dependencé () can thus be
cutoff exp(~£G?/4) given in Ref. 19 was derived from the disregardedusuallyBe,<1T (Ref. 3] but this may not be
GL solution neamB.,, and is not valid at lonB (B<B,,).  true for&,(b). For example, with URfat Be,;=1 T one has
At intermediate fields the cutoff should interpolate betweerb~0.4 (Ref. 3 and thereforet, ~0.854xXv2¢.
these two expressions. Therefore, the argument of the Gauss- The smallest nonzero reC|procaI vector for an equilateral
ian cutoff used recently is smaller than the one we proposdfiangular lattice isGo= Gmln a; =(2ml9a, (see Fig. 1 for
1/4 (Ref. 13 or 1/2 (Ref. 14 instead of two valid at low the definition ofa,), thusG2,,=(87%v3)(B/®,). This means
B. The correct low-field cutoff yields a stronger field depen-that for the highT. compounds aB=B.,=20 mT one has
dence of the SANS intensity than predicted for example inAG2,,=10>1, if AY¥2=\=1500 A is used. For URt\ is
Ref. 13. even largef Accounting for the large value of

Clem’s approximate analytical theory of the dilute vortex AGZ. _(47-,/{)[3,< we may write
lattice was extended to Iarger fields and to anisotropic super-

conductors by Haet al® using the same type of variational o, f2
approach. The resulting Fourier components for an isotropic B,(G)= S AG? (£,6)K1(&,G). (6)

superconductor may be written as

In this paper we test the applicability of formu(é) to re-
f Kl[fv (f2+)\262)1’2} cently published SANS results on CeRu
The conventional superconductor CeRbhas attracted

(4) some interest because of its complex phase diagram in the

(Bext> T) plane. Notably, a reversible-irreversible line is ob-

served. The form factoB,(G) is easily obtained from the
where&, andf.. are two variational parameters representingSANS cross sectioff. The CeRy measurements of
the effective core radius of a vortex and the depression of thB,(Gg) as a function 0B, are presented in Fig. 2. Because

0

B.(G)=—% 5

(f2+)\262)1/2K )\
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A is scalar, we derive from Ed6)
34 \/q)OBextfozogv 27V2
BAGi1o= - N2 Ky 377 §VBext/ Do | -
(7

This expression depends only on the two parameteasid

¢. The fits yield for the data recorded either in the field
cooling (FC) or zero-field cooling (ZFC) procedure, A
=1870 A and¢é=84 A and\=2090 A and¢=74A, re-
spectively. Taking the traditional point of view, the FC data
reflect the equilibrium properties of the vortex lattice. From
these datax=22 is larger than the previously estimated
k=14.5%22 From the ¢ value we compute B,
=d,/(2wE?)=4.7 T. Magnetization measurements at 1.8
K give B.,=5.3 T?! The values deduced from the FC neu-
tron data are satisfactory in view of the well known difficulty
to extract a reliablex value from magnetization measure-
ments.

The traditional Gaussian cutoff predicts
IN[B,(G1g) ] Beyt, 1.€., @ straight line in Fig. 2. This is not
observed.

The generalization of Eq(6) to anisotropic penetration
length tensors reads far>1

B(G)= 2 (1-bY) o (@a
xGy+ A Gy
HereuK;(u) is an anisotropic cutoff factor with
U= 2( &G+ £G))(1+b%)[1-2b(1-b)?], (8b)
UK (u)~1—(u?/4)In(2.9370%) for u<1l. (80

For the computation dB,(G) we need to specify the geom-
etry of the vortex lattice. As shown by Kog#nfor
B>B.;, the angle characterizing this latti¢cgee Fig. ] de-
pends only on the penetration-length ratio
tan a=v3(N\./\y). (9

Using Kogan's formula(9), the form factor factorizes,
B.(Gpg) =Bgbpy(b), where
3

E

andb,,(b) is a universal function,

1

1/2
Bo=—y o
0 772

o (10)

VpgK1(vpg)

, 11
02— pa+ o (113

bpq(b) =(1- b4)

2\2w
vpq=—gma- DYL1+b* Y 1-2b(1-b%)?]"?

X (p?—pg+qg’)*= (11b

In Fig. 3 we presenb,y(b) computed from the variational
solution(11), the Gaussian cutofiRef. 19, and the numeri-
cal solution of the GL equatiorfS.Remarkably, the compari-
son between the variational and the numerical solution
shows that forb=<0.05 the first three Fourier coefficients
B,(G) deviate by<10% and fotb<0.01 by<<4%; even for
b=0.2 (0.3 the B,(Go) Egs.(4) with (5) falls below the
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FIG. 3. The universal functionb,o(b) Eq. (1139 (the largest
reduced form factor, topandf,(b) Eq. (14) (the reduced variance,
bottom) calculated in three ways: From this wdgolid lineg, from
the Gaussian cutoff(dash-dotted lines and from the exact
Ginzburg-Landau solutiofdashed lines The insets plot these
functions versus/b to stretch the cuspliké dependence of the
correct cutoff at low reduced inductiotts=0. Note the strong de-
viation of the previously used Gaussian from the correct cutoff.

exact value by only 14%18%), and even for smalk=5
this Clem-Hao approximation is reasonable.

We shall not analyze the SANS data of URRef. 3 with
Eq. (8) because the conventional GL theory discussed here
does not describe the phase diagram of this compound. We
argue that the effect of the vortex cores in Ykt stronger
than suggested by Joyht.

We now consider the field distributidprobability) of the
vortex lattice which is measured hySR (Ref. 25 and can
be computed from the Fourier coefficients, E8). Its vari-
ance isA2=(B2)—(B,)?, where(---) means the spatial av-
erage. One has

Al= 2 [BAG). (12
G+#0
A, separates into two factora,,=A,f,(b) where
Ay—0.06092—2 13
0=0.06092 (13

is the London limit €,,£,—0) (Ref. 17 and f,(b) is a
universal function which accounts for the core size,

b2.

f2(b)=0.12968 >, b2,

(p,a)#(0,0)

(14)
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see Fig. 3. The functionis,, andf, are very similar since in  the valueB,,=90 (10) T (Ref. 26 we estimateA,~5.04
the sum(14) the sixb,, equivalent terms dominate. and 5.73 mT aB,,=0.5 and 1.5 T, respectively. This leads
Quite unexpectedly, the functiotg, andf, arestrongly  to a ratioRex,=A,(1.5 T)/A,(0.5 T)=0.88 while our com-
field dependent even at low reduced fieldsuhere the Lon-  putation(see Fig. 3 predictsRg, =0.90. Therefore the con-
don model predicts constabp,=1 andf,=1. One has ap- ventional GL theory provides a simple and natural explana-
proximately 1-b,q(b)=1—f,=b'/2 see Fig. 3. This finding tion of the observed field dependence of the observed field
is confirmed by the exact numerical solution of the GL distribution in YBa,Cu3Og gs.
theory?® depicted as dashed lines in Fig. 3. This strdng In conclusion, we have shown that the effect of the finite
dependence originates from the Ilimit(8c) with  core size on the Fourier components of the magnetic field
u?=¢2G2=(8m/v3)b(G/G,g)?, which means that the cut- in a conventional superconductor with largeis strong,
off factor uK,(u) is considerably less than unity except ateven at low fieldsB.;<B<B.,, since the cutoff factor
very smallb<v3/(87)=1/14.5 even folG=Gj. in Egs.(6) and(8) is uK;(u)<1. This cutoff effect provides
We are aware of only one investigation on a single crystah natural explanation for recently published neutron and
of the field dependence of the vortex lattice field uSR data without the need to resort to unconventional
distribution? From this uSR study of YBaCuzOgges and  theories.
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