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Effect of the vortex core on the magnetic field in hard superconductors
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Using approximate analytical and numerical solutions of the conventional Ginzburg-Landau equations we
calculate the small-angle neutron-scattering cross section and the variance of the field distribution as measured
by muon-spin rotation for superconductors with large Ginzburg-Landau parameterk. Our results prove that a
proper account of the finite size of the vortex core is important, even at relatively low fields. This finding
provides a natural explanation for the recently observed field dependence of the CeRu2 form factor and of the
YBa2Cu3O6.95 penetration depth.@S0163-1829~97!04418-4#
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The study of the vortex state in high temperature a
heavy fermion superconductors is presently a subject of
tense investigation. Numerous publications are devoted
the measurement of the magnetic penetration lengthl since
this is one way to probe the nature of the low-energy ex
tations and the symmetry of the pairing state. Among
possible experimental techniques available to investigate
vortex lattice, small-angle neutron-scattering~SANS! and
muon-spin rotation (mSR) experiments are unique since th
directly probe the bulk of the material and allow us to det
mine not only the field and temperature dependence ofl but
also its value at low temperature; see the recent Refs. 1
To extract quantitative information from SANS andmSR
measurements, a detailed theory of the magnetic field in
the superconductor is needed, going beyond the Lon
model which treats the vortex cores as mathematical sin
larities. The finite core size was considered in Refs. 7–9

In this paper we compute the Fourier components of
magnetic field in a type-II superconductor containing
ideal vortex lattice. We disregard pinning10 and vortex
‘‘phases’’ such as the glassy or liquid states.11,12 When ac-
counting for the finite size of the vortex cores within th
Ginzburg-Landau~GL! theory we find an unexpected larg
reduction of all Fourier components down to very low indu
tionsB. Although our results are based on the conventio
GL theory, they still are of relevance for the analysis
unconventional superconductors such as high-Tc supercon-
ductors and heavy fermion superconductors. For exampl
recent reports13,14 the effect of the finite size of the vorte
core is described as if these compounds were conventi
superconductors.

We define an orthogonal reference frame (x,y,z), with
the external magnetic fieldBext applied along thez axis cho-
sen along one of the three main axesa, b, and c of the
penetration-length tensor such that the vortices are also a
z. For superconductors with large GL parame
k5l/j@1 ~j is the coherence length! at not too large fields
Bext!Bc2 ~Bc2 is the upper critical field! we may approxi-
mate the vortex fields by the London model. The Lond
field B(r ) caused by straight vortices located at sitesr v
satisfies15,16
550163-1829/97/55~17!/11107~4!/$10.00
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B~r !1curl@L curl B~r !#5F0(
v

d~r2r v!ẑ. ~1!

HereF052.07310215 Tm2 is the quantum of flux, the sum
is over the vortices,d(r ) is the two-dimensionald function,
andẑ is the unit vector along the vortex cores. The eigenv
ues of the tensorL are expressed in terms of penetrati
lengthsLa5la

2 , Lb5lb
2 , andLc5lc

2 . Herela , lb , and
lc are the penetration lengths for currents flowing along
a, b, andc axes, respectively.

When the vortices form a regular lattice it
convenient to introduce the Fourier componentsB(G)
5*B(r )exp(2iG–r )d2r /S of the periodic magnetic field
B(r )5(GB(G)exp(iG–r ), whereG are the vectors of the
reciprocal lattice andS the surface of the vortex lattice un
cell. The London equation is then easily solved for the ca
of main interest, namely,Bext parallel to eithera, b, or c. For
these three geometries one finds

Bz~G!5
F0

S

1

11LxGy
21LyGx

2 , ~2!

andBx(G)5By(G)50. Therefore, as expected, there is
transverse field component. Equation~2! means, for ex-
ample, that if Bextic we write this equation withx5a,
y5b, andz5c. In this way we recover the result of Ref. 1
for a uniaxial superconductor, in which two penetrati
lengths are equal.

Equation~1! disregards the effect of the finite size of th
vortex core, which removes the logarithmic infinity o
Bz(r ) at r v and thus reduces the amplitude of the high
Fourier components. AtB!Bc2 this effect is accounted fo
by multiplication of the London solution~2! by a cutoff fac-
tor. Here a general remark seems appropriate. There is
general theory ofB(r ) valid at arbitrary temperature, an
even if it existed ~if the BCS-Gorkov-Eliashberg theor
would apply and could be solved! the material parameter
entering such a theory are not known with sufficient ac
racy, e.g., the anisotropic electron mean free pathl , the
shape of the Fermi surface, and the coupling constant. E
11 107 © 1997 The American Physical Society
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11 108 55BRIEF REPORTS
when we use the Ginzburg-Landau~GL! theory to obtain a
cutoff, we find that a general analytical solution does n
exist, not even in the limitk→`, which would be sufficient
here. If the GL theory is applicable it applies down
B50. Below we derive the low-field cutoff factor from ap
proximate analytical solutions of the GL theory and from
numerical solution. We are considering first an isotropic
perconductor.

The best analytical GL expression available was obtai
by Clem7 for isotropic superconductors at low induction
B!Bc2 . Using a Lorentzian trial function for the order pa
rameteruc(r )u2 of an isolated vortex, Clem finds for larg
k@1

Bz~G!5
F0

S

gK1~g!

11l2G2 , g5&j~G21l22!1/2. ~3!

HereK1(x)52K08(x) is a modified Bessel function with th
limits K1(x)51/x2(x/2)ln(1.7139/x) (x!1) and
K1(x)5(p/2x)1/2exp(2x) (x@1). From Eq.~3! we recover
the London solution if the cores size shrinks to zero. T
cutoff factorgK1(g) in Eq. ~3! may be approximated for al
g values by exp(2&jG) or, less accurate but convenient f
computations, by exp(22j2G2) as suggested in Ref. 18. Th
cutoff exp(2j2G2/4) given in Ref. 19 was derived from th
GL solution nearBc2 , and is not valid at lowB (B!Bc2).
At intermediate fields the cutoff should interpolate betwe
these two expressions. Therefore, the argument of the Ga
ian cutoff used recently is smaller than the one we propo
1/4 ~Ref. 13! or 1/2 ~Ref. 14! instead of two valid at low
B. The correct low-field cutoff yields a stronger field depe
dence of the SANS intensity than predicted for example
Ref. 13.

Clem’s approximate analytical theory of the dilute vort
lattice was extended to larger fields and to anisotropic su
conductors by Haoet al.9 using the same type of variationa
approach. The resulting Fourier components for an isotro
superconductor may be written as

Bz~G!5
F0

S

f `K1Fjvl ~ f `
21l2G2!1/2G

~ f `
21l2G2!1/2K1S jv

l
f`D, ~4!

wherejv and f ` are two variational parameters represent
the effective core radius of a vortex and the depression of

FIG. 1. Definition of the primitive cell vectorsav and bv and
anglea of a distorted vortex lattice in real space.a is p/2 minus
the angle defined in Fig. 2 of Ref. 3.
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order parameter due to the overlap of vortex cores, resp
tively. For the cases of interest here (k.10) the two varia-
tional parameters have simple functional dependences
b[B/Bc2 andk:9,7

f `
2512b4, ~5a!

jv5jS&2
0.75

k D ~11b4!1/2@122b~12b!2#1/2. ~5b!

In Eqs. ~5! F0 /S5B5bBc2 is the mean induction, which
for 2bk2.1 may be equated toBext.

For k@1 the argument ofK1 in the denominatorof Eq.
~4! is much smaller than 1, thus we may useK1(x)'1/x.
Since for high-Tc superconductors and typicalBext values,
b is never larger than a few %, we may also neglect the fi
dependence off ` and jv , putting f `'1 andjv'&j. For
the analysis of measurements performed on heavy ferm
superconductors, the field dependence off `(b) can thus be
disregarded@usuallyBext<1 T ~Ref. 3!# but this may not be
true forjv(b). For example, with UPt3 atBext51 T one has
b'0.4 ~Ref. 3! and thereforejv'0.8543&j.

The smallest nonzero reciprocal vector for an equilate
triangular lattice isG105Gmin5av*5(2p/S)av ~see Fig. 1 for
the definition ofav!, thusGmin

2 5(8p2/))(B/F0). This means
that for the high-Tc compounds atB.Bext520 mT one has
LGmin

2 .10@1, if L1/25l51500 Å is used. For UPt3 l is
even larger.3 Accounting for the large value o
LGmin

2 5(4p/))bk2 we may write

Bz~G!5
F0

S

f`
2

LG2 ~jvG!K1~jvG!. ~6!

In this paper we test the applicability of formula~6! to re-
cently published SANS results on CeRu2 .

The conventional superconductor CeRu2 has attracted
some interest because of its complex phase diagram in
(Bext,T) plane. Notably, a reversible-irreversible line is o
served. The form factorBz(G) is easily obtained from the
SANS cross section.20 The CeRu2 measurements o
Bz(G10) as a function ofBext are presented in Fig. 2. Becaus

FIG. 2. Form factor for the reflection@1,0# from the vortex
lattice of CeRu2 as a function of the applied field. The points take
from Ref. 6 have been obtained using either a field cooling
zero-field cooling procedure. The lines are fits to Eq.~7!.
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L is scalar, we derive from Eq.~6!

Bz~G10!5
31/4

2p&

AF0Bextf `
2 jv

l2 K1S 2p&

31/4
jvABext/F0D .

~7!

This expression depends only on the two parametersl and
j. The fits yield for the data recorded either in the fie
cooling ~FC! or zero-field cooling ~ZFC! procedure,l
51870 Å andj584 Å and l52090 Å andj574 Å, re-
spectively. Taking the traditional point of view, the FC da
reflect the equilibrium properties of the vortex lattice. Fro
these datak522 is larger than the previously estimate
k514.5.21,22 From the j value we compute Bc2
5F0 /(2pj2)54.7 T. Magnetization measurements at 1
K give Bc255.3 T.21 The values deduced from the FC ne
tron data are satisfactory in view of the well known difficul
to extract a reliablek value from magnetization measur
ments.

The traditional Gaussian cutoff predic
ln@Bz(G10)#}Bext, i.e., a straight line in Fig. 2. This is no
observed.

The generalization of Eq.~6! to anisotropic penetration
length tensors reads fork@1

Bz~G!5
F0

S
~12b4!

uK1~u!

LxGy
21LyGx

2 . ~8a!

HereuK1(u) is an anisotropic cutoff factor with

u252~jx
2Gx

21jy
2Gy

2!~11b4!@122b~12b!2#, ~8b!

uK1~u!'12~u2/4!ln~2.937/u2! for u!1. ~8c!

For the computation ofBz(G) we need to specify the geom
etry of the vortex lattice. As shown by Kogan24 for
B@Bc1 , the angle characterizing this lattice~see Fig. 1! de-
pends only on the penetration-length ratio

tana5)~lx /ly!. ~9!

Using Kogan’s formula~9!, the form factor factorizes
Bz(Gpq)5B0bpq(b), where

B05
1

p2 S 364D
1/2 F0

lxly
~10!

andbpq(b) is a universal function,

bpq~b!5~12b4!
vpqK1~vpq!
p22pq1q2

, ~11a!

vpq5
2A2p

31/4
b1/2@11b4#1/2@122b~12b2!2#1/2

3~p22pq1q2!1/2. ~11b!

In Fig. 3 we presentb10(b) computed from the variationa
solution~11!, the Gaussian cutoff~Ref. 19!, and the numeri-
cal solution of the GL equations.23 Remarkably, the compari
son between the variational and the numerical soluti
shows that forb<0.05 the first three Fourier coefficien
Bz(G) deviate by,10% and forb<0.01 by,4%; even for
b50.2 ~0.3! the Bz(G10) Eqs. ~4! with ~5! falls below the
s

exact value by only 14%~18%!, and even for smallk55
this Clem-Hao approximation is reasonable.

We shall not analyze the SANS data of UPt3 ~Ref. 3! with
Eq. ~8! because the conventional GL theory discussed h
does not describe the phase diagram of this compound.
argue that the effect of the vortex cores in UPt3 is stronger
than suggested by Joynt.13

We now consider the field distribution~probability! of the
vortex lattice which is measured bymSR ~Ref. 25! and can
be computed from the Fourier coefficients, Eq.~8!. Its vari-
ance isDv

25^Bz
2&2^Bz&

2, where^•••& means the spatial av
erage. One has

Dv
25 (

GÞ0
uBz~G!u2. ~12!

Dv separates into two factors,Dv5D0f v(b) where

D050.06092
F0

lxly
~13!

is the London limit (jx ,jy→0) ~Ref. 17! and f v(b) is a
universal function which accounts for the core size,

f v
2~b!50.12968 (

~p,q!Þ~0,0!
bpq
2 ; ~14!

FIG. 3. The universal functionsb10(b) Eq. ~11a! ~the largest
reduced form factor, top! and f v(b) Eq. ~14! ~the reduced variance
bottom! calculated in three ways: From this work~solid lines!, from
the Gaussian cutoff~dash-dotted lines!, and from the exact
Ginzburg-Landau solution~dashed lines!. The insets plot these
functions versusAb to stretch the cusplikeb dependence of the
correct cutoff at low reduced inductionsb50. Note the strong de-
viation of the previously used Gaussian from the correct cutoff.
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see Fig. 3. The functionsb10 and f v are very similar since in
the sum~14! the sixb10 equivalent terms dominate.

Quite unexpectedly, the functionsb10 and f v arestrongly
field dependent even at low reduced fields b, where the Lon-
don model predicts constantbpq51 and f v51. One has ap-
proximately 12bpq(b)}12 f v}b

1/2, see Fig. 3. This finding
is confirmed by the exact numerical solution of the G
theory,23 depicted as dashed lines in Fig. 3. This strongb
dependence originates from the limit~8c! with
u25jv

2G25(8p/))b(G/G10)
2, which means that the cut

off factor uK1(u) is considerably less than unity except
very smallb!)/(8p)51/14.5 even forG5G10.

We are aware of only one investigation on a single crys
of the field dependence of the vortex lattice fie
distribution.2 From thismSR study of YBa2Cu3O6.95 and
rs
l

the valueBc2590 ~10! T ~Ref. 26! we estimateDv'5.04
and 5.73 mT atBext50.5 and 1.5 T, respectively. This lead
to a ratioRexp[Dv(1.5 T)/Dv(0.5 T)50.88 while our com-
putation~see Fig. 3! predictsRGL50.90. Therefore the con
ventional GL theory provides a simple and natural expla
tion of the observed field dependence of the observed fi
distribution in YBa2Cu3O6.95.

In conclusion, we have shown that the effect of the fin
core size on the Fourier components of the magnetic fi
in a conventional superconductor with largek is strong,
even at low fieldsBc1,B!Bc2 , since the cutoff factor
in Eqs.~6! and~8! is uK1(u),1. This cutoff effect provides
a natural explanation for recently published neutron a
mSR data without the need to resort to unconventio
theories.
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