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Supersolid phase in fully frustrated Josephson-junction arrays

Luigi Amico, Giuseppe Falci, Rosario Fazio, and Gaetano Giaquinta
Istituto di Fisica, Facolta´ di Ingegneria, Universita´ di Catania, viale A. Doria 6, I-95129 Catania, Italy

~Received 15 July 1996!

We study the phase diagram and the excitation spectra of an array of small Josephson junctions atf51/2
and arbitrary charge frustration. We find that the supersolid region in the phase diagram is larger than the
corresponding region atf50 and it includes two different phases. In the chiral supersolid charges and vortices
are arranged in a checkerboard pattern on a 23 2 supercell analogously to the unfrustrated case. We find a
phase, which we termnonchiral supersolid, which has no corresponding phase atf50. The excitation spectra
in the supersolid regions show particlelike dispersion which is related to the existence of defectons. The
defecton condensation leads to superfluidity in the presence of a charge-ordered background.
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I. INTRODUCTION

Josephson junctions arrays~JJA’s! are ideal model sys
tems to study a variety of phase transitions induced by th
mal or quantum fluctuations.1,2 These latter play a major rol
if the superconducting islands are of submicrometer size
they drive the zero-temperature superconductor-insul
~SI! phase transition. The two characteristic energy scale
the system are the Josephson energyJ, which is associated
with the tunneling of Cooper pairs between neighboring
lands, and the charging energyU which is the energy cost to
add an extra Cooper pair on a neutral island. The elec
static energy tends to inhibit the Josephson tunneling: A
nite U leads to quantum fluctuations of the phasesf of the
superconducting order parameterDeif i, one each island. If
J@U, the system is superconducting since the fluctuation
the f ’s are small and the system is globally coherent. W
will refer to the J/U→` limit as theclassicalcase~in the
classical limit JJA’s are a physical realization of the tw
dimensionalXY model!. In the opposite limitJ!U, the ar-
ray is a Mott insulator since strong quantum fluctuations
f i prevent the system from reaching coherence~Coulomb
blockade of Cooper pairs!. The SI phase transition in JJA’
has been studied in great detail both experimentally3 and
theoretically.4 The effect of disorder and the presence of
additional glass transition has been studied in Ref. 5. At
transition the system could be a metal with a universal va
of the conductance.6–8

Frustration in a quantum JJA can be introduced either
applying a magnetic field or by means of a gate voltage w
respect to the ground plane. The effect of themagnetic frus-
tration has been studied extensively in the classical lim9

The presence of the magnetic field induces vortices in
system, and if the frustration is a rational numb
( f[F/F05p/q, whereF is the magnetic flux piercing eac
plaquette andF05h/2e), then the ground state consists of
checkerboard configuration of vortices with aq3q elemen-
tary cell. A particularly interesting case is the fully frustrat
situation (f51/2) where the two degenerate ground sta
consist of a vortex lattice with a 232 elementary supercell
The current corresponding to this vortex arrangement flo
either clockwise or counterclockwise in each plaquette.
550163-1829/97/55~2!/1100~10!/$10.00
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refer to thisf configuration as achiral ~ground! state. The
effect of quantum fluctuations in JJA’s atf51/2 has been
investigated in Ref. 10. Although the superconducting tr
sition temperature is reduced, the configuration of the pha
f i and the supercurrent flow patterns are unchanged, an
the ground state is still chiral.

Quantum fluctuations may be modulated by means o
gate voltage to the groundVx ; this effect is known ascharge
frustration. The energy difference for two charge states
each island withn andn11 extra electrons may be reduce
by changingVx . Consequently the effects of a finite char
ing energy are weakened and the superconducting regio
the phase diagram turns out to be enlarged. In the presen
charge frustration and a finite-range Coulomb interaction,
phase diagram has a rather rich structure. Various Mott
sulating phases appear. They are characterized by crysta
configurations~with a lattice constant which depends o
Vx) of the charges on the islands. In addition a new pha
characterized by the coexistence of off-diagonal~superfluid!
and diagonal~charge-crystalline! long-range order, may ap
pear. This phase is known as thesupersolid. Since the origi-
nal prediction by Andreev and Lifshitz,11 there have been
numerous works concerning the determination of the lo
tion and the size of the supersolid region as a function of
system’s parameters.12–15 Most of these theoretical investi
gations employ the mean field approximation. Recen
quantum Monte Carlo calculations were performed in R
16 for the JJA model and in Ref. 17 for the Bose-Hubba
model. These simulations confirmed the existence of the
persolid region although its size is substantially reduc
compared to the mean field estimates. Investigations in o
dimensional systems18 by means of Monte Carlo simulation
do not show any trace of the supersolid.

All these investigations concerning the effect of frustr
tion in quantum arrays considered either chargeor magnetic
frustration. The combined effect ofboth types of frustration
may lead to interesting effects. The most striking predict
is that for certain ratios of the magnetic to charge frustrat
the JJA is in a quantum Hall phase.19 The proposal is rathe
suggestive, although experiments are not yet available
support it and there is no detailed study of the phase diag
1100 © 1997 The American Physical Society
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55 1101SUPERSOLID PHASE IN FULLY FRUSTRATED . . .
which would allow one to locate the region where the qu
tum Hall phase should be observed.

Motivated by these recent developements, we study
this work the phase diagram and the low-lying excitations
a JJA in the presence of both charge and magnetic frus
tion. In particular we consider the case of fully frustrat
JJA’s for which the ground state is known in the classi
limit. Two different supersolid phases are identified whi
we indicate aschiral supersolid~SS! and nonchiral super-
solid ~NCSS!. This NCSS is a new phase and has no cor
sponding stable phase atf50. Thewholesupersolid region
is enlarged as compared to the case of zero magnetic fi

The paper is organized as follows. In the next section
introduce the quantum phase model~QPM! commonly used
to study JJA’s and reduce it in the standard way to
XXZ Heisenberg model. The phase diagram of the la
model is studied at the mean field level in Sec. III using
1/S expansion. We would like to point out that the presen
of both magnetic and charge frustrations makes the calc
tion nontrivial already at this level and that it is impossible
use other standard tools such as Monte Carlo simulation
the self-consistent harmonic approximation. In the case
Monte Carlo calculations there is the sign problem~due to
the combined effect of both types of frustration! while in the
harmonic approximation the discreteness of charges whic
essential to describe supersolids is lost. In Sec. IV we st
the spectrum of the low-lying excitations in all the regions
the phase diagram. Finally, Sec. V is devoted to the con
sions.

II. MODEL

In quantum JJA’s the only relevant dynamical variab
are the phasesf i defined on each island~at low temperatures
the fluctuations of the modulusD are unimportant!. Since in
nanofabricated samples there are no Ohmic currents betw
the islands and also quasiparticle tunneling is negligible,
the physics is captured by the QPM~\51!

HQP5
1

2(i , j ~ni2nx!Ui j ~nj2nx!2J(
^ i , j &

cos~f i2f j2Ai j !,

~1!

whereni ~the charge on thei th island! is canonically conju-
gated tof i , @f i ,nj #52eid i j . The Coulomb interaction is
described by the matrixUi j54e2Ci j

21, whereCi j is the ca-
pacitance matrix. The external voltageVx enters via the in-
duced chargeenx and fixes the average charge on each
land. A perpendicular magnetic field with vector potent
A enters the QPM in the standard way throu
Ai j5(2e/c)* i

jA–dl. The relevant parameter which describ
the magnetic frustration isf5(1/2p)(Ai j , where the sum-
mation runs on an elementary plaquette.

In the case of a very largeon-siteCoulomb interaction
and very low temperatures only a few charge states are
portant. If the gate voltage is tuned close to a degeneracy
relevant physics is captured by considering only two cha
states per island and the QPM is equivalent to a spin
Heisenberg model12
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HS52h(
i
Si
z1 1

2 (
i , j

Si
zUi j Sj

z

2J(
^ i , j &

~eiAi jSi
1Sj

21e2 iAi jSj
1Si

2!, ~2!

where the operatorsSi
z , Si

1 , and Sj
2 are the usual su~2!

operators,Si
z being related to the charge on each isla

(ni5Si
z11/2), and the raising and loweringSi

6 operators
corresponding to the operatorse6 if j of the QPM. The ficti-
tious external fieldh is related to the external charge by

h5~nx21/2!(
j
Ui , j .

The various magnetic orderings in theXXZHamiltonian cor-
respond to the different phases in the QPM.

~i! Long range order in̂ Sx& and ^Sy& (A^Sx&21^Sy&2

Þ0) indicates superfluidity in the QPM.
~ii ! Long range order in̂Sz& (u^Sz&uÞ0) describes order

in the charge configuration.
In the rest of the paper we consider the Coulomb inter

tion only between nearest-neighbor~NN! (U1) and next-
nearest-neighbor~NNN! (U2) sites.

III. PHASE DIAGRAM

In this section we obtain the phase diagram forf51/2 in
the presence of arbitrary charge frustration. Previous w
already established the phase diagram of the spin Ha
tonian for zero magnetic frustration (f50).12–14,17

We consider a square lattice and use the gaugeA5Hyx̂.
This givesAi j5p(yi /a)sgn(xj2xi) where the coordinates
of the neighboring sitesi and j appear anda is the lattice
spacing. This is illustrated in Fig. 1 where the dashed lin
indicate the antiferromagnetic bond (Ai j5p) and the solid
lines the ferromagnetic bonds (Ai j50).

In the classical limit there are two degenerate 232 peri-
odic ground states: In the QPM language the correspond
f i configurations describe a checkerboard arrangem
of vortices and antivortices. InXXZ language the spin
components are related tof by arctan(̂Si

y&/^Si
x&)5fi and

A^Si
x&21^Si

y&251. In the classical limit charges are com
pletely delocalized which implieŝSi

z&50.
The chiral configuration of the classical ground states s

gests the introduction of four sublattices indicated by
index l5a,b,g,d ~Fig. 1!. Each site is parametrized byl
and an additional indexp which runs, within each sublattice
through the whole array.

We study theXXZ model using the 1/S expansion (S is
the modulus of the spin vector!. First the quantization axis in
each sublattice is rotated to align the spins along the di
tion of the relative magnetization. We obtain the rotat
HamiltonianRHSR

21, where

R8)
p

)
l5a,b,gd

Rz
plR

x
pl , ~3!

with Rz
pl8eif lSpl

z
and Rx

pl8eiu lSpl
x
. Then we perform the

1/S expansion and determine the actual values of the e
anglesf l andu l by minimizing theS→` limit of the rotated
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1102 55AMICO, FALCI, FAZIO, AND GIAQUINTA
Hamiltonian. The above procedure allows us to characte
ground states whose properties are uniform within each s
lattice ~the anglesu andf do not depend on the subscri
p).

At the mean field level the order parameters are sinu l for
global phase coherence~off-diagonal order! and cosu l for
charge ordering~diagonal order!. Thef l configuration deter-
mines the supercurrent pattern. The 1/S expansion of
the rotated Hamiltonian can be carried on systematic
by using the Holstein-Primakoff transformatio
Spl

15A2Sapl
† A12npl /S, Spl

25(Spl
1)†, Spl

z 5npl2S, where
apl andapl

† are boson operators, andnpl5apl
† apl . These op-

erators describe excitations around theS→` ground state.
The rotated Hamiltonian reads

RHSR
215H`1HSW1O~AS!, ~4!

whereH` is of order S2, and HSW describes low-energy
fluctuations around theS→` ground state and turns out t
be of orderS. TheS→` ground-state properties are obtain
by minimizingH` :

H`5
N

4(l F2
h

2
cosu l1

U1

8
cosu l (

m5NN~ l !
cosum

1
U2

4
cosu l (

m5NNN~ l !
cosum

2
J

4
sinu l (

m5NN~ l !
eAlmsinumcos~f l2fm!G . ~5!

FIG. 1. Because of the nontrivial periodicity due to the magne
frustration, a 232 cell should be considered. The labels for t
sites as used in the paper are here reported~a!. Using periodicity
boundary conditions, as shown in~a!, one can reduce the problem
defined on the plaquette drawn in~b!.
e
b-

ly

The minimization of theH` leads to eight equations in th
variablesf l and u l defined on the plaquette of Fig. 1~b!.
Four of these equations can be solved analytically with
result

tan~fg2fb!5
A16a2b22~b221!~a221!

~b221!~a211!
,

tan~fd2fa!52
A16a2b22~b221!~a221!

~a221!~b211!
,

tan~fb2fa!52
A16a2b22~b221!~a221!

~a221!~b211!22b2~a211!
, ~6!

where

a5
sinua

sinud
, b5

sinub

sinug

~the solutions are valid ifa andb are both finite!. We now
look for solutions witha5b51 which correspond to phase
with checkerboard symmetry. The resulting configuration
thef l is the same as in the classical limit, and the superc
rent has the same chiral pattern. This has been noticed in
case of zero external charge in Ref. 10. We show that,
nonzero charge frustration, the above conclusion is also v
for the superfluid phase and for the chiral SS.

The remaining equations foru l reduce to the ones of th
f50 case with the substitutionJ→J/A2. The solutions then
read

cosu5
h

2~U11U21A2J!
~7!

for the superfluid~SF! and

cosua,b5 1
2 ~v6Av224w!

for the chiral SS. We defined

w8~h2hs!/~2U2k!, hs82A~U12U2!
222J2

k8A12@A2J/~U12U2!#
2~11w!,

and

v5k~11w!.

By comparing the energies relative to the above soluti
we obtain the boundaries between the phases with chec
board symmetry.

Paramagnetic-canted state:

h562~U11U21A2J!. ~8!

Canted state,14 or
3
4 lobe:

h56@U11U21A2J

1A~U11U21A2J!~U11U223A2J!].
~9!

c
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55 1103SUPERSOLID PHASE IN FULLY FRUSTRATED . . .
FIG. 2. The three-components spin vectors we used are characterized by the usual Euler anglesu andf. ~a! In the insulating phases th
order parameter vanishes and only theu configuration is important.~b! The mean field order parameter’s phase configuration is unaffe
by magnetic frustration.~c! The u andf configurations in the SS. As in the superfluid state, the magnetic frustration preserves the
order of the ground state.~d! The two degenerate ground states of the NCSS. The circle indicates the lattice site where the phas
superfluid order parameter is not defined~the two degenerate configurations both refer to the casea51).
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Canted–chiral-supersolid state:

h52~U11U21A2J!A~U12U22A2J!

~U12U21A2J!
. ~10!

Chiral-supersolid–Néel state:

h52A~U12U2!
222J2. ~11!

Chiral supersolid,14 or
3
4 lobes:

h56@2U21hs2A~2U21hs!
22hs

228U2~U12U2!#.
~12!

The spin configurations corresponding to the insulating,
perfluid and supersolid regions are shown in Fig. 2. In
-
e

Mott lobes there is no projection of the spin on thexy plane
and the three spin configurations in Fig. 2~a! correspond to
filling 1, 1/2, and 3/4. In Fig. 2~b! and Fig. 2~c! the super-
fluid and supersolid configurations are represented. The
that thef configuration is not affected by quantum fluctu
tions has already been noticed in Ref. 10 for zero exter
charge. We extend this result to the SF and SS phases. H
ever, we discuss below a new phase, thenonchiral super-
solid, which shows a different supercurrent pattern.

The NCSS ground state is found when we look for so
tions with no checkerboard symmetry which minimize E
~5!. ~A noncheckerboard phase was also found atf50 by
Bruderet al.14 and was named a SS2 supersolid.! We choose
a51 andbÞ1 ~or equivalentlyaÞ1 andb51). In this case
the ground state has the following phase configurations:
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1104 55AMICO, FALCI, FAZIO, AND GIAQUINTA
fa50,

fb5fg1p/2,

fd52fg ,

and

fg5arctanb.

Substituting these values of the phases inH` and by numeri-
cal minimization of the corresponding expression ofH` , we
find two degenerate NCSS configurations

fa50,fb5fd5p

(sinug50) and

fa5fg5fd50

(sinub50). In the previous expressions,fg @for the configu-
ration of Fig. 2~dI!# and fb @for the configuration of Fig.
2~dII!# are meaningless since the superfluid order param
is zero in this site.

The resulting pattern of supercurrent is different from t
classical chiral one. We point out that in this case the eq
tions for the anglesu l cannot be obtained from thef50
equations by simply rescalingJ→J/A2.

The solutions are characterized by the sinu order param-
eter vanishing on one of the four sublattices. On this parti
lar sublattice cosu51, and so the charge is well define

FIG. 3. The phase diagram for the fully frustrated JJA. T
NNN Coulomb interaction isU250.1U1.
er

a-

-

Thus the NCSS ground state describes a supersolid, s
charge-crystalline and superfluid order coexist, but the ch
supercurrent pattern is lost.

All the phase boundaries obtained in this section are s
marized in the phase diagram shown in Fig. 3. Thewhole
supersolid region~SS and NCSS phases! is enlarged com-
pared to thef50 case~SS1 and SS2 phases!. At f50 the tip
of the lobe~which coincides with the extension of the supe
solid phase in the hard core limit! will correspond to
J/U150.45. A blowup of the NCSS region is shown in Fi
4 and compared with the rescaledf50 phase diagram. This
figure emphasizes that thewholesupersolid region cannot b
obtained by rescaling thef50 phase diagram~the rescaled
SS2-SS1 phase boundary is shown by crosses!.

IV. EXCITATION SPECTRA

The excitation spectra can be obtained calculating
eigenmodes ofHSW. As pointed out in the previous sectio
all the terms up toO(S) are retained in the 1/S expansion;
this, in turn, corresponds to retaining products at most bi
ear of the creation and annihilation operatorsa† anda. By
consideringl as a color index,HSW describes a system o
four kinds of interacting bosons defined on a lattice who
sites are labeled by the indexp. Then we Fourier transform
with respect top andHSW reduces to a sum of single-mod
Hamiltonians

FIG. 4. The region of the phase diagram containing the NCS
shown in detail. In addition we report~with crosses! the phase
boundary that should have the chiral SS2 by rescalingJ as dis-
cussed in the text.
HSW5(
k
Hk ,

Hk5~«k
~a,b!1«k

~a,g!1«k
~a,d!!nk,a1~«k

~a,b!1«k
~b,d!1«k

~b,g!!nk,b1~«k
~a,g!1«k

~g,d!1«k
~b,g!!nk,g1~«k

~a,d!1«k
~b,d!1«k

~g,d!!nk,d

1~vk
~a,g!ak,a

† ak,g1vk
~a,g!*ak,g

† ak,a!1~vk
~a,b!ak,a

† ak,b1vk
~a,b!*ak,b

† ak,a!1~vk
~b,d!ak,b

† ak,d1vk
~b,d!*ak,d

† ak,b!

1~vk
~g,d!ak,g

† ak,d1vk
~g,d!*ak,d

† ak,g!1~vk
~a,d!ak,a

† ak,d1vk
~a,d!*ak,a

† ak,d!1~vk
~b,g!ak,b

† ak,g1vk
~b,g!*ak,g

† ak,b!

1~qk
~a,g!ak,a

† ak,g
† 1qk

~a,g!*ak,gak,a!1~qk
~a,b!ak,a

† ak,b
† 1qk

~a,b!*ak,bak,a!1~qk
~b,d!ak,b

† ak,d
† 1qk

~b,d!*ak,bak,d!

1~qk
~g,d!ak,g

† ak,d
† 1qk

~g,d!*ak,gak,d!1~qk
~a,d!ak,a

† ak,d
† 1qk

~a,d!*ak,aak,d!1~qk
~b,g!ak,b

† ak,g
† 1qk

~b,g!*ak,gak,b!. ~13!
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The coefficients in the Hamiltonian~13! ~reported in Ap-
pendix A! depend on the anglesu l andf l introduced in Sec.
III. The k sum is restricted to half of the Brillouin zon
because of the doubling of the lattice constant due to
magnetic frustration. All the linear terms in the operato
ak,i
† and ak,i vanish for the$u l ,f l% configurations in the
ground state.

The HamiltonianHSW is diagonalized using an algebra
technique20,21,28,29briefly described below: We introduce th
operators

Xll 88ak,la2k,l 81ak,l 8a2k,l ,

Xll 88ak,l 8
† a2k,l

† 1ak,l
† a2k,l 8

†
5~Xll 8!

†,

Xl
l 88ak,l 8

† ak,l1a2k,l 8
† a2k,l ,

Xl 8
l8ak,l

† ak,l 81a2k,l
† a2k,l 85~Xl

l 8!†,

Xl
l8nk,l1n2k,l11, ~14!

which obey the commutation rules

@Xll 8,Xmm8#5@Xll 8,Xmm8#50,

@Xll 8,X
mm8#5Xl

md l 8
m81Xl

m8d l 8
m1Xl 8

md l
m81Xl 8

m8d l
m,

@Xll 8,Xm
m8#5Xlmd l 8

m81Xl 8md l
m8,

@Xll 8,Xm
m8#52Xlm8dm

l 82Xl 8m8dm
l ,

@Xl
l 8,Xm

m8#5Xm
l 8d l

m82Xlm8dm
l 8, ~15!

where we have omitted thek index in the X’s and
$ l ,l 8,m,m8% are the color indices. The 36 operato

$Xll 8,X
ll 8,Xl

l 8,Xl 8
l ,Xl

l% form a base for the noncompa
symplectic Lie algebra sp(8)k .

22 The diagonal operators in
the Foch baseXl

l generate the Cartan subalgebra of sp(8k
whose dimension is 4~equal to the rank of the algebra!. The
other 32 off-diagonal operators are the non-Cartan genera
of the algebra. By using the definitions of Eq.~14!, one can
see thatHk belongs to sp(8)k since it can be written as
linear combination of a subset of its generators:

Hk5(
l
Dll

~k!Xl
l1 (

lÞ l 8
Dll 8

~k!Xl
l 81 (

lÞ l 8
Rll 8

~k!Xll 8, ~16!

whereRll 8
(k)5Rl 8 l

(k)* andDll 8
(k)5Dl 8 l

(k)* . The coefficients
in expression~16! are listed in Appendix B. Equation~16!
suggests thatHSW possessesA5 % ksp(8)k as dynamical al-
gebra; therefore we can diagonalize the Hamiltonian us
the fundamental, faithful~i.e., preserving the commutatio
rules! irreducible representation~IRR! of A. It is worthwhile
to notice that because of the noncompactness of sp(8), every
finite-dimensional IRR of such an algebra is not Hermitian23

Despite this fact we can use the IRR ofA in order to obtain
the correct eigenvalues ofHSW ~see Appendix A!. Such ei-
genvalues still depend onu l andf l : The actual spectra in
the various phases are worked out by specifying the co
e
s

rs

g

e-

spondingS→` ground-state$u lf l% configuration for each
phase. The main results of this procedure are described
low for the various regions of the phase diagram.

Insulating phases. Since the superfluid order parameter
zero, there is no effect due to magnetic frustration. The N´el
and insulating 1/4~and 3/4) phases are charge-modula
solids. The lowest-lying excitations are gaped and partic
like. They correspond to particle-hole excitations. In F
5~a! and Fig. 5~b! we show the spectrum for the 1/2 an
3/4 lobes. The Ne´el solid is charge modulated along bothx
and y directions and the excitation branches are shown
Fig. 5~a!. The four branches in the 3/4 lobe come from t
more complicated structure of the elementary cell. In t
state there is a transverse-phononlike excitation, charact
tic of the diagonal long-range order along rows and/or c
umns~where the charge is uniform!. In addition we find the
particlelike spectrum~with positive curvature at smallk)
which reflects charge modulation. This is shown in Fig. 5~b!
where the branch with negative curvature, represents
phononlike excitation.

FIG. 5. ~a! The excitation spectrum of the Ne´el insulator. At
J5U1/4, U253U1/8 andh52U1/3. The behavior at smallk re-
veals the particlelike nature of the excitations. In~b! we show the
four branches of the ‘‘3/4’’ insulating phase (U250.1U1,
h52U1, andJ50.1U1). The two lower curves have been rescal
by a factor of 10.
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1106 55AMICO, FALCI, FAZIO, AND GIAQUINTA
The Mott phases are not modulated in any direction, a
then the low-lying excitations are phononlike.

SF phase: Because of the doubling of the elementary c
of the lattice due to the magnetic frustration, an opti
branch is present in addition to a gapless mode which
early depends onk at smallk; see Fig. 6. This was alread
discussed in the classical case by Ariosaet al.9 Long-range
diagonal order existing along any lattice direction induc
transverse-phononlike excitations.

SupersolidSSphase: In the SS phase both diagonal an
off-diagonal order modulations are present. In this state
in-phase density fluctuations are coupled to the off-diago
fluctuations and decrease the sound velocity because
reduce the superfluid density. The supersolid is character
also by a modulation of the charge. Such modulation of
number of particles can be described in terms of defect
the lattice and the oscillations of the particles lead to fl
tuations in the diagonal order on each site.24 The localized
quasiparticles associated with the collective oscillations
the defects were termeddefectons.11 The branch with a gap
reveals the particlelike excitations consistently with th
physical picture. In Fig. 7 the acoustic branch is reminisc
of the superfluid order while the gapped branch with posit
curvature corresponds to the excitation spectrum of the
fectons.

NCSS phase: As in the previous case, the off-diagon
order is coupled with the density waves, but in this st
there are four branches. The gapless one reflects the s
fluid nature of this state. Since the mean field superfluid
der parameter vanishes in a lattice site of the 232 plaquette,
the sound velocity is strongly decreased. Two of the th
gapped curves take into account the defects of the lattice
other one means that in the system there are transv
phase-phonon excitations too. This is summarized in Fig

An important issue which can be addressed by study
the excitation spectrum is the determination of the dynam
critical exponent at the various phase boundaries. It turns
that the fully frustrated system has the same dynamical c
cal exponents at the various phase boundaries as the un
trated one. At the SS-Ne´el solid transition~see Fig. 9! the

FIG. 6. The acoustic- and transverse-phononlike branches in
superfluid are shown forJ5U1 , U250.1U1, h52.2U1, and
ky50.
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gap of the lower branch of the solid vanishes ask2, giving a
critical exponentz52.17,27At the SF-SS transition~see Fig.
10! the critical mode isk5(p,p) and the roton minimum is
at this wave vector. At the phase boundary the roton g
disappears linearly ink, giving z51.

V. CONCLUSIONS

In this paper we discussed the properties of a fully fru
trated quantum Josephson-junction array in the presenc
arbitrary charge frustration. We determined the mean fi
phase diagram atT50 as well as the low-lying excitation
spectrum using a 1/S expansion for the equivalentXXZ
model.

At f51/2 two kinds of supersolid phases, in addition
the ordinary superfluid and insulating phases, are pres
Besides the chiral SS which has an analogue in the abs

he FIG. 7. In this figure we show the dispersion relations in the
(J50.35U1, U250.1U1, h51.7U1, andky50). The sound veloc-
ity of the acoustic branch is reduced compared to the superfl
case. The gapped branch has a positive curvature at smallk char-
acteristic of the particlelike nature of the excitations.

FIG. 8. The excitation spectrum of the NCSS pha
(J50.2U1, U250.1U1, h51.848U1, and ky50). The two lower
curves have been rescaled by a factor of 5.
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55 1107SUPERSOLID PHASE IN FULLY FRUSTRATED . . .
of magnetic frustration we find the new NCSS phase wh
has a nonchiral ground state. In the case of the superfluid
the SS the main effect of quantum fluctuation and cha
frustration is to lower in magnitude the superfluid order p
rameter. The supercurrent pattern induced by the exte
magnetic field is, however, unaffected. In our mean fi
analysis this is reflected in a rescaling ofJ. In other words
the magnetic frustration fixes the current distribution wh
the charge frustration is responsible for the reduction of
magnitude of the superfluid order parameter. In the NC
diagonal and off-diagonal long-range order coexist in a n
trivial way and the combined effect of charge and magne
frustration cannot be disentangled as in the other phases
NCSS ground state has no checkerboard symmetry since
superfluid order parameter vanishes in one of the four site
each plaquette and two flux quanta may be accommodate
four neighboring plaquettes. The NCSS phase exists onl
the fully frustrated case and has no analogue atf50. The

FIG. 9. At the phase boundary between the Ne´el insulator and
SS the excitation spectrum vanishes ask2. The transition is signaled
by softening of the acoustic branch proper of the supers
(J50.1U1, U250.1U1, andky50).

FIG. 10. At the superfluid-SS phase transition the roton m
vanishes ask (J50.5U1 ,U250.1U1, andkx5ky).
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wholeSS plus NCSS region in the phase diagram is enlar
compared to the unfrustrated case: The supersolid state b
adjusts to the periodicity~on a 232 plaquettes elementar
cell! induced by magnetic frustration than the SF phase
it is more favored than in thef50 case. This may be impor
tant for experiments because the combination of charge
magnetic frustration may help in detecting the superso
phase.

We also determined the low-lying excitation spectrum
the system. Due to the combined presence of magnetic
charge frustration, the excitation spectra become more st
tured. They can be revealed, for instance, by studying
anomalies in theI -V characteristics in the Andreev curre
when the array is coupled to a normal metal electrode.25

We are currently investigating different rational values
the magnetic frustration in order to study the possibility o
quantum Hall phase as predicted in Ref. 19.

Note added in proof.After the submission of this paper
we became aware of papers by C. Murthy, D. Arovas, and
Auerbach@Phys. Rev. B~to be published!# and by E. Frey
and L. Balents@this issue, Phys. Rev. B55, 1050 ~1997!#
where similar problems are investigated.
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APPENDIX A

In this appendix we list the coefficients of the Ham
tonian in Eq.~13!:

«k
~ l ,m!82teiAlmsinu lsinumcoszl ,m2U1cosu lcosum ,

«k
~ l ,n!822U2cosu lcosum . ~A1!

The coefficients of the off-diagonal operators are

vk
~ l ,m!8cos~k•al ,m!H teiAlm@~cosu lcosum11!coszl ,m

2 i ~cosu l1cosum!sinzl ,m#1
U1

2
sinu lsinumJ ,

vk
~ l ,n!8U2coskycoskxsinu lsinum ,

qk
~ l ,m!8cos~k•al ,m!H teiAlm@~cosu lcosum21!coszl ,m

1 i ~cosu l1cosum!sinzl ,m#1
U1

2
sinu lsinumJ ,

qk
~ l ,m!82U2coskycoskxsinu lsinum , ~A2!
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1108 55AMICO, FALCI, FAZIO, AND GIAQUINTA
wherem and n are, respectively, NN and NNN to the si
l . In the previous expressional ,m is the unit vector joining
the sitesl andm andzl ,m8(f l2fm). The coefficients~A2!
areC numbers; they become real only iff50.

APPENDIX B

The IRR faithful representation of sp(8) we used cons
in mapping the HamiltonianHSW in the matrixM(HSW).
Since that sp(8) is a noncompact algebra,M turns out to be
not Hermitian and it has the structure~we use the same no
tation as in Ref. 26!

S D R
2R 2D̃D , ~B1!

where the tilde indicates the reflection in the minor diago
(R̃5R) andD is Hermitian. The matrix elements ofD are

D11
~k!8 1

2 ~«k
~a,g!1«k

~a,b!1«k
~a,d!1hcosua!,

D22
~k!8 1

2 ~«k
~a,b!1«k

~b,d!1«k
~b,g!1hcosub!,

D33
~k!8 1

2 ~«k
~a,b!1«k

~b,d!1«k
~b,g!1hcosub!,

D44
~k!8 1

2 ~«k
~g,d!1«k

~b,d!1«k
~a,d!1hcosud!. ~B2!

D12
~k!8 1

2vk
~a,b! , D13

~k!8 1
2vk

~a,g!, D14
~k!8 1

2vk
~a,d!,

D23
~k!8 1

2vk
~b,g! , D24

~k!8 1
2vk

~b,d! , D34
~k!8 1

2vk
~g,d!.

~B3!

The matrixR has the structure

S R14 R13 R12 0

R24 R23 0 R21

R34 0 R32 R31

0 R43 R42 R41

D , ~B4!

and its elements are

R12
~k!8 1

2qk
~a,b! , R13

~k!8 1
2qk

~a,g!, R14
~k!8 1

2qk
~a,d!,
C
an

h

,

nd
,

on
s

l

R23
~k!8 1

2qk
~b,g! , R24

~k!8 1
2qk

~b,d! , R34
~k!8 1

2qk
~g,d!.

~B5!

The diagonalization ofHSW is equivalent to an inner au
tomorphism of the algebra on itself. In other words, we c
define the unitary operatorU8)kUk , with

Uk8eGk, ~B6!

where the anti-Hermitian operatorGk is a linear combination
of the non-Cartan generators of the algebra

Gk8(
r ,s

@c r ,s~Xrs2Xrs!1c r
s~Xr

s2Xs
r !#. ~B7!

The rotation of the Hamiltonian throughU defines an inner
automorphism of the algebra generalizing the Bogoliub
transformation

UHSWU
215(

k
exp~adGk!Hk ,

exp~adGk!Hk8UkHkUk
21

5Hk1(
n

1

n!
@•••@Gk ,@Gk ,Hk##•••#.

~B8!

For the closure property of the Lie algebras Eqs.~B8! still
produce an element ofA; however, we can fix thec rs’s and
thec r

s’s in such a way as to put to zero the coefficients
the off-diagonal part of the Hamiltonian. As a final resu
HSW becomes proportional to the generators of the Car
subalgebra ofA:

UHSWU
215Hdiag5(

r51

4

vk
~r !Xr

r . ~B9!

In the present caseHSW is diagonal after having solved 1
coupled nonlinear equations. Being interested in the eig
values only, we are allowed to use the faithful representa
of A to find the spectrum of the Hamiltonian diagonalizin
the matrixM(HSW) instead ofHSWas an operator using Eq
~B8!. These operations are equivalent because the diago
ization procedure involves commutators between the
ments of the algebra only.
er,
d

tt.
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