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Atomic-force-microscope study of contact area and friction on NbSe2

M. A. Lantz, S. J. O’Shea, and M. E. Welland
Engineering Department, Cambridge University, Cambridge CB2 1PZ, United Kingdom

K. L. Johnson
1 New Square, Cambridge CB1 1EY, United Kingdom

~Received 25 November 1996!

We have used an ultrahigh vacuum atomic-force microscope to study the variation in contact radius and
friction with applied force between a silicon tip and a NbSe2 sample. The data are compared to the Maugis-
Dugdale theory, which is the appropriate continuum mechanics model for the properties and size of the
tip-sample contact. The lateral stiffness of the tip-sample contact is related to the radius of the tip-sample
contact through the shear moduli of the materials and we have used this relationship to measure directly the
variation in contact radius with applied load. The contact radius measured in this way is found to be in
agreement with the Maugis-Dugdale theory using the bulk values of the shear moduli. We also measured the
variation in friction force with applied load using the same silicon tip. The variation in friction force with
applied normal force is found to follow the variation of the contact area as predicted by the Maugis-Dugdale
theory@D. Maugis, J. Colloid Interface Sci.150, 243 ~1992!#, which supports the hypothesis that for a single
asperity contact, the frictional shear stresst is constant. The value of the shear stress is found to be
t'63108 N/m2, which is comparable to the estimated theoretical shear strength of NbSe2 .
@S0163-1829~97!05916-X#
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I. INTRODUCTION

The atomic- and friction-force microscopes~AFM and
FFM! are important new tools in the field of tribology. Sinc
the development of the FFM by Mateet al.1 and their initial
observations of atomic scale slip-stick motion, applicatio
of the AFM and FFM to tribology have grown rapidly. In
terest has been motivated by the high spatial and force r
lution attainable with these techniques as well as by
single asperity nature of the contact formed between
AFM/FFM tip and sample. It is hoped that new insight in
the fundamental mechanisms of tribological phenomena
be gained using these techniques.

One question of fundamental importance in tribology
the relation between friction and contact area. For the cas
dry sliding, Bowden and Tabor first proposed that in t
absence of ploughing, friction is directly proportional to t
real area of contact between surfaces,2 i.e.,

F friction5tA, ~1!

whereA is the real area of contact andt is the shear strength
of the contact. Most surfaces are rough on the microscale
contact only occurs between the surface asperities; the
area of contact is therefore much smaller than the appa
contact area. When a normal force is applied between
two surfaces, the surfaces deform elastically and/or pla
cally and the contact area increases. For randomly ro
surfaces, the real area of contact increases in direct pro
tion to the normal force, in which case Amonton’s law th
friction is proportional to the applied force is recovered fro
Eq. ~1!.
550163-1829/97/55~16!/10776~10!/$10.00
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The single asperity nature of the contact formed betw
an AFM tip and sample would seemingly make it ideal f
investigating the relation between friction and real cont
area. Unfortunately, the direct measurement of the con
area between an AFM tip and sample is not a trivial probl
and AFM investigations of friction have relied on conta
mechanics theories to relate friction to area. This appro
requires knowledge of the tip geometry if quantitative me
surements of the contact area and shear strength are t
made. With a few noted exceptions~for example, see Refs. 3
and 4!, this has restricted most AFM friction studies to qua
tative comparisons between theory and experiment. In a
tion, many FFM investigations of dry sliding have been c
ried out in air where the tip and sample are inevitab
covered in a few monolayers of water and other absor
contaminants. This lack of control over the tip-sample int
face makes the interpretation of data and comparison
tween experiments difficult.

In order to overcome these problems, we have constru
an ultrahigh vacuum~UHV! AFM to study friction and point
contacts. In an earlier paper we demonstrated how the la
stiffness of the tip-sample contact can be related to the
sample contact area, provided the geometry of the AFM
is well characterized.5 For tip characterization, we use
scanning transmission electron microscope~STEM! to image
the apex of the tip and measure the tip radius, before
after the experiments. In this paper, we demonstrate the
of the contact stiffness technique to measure the contac
dius as a function of applied normal force between a Si AF
tip and a NbSe2 sample in UHV. Using the same tip an
sample we also measure friction force as a function of
plied normal force. Quantitative comparisons are then m
between these two sets of data and a continuum model f
spherical point contact~the Maugis-Dugdale theory6,7!.
10 776 © 1997 The American Physical Society
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II. THEORETICAL BACKGROUND

A variety of theories can be used to model the elas
contact between an AFM tip and sample under normal
plied forces. When the adhesive force between the tip
sample is negligible compared to the applied force, He
theory can be used.8,9 In the regime where adhesive force
are comparable to the applied normal force, the analysi
more complex. The ratio of elastic deformation in the cont
to the distance over which surface forces act can be
pressed by the nondimensional parameterf, given by10

f5S Rw2

E* 2z0
3D 1/3. ~2!

HereR is the radius of the tip,w is the work of adhesion
~equal to twice the surface energy!, z0 is the equilibrium
spacing for the Lennard-Jones potential of the surfaces,
E* is the combined elastic modulus of the tip and samp
given by

E*5S 12n1
2

E1
1
12n2

2

E2
D 21

, ~3!

where n1,2 are the Poisson’s ratios andE1,2 are Young’s
moduli for the tip and sample, respectively. Whenf is large
~f.5! the Johnson-Kendall-Roberts~JKR! theory11 provides
a good approximation of the elastic deformation in the c
tact and whenf is small~f,0.1! elastic deformation is neg
ligible and the analysis by Bradley12 or the Derjaguin-
Muller-Toporov ~DMT! model13 is more appropriate.7,8 In
the intermediate regime, the Maugis-Dugdale theory6,7 pro-
vides an approximate closed-form analysis and this is
model we adopt in this work, because for typical AFM o
eration with sharp tips,f;1. We shall now outline the
Maugis-Dugdale theory in sufficient detail to highlight th
computational procedure followed. A more complete d
scription is given by Johnson.7

The Maugis-Dugdale theory describes the adhesion
separation in a purely elastic spherical contact under a
mal load. Intimate contact~zero separation! between the two
surfaces occurs within a circular area of radiusa, as illus-
trated in Fig. 1~a!. The attractive interaction between the su
faces extends over a larger circular region, with radiusc. In
the region betweenc anda the surfaces separate slightly b
a distance increasing from zero atr5a to h0 at r5c. The
adhesive force between the two surfaces is assumed to
a constant values0 until a separationh0 is reached, at which
point the adhesive force falls to zero as shown in Fig. 1~b!.
This is the Dugdale approximation. The value ofh0 is cho-
sen such that the maximum attractive force and the work
adhesion match those of a Lennard-Jones potential,
s0h05wLJ henceh050.971z0 .

The distribution of pressure within the contact is co
posed of two terms: the Hertz pressurep1(r ) associated with
a contact of radiusa,

p1~r !5
3P1

2pa2
@12~r /a!2#1/2, ~4!

where

P154E* a3/3R, ~5!
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and an adhesive~Dugdale! component

pa~r !5H 2~s0 /p!cos21S 2a22c22r 2

c22r 2 D , r<a

2s0 , a<r<c

~6!

which corresponds to an adhesive forcePa , given by

Pa522s0@c
2cos21~a/c!1aAc22a2#. ~7!

The net forceP acting on the contact is thenP5P11Pa .
The values ofa andc can be found by simultaneously solv
ing the two equations

lā2

2 F ~m222!cos21S 1mD1Am221G
1
4l2ā

3 FAm222 cos21S 1mD2m11G51 ~8!

and

P̄5 P̄11 P̄a5ā32lā2@Am2211m2cos21~1/m!#, ~9!

wherem5c/a and ā, c̄, P̄, andl are nondimensional pa
rameters defined as

FIG. 1. ~a! Maugis-Dugdale model of the tip-sample conta
Intimate contact occurs within a circular region with radiusa. A
constant attractive forces0 continues to act over a larger circula
region, with radiusc. The pressure distributions (p) across the
contact are also shown.~b! Lennard-Jones and Dugdale force law
h0 is chosen such that the maximum attractive force and the
under the attractive part of the force curves match, i.e.,s0h0
5wLJ .
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ā[aS 4E*

3pwR2D
1/3

, c̄[cS 4E*

3pwR2D
1/3

,

P̄[
P

pwR
, l52s0S 9R

16pwE* 2D .
It can be shown thatl51.16f, so thatl is also a measure o
the ratio of elastic deformation to the range of surface forc
We assume that the effective radiusb over which friction
forces act, lies somewhere betweena andc, thus

b5a1n~c2a!, ~10!

where 0,n,1. For example, when comparing friction da
to the theory we can write Eq.~1! asF friction5tA5tpb2. In
this work we assume thatn50.4, as this corresponds ap
proximately to the maximum attractive force in the Lenna
Jones interaction potential. In addition, good agreement
been obtained between previously reported UHV AFM fr
tion data and Eq.~1! using the Maugis-Dugdale theory wit
n50.4.7

Equations~8! and ~9! have real-valued solutions up to
critical valuePc , wherePc,0, indicating that a finite con-
tact area exists at negative applied forces. This separatio
pull-off force Pc is given by the minimum value ofP for
which real values ofa andc satisfy Eqs.~8! and ~9! and is
therefore a function ofR, E* , w, andl. If R andE* are
known, thenw andl can be calculated using the experime
tally measured pull-off forcePc and an iterative techniqu
@Eqs. ~2!, ~8!, and ~9! and the relationl51.16f#. In our
experiments, the radius of the tipR is measured using a
STEM andE* is calculated using bulk material propertie
Oncel andw have been found, the variation in the conta
radii a and c can be solved for as a function of the tot
normal forceP. For comparison, we have measured the t
sample contact radius as a function ofP directly through the
stiffness of the tip-sample contact. This method will now
discussed in detail.

III. TIP-SAMPLE CONTACT STIFFNESS

If a lateral force smaller than the force of limiting frictio
is applied to the tip-sample contact by laterally displacing
sample a small distance, then the contact between the tip
sample will deform elastically and distant points in the
and sample will be laterally displaced from each other. If
model the tip and sample as a sphere on a flat@see Fig. 2~a!#
and assume that~i! there is no coupling between normal an
lateral forces and~ii ! the lateral forceQx acting on the con-
tact is small compared with the limiting friction force, the
the lateral displacementdx5dx11dx2 between distant points
T1 in the tip andT2 in the sample is8

dx5
Qx

8b S 22n1
G1

1
22n2
G2

D5
Qx

8bG*
. ~11!

Hereb is the radius of the contact,G1,2 are the shear modul
of the tip and sample, respectively, andG* is the effective
shear modulus of the tip and sample given by

G*5S 22n1
G1

1
22n2
G2

D 21

. ~12!
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The assumption that there is no interaction between n
mal and lateral forces is strictly valid only if the elastic co
stants of the tip and sample are the same. However, the
rection required if the elastic constants are different
generally small and will be neglected here.8

The second assumption that the contact does not sli
also somewhat unrealistic, as the tangential traction ne
sary to prevent slip is theoretically infinite at the conta
periphery. A limited amount of slip~microslip!, therefore,
must occur at the edge of the contact, even for very sm
lateral forces. As the lateral force is increased, the region
microslip extends towards the center of the contact until
force of limiting friction is exceeded, at which point the e
tire contact slips and the tip begins to slide. To account
this effect, we must assume a tangential traction~friction!
distribution for the contact.

In macroscopic sliding, we would expect the friction tra
tion to be proportional to the applied force~Amonton’s law!.
For this case, if we relax the assumption that no slip occ
and assume that the friction is proportional to a Hertz
contact pressure, then the relative displacementdx of distant
points in the tip and sample is given by8

dx5
3mP

16aG* F12S 12
Qx

mPD 2/3G , ~13!

wheremP is the force of limiting friction.

FIG. 2. ~a! Sphere on flat model of tip-sample contact. He
distant points in the tip and sample are displaced from each othe
a distancedx5dx11dx2 by the lateral forceQx . ~b! Plot of lateral
force Qx versus displacement of distance points in the tip a
sampledx : ----, no slip; —, with slip. Gross sliding begins whe
the lateral force equals the force of limiting friction.
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55 10 779ATOMIC-FORCE-MICROSCOPE STUDY OF CONTACT . . .
Alternatively, for a single asperity contact, as for AFM
we expect that friction is directly proportional to the conta
area, i.e., Eq.~1! (F friction5tA5tpb2). When a lateral force
Qx is applied to the contact, microslip occurs at the cont
periphery. If we define the inner radius to which the m
croslip has penetrated ase and assume that Eq.~1! also holds
in the region of the microslip, then the relative displacem
dx of distant points in the tip and sample due to a late
forceQx is given by9

Qx52tb2@cos21g1gA12g2# ~14!

and

dx5
tb

2G*
A12g2, ~15!

whereg5e/b ranges fromg51 whenQx50 to g50 when
Qx5tpb2 ~the limiting force of friction!.

Equations~11! and ~13!–~15! have been plotted in Fig
2~b!. It is apparent from the figure that for lateral forces w
below the force of limiting friction, Eqs.~13!–~15! are well
approximated by Eq.~11!. Thus, regardless of whether E
~1! or Amonton’s law is obeyed, we can use Eq.~11! to
approximate the contact stiffness for small lateral forces,

kcontact5Qx /dx58aG* . ~16!

Therefore, by measuringkcontactwe can solve for the contac
radius using the bulk material properties of the tip a
sample. In addition, the variation in contact radius with a
plied force can be directly measured and compared to
contact radius predicted by the Maugis-Dugdale theory. T
approach has a general similarity to the method wher
forces and displacements in the direction normal to the
face are measured,14 in which casekcontact'2aE* .

In the experimental procedure used to findkcontact, a
known lateral displacement is applied to the sample and
resulting force acting on the contact is measured. The c
pliance of the contact is then calculated, taking into acco
the additional compliances of the tip and the cantilever.
model the behavior of the cantilever, tip, and tip-sample c
tact under the influence of a small lateral displacemen
three coupled springs in series, as illustrated in Fig. 3
lateral displacement of the sampleDx will be distributed
between the three compliant elements. The contact stiffn
is given by

kcontact5F Dx

F lateral
2

1

klateral
2

1

ktip
G21

, ~17!

where 1/ktip and 1/klateralare the lateral compliances of the t
and cantilever, respectively. Thus, ifklateral and ktip are
known, the contact stiffnesskcontactcan found by measuring
the lateral force acting on the tip due to a small displacem
of the sampleDx. It is important to note that when
Dx/F lateral becomes comparable to 1/klateral11/ktip , i.e.,
when the contact stiffness becomes large, the error in
measured contact stiffness increases rapidly. Thus the r
of contact stiffness and contact radii that can be measu
using this technique is limited by the combined lateral st
ness of the tip and cantilever.
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For the above technique to be accurate, the lateral s
ness of the tip and cantilever must be known. In our exp
ments we use a rectangular cantilever microfabricated fr
single-crystal silicon.15 It is simpler and more accurate t
analyze the mechanical behavior of such cantilevers c
pared to the commonly used triangular-shaped Si3N4 AFM
cantilevers. The lateral and normal spring constants of
cantilever were calculated to beknormal51.1 N/m and
klateral5110 N/m using the formulas16

knormal5EWt3/4c ~18!

and

klateral5GWt3/3ch2. ~19!

HereE is Young’s modulus andG is the shear modulus of S
„E5169 GPa andG560 GPa~Ref. 17! for the @110# direc-
tion…; W and t are the width and thickness of the cantileve
respectively,c is the length of the cantilever from the base
the tip, andh is the length of the tip measured from th
neutral axis of the cantilever. The length and width of t
cantilever and the height and position of the tip were m
sured from images of the cantilever and tip taken after
experiments using a Cambridge Instruments scanning e
tron microscope~SEM!. It is difficult to accurately measure
the thickness of the cantilever using SEM images due to
scattering of electrons off the faces of the cantilever. W
therefore used the technique of Nonnenmacheret al.18 to de-
termine the thickness of the cantilever using the measu
resonant frequency of the unloaded cantilever.

The lateral stiffness of the tipktip used in this experimen
was determined using a finite element model. The model

FIG. 3. Model of compliant tip and tip-sample contact showi
the response of the various springs (k) to a lateral force (F). The
lateral displacements (Dx) shown are greatly enlarged. Typicall
h;3–15mm andDx,5 Å. Experimentally, the angular chang
df/2 is measured.
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10 780 55LANTZ, O’SHEA, WELLAND, AND JOHNSON
constructed using the geometry measured from images o
tip apex taken with a JEOL 4000 EX scanning transmiss
electron microscope. Details are given elsewhere.5 We only
note thatktip is of the same order asklateraland therefore mus
be considered in our simple spring model of the experime
A relatively low value ofktip appears to be common fo
high-aspect-ratio AFM tips.5 For example, Fig. 4 show
STEM images of the tip used in the present experime
Figure 4~a! shows the original tip, as received from th
manufacturer, and Fig. 4~b! shows the tip after it had bee
intentionally blunted. The stiffnesses were determined to
ktip584 N/m before blunting andktip5108 N/m after blunt-
ing. For comparison, the lateral cantilever stiffness cal
lated using Eq.~19! is klateral5110 N/m.

IV. EXPERIMENT

The experiments were performed using a home-b
optical-deflection-type UHV AFM. In this system, the tip
fixed and the sample is scanned using a piezoelectric
scanner. The microscope can also be operated as a sca
tunneling microscope and the tube scanner was calibrate
small displacements using atomic resolution images of
con taken in the STM mode. Samples can be cleanedin situ
by heating and argon-ion sputtering. The base pressure in
system is 5310210 Torr.

Sample preparation consisted of cleaving a NbSe2 sample
immediately prior to transfer into vacuum and then heat
to 120 °C for 30 min prior to each experiment. The Si
was imaged as received from the manufacturer in the ST
and then transferred into the vacuum system. Before tran
into the main UHV chamber, the tip was baked out in t
load lock chamber at 120 °C for 12 h. No other attempt w
made to clean the tip after imaging it in the STEM to avo
modifying the tip’s geometry. The tip’s surface is therefo
expected to be a thin native oxide layer. Before perform
the contact stiffness and friction experiments, the NbSe2 was
imaged in contact mode at an applied force of a few na
newtons. Images revealed flat terraces with well-spa
single atomic steps. Contact stiffness and friction meas
ments were performed near the center of large terrace
avoid any anomalies that might occur due to the topograp
No modification of the surface was detectable in imag
taken before and after the experiments.

FIG. 4. ~a! STEM backscatter image of the original Si tip.Rtip

512 nm andktip584 N/m. ~b! STEM backscatter image of the S
tip after intentional blunting.Rtip545 nm andktip5108 N/m.
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In order to measure both lateral and normal forces sim
taneously, we have adopted the method of Meyer a
Amer19 in which a quadrant photodiode is used to separ
the measured deflection of the laser beam into two ortho
nal components. However, rather than the four-segment p
todiode conventionally used for the FFM, we used a line
position-sensitive detector~LPSD!.20 Although the output of
LPSD’s is typically two to three times noisier then that
segmented diodes, they have the advantage of measurin
absolute position of the centroid of the reflected light sp
and are indifferent to the spot’s shape or intensity distrib
tion. This permits the angular displacements of the cantile
to be measured directly~as detailed below! without the cali-
bration required for segmented detectors.21

Figure 5 illustrates the measurement of an angular
placement of a cantilever due to a lateral displacement of
sample using a tetralateral LPSD. IfI 1 and I 2 are the lateral
position current outputs of the LPSD, then the lateral po
tion p of the centroid of the reflected laser spot is given

p5S I 12I 2
I 11I 2

D l

2
, ~20!

where l is the width of the active area of the LPSD. Th
change in the spot positionDd is simply the difference be-
tween the position before and after the lateral displacem
of the tip. The angular displacement of the cantileverdf/2 is
then given by

df

2
5
1

2
tan21S Dd

L D , ~21!

whereL is the distance between the cantilever and the LPS
The lateral force acting on the tip is given by

F lateral5klateral@h tan~df/2!#, ~22!

whereh is the length of the tip.
The accuracy of the measured angular displacemen

limited by the noise in the photodetector current and h
accurately the path lengthL and the width of the detectorl
are known. However, in calculating the lateral force, we fi
that the dominant source of error arises from the uncerta
in how close the laser spot is positioned to the base of
tip.22 This is because the angular displacement of the ca
lever due to a lateral force acting on the tip varies linea
from 0° at the base of the cantilever to its maximum value

FIG. 5. Schematic of tetralateral LPSD used for the AFM. Fo
orthogonal currents (I 1–4) allow both lateral and normal angula
displacements (df/2) of the cantilever to be measured.
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55 10 781ATOMIC-FORCE-MICROSCOPE STUDY OF CONTACT . . .
the free end of the lever.23 Combined with the uncertainty in
the lateral spring constant, we estimate the uncertainty in
measured lateral force to be620%. The measurement o
normal forces is analogous to the lateral force measurem
procedure and the uncertainty in the measured normal f
is comparable to that of the lateral force. In most of o
experiments we are concerned with how the lateral fo
varies with the applied normal force and in these cases
relative error between the two measured forces is sign
cantly smaller than the absolute error.

V. RESULTS

A. General procedure
In these experiments, the NbSe2 sample was displace

laterally ~perpendicular to the long axis of the cantileve!
using a triangular wave form applied to the piezoscan tu
The resulting angular displacement of the cantilever w
measured using the LPSD. The magnitude of the lateral
placement signal was measured using a lock-in amplifier
monitored simultaneously on an oscilloscope. The dep
dence of the angular displacement@and hence, using Eq
~22!, the lateral force# on the applied force can be found b
pulling the tip off the surface and simultaneously logging t
lock-in amplifier signal and the normal deflection of the ca
tilever. Such data are referred to as a force-distance cu
We generally retract the tip from the surface, i.e., unload
this allows the adhesive force minima to be sampled and
pull-off force to be measured. Typical unloading speeds
;2 nm/s, which is sufficiently slow for good lock-in avera
ing and fast enough such that thermal drift is not a proble

Two types of force-distance experiments are done, st
and sliding, differing in that either a small or large displac
ment is applied to the sample. For a sufficiently small d
placement, the tip does not slip and changes in the loc
signal as the applied force is decreased correspond
changes in the stiffness of the contactkcontact. We can then
relate the variation in contact stiffness with applied norm
force to the contact radius using Eq.~16!. At larger lateral
displacements, the tip slides and the lock-in signal co
sponds to changes in the static friction force. In both case
is important to observe the shape of the angular displacem
signal on the oscilloscope during the measurement to en
that the tip is~or is not! sliding.

B. Static contact stiffness measurement

The stiffness of the contact was measured by applying
80-Hz triangular voltage wave form to the scan tube, giv
a lateral displacement of the sample ofDx53.7 Å peak to
peak. An example is shown in Fig. 6, which shows the dr
ing wave form and the lateral displacement of the cantile
@Dxlever5h tan(df/2)# at an applied force of 4.5 nN. W
note that the cantilever displacement is slightly phase shi
relative to the driving wave form, due to the mechanic
response time of the scan tube and that the cantilever
placement linearly follows the driving wave form, indicatin
that the sample is not slipping relative to the tip@refer to Fig.
2~b!#. The cantilever movement is considerably less than
movement being imposed on the tip by the sample. Thi
e
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because the tip and tip-sample contact are not infinitely s
but consist of the additional compliances 1/ktip and
1/kcontact.

The amplitude of the lever displacement signal varies
the applied force changes becausekcontact depends on the
applied normal force. This is most clearly seen in a forc
distance curve. Figure 7 shows the result of a typical exp
ment. Taking the values given previously ofklateral
5110 N/m, ktip584 N/m, andDx53.7 Å peak to peak, we
can calculate the contact stiffness using Eq.~17!. In Fig. 8,
the contact stiffness has been plotted versus the applied
mal force for the data of Fig. 7. We observe that the cont
stiffness is comparable to that of the tip and cantilever a
decreases rapidly near the separation forcePc , as expected
theoretically. It is important to note that small uncertainti
in the variables of Eq.~17! can result in large errors in th
calculated contact stiffness, especially at larger normal for
where the magnitude of the contact stiffness is large co
pared to the combined lateral stiffness of the tip and cant
ver. This is observed in the raw data of Fig. 7, where chan
in the lateral force are more obvious near tip-sample sep

FIG. 6. Lateral response of cantilever due to the 3.7-Å peak
peak displacement of the NbSe2 sample. The applied normal forc
is 4.5 nN.

FIG. 7. Force-distance experiment lateral force as a function
applied normal force. The sample displacement is the movemen
thez piezo. The displacement zero is arbitrary. The tip and sam
separate as the displacement becomes more positive and sepa
occurs at 210 Å.
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tion. As an example, at an applied normal force of 4.5
~Fig. 6!, an uncertainty of 5% inDx results in an uncertainty
of 15% in kcontact. The total uncertainty in the contact stif
ness measured from the data of Fig. 6 is approxima
650%. This uncertainty increases with applied normal for

Using the separation force measured from Fig. 8 (Pc
527.0 nN) and the tip radius as measured from STEM i
ages (Rtip512 nm), we can use the Maugis-Dugdale theo
to calculate the work of adhesionw and the elasticity param
eterl. Taking the interaction distance to bez050.2 nm and
the combined elastic modulus for Si and NbSe2 to be E*
540.3 GPa,17,24 we calculate values ofl50.2 and w
50.099 J/m2. These values ofl, w, z, E* , andRtip can then
be used to calculate the contact radiia andc predicted by the
Maugis-Dugdale theory. In order to compare the experim
tal contact stiffness data with the Maugis-Dugdale theory
recall thatkcontactis proportional to the contact radius. Hen
we can scale the Maugis-Dugdale value of the contact rad
given by b5a10.4(c2a), to the experimental values o
kcontactby forcing the two values to match at a point on t
experimental contact stiffness curve.~We have usedkcontact
at P50.! The Maugis-Dugdale fit has been plotted in Fig
for the experimental range of applied forces and is in go
agreement with the experimental data. This fit only sho
that the variation with applied force is well represented
the theory. To test the physical consistency of our mode
we can use the contact radius predicted by the Mau
Dugdale theory to calculate the effective shear modulus
the contactG* using Eq.~16!. Takingkcontactand the radius
at zero applied force~kcontact582 N/m andb51.92 nm!, we
calculateG*55.3 GPa, which, within the experimental un
certainty, is in agreement with the value ofG*57.0 GPa
calculated from bulk material properties.17,24

To further investigate the measurement of contact rad
using the tip-sample contact stiffness, we intentiona
blunted the tip by imaging at a high applied normal for
~115 nN! on Si in UHV. After the experiments, the tip wa
imaged in the STEM@as shown in Fig. 4~b!# and a new finite
element model was constructed to calculate the stiffnes
the modified tip. We repeated the contact stiffness meas
ments on the NbSe2 sample and Fig. 9 shows an example
the lateral displacement of the cantilever at a~negative! ap-

FIG. 8. Contact stiffness versus applied normal force calcula
from the data of Fig. 7 using Eq.~17!. The solid line is the Maugis-
Dugdale fit to the data.
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plied force of23.3 nN. The lateral displacement of the lev
relative to the sample displacement has increased~compare
with Fig. 6! because bothkcontactandktip have increased. Fo
the data of Fig. 9, we find the lateral force acting on t
contact to beF lateral57.7 nN and the contact stiffnes
kcontact5158 N/m. Not surprisingly, the value of conta
stiffness is considerably larger than the values found pre
ously for a sharp tip.

After blunting, the force required to separate the tip fro
the NbSe2 sample increased toPc521.9 nN. Taking the
value used previously for the interaction distance (z0
50.2 nm) and the radius of curvature of the modified tip,
measured from STEM images (Rtip545 nm), we calculate
Maugis-Dugdale values ofl50.3 andw50.087 J/m2. The
value of the elasticity parameterl has increased due to th
larger radius of curvature of the tip. The calculated value
w is close to the value found for the original tip, whic
further demonstrates the consistency of the model. For
data of Fig. 9~i.e., at P523.3 nN! the effective contact
radius calculated using the Maugis-Dugdale theory isb
53.34 nm, from which we calculateG*55.9 GPa, using
Eq. ~16!, which again, within the experimental error, is
agreement with the bulk value ofG*57.0 GPa.

C. Sliding frictional force measurements

If the amplitude of the lateral sample displacementDx is
increased, then the degree of slip increases and the plo
lateral force versus displacement deviates from the linear
lation observed for small lateral forces. If the lateral for
acting on the contact exceeds the limiting force of frictio
the tip begins to slide and the lateral force acting on
contact, tip, and cantilever becomes a constant~i.e., the lim-
iting force of friction!. These effects can be observe
experimentally25 as shown in Fig. 10, which depicts the la
eral response of the cantilever~after blunting the tip! result-
ing from a lateral sample displacement ofDx5110 Å peak
to peak. Note that each half period of the lateral displa
ment signal has a similar shape to Fig. 2~b!. The curved
section of the lever displacement signal corresponds to
region of microslip between the tip and sample. The limiti
force of friction is given by half the peak to peak amplitud

d
FIG. 9. Lateral response of the cantilever after blunting the

The sample displacement is 3.8 Å peak to peak and the app
normal force is23.3 nN.
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of the lateral force wave form. A lock-in amplifier can ther
fore be used to continually measure the peak to peak valu
the input wave form. Note, however, that as the applied fo
changes the limiting force of friction also changes, and
such the shape of the lateral force wave form changes.
variation in the shape of the input wave form must be tak
into account when calculating the friction force using t
output of a lock-in amplifier. At a sufficiently high load an
a fixed lateral sample displacement, the tip movement rev
from the sliding regime back to the regime of static m
croslip. It is therefore important to monitor the lateral d
placement wave form on an oscilloscope during each exp
ment to ensure that the tip is always sliding.

Force distance curves can be obtained to study how
static friction varies with normal force. For the Si o
NbSe2 system, we have found the same relationship betw
friction and applied normal force during loading and unloa
ing. Figures 11 and 12 show representative results of fric
experiments before and after blunting the tip, respectiv
The friction force and the adhesive force are larger for
blunder tip, as expected. More importantly, we note that
variation of friction with applied force is nonlinear and eve
at the smallest applied normal forcePc the friction force is
appreciable. These observations arise from the single as

FIG. 10. Lateral response of cantilever due to the 110-Å pea
peak displacement of the NbSe2 sample. The applied normal forc
is 35 nN.

FIG. 11. Friction versus normal force with the sharp Si tip
NbSe2 . The sample displacement is 22 Å peak to peak. The s
line shows the Maugis-Dugdale fit to the data.
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ity nature of the contact. In contrast, in macroscopic fricti
experiments, one expects the friction to be proportiona
the applied force. We note that the friction data is less no
than the contact stiffness data; see Fig. 8. This occurs
cause the friction force is measured directly, whereas
contact stiffness is calculated from the lateral force using
~17!, which is very sensitive to noise when the contact st
ness is comparable to the combined lateral tip and cantile
stiffness. Experimental noise is further compounded in
contact stiffness measurements because small-amplitude
placements must be used and this results in smaller ang
deflection signals than those found in the friction measu
ments.

In order to compare the Maugis-Dugdale theory with t
friction data, we assume that the frictional force is prop
tional to the tip-sample contact area, i.e.,F friction5tA
5tpb2. Hence we can compare the Maugis-Dugdale re
tionship between contact areapb2 and normal force to the
experimental friction data using the measured pull off for
Pc and scaling to one data point on the friction versus n
mal force curve.~We use the friction data atP50.! The
justification of this approach is the quality of the fit betwe
the experimental data and the theory. We have fitted
Maugis-Dugdale theory to the friction data of Figs. 11 a
12 using the same parameters as in the contact stiffness
surements, i.e.,b5a10.4(c2a), l50.2 for the original tip,
andl50.3 for the blunt tip. Both sets of experimental da
are in good agreement with the theoretical curves. It is wo
noting that for the sharp tip, the pull-off force measured fro
the friction data is lower than the value measured from
contact stiffness data. This is consistent with the theory t
sliding results in an effective reduction in the tip-sample co
tact area.7 This effect was not observed in the data tak
after the tip had been blunted.

The agreement between the experimental friction data
the Maugis-Dugdale theory provides strong evidence that
central assumptionF friction5tA is valid for a single asperity
contact of nanometer dimensions, at least for the mater
studied here. The proportionality constantt is the shear
strength of the tip-sample contact. If we take the contact a
to be that given by the Maugis-Dugdale theory, we can c
culate the value of the proportionality constant for our e
perimental data. Using the area and friction force found

to

id

FIG. 12. Friction versus normal force with the blunt Si tip o
NbSe2 . The sample displacement is 110 Å peak to peak. The s
line shows the Maugis-Dugdale fit to the data.
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zero applied normal force, we findt56.13108 N/m2 for the
data taken with the sharp tip andt56.63108 N/m2 after
blunting the tip. We can write the theoretical shear stren
of the contact ast5G/a, whereG is the bulk shear modu
lus and the parametera is expected to have a value of abo
30.26 Using the experimental values oft and taking the
smaller bulk shear modulus of the two materials in cont
~G517.4 GPa for the plane perpendicular to thec axis of
NbSe2!, we finda529 for the data taken with the sharp t
anda526 for the data taken with the blunt tip. That is, th
experimental shear strengths are very close to the estim
theoretical shear strength. In marked contrast, for bulk m
rials the theoretical shear strength is several orders of m
nitude larger than the measured values.27 The difference be-
tween the theoretical value and the value measured f
bulk samples is attributed to the presence of defects,
dramatically reduce the shear strength. For example, if
defect density is drastically lowered, as in certain specia
prepared single-crystal whiskers, the shear strength has
found to be much closer to the theoretical value.27 Therefore,
if we consider that the contact radii in our experiments are
the order of a few nanometers, it seems reasonable tha
measured shear strength is close to the theoretical value.
is also consistent with the results of scanning tunneling
croscopy experiments on nanometer-sized gold necks
which the measured yield strength of the neck was found
be more than an order of magnitude larger than that of
bulk material.28

VI. CONCLUSION

To summarize, we have found good agreement betw
the variation in contact radius with applied force, as fou
experimentally by measuring the contact stiffness, and
variation predicted by the Maugis-Dugdale theory. The m
jor difficulty with this approach to measuring the conta
area, that of findingktip using a high-resolution STEM an
finite element modeling, could potentially be avoided by u
ing sharp tips with low aspect ratios. This would also
crease the range of applied normal forces that could be
vestigated using this technique. A further difficulty is th
G* is not known. However, the comparison between the
and experimental also showed that a value ofG* calculated
from the bulk material properties is reasonable.

In comparison with the contact stiffness data, the exp
mental signal-to-noise ratio is better in the friction measu
ments because of the larger amplitudes involved. Here a
g
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we found the variation in friction with applied normal forc
to be in good agreement with the variation in contact a
predicted by the Maugis-Dugdale theory. To relate fricti
and contact area we used Bowden and Tabor’s assump
that friction is directly proportional to the contact area. T
proportionality constantt calculated from the experimenta
data was found to be in agreement with the estimated th
retical shear strength of the contact.

The experimental values ofPc , w, andt are summarized
in Table I for the two different tip shapes. The consistency
the values ofw and t and the fit to the force curves foun
using the two experimental methods strongly suggest tha~i!
the Maugis-Dugdale model provides a good basis for
scribing the elastic contact, which is of particular importan
for AFM when the elasticity parameterf'1, as the more
commonly used JKR and DMT models are strictly valid on
whenf@1 ~JKR! or whenf!1 ~DMT!; ~ii ! for the materials
studied, the assumption of Bowden and Tabor, that for
sliding friction is proportional to contact area, is valid; an
~iii ! one can apply continuum mechanics down to contact
small as 1–2 nm in radius.

Note added in proof. Similar studies are also being unde
taken by R. Carpick and M. Salmeron@R. W. Carpick, D. F.
Ogletree, and M. Salmeron, Appl. Phys. Lett.70 ~1997!# and
we thank them for useful discussions.
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TABLE I. Measured values of the pull-off forcePc and calcu-
lated values of the work of adhesionw from static and sliding
experiments with a silicon tip on NbSe2 . Two tip geometries~sharp
and blunt! were used for both static and sliding experiments. T
shear strength of the contactt has been calculated from sliding dat

Static adhesion Sliding
Tip radius

~nm!
Pc

~nN!
w

(J/m2)
Pc

~nN!
w

(J/m2)
t

(N/m2)

12 7.0 0.099 4.6 0.065 6.13 108

45 21.9 0.087 21.4 0.084 6.63 108
,
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