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Atomic-force-microscope study of contact area and friction on NbSg
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We have used an ultrahigh vacuum atomic-force microscope to study the variation in contact radius and
friction with applied force between a silicon tip and a NpSample. The data are compared to the Maugis-
Dugdale theory, which is the appropriate continuum mechanics model for the properties and size of the
tip-sample contact. The lateral stiffness of the tip-sample contact is related to the radius of the tip-sample
contact through the shear moduli of the materials and we have used this relationship to measure directly the
variation in contact radius with applied load. The contact radius measured in this way is found to be in
agreement with the Maugis-Dugdale theory using the bulk values of the shear moduli. We also measured the
variation in friction force with applied load using the same silicon tip. The variation in friction force with
applied normal force is found to follow the variation of the contact area as predicted by the Maugis-Dugdale
theory[D. Maugis, J. Colloid Interface Scl50, 243(1992], which supports the hypothesis that for a single
asperity contact, the frictional shear stresds constant. The value of the shear stress is found to be
r~6x10° N/m?, which is comparable to the estimated theoretical shear strength of ,NbSe
[S0163-182697)05916-X

I. INTRODUCTION The single asperity nature of the contact formed between
an AFM tip and sample would seemingly make it ideal for
The atomic- and friction-force microscopg€dFM and  investigating the relation between friction and real contact
FFM) are important new tools in the field of tribology. Since area. Unfortunately, the direct measurement of the contact
the development of the FFM by Mat al! and their initial ~ area between an AFM tip and sample is not a trivial problem
observations of atomic scale slip-stick motion, applicationsand AFM investigations of friction have relied on contact
of the AFM and FFM to tribology have grown rapidly. In- mechanlcs theories to relatg friction to area. Thls _approach
terest has been motivated by the high spatial and force res€auires knowledge of the tip geometry if quantitative mea-
lution attainable with these techniques as well as by th&Uréments of the contact area and shear strength are to be
single asperity nature of the contact formed between thdhade. With a few noted exceptioffsr example, see Refs. 3
AFM/FFM tip and sample. It is hoped that new insight into and 4, this has restricted most AFM friction studies to quali-

i : : tative comparisons between theory and experiment. In addi-
the fundamental mechanisms of tribological phenomena cafin many FFM investigations of dry sliding have been car-
be gained using these techniques. ’

. ¢ fund [ i tribol __ried out in air where the tip and sample are inevitably
One question of fundamental importance in tribology iS¢qyered in a few monolayers of water and other absorbed

the relation between friction and contact area. For the case @{;ntaminants. This lack of control over the tip-sample inter-
dry sliding, Bowden and Tabor first proposed that in theface makes the interpretation of data and comparison be-
absence of ploughing, friction is directly proportional to the yween experiments difficult.
real area of contact between surfateés,., In order to overcome these problems, we have constructed
an ultrahigh vacuunfUHV) AFM to study friction and point
1) contacts. In an earlier paper we demonstrated how the lateral
stiffness of the tip-sample contact can be related to the tip-
sample contact area, provided the geometry of the AFM tip
whereA is the real area of contact ands the shear strength is well characterized.For tip characterization, we use a
of the contact. Most surfaces are rough on the microscale argtanning transmission electron microsc¢p&EM) to image
contact only occurs between the surface asperities; the rettie apex of the tip and measure the tip radius, before and
area of contact is therefore much smaller than the apparemfter the experiments. In this paper, we demonstrate the use
contact area. When a normal force is applied between thef the contact stiffness technique to measure the contact ra-
two surfaces, the surfaces deform elastically and/or plastidius as a function of applied normal force between a Si AFM
cally and the contact area increases. For randomly rougtip and a NbSg sample in UHV. Using the same tip and
surfaces, the real area of contact increases in direct proposample we also measure friction force as a function of ap-
tion to the normal force, in which case Amonton’s law thatplied normal force. Quantitative comparisons are then made
friction is proportional to the applied force is recovered frombetween these two sets of data and a continuum model for a
Eq. (2). spherical point contagthe Maugis-Dugdale theofy).

Fiction= TA,
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Il. THEORETICAL BACKGROUND (@)

A variety of theories can be used to model the elastic
contact between an AFM tip and sample under normal ap-
plied forces. When the adhesive force between the tip and
sample is negligible compared to the applied force, Hertz
theory can be usetf In the regime where adhesive forces
are comparable to the applied normal force, the analysis is
more complex. The ratio of elastic deformation in the contact
to the distance over which surface forces act can be ex-
pressed by the nondimensional parameftegiven by°
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WL .

*253
E*“z,

Here R is the radius of the tipw is the work of adhesion
(equal to twice the surface enejgy, is the equilibrium ®)

K . P
spacing for the Lennard-Jones potential of the surfaces, and
E* is the combined elastic modulus of the tip and sample, £,
given by ;:L E
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where v, , are the Poisson’s ratios arfg, , are Young's R Lennard-Jones
moduli for the tip and sample, respectively. Wheris large ;c‘“im
(¢>5) the Johnson-Kendall-Robert3R) theory** provides o <— Dugdale
a good approximation of the elastic deformation in the con- -~
tact and whenp is small(¢<0.1) elastic deformation is neg- 0

ligible and the analysis by Bradl& or the Derjaguin-

Muller-Toporov (DMT) model® is more appropriaté.s In FIG. 1. () Maugis-Dugdale model of the tip-sample contact.

the int diat . the M is-Duadale thed Intimate contact occurs within a circular region with radaisA
€ intermediate regime, the haugis-bugoale pro- constant attractive force, continues to act over a larger circular

vides an approm_matg closed-form analysis and this is th?egion, with radiusc. The pressure distributiongp) across the
model we adopt in this work, because for typical AFM 0p- contact are also showth) Lennard-Jones and Dugdale force laws.
eration with sharp tips¢~1. We shall now outline the s chosen such that the maximum attractive force and the area
Maugis-Dugdale theory in sufficient detail to highlight the ynder the attractive part of the force curves match, i,
computational procedure followed. A more complete de-=y, ;.
scription is given by Johnsoh.

The Maugis-Dugdale theory describes the adhesion angnd an adhesivéDugdalé component
separation in a purely elastic spherical contact under a nor-
mal load. Intimate contadizero separatignbetween the two
surfaces occurs within a circular area of radajsas illus- Pa(r)=
trated in Fig. 1a). The attractive interaction between the sur-
faces extends over a larger circular region, with radium
the region between anda the surfaces separate slightly by which corresponds to an adhesive foReg, given by
a distance increasing from zerorata to hy atr=c. The
adhesive force between the two surfaces is assumed to have P,=—20¢[c’cos *(a/c)+ayc’—a?]. (7)

a constant valuer, until a separatiot, is reached, at which  tha net forceP acting on the contact is theR=P,+ P
a-

point the adhesive force falls to zero as shown in Fi#).1 e yajues of andc can be found by simultaneously solv-
This is the Dugdale approximation. The valuehgfis cho- ifng the two equations

sen such that the maximum attractive force and the work o

=a

2a%—c?—r?
—(oglm)cos Y ————1, r

(6

-0y, asrsc

adhesion match those of a Lennard-Jones potential, i.e., \aZ ) 41 .
UohOZWLJ henceh0:0.97:|20. T (m _2)COS —+ym—=1
The distribution of pressure within the contact is com-
posed of two terms: the Hertz pressiprgr) associated with 4\“a > (1
a contact of radius, +T Yym=—2 cos o -m+1(=1 (8

3Py 21172 and
pa(r) =55 [1-(r/a)*]*", 4 I
P=P,+P,=a’—\a?[ym’—1+m?cos Y(1/m)], (9)
where - —
wherem=c/a anda, ¢, P, and\ are nondimensional pa-

P,=4E*a%3R, (5) rameters defined as
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It can be shown that=1.16¢, so that\ is also a measure of (Gavo)
the ratio of elastic deformation to the range of surface forces.

We assume that the effective radibsover which friction

forces act, lies somewhere betweemndc, thus

“_'?Oi o

o
ke

b=a+n(c—a), (10

where 0<n<1. For example, when comparing friction data

to_the theory we can write Eq1) asF riction= TA= b2, In (b) onset of stiding

this work we assume that=0.4, as this corresponds ap- WP) or ¢\

proximately to the maximum attractive force in the Lennard- (1, 7o) [~ )

Jones interaction potential. In addition, good agreement has

been obtained between previously reported UHV AFM fric- ,

tion data and Eq(l) using the Maugis-Dugdale theory with 7 withslip,

n=0.4." as:::: hrea
Equations(8) and (9) have real-valued solutions up to a

critical valueP,, whereP.<0, indicating that a finite con- ‘;Qg;;liigé

tact area exists at negative applied forces. This separation or L F,_. o Normal Force

pull-off force P is given by the minimum value oP for

which real values of andc satisfy Eqs.(8) and(9) and is : ' ‘ |

therefore a function oR, E*, w, and\. If R andE* are Displacement (5 3uP/16aG*

known, therw and\ can be calculated using the experimen-

tally measured pull-off forcé?. and an iterative technique  FIG. 2. (a) Sphere on flat model of tip-sample contact. Here

[Egs. (2), (8), and (9) and the relatiolh=1.16¢]. In our  distant points in the tip and sample are displaced from each other by

experiments, the radius of the tiR is measured using a a distances,= é,,+ 6,, by the lateral forceQ, . (b) Plot of lateral

STEM andE* is calculated using bulk material properties. force Q, versus displacement of distance points in the tip and

Once\ andw have been found, the variation in the contactsampled,: ----, no slip; —, with slip. Gross sliding begins when

radii a and ¢ can be solved for as a function of the total the lateral force equals the force of limiting friction.

normal forceP. For comparison, we have measured the tip-

Lateral Force (Q )
T
- 4

sample contact radius as a functionPoflirectly through the The assumption that there is no interaction between nor-
stiffness of the tip-sample contact. This method will now bemal and lateral forces is strictly valid only if the elastic con-
discussed in detail. stants of the tip and sample are the same. However, the cor-
rection required if the elastic constants are different is
. TIP-SAMPLE CONTACT STIFFNESS generally small and will be neglected hére.

The second assumption that the contact does not slip is

If a lateral force smaller than the force of limiting friction also somewhat unrealistic, as the tangential traction neces-
is applied to the tip-sample contact by laterally displacing thesary to prevent slip is theoretically infinite at the contact
sample a small distance, then the contact between the tip apgriphery. A limited amount of sligmicroslip), therefore,
sample will deform elastically and distant points in the tipmust occur at the edge of the contact, even for very small
and sample will be laterally displaced from each other. If welateral forces. As the lateral force is increased, the region of
model the tip and sample as a sphere on g $le¢ Fig. 28]  microslip extends towards the center of the contact until the
and assume thét) there is no coupling between normal and force of limiting friction is exceeded, at which point the en-
lateral forces andii) the lateral forceQ, acting on the con- tire contact slips and the tip begins to slide. To account for
tact is small compared with the limiting friction force, then this effect, we must assume a tangential tractifsiction)
the lateral displacemerdt,= 8, + 8, between distant points distribution for the contact.

T, in the tip andT, in the sample & In macroscopic sliding, we would expect the friction trac-
tion to be proportional to the applied foré&monton’s law.
5 _ X (2— v, 2 Vz) _ & (17  For this case, if we relax the assumption that no slip occurs
* 8b | Gy G, 8bG*’ and assume that the friction is proportional to a Hertzian

contact pressure, then the relative displacendgraf distant

Hereb is the radius of the contadg, , are the shear moduli points in the tip and sample is giveny

of the tip and sample, respectively, a@d is the effective
shear modulus of the tip and sample given by 3uP [ ( Qx)zxs}

2_1/1 2_V2 -1
+

G, G2

|

12
(12 where uP is the force of limiting friction.
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Alternatively, for a single asperity contact, as for AFM,

we expect that friction is directly proportional to the contact

area, i.e., Eq1) (Feicion= A= 7mb?). When a lateral force

Q, is applied to the contact, microslip occurs at the contact 4
periphery. If we define the inner radius to which the mi- ;/2 T
croslip has penetrated asand assume that E€L) also holds ° h
in the region of the microslip, then the relative displacement L
Sy of distant points in the tip and sample due to a lateral
force Q is given by \
! HAXcomact
Q,=27b*[cos ty+ yy1—v?] (14) fAXAX“P
lever
and A
T Kinieet Kep Keontae

5x=ﬁ Vi—72, (15

where y=e/b ranges fromy=1 whenQ,=0 to y=0 when

|

|

|

Q= 7wb? (the limiting force of friction. o
Equations(11) and (13)—(15) have been plotted in Fig. ! ;

| |

|

2(b). It is apparent from the figure that for lateral forces well |

below the force of limiting friction, Eqs(13)—(15) are well e
approximated by Eq(11). Thus, regardless of whether Eq.
(1) or Amonton’s law is obeyed, we can use Hdl) to

. . . FIG. 3. Model of compliant tip and tip-sample contact showing
approximate the contact stiffness for small lateral forces, i.e. o

response of the various sprindg o a lateral force [F). The
lateral displacementsAx) shown are greatly enlarged. Typically
h~3-15um and Ax<5 A. Experimentally, the angular change
8,42 is measured.

Kcontac= Qx/ 9x=8aG* . (16)

Therefore, by measurinq.ctWe can solve for the contact
radius using the bulk material properties of the tip and
sample. In addition, the variation in contact radius with ap- ; : ;
plied force can be directly measured and compared to thB&SS of the tip and cantilever mu;t be knqwn. In our experi-
contact radius predicted by the Maugis-Dugdale theory. Thignents we use a rectsangylar_ cantilever microfabricated from
approach has a general similarity to the method whereb ingle-crystal silicort? It is simpler and more accurate to

forces and displacements in the direction normal to the su2nalyze the mechanical behavior of such cantilevers com-
face are measuréd,in which casek o 2aE* . pared to the commonly used triangular-shapegN.SIAFM

In the experimental procedure used to fikg, a cantilevers. The lateral and normal spring constants of the
ntact

known lateral displacement is applied to the sample and t:‘}éantllever were c_alculated 0 bénorma=1.1 N/m and
resulting force acting on the contact is measured. The comfatera— 110 N/m using the formula$

pliance of the contact is then calculated, taking into account
the additional compliances of the tip and the cantilever. We
model the behavior of the cantilever, tip, and tip-sample conypg
tact under the influence of a small lateral displacement as
three coupled springs in series, as illustrated in Fig. 3. A Kjatera™ G WE/3ch?. (19
lateral displacement of the samplex will be distributed

between the three compliant elements. The contact stiffneddereE is Young’'s modulus ané is the shear modulus of Si

For the above technique to be accurate, the lateral stiff-

Knorma= E W /4 (18)

is given by (E=169 GPa and5=60 GPa(Ref. 17 for the[110] direc-
tion); W andt are the width and thickness of the cantilever,
AX 1 1]t respectively¢ is the length of the cantilever from the base to
Kcontact™ |:|—_ Ko ke | 17 the tip, andh is the length of the tip measured from the
ateral lateral tip

neutral axis of the cantilever. The length and width of the
where 1kg, and 1Ky are the lateral compliances of the tip cantilever and the height and position of the tip were mea-
and cantilever, respectively. Thus, Kaea and k;, are  sured from images of the cantilever and tip taken after the
known, the contact stiffnedg.niactCan found by measuring experiments using a Cambridge Instruments scanning elec-
the lateral force acting on the tip due to a small displacemeriron microscopgSEM). It is difficult to accurately measure
of the sampleAx. It is important to note that when the thickness of the cantilever using SEM images due to the
AX/Faeral becomes comparable to Kiferat 1/Kg,, i.€.,  scattering of electrons off the faces of the cantilever. We
when the contact stiffness becomes large, the error in ththerefore used the technique of Nonnenmaete *® to de-
measured contact stiffness increases rapidly. Thus the rangermine the thickness of the cantilever using the measured
of contact stiffness and contact radii that can be measuretsonant frequency of the unloaded cantilever.
using this technique is limited by the combined lateral stiff-  The lateral stiffness of the tiky, used in this experiment
ness of the tip and cantilever. was determined using a finite element model. The model was
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reflected
laser spot

FIG. 5. Schematic of tetralateral LPSD used for the AFM. Four
orthogonal currentsl(_,) allow both lateral and normal angular
displacements §,/2) of the cantilever to be measured.

FIG. 4. (a) STEM backscatter image of the original Si tiRy,
=12 nm andk;,=84 N/m. (b) STEM backscatter image of the Si

. . ! . In order to m r h lateral and normal for imul-
tip after intentional bluntingR;,=45 nm andk;,= 108 N/m. order to measure both lateral and normal forces simu

taneously, we have adopted the method of Meyer and
mer'® in which a quadrant photodiode is used to separate
I;f%e measured deflection of the laser beam into two orthogo-
nal components. However, rather than the four-segment pho-
todiode conventionally used for the FFM, we used a linear
osition-sensitive detect@t PSD).?° Although the output of
PSD’s is typically two to three times noisier then that of

constructed using the geometry measured from images of t
tip apex taken with a JEOL 4000 EX scanning transmissio
electron microscope. Details are given elsewRe¢e only
note thatkg, is of the same order dg,oyand therefore must
be considered in our simple spring model of the experimen

A relatively low value ofky, appears to be common for segmented diodes, they have the advantage of measuring the

high-aspect-ratio AFM tip3. For example, Fig. 4 shows " : )
STEM images of the tip used in the present experimentsabSO|Ute position of the centroid of the reflected light spot

. - . . and are indifferent to the spot’s shape or intensity distribu-
Figure 4 shows the original fip, as received from the tion. This permits the angular displacements of the cantilever
manufacturer, and Fig.(E) shows the tip after it had been to bé meagured directl(;a% detaile?j beloywvithout the cali-
intentionally blunted. The stiffnesses were determined to b

kip=284 N/m before blunting ané;,=108 N/m after blunt- Bration required for segmented detectors.

) ! X . Figure 5 illustrates the measurement of an angular dis-
ing. For comparison, the lateral cantilever stiffness calcu, lacement of a cantilever due to a lateral displacement of the
lated using EQ(19) is Kjatera™= 110 N/m. P P

sample using a tetralateral LPSD.I|f andl, are the lateral
position current outputs of the LPSD, then the lateral posi-
tion p of the centroid of the reflected laser spot is given by

The experiments were performed using a home-built R
optical-deflection-type UHV AFM. In this system, the tip is 2
fixed and the sample is scanned using a piezoelectric tube l1+1,) 27
scanner. The microscope can also be operated as a scanning . | i the width of the active area of the LPSD. The

tunneling microscope and the tube scanner was calibrated fchan e in the spot positiahd is simplv the difference be-
small displacements using atomic resolution images of sili- 9 spot p Py ;
con taken in the STM mode. Samples can be cleaneitu tween the position before and after the lateral displacement

by heating and argon-ion sputtering. The base pressure in t the Fip‘ Tge angular displacement of the cantileggi2 is
system is 510 ° Torr. en given by

IV. EXPERIMENT

(20

Sample preparation consisted of cleaving a Nb&emple 5. 1 Ad
immediately prior to transfer into vacuum and then heating Zo_Z tan ! _) (22)
to 120 °C for 30 min prior to each experiment. The Si tip 2 2 L

was imaged as received from the manufacturer in the STEN}hare) s the distance between the cantilever and the LPSD.
and then transferred into the vacuum system. Before transfef,q |ateral force acting on the tip is given by

into the main UHV chamber, the tip was baked out in the

load lock chamber at 120 °C for 12 h. No other attempt was _

made to clean the tip after imaging it in the STEM to avoid Pratera= Kiatera N 11 24/2)]. (22
modifying the tip’s geometry. The tip’s surface is thereforewhereh is the length of the tip.

expected to be a thin native oxide layer. Before performing The accuracy of the measured angular displacement is
the contact stiffness and friction experiments, the Nb@as limited by the noise in the photodetector current and how
imaged in contact mode at an applied force of a few nanoaccurately the path length and the width of the detectdr
newtons. Images revealed flat terraces with well-spacedre known. However, in calculating the lateral force, we find
single atomic steps. Contact stiffness and friction measurethat the dominant source of error arises from the uncertainty
ments were performed near the center of large terraces ia how close the laser spot is positioned to the base of the
avoid any anomalies that might occur due to the topographytip.2 This is because the angular displacement of the canti-
No modification of the surface was detectable in imagedever due to a lateral force acting on the tip varies linearly
taken before and after the experiments. from 0° at the base of the cantilever to its maximum value at
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the free end of the levéf. Combined with the uncertainty in 3

the lateral spring constant, we estimate the uncertainty in the Lever
Displacement

measured lateral force to be20%. The measurement of
normal forces is analogous to the lateral force measurement
procedure and the uncertainty in the measured normal force
is comparable to that of the lateral force. In most of our
experiments we are concerned with how the lateral force
varies with the applied normal force and in these cases the
relative error between the two measured forces is signifi-
cantly smaller than the absolute error.

Sample/Lever Displacement (4)

Sample ] 374
Displacement
I} L

-3 [ I . | Ll L
V. RESULTS 0 0.01 0.02 0.03 0.04 0.05

A. General procedure Time (s)

In these experiments, the NbSeample was displaced )
laterally (perpendicular to the long axis of the cantilever FIG._ 6. Lateral response of cantilever due to _the 3.7-A peak-to-
using a triangular wave form applied to the piezoscan tubePeak displacement of the NbSsample. The applied normal force
The resulting angular displacement of the cantilever wa$® 4.5 nN.

measured using the LPSD. The magnitude of the lateral dis- . . L .
:Eecause the tip and tip-sample contact are not infinitely stiff

lacement signal was measured using a lock-in amplifier an . o .
P d d P pbut consist of the additional complianceskg/ and

monitored simultaneously on an oscilloscope. The depe "
dence of the angular displacemdmtnd hence, using Eq. contact

(22), the lateral forckon the applied force can be found by The a_mplitude of the lever displacement signal varies as
pulling the tip off the surface and simultaneously logging thethe gpplled force chang'es.becaUQ@mact depends' on the
applied normal force. This is most clearly seen in a force-

lock-in amplifier signal and the normal deflection of the can-! X . .
tilever. Such data are referred to as a force-distance curvg!Stance curve. Figure 7 shows the result of a typical experi-
We generally retract the tip from the surface, i.e., unload, aéfent' Taklng_the values given pArewoust Hiateral

this allows the adhesive force minima to be sampled and th& 110 N/m, ki, =84 N/m, andAx=3.7 A peak to peak, we

pull-off force to be measured. Typical unloading speeds ar&an calculate the contact stiffness using B). In Fig. 8,
~2 nmis, which is sufficiently slow for good lock-in averag- the contact stiffness has been plotted versus the applied nor-

ing and fast enough such that thermal drift is not a problemMal force for the data of Fig. 7. We observe that the contact
Two types of force-distance experiments are done, statistiffness is comparable to that of the tip and cantilever and
and sliding, differing in that either a small or large displace-decreases rapidly near the separation fd¥¢e as expected
ment is applied to the sample. For a sufficiently small dis-theoretically. It is important to note that small uncertainties
placement, the tip does not slip and changes in the lock-iff! the variables of Eq(17) can result in large errors in the
signal as the applied force is decreased correspond eplculated contact stiffness, especially at larger normal forces
changes in the stiffness of the contégf s We can then where the magnitude of the contact stiffness is large com-
relate the variation in contact stiffness with applied normalP@red to the combined lateral stiffness of the tip and cantile-
force to the contact radius using EG6). At larger lateral ~ Ve'- This is observed in the raw data of Fig. 7, where changes
displacements, the tip slides and the lock-in signal corre! the lateral force are more obvious near tip-sample separa-

sponds to changes in the static friction force. In both cases, it

is important to observe the shape of the angular displacement 8 : : : : : 20
signal on the oscilloscope during the measurement to ensure Lateral F
L . .- ateral Force
that the tip is(or is nop sliding. 6 g&;f%‘%:‘%w / 15 >
% jae]
Z 4f X 1o &
& % a
B. Static contact stiffness measurement g Y %
. _ £ 2r A is g
The stiffness of the contact was measured by applying an Normal Force ° =
80-Hz triangular voltage wave form to the scan tube, giving § 0r Jo 5
a lateral displacement of the sample ok=3.7 A peak to B
peak. An example is shown in Fig. 6, which shows the driv- s 15 =
ing wave form and the lateral displacement of the cantilever b ‘ C ‘;OF
[AXjeve=h tan(§y/2)] at an applied force of 4.5 nN. We 50 0 50 100 150 200 250 300
note that the cantilever displacement is slightly phase shifted Sample Displacement (A)

relative to the driving wave form, due to the mechanical

response time of the scan tube and that the cantilever dis- FiG. 7. Force-distance experiment lateral force as a function of
placement linearly follows the driving wave form, indicating applied normal force. The sample displacement is the movement of
that the sample is not slipping relative to the[tipfer to Fig.  thez piezo. The displacement zero is arbitrary. The tip and sample
2(b)]. The cantilever movement is considerably less than thgeparate as the displacement becomes more positive and separation
movement being imposed on the tip by the sample. This isccurs at 210 A.
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160 ——— \ 3 L e
140 [ Lever
o E - o Displ t
g A °$ 2 = 1Splacemen ]
120 | ] =
> ] £
€ oo b : 5
3 S
g 80 p : &
z 60 | ¢ ] p
3 b voes Maugis-Dugdale S
S F S A=02 ] =
S WE g b=a+0.4(c-a) E
S £ /
20 | ] Ay
b A r Sample 3.8A
ot L - : L L ) Displacement
-10 -5 0 5 10 15 20 -3 ! PR B B R
Applied Normal Force (nN) 0 0.01 0.02 0.03 0.04 0.05
Time (s)
FIG. 8. Contact stiffness versus applied normal force calculated
from the data of Fig. 7 using E17). The solid line is the Maugis- FIG. 9. Lateral response of the cantilever after blunting the tip.
Dugdale fit to the data. The sample displacement is 3.8 A peak to peak and the applied

normal force is—3.3 nN.

tion. As an example, at an applied normal force of 4.5 nN
(Fig. 6), an uncertainty of 5% i x results in an uncertainty
of 15% inKk.oniace The total uncertainty in the contact stiff-

plied force of—3.3 nN. The lateral displacement of the lever
relative to the sample displacement has incredsethpare
with Fig. 6) because botR ,nc:andky, have increased. For

) L ) ; h f Fig. 9, we find the lateral for ing on th
+50%. This uncertainty increases with applied normal forceioitgi:atg begF,9, ':e7 7 crj“\tl Zn?jtetﬁe c::gre]tscc;t sgt]iffc:westse
ateral .

Using the separation force measured from Fig. R ( K _ 158 N/ C
_ X . v Keontace m. Not surprisingly, the value of contact
=—7.0nN) and the tip radius as measurgd from STEM M-stiffness is considerably larger than the values found previ-
ages Rjp,=12 nm), we can use the Maugis-Dugdale theoryOusly for a sharp tip
to calculate the work of adhesiamand the elasticity param- '

eter). Taking the interaction distance to bg=0.2 nm and After blunting, the force required to separate the tip from
) . the NbSeg¢ sample increased t®.=21.9 nN. Taking the
the combined elastic modulus for Si and NbSe be E* € P ¢ g

value used previously for the interaction distance, (
=40.3 GPat"?* we calculate values of\=0.2 and w : o
d =0.2 nm) and the radius of curvature of the modified tip, as
=0.099 J/mM. These values of, w, z, E*, andRy;, can then ) P

b d lcul h alind dicted by th measured from STEM imageR{,=45nm), we calculate
€ used to calculate the contact ratiandc predicted by the Maugis-Dugdale values 0f=0.3 andw=0.087 J/m. The
Maugis-Dugdale theory. In order to compare the experimen,

| it d ith the Mauais-Duadale th value of the elasticity parametarhas increased due to the
tal contact stifiness data with the Maugis-Dugdale theory Wg, .41 raius of curvature of the tip. The calculated value of

recall thatk .ontactiS prop_ortional to the contact radius. Henc_eW is close to the value found for the original tip, which
we can scale the Maugis-Dugdale value of the contact radiug, yher gemonstrates the consistency of the model. For the
given by b=a+0.4(c-a), to the experimental values of 415 of Fig. 9(ie., atP=—3.3 nN the effective contact
KeontactbY forcing the two values to match at a point on the 45 calculated using the Maugis-Dugdale theorybis
experimental contagt stiffness qur\((We have usedk?omm?t =3.34 nm, from which we calculat&* =5.9 GPa, using
atP=0) The Maugis-Dugdale fit has been plotted in Fig. 84 (1) which again, within the experimental error, is in

for the experi_mental range of applied force_s a_nd is in goo greement with the bulk value &* =7.0 GPa.
agreement with the experimental data. This fit only shows

that the variation with applied force is well represented by
the theory. To test the physical consistency of our modeling
we can use the contact radius predicted by the Maugis- If the amplitude of the lateral sample displacemantis
Dugdale theory to calculate the effective shear modulus oincreased, then the degree of slip increases and the plot of
the contaciG* using Eq.(16). Takingkgoniactand the radius lateral force versus displacement deviates from the linear re-
at zero applied forc€koniac=82 N/m andb=1.92 nnj, we  lation observed for small lateral forces. If the lateral force
calculateG* =5.3 GPa, which, within the experimental un- acting on the contact exceeds the limiting force of friction,
certainty, is in agreement with the value 6% =7.0 GPa the tip begins to slide and the lateral force acting on the
calculated from bulk material properti€s>* contact, tip, and cantilever becomes a constget, the lim-

To further investigate the measurement of contact radiuging force of friction. These effects can be observed
using the tip-sample contact stiffness, we intentionallyexperimentally® as shown in Fig. 10, which depicts the lat-
blunted the tip by imaging at a high applied normal forceeral response of the cantilevéfter blunting the tip result-

(115 nN on Si in UHV. After the experiments, the tip was ing from a lateral sample displacement&k=110 A peak
imaged in the STEMas shown in Fig. )] and a new finite to peak. Note that each half period of the lateral displace-
element model was constructed to calculate the stiffness ahent signal has a similar shape to Figh)2 The curved

the modified tip. We repeated the contact stiffness measuresection of the lever displacement signal corresponds to the
ments on the NbSesample and Fig. 9 shows an example of region of microslip between the tip and sample. The limiting
the lateral displacement of the cantilever dnagative ap-  force of friction is given by half the peak to peak amplitude

C. Sliding frictional force measurements
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FIG. 10. Lateral response of cantilever due to the 110-A peakto FIG. 12. Friction versus normal force with the blunt Si tip on
peak displacement of the NbSsample. The applied normal force NbSe. The sample displacement is 110 A peak to peak. The solid
is 35 nN. line shows the Maugis-Dugdale fit to the data.

of the lateral force wave form. A lock-in amplifier can there- ity nature of the contact. In contrast, in macroscopic friction
fore be used to continually measure the peak to peak value &xperiments, one expects the friction to be proportional to
the input wave form. Note, however, that as the applied forcéhe applied force. We note that the friction data is less noisy
changes the limiting force of friction also changes, and aghan the contact stiffness data; see Fig. 8. This occurs be-
such the shape of the lateral force wave form changes. Thigause the friction force is measured directly, whereas the
variation in the shape of the input wave form must be takergontact stiffness is calculated from the lateral force using Eq.
into account when calculating the friction force using the(17), which is very sensitive to noise when the contact stiff-
output of a lock-in amplifier. At a sufficiently high load and ness is comparable to the combined lateral tip and cantilever
a fixed lateral sample displacement, the tip movement revertfiffness. Experimental noise is further compounded in the
from the sliding regime back to the regime of static mi- contact stiffness measurements because small-amplitude dis-
croslip. It is therefore important to monitor the lateral dis- Placements must be used and this results in smaller angular
placement wave form on an oscilloscope during each experdeflection signals than those found in the friction measure-
ment to ensure that the tip is always sliding. ments.
Force distance curves can be obtained to study how the In order to compare the Maugis-Dugdale theory with the
static friction varies with normal force. For the Si on friction data, we assume that the frictional force is propor-
NbSe system, we have found the same relationship betweefional to the tip-sample contact area, i.&giction=7A
friction and applied normal force during loading and unload-= 77b®. Hence we can compare the Maugis-Dugdale rela-
ing. Figures 11 and 12 show representative results of frictiodionship between contact arezb? and normal force to the
experiments before and after blunting the tip, respectivelyexperimental friction data using the measured pull off force
The friction force and the adhesive force are larger for theP and scaling to one data point on the friction versus nor-
blunder tip, as expected. More importantly, we note that thenal force curve.(We use the friction data a=0. The
variation of friction with applied force is nonlinear and even justification of this approach is the quality of the fit between
at the smallest applied normal foré the friction force is  the experimental data and the theory. We have fitted the
appreciable. These observations arise from the single aspédvlaugis-Dugdale theory to the friction data of Figs. 11 and
12 using the same parameters as in the contact stiffness mea-
surements, i.eh=a+0.4(c—a), \=0.2 for the original tip,

I T ' ' ‘ ' ' ] andA=0.3 for the blunt tip. Both sets of experimental data

10 1 are in good agreement with the theoretical curves. It is worth

Experimental i X
I N\ 1 noting that for the sharp tip, the pull-off force measured from
8l ] o ;
Ac ] the friction data is lower than the value measured from the

contact stiffness data. This is consistent with the theory that

sliding results in an effective reduction in the tip-sample con-

Maugis tact ared. This effect was not observed in the data taken
gis-Dugdale | .

A=02 ] after the tip had been blunted.

Friction (nN)

b bat0dlea) ] The agreement between the experimental friction data and
the Maugis-Dugdale theory provides strong evidence that our
ol , ‘ ‘ ‘ ‘ , ] central assumptioR g;ion= 7A is valid for a single asperity
-6 4 -2 0 2 4 6 8 contact of nanometer dimensions, at least for the materials
Applied Normal Force (nN) studied here. The proportionality constantis the shear

strength of the tip-sample contact. If we take the contact area

FIG. 11. Friction versus normal force with the sharp Si tip on to be that given by the Maugis-Dugdale theory, we can cal-
NbSe. The sample displacement is 22 A peak to peak. The solicculate the value of the proportionality constant for our ex-
line shows the Maugis-Dugdale fit to the data. perimental data. Using the area and friction force found at
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zero applied normal force, we fing=6.1x 10° N/m? for the TABLE I. Measured values of the pull-off force; and calcu-
data taken with the sharp tip and=6.6x 108 N/m? after  lated values of the work of adhesiom from static and sliding
blunting the tip. We can write the theoretical shear strengtf§xPeriments with a silicon tip on Nb§eTwo tip geometriegsharp

of the contact as=G/«, whereG is the bulk shear modu- and blunj were used for both static and sliding experiments. The
lus and the parameter is expected to have a value of about shear strength of the contachas been calculated from sliding data.
302% Using the experimental values of and taking the

smaller bulk shear modulus of the two materials in contact Tib radius SPtatlc adh(\e;'on P WSI|d|ng
(G=17.4 GPa for the plane perpendicular to thexis of p(nm) (nlt\:l) e (nlt\:l) 3P N/:nz
NbSe), we find =29 for the data taken with the sharp tip (/) (/T ( )
and a=26 for the data taken with the blunt tip. That is, the 12 7.0 0.099 46 0065 6% 10°
experimental shear strengths are very close to the estimated 45 21.9 0.087 21.4 0.084 6% 10°

theoretical shear strength. In marked contrast, for bulk mate
rials the theoretical shear strength is several orders of mag-
nitude larger than the measured val@é$he difference be-

tween the theoretical value and the value measured from

bulk samples is attributed to the presence of defects, thaye found the variation in friction with applied normal force
dramatically reduce the shear strength. For example, if thgy pe in good agreement with the variation in contact area
defect density is drastically lowered, as in certain speciallypredicted by the Maugis-Dugdale theory. To relate friction
prepared single-crystal whiskers, the shear strength has begRq contact area we used Bowden and Tabor's assumption
found to be much closer to the theoretical vati@herefore,  that friction is directly proportional to the contact area. The
if we consider that the contact radii in our experiments are ofyroportionality constant calculated from the experimental
the order of a few nanometers, it seems reasonable that thgta was found to be in agreement with the estimated theo-
measured shear strength is close to the theoretical value. Thigtical shear strength of the contact.
is also consistent with the results of scanning tunneling mi-  The experimental values &, w, andr are summarized
croscopy experiments on nanometer-sized gold necks, ifh Table | for the two different tip shapes. The consistency of
which the measured yield strength of the neck was found t@ne values ofiv and 7 and the fit to the force curves found
be more th_ar218an order of magnitude larger than that of th%lsing the two experimental methods strongly suggest(that
bulk material- the Maugis-Dugdale model provides a good basis for de-
scribing the elastic contact, which is of particular importance
VI. CONCLUSION for AFM when the elasticity parametep~1, as the more
e(ﬁommonly used JKR and DMT models are strictly valid only

To summarize, we have found good agreement betwe N _ o X
the variation in contact radius with applied force, as foundWhend’>1 (JKR) or wheng<<1 (DMT); (ii) for the materials

experimentally by measuring the contact stiffness, and thStUd'ed’ the assumption of Bowden and Tabor, that for dry

variation predicted by the Maugis-Dugdale theory. The ma_slldmg friction is proportional to contact area, is valid; and

jor difficulty with this approach to measuring the contact (iii) one can apply continuum mechanics down to contacts as

- ) : . small as 1-2 nm in radius.
area, that of findindk;, using a high-resolution STEM and . o . . 5
finite element modeling, could potentially be avoided by us- Note added in _proofS|m|Iar studies are also b(_elng under
: . . . ; -~ taken by R. Carpick and M. SalmerpR. W. Carpick, D. F.
ing sharp tips with low aspect ratios. This would also in-

crease the range of applied normal forces that could be inc_)gletree, and M. Saimeron, Appl. Phys. L&.(1997] and

vestigated using this technique. A further difficulty is that we thank them for useful discussions.

. :
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