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Semiclassical description of electron transport in semiconductor quantum-well devices

G. A. Baraff
Lucent Technologies, Bell Laboratories, Murray Hill, New Jersey 07974

~Received 6 December 1996!

Carrier drift, diffusion, and thermionic emission for classical semiconductor devices~p-n junctions, hetero-
structures, etc.! is most easily described using expressions derived from a Boltzmann transport equation point
of view. This point of view is not particularly applicable to quantum-well transport. It is shown here that by
postulating a region of phase space that is forbidden to the mobile carriers and then altering the scattering
probability so that no particles are scattered to the forbidden region, a Boltzmann-equation-based formalism
emerges that can describe the mobile-carrier component of quantum-well transport.@S0163-1829~97!01916-4#
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I. INTRODUCTION

In trying to model the dynamics of single- or multiple
quantum-well semiconductor devices, it is usual to regard
carriers as belonging to~at least! two distinct populations,
namely, those carriers whose motion is confined to the vic
ity of a single quantum well and those that are able to tra
more or less freely from one well to the next.1–3 The practi-
cal question that then arises is how to calculate the cur
and the spatial distribution of carriers in each of the popu
tions. This paper is concerned with answering that ques
for the mobile carriers.

The problem posed here is one of quantum transport. T
paper will not deal with effects that arise because of sh
time scales and energy nonconservation or short len
scales and wave-packet localization. Still, because the
plicity of a Boltzmann approach makes it a practical one
many aspects of device behavior, it is useful to explore h
some simple concepts from quantum mechanics may be
corporated into the Boltzmann equation in a way that ma
it applicable to the transport of mobile carriers in quantu
well devices.

In contrast to the situation for mobile carriers, the descr
tion of how theboundcarriers are distributed is conceptual
simple: Neglecting tunneling, a self-consistent potential c
fines the bound carriers to a single well. Assuming that t
potential depends only onz and that some single-ban
envelope-function description is adequate, the wave fu
tions for the bound carriers will have the form

c5
1

AA
eik irx i~z!, ~1.1a!

wherer[(x,y) andA is the normalization area. This wav
function and its energy

E5Ei1\2ki
2/2m* ~1.1b!

are determined by the solution to a Schro¨dinger equation.
For bound states,x i(z) tends to zero asz leaves the vicinity
of the well and the energiesEi are discrete. The particle
density is then evaluated by calculating or assuming so
occupation probability and summing it over the densities
sociated with states of the form~1.1!. Such a description is
550163-1829/97/55~16!/10745~9!/$10.00
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based on the point of view that the bound particles do
interact with each other or, equivalently, that any energy
their mutual interaction is small compared to the separa
DE between adjacent energiesEi .

This simple picture is harder to justify~and is likely in-
correct! when applied to the mobile population of carrier
For these, the functionsx i(z) remain finite even forz far
from the well and the energiesEi are more closely spaced
becoming continuous in the limit of a large system. As t
carrier density rises, one expects the energy uncertainty
sociated with carrier-carrier scattering also to rise, eventu
becoming greater than the energy spacing between st
This will result in a reduced phase coherence length. W
the phase coherence length becomes smaller than the
width, the whole picture based on the literal use of Eq.~1.1!
becomes suspect: Literal use of Eq.~1.1! predicts strong
resonances in the amplitude of the mobile-carrier wave fu
tions in the neighborhood of the well when the shape a
depth of the well are such that a quasi-bound-state exist
low energies.4–7 These resonances, in turn, lead to stro
variation of the capture time because of enhanced ove
between the mobile states and the bound state into which
carrier is captured. Experimentally, these oscillations h
been hard to observe.8,9 Experiments cited as supportin
their existence10–13 have been carried out only in a low
density regime or at low temperature or both, conditions t
act to maximize the phase coherence needed to observe
resonant phenomena. This challenges the wisdom of bas
theory of high-density room-temperature quantum-w
transport on Eq.~1.1! as it stands.

A completely different point of view, appropriate to ele
tron transport dominated by scattering, is that quantum
fects are ignored entirely and that the flow of particles
described by a Boltzmann transport equation. This leads
drift-diffusion description of carrier transport14 in which par-
ticle fluxes arise in response to electric fields~drift current!,
to concentration gradients~diffusion current!, and to concen-
tration discontinuities~thermionic emission current!.15 This
point of view does not lend itself readily to describing th
specific features of the quantum well and so some synth
of the classical and quantum descriptions is necessary at
point.

This problem is not new, and progress has been made
Grupen and co-workers.16 There is a sharp contrast betwee
10 745 © 1997 The American Physical Society
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10 746 55G. A. BARAFF
their approach and ours. Their approach treats the state
the mobile carriers in the well region the same way it tre
the bound states, except for a flow of carriers across
edges of the well into and out of the mobile states. Th
postulate a separate~position-independent! Fermi energy for
both the mobile and bound populations. Assuming this
the mobile states is equivalent to taking the mobile-sta
wave functions, like those of the bound states, to be fu
coherent across the well. It is this assumption that we wis
avoid: it is hard to accept that, in the presence of the la
capture rate that must occur in lasers under operating co
tions, full coherence of the mobile-state wave functions c
be maintained. In this paper, we explore the opposite lim
namely, where there is no coherence at all in the mo
states. Clearly, a better theory is needed to describe the
situation where the coherence is likely to be partial and
results intermediate to those that would be obtained us
their approach and ours.

To develop a theory of transport of the mobile carrie
with no coherence, we return solidly to the Boltzman
equation point of view. However, certain modifications w
be made to account for the possible presence of bound
riers. These modifications can be described by the follow
postulates about the phase space in which that equation
erates.

~i! There is a well-defined region of~classical! phase
space that is forbidden to the mobile carriers.

~ii ! The probability for mobile carriers to scatter to th
forbidden region of phase space is zero.

~iii ! The region of phase space allowed to the mobile c
riers falls into two disjoint parts, one for the right-travelin
carriers, the other for left-traveling carriers.

~iv! The probability to scatter from one allowed region
phase space to the other is far less than the probabilit
scatter within the same allowed region.

These postulates will be explained, and to some ex
rationalized, in Sec. II. In Sec. III the transport equation t
results is formulated. In Sec. IV the boundary conditions
presented and in Sec. V the equations are generalize
include carrier capture and emission.

II. FORCING THE QUANTUM MECHANICS
OF THE WELL INTO THE BOLTZMANN EQUATION

In order to use the Boltzmann equation for quantum we
a fundamental restriction must be imposed on the scatte
probability in that equation. To motivate the need for th
change, considerEz , thez component of the energy. Class
cally, Ez is given by

Ez5Hz~z,pz![pz
2/2m1V~z!. ~2.1a!

Quantum mechanically,Ez is given by

S 2
\2

2m

]2

]z2
1V~z!2EzDc~z!50. ~2.1b!

Consider a typical quantum well of depthV0 and widthw
such as the one whose potential is sketched in Fig. 1:
potential is taken to be
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V~z!5 HU~z!1V0 , z,0, z.w
U~z!, 0,z,w.

~2.2a!
~2.2b!

It is convenient to choose the zero of potential at the low
point in the well and to choose the sense of thez axis so that
U(w)>U(0). Neglecting the possibility of tunneling
through the barrier on the left of the well@say by setting
U(z)50 for z,0# the energy spectrum of Eq.~2.1b! divides
into two regions. ForEz,V0 , the spectrum is discrete, whil
for Ez.V0 , the spectrum is continuous. The discrete sp
trum describes bound states@the two-dimensional~2D! popu-
lation#. The continuous spectrum describes mobile carri
~the 3D population!. We assume that the whole region th
might support bound states is unavailable to the mobile c
riers. This restriction, expressed in terms of Eq.~2.1a!, is
Ez.V0 , or

pz
2.2m@V02U~z!#[pmin

2 ~z!, 0,z,w. ~2.3!

This divides the allowed phase space in the well into t
disjoint regions, one for right-traveling particles and one
left-traveling particles.

It is easy to see that under the sole influence of the c
sical Hamiltonian

H5
px
21py

2

2m
1Hz~z,pz! ~2.4!

a particle in an allowed region of phase space will ne
enter the excluded region. Collisions, however, are a diff
ent matter: A particle whose collision-free trajectory is in t
allowed region might, after aclassicalscattering event, be
found in the excluded region. If the region is excluded, sc
tering to it must be prohibited. Although this prohibition ma
seemad hoc, a quantum-mechanical calculation of scatteri
matrix using only final states whose momentum compone
are allowed in the well would give rise to a correspondi
restriction.

The effect of this restriction may be seen as follows. Co
sider the scattering probabilityW used in the Boltzmann
equation:

FIG. 1. Potential used for a quantum well of depthV0 located in
a region having a nonzero field.
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55 10 747SEMICLASSICAL DESCRIPTION OF ELECTRON . . .
W5Wz~E,V,→E8,V8!. ~2.5!

The pre- and post-collision states of the particle have be
labeled by a total energy given by Eq.~2.4! and an angleV
specifying the direction of the momentum. Thezmomentum
of a particle in the well must satisfy Eq.~2.3!. Its total mo-
mentum is

p252m@E2U~z!#. ~2.6!

After collision, the direction cosinem will therefore be re-
stricted by

m2[~pz /p!2.@V02U~z!#/@E2U~z!#[mmin
2 . ~2.7!

Surfaces of constant energyE in momentum space to which
carriers may scatter are sketched in Fig. 2. They are sm
polar caps at opposite ends of a sphere whose radius dep
on the energyE and onz. As E decreases towardsV0 , the
solid angleDV of each cap shrinks towards zero.DV is
given by

DV52p~12mmin!52p$12A@V02U~z!#/@E2U~z!#%.
~2.8!

These are also the surfaces of constant energy that the mo
carriers in the well can occupy. The small area of the po
caps means that, within the well, carriers are strongly co
mated to travel along thez axis. However, outside the well,
allowed surfaces of constant energy are small compl
spheres and particles travel more or less uniformly in
directions.

Within the well, the population of each polar cap will b
considered to be a distinct species. The reason for doing s
that for a carrier to scatter from one polar cap to the other
momentum of order 2A2mV0 must be supplied. There are
few scattering mechanisms that can supply this much m
mentum. Significant scattering between one cap and
other is far less likely than scattering within a single cap.

In full equilibrium, carriers in the well occupy a Fermi
Dirac distribution. In partial equilibrium, the two population
can have different Fermi energies because of inhibited sc
tering from one population to the other. Even farther fro
equilibrium, the two Fermi energies can depend on positio

FIG. 2. Surfaces of constant energy in momentum space av
able to moble carriers of total energyE5V01kBT ~a! in the quan-
tum well and~b! in the adjacent barriers.
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becoming ‘‘quasi-Fermi energies,’’ such as those used
describing the populations of electrons and holes in b
semiconductors. The two quasiequilibrium distribution fun
tions are

f 0
15u~pz!u@Hz2V0#

2

~2p\!3

3
1

11exp$@H~z,p!2EF
1~z!#/kBT%

, ~2.9a!

f 0
25u~2pz!u@Hz2V0#

2

~2p\!3

3
1

11exp$@H~z,p!2EF
2~z!#/kBT%

, ~2.9b!

whereu is the unit step function. Each of these gives rise
a large flux of particles

J0
1~z!5

2

~2p\!3
E dpxdpy

3E
pmin~z!

` Vzdpz
11exp@H~z,p!2EF

1~z!#/kBT
,

~2.10a!

J0
2~z!5

2

~2p\!3
E dpxdpy

3E
2`

2pmin~z! Vzdpz
11exp@H~z,p!2EF

2~z!#/kBT
.

~2.10b!

In true equilibrium, the two quasi-Fermi energies are eq
and independent ofz. The two fluxes are then equal an
opposite and there is no net current in the system of carri

In spite of the appearance ofU(z) in both the integrand
and the limits of Eqs.~2.10!, the flux depends onz only if
EF

6 is z dependent. This can be seen by usingEz as the
variable of integration instead ofpz . The integrals are then

J0
6~z!56

2

~2p\!3
E dpxdpy

3E
V0

` dEz
11exp@~px

21py
2!/2m1Ez2EF

6~z!#/kBT
.

~2.11!

In contrast, the densitiesn6(z) depend explicitly onU(z),

n0
6~z!5

2

~2p\!3
E dpxdpy

3E
pmin~z!

` dpz
11exp@H~z,p!2EF

6~z!#/kBT
.

~2.12!

il-
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10 748 55G. A. BARAFF
When the densities are low enough for the Fermi-Di
distribution to be replaced by the Boltzmann distribution, t
current and density become

J0
6~z!56

mkB
2T2

2p2\3 e
@EF

6
~z!2V0#/kBT, ~2.13!

n0
65SmkBT

2p\2D 3/2 erfc@pmin~z!2/2mkBT#1/2e@EF
6

~z!2U~z!#/kBT,

~2.14a!

where

erfc~x![
2

Ap
E
x

`

e2t2dt. ~2.14b!

The first factor in Eq.~2.13! is the usual Richardson facto
for thermionic emission. The first factor in Eq.~2.14a! is half
the usual thermal density of states of a bulk semiconduc
If no phase space is excluded@so that pmin(z)50 and
erfc(x)51#, then n0

1 and n0
2 each are half the density o

carriers in a band whose edge is atU(z) and whose Ferm
energy isEF

6 . The exclusion makes a profound differenc
however. To show this, we work to first order inkBT/V0
~which is always small for quantum wells of practical inte
est! and retain the first two terms in the large argument
pansion of the complementary error function17

erfc~x!'
1

xAp
e2x2S 12

1

2x2D .
Using the definition ofpmin(z), this gives

n0
65

mkB
2T2

2p2\3 A m

2@V01kBT2U~z!#
e@EF

6
~z!2V0#/kBT.

~2.15!

The averagez velocity is

^Vz&[
J0

6~z!

n0
6~z!

5A2@V01kBT2U~z!#

m
, ~2.16!

which is the velocity of a particle withEz5V01kBT. The
proportionality ofn0

6(z) to the inverse velocity is expecte
classically for a beam of particles whose speed varies. Eq
tion ~2.13! is exactly the usual form for thermionic emissio
current.15,18Equations~2.13!, ~2.15!, and~2.16! demonstrate
that the assumption of a quasiequilibrium distribution fun
tion in a restricted phase space gives a reasonable descri
of particles of low-z kinetic energy ('kBT) accelerated by a
strong potential dropV0 at the edge of the well and the
acted upon by a potentialU(z) in the well itself.

III. BOLTZMANN EQUATION

A fundamental aspect of transport of mobile carriers~the
3D population! across the wells is that carriers injected az
50, traveling towards the right, have come out of a reserv
whose Fermi energy may differ from that of the other res
voir, which, atz5w, injects the carriers traveling toward
the left. Equilibration of these two populations of travelin
carriers will occur only via events that can transfer carri
c
e

r.

,

-

a-

-
ion

ir
-

s

from one population to the other. If the mechanisms for d
ing this are so weak that equilibration does not occur dur
the traversal time of the well, some measure of the Fer
level difference between the two reservoirs will persist in
the well.

The situation is analogous to that of electrons and hole
a p-n semiconductor junction. In ap-n junction under bias,
the two types of carriers may have different quasi-Fermi
ergies until carrier generation and recombination equilibr
the two populations. A sketch of the quasi-Fermi energies
electrons and holes in ap-n junction under bias and a sketc
of the quasi-Fermi energies for the left-going and right-go
electrons in a quantum well under bias have the same fo
as illustrated in Fig. 3. In the junction itself, there is insuf

FIG. 3. Quasi-Fermi energies versus position in~a! a semicon-
ductor p-n junction, where the two quasi-Fermi energies descr
electrons and holes, and~b! a quantum well where the two quas
Fermi energies describe right-going and left-going electrons.
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55 10 749SEMICLASSICAL DESCRIPTION OF ELECTRON . . .
cient time for the electron and hole populations to equilibr
and the two quasi-Fermi energies separate there. In the
gions adjacent to the junction, generation and recombina
equilibrate the two populations and the two quasi-Fermi
ergies coalesce. In the quantum well, the particles in the w
have been accelerated to high speed and scattering is
fective in equilibrating the two populations. In the regio
adjacent to the wells, the particles are traveling more slow
and scattering from the forward to the back direction c
take place, equilibrating the two populations.

To construct a Boltzmann formalism for this situatio
two particle distribution functionsf1 and f2 are used to
describe the carrier distributions in the two separate allow
regions of phase space. Each of these distributions separ
satisfies a Boltzmann equation

] f6

]t
1S ]H

]pz

]

]z
2

]H

]z

]

]pz
D f65S ] f6

]t D
coll

. ~3.1!

The collisional derivative is the sum of a scattering out te
and a scattering in term

S ] f6

]t D
coll

5S ] f6

]t D
in

2S ] f6

]t D
out

. ~3.2!

We assume that the scattering probabilityWz(p→p8) to
be used in the Boltzmann equation is of the relaxatio
form, which means that after scattering, the distribution
particles is a quasiequilibrium one at the local density.
p6 andp68 be the notation used to indicate in which of th
two allowed regions of phase spacep andp8 are located. On
the assumption that scattering from one region to the othe
much less frequent than scattering within the same reg
the scattering probability to be used in the Boltzmann eq
tion is

Wz~p1→p18 !5
1

t1

f 0
1~p8!

n1~z!
, ~3.3a!

Wz~p1→p28 !5
1

t2

f 0
2~p8!

n2~z!
, ~3.3b!

Wz~p2→p18 !5
1

t2

f 0
1~p8!

n1~z!
, ~3.3c!

Wz~p2→p28 !5
1

t1

f 0
2~p8!

n2~z!
, ~3.3d!

wheret1 andt2 are the scattering times for forward~intrar-
egional! and backward~interregional! scattering, respec
tively. These two are vastly different, witht1/t2!1.

The scattering terms in Eq.~3.2! can be evaluated usin
the probabilitiesWz(p→p8),

S ] f6

]t D
out

5E dp8 f6~p!Wz~p→p8!5S 1

t1 1
1

t2D f6~p!,

~3.4a!

S ] f a

]t D
in

5(
b

E dp8 f b~p8!Wz~p8→p!, ~3.4b!
e
re-
n
-
ll
ef-

y,
n

d
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l
f
t

is
n,
-

S ] f1

]t D
in

5S n1

t1 1
n2

t2 D f 0
1~p!

n1 , ~3.4c!

S ] f2

]t D
in

5S n2

t1 1
n1

t2 D f 0
2~p!

n2 . ~3.4d!

Integrating the transport equation~3.1! over all momenta in
the appropriate allowed region of phase space and using
scattering expressions~3.4! gives

]n1

]t
1

]

]z
J15

n22n1

t2 , ~3.5a!

]n2

]t
1

]

]z
J25

n12n2

t2 , ~3.5b!

where the fluxesJ1 andJ2 are given by

J1~z,t ![E
pz.pmin~z!

d3p Vzf
1~z,p,t !, ~3.6a!

J2~z,t ![E
pz,2pmin~z!

d3p Vzf
2~z,p,t !. ~3.6b!

The technique for evaluating the fluxesJ6 is similar to that
used to evaluate the fluxes in bulk semiconductors.14,19 The
transport equation forf6 is solved neglecting both the tim
dependence and scattering into or out of the distribution
cause these possibilities are already included in the cont
ity equations~3.5!. The transport equation~3.1! then be-
comes

SVz

]

]z
2

]U

]z

]

]pz
1

1

t1D f65
f 0

6

t1 . ~3.7!

This equation is linearized by settingf65 f 0
61d f6 and as-

suming that the scattering term is larger than the convec
flow term. This gives

d f652t1Vz

]EF
6

]z

] f 0
6

]EF
6 . ~3.8!

The change in the distribution function must produce
change in the particle density. This happens automatic
for bulk semiconductors where the integration of Eq.~3.8!
over all momentum space causes the integral to vanish
symmetry. It does not happen here because the integran
each of the functionsd f6 extends only over a part of mo
mentum space in which the integrand does not change s
The integral ofd f6 can vanish only ifEF

6 is independent of
z. In such a case,d f6 vanishes identically andJ6 andn6

are the explicit functions ofEF
6 given in Eqs.~2.11! and

~2.12!. We can therefore rewrite Eqs.~3.5! in the form

]n1

]t
1

]EF
1

]z

]J1

]EF
1 5

n22n1

t2 , ~3.9a!

]n2

]t
1

]EF
2

]z

]J2

]EF
2 5

n12n2

t2 , ~3.9b!
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10 750 55G. A. BARAFF
in which EF
6(z,t) are the unknowns. To make the solution

unique, the valuesEF
1(0) and EF

2(w) must be specified.
Thermionic emission theory provides the way to specif
these boundary conditions.

IV. BOUNDARY CONDITIONS: THERMIONIC EMISSION

Thermionic emission theory is based on the idea that t
carriersleaving the half spaces on both sides of a potentia
step are in equilibrium distributions.15,18We assume that the
carriers leaving the barrier region and entering the well atz
50 are in an equilibrium distribution having a Fermi energ
EF(0). Using the Boltzmann equation~3.1!, it can be shown
that in the well, the incoming distribution at the left-hand
side has the same Fermi energy as the outgoing carriers
the barrier. This gives the boundary condition

EF
1~0!5EF~0!. ~4.1!

The situation at the other side of the well is somewha
more complex. We assume that the carriers leaving the b
rier region have a Fermi energyEF(w). In Fig. 4 it is clear
that the incoming~left-going! distribution atz5w consists of
two separate parts. ForEz lying between V0 and V0
1U(w), the incoming distribution contains particles tha
had been traveling towards the right and have since be
reflected by the edge of the well. Since atz5w there can be
no current in this energy range, the Fermi energy of this pa
of the left-going distribution must equal the Fermi energy o
the right-going particles, namely,EF

1(w). For Ez.V0

1U(w), the incoming distribution is injected from the bar-
rier. This part of the distribution has the Fermi energy of th
particles in the barrier, namely,EF(w). As the two parts of
the left-going distribution move into the well, rapid forward
scattering blends them into a single equilibrium distributio
with a single Fermi energy. In the limit thatt1 is very small,
this blending will be complete very close toz5w and so
EF

2(w) is determined by the requirement that the density o
particles inf 0

2 is equal to the sum of the densities in the two
parts of the left-going distributions just described.

FIG. 4. Division of the right-going and left-going carriers into
two groups, according to the boundary conditions they must satis
at the edges of the well.
e
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en
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e
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The three left-going distributions, corresponding to r
flected, injected, and equilibrated particles as descri
above atz5w, are

f refl
2 5u~2pz!u@Hz~w,p!2V0#u@V01U~w!2Hz~w,p!#

3
2

~2p\!3
1

11exp$@H~w,p!2EF
1~w!#/kBT%

,

~4.2a!

f inj
2 5u~2pz!u@Hz~w,p!2V02U~w!#

3
2

~2p\!3
1

11exp$@H~w,p!2EF~w!#/kBT%
,

~4.2b!

f 0
25u~2pz!u@Hz~w,p!2V0#

3
2

~2p\!3
1

11exp$@H~w,p!2EF
2~w!#/kBT%

.

~4.2c!

Equating the equilibrated density to the two partial densiti

E d3p f refl
2 1E d3p f inj

2 5E d3p f0
2 , ~4.3!

which determines the Fermi energyEF
2(w).

Equations~4.1!–~4.3!, plus perhaps an initial condition
are sufficient boundary conditions to use with the transp
equations~3.9! when the Fermi energies in the barriers a
known. However, the Fermi energies of the particles in
barriers are usually not known at the outset: They are usu
obtained in a self-consistent calculation of currents and d
sities throughout the device.16 Such a calculation makes us
of the expression for the currents at the edges of the well
so the distribution of particles transmitted from the well in
the barrier atz5w is needed. It is

f trans
1 5u~pz!u@Hz~w,p!2V02U~w!#

3
2

~2p\!3
1

11exp$@H~w,p!2EF
1~w!#/kBT%

.

~4.4!

The currents across the edges of the well can then be
pressed in terms of these distribution functions as

J~0!5E d3p Vzf
1@EF

1~0!#1E d3p Vzf
2@EF

2~0!#,

~4.5a!

J~w!5E d3p Vzf trans1E d3p Vzf inj
1 . ~4.5b!

These expressions appear to be more familiar when they
evaluated for a nondegenerate distribution

J~0!5
mkB

2T2

2p2\3 e
2V0 /kBT~eEF~0!/kBT2eEF

2
~0!/kBT!,

~4.6a!
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J~w!5
mkB

2T2

2p2\3 e
2@V01U~w!#/kBT~eEF

1
~w!/kBT2eEF~w!/kBT!.

~4.6b!

This expression is, except for the procedures by which
Fermi energies of the mobile carriers are fixed, the sam
that used by Grupen and Hess in Eq.~1! of Ref. 16~c!.

In the nondegenerate limit, the three densities in Eq.~4.3!
at z5w are

nrefl5
mkB

2T2

2p2\3 e
@EF

1
~w!2V0#/kBTS 1

^Vz~w!&
2
e2U~w!/kBT

^Vz~0!& D ,
~4.7a!

ninj5
mkB

2T2

2p2\3

e@EF~w!2V02U~w!#/kBT

^Vz~0!&
, ~4.7b!

n05
mkB

2T2

2p2\3

e@EF
2

~w!2V0#/kBT

^Vz~w!&
. ~4.7c!

The equation that determinesEF
2(w) is then

eEF
2

~w!/kBT5~12a!eEF
1

~w!/kBT1aeEF~w!/kBT, ~4.8a!

a[S ^Vz~w!&

^Vz~0!& De2U~W!/kBT. ~4.8b!

When there is no potential rise across the well,a51 and
EF

2(w)5EF(w). When there is a large potential rise acro
the well,a50 andEF

2(w)5EF
1(w). These limits also hold

in the degenerate case.

V. CAPTURE AND EMISSION

Capture and emission processes may be regarded a
elastic scattering events in which carriers are transfe
back and forth between the mobile~3D! population of the
well and the bound~2D! population of the wells. From the
standpoint of the mobile carrier equations~3.9!, they are an
additional sink and source of carriers. The transport eq
tions are now

]n1

]t
1

]EF
1~z,t !

]z

]J1

]EF
1 5

n22n1

t2 2
n1~z,t !

tcapt~z!
1
S~z,t !

2
,

~5.1a!

]n2

]t
1

]EF
2~z,t !

]z

]J2

]EF
2 5

n12n2

t2 2
n2~z,t !

tcapt~z!
1
S~z,t !

2
.

~5.1b!

tcapt ~z! is the capture time for transferring carriers from t
mobile population to the bound one andS(z,t) is the rate of
emission from the bound state to the mobile population. I
assumed that half the carriers will be emitted to the right a
half to the left.

There are now two mechanisms for equilibrating t
populations of left-traveling carriers and right-traveling ca
riers, namely, direct cap-to-cap scattering and capture~from
one distribution! followed by remission~to both distribu-
tions!. In the absence of precise knowledge of the vario
rates, we ignore direct cap-to-cap scatter, which we h
e
as

s

in-
d

a-

s
d

-

s
e

assumed to be very weak. This will have little effect unle
capture and emission is an even weaker process. We rew
Eq. ~5.1! in a form that makes use of the relationship b
tween the flux, the density, and the averagez velocity,

]n1

]t
1

]EF
1

]z

]J1

]EF
1 5

S~z,t !

2
2

J1@EF
1~z,t !#

tcapt~z!^Vz
1~z!&

, ~5.2a!

]n2

]t
1

]EF
2

]z

]J2

]EF
2 5

S~z,t !

2
2

J2@EF
2~z,t !#

tcapt~z!^Vz
2~z!&

. ~5.2b!

Because emission of mobile carriers comes prima
from the uppermost bound state in the well, we assume
the shape and intensity of the source function are prop
tional to the density of carriers in that state,

S~z,t !5
c~z!2N@EF

b~ t !#

te
. ~5.3!

c(z) is the wave function for the uppermost bound state a
N(EF

b) is the occupation of the associated transverse sta
assuming that their occupancy can be characterized b
bound-state Fermi energy.te is the emission time. In equi
librium, there will be no time dependence. The two qua
Fermi energiesEF

6 will be equal and independent of position
The two fluxes will be equal and opposite.EF

b will have the
same common valueEF

0 as the other two. From Eqs.~5.2!
and ~5.3!, it follows that

J6~EF
0 !

^Vz
6~z!&tcapt~z!

5
c~z!2N@EF

0 #

2te
. ~5.4!

Inserting Eq.~5.4! into Eq. ~5.2! gives

]n1

]t
1

]EF
1

]z

]J1

]EF
1

5
c~z!2N@EF

b~ t !#

2te
S 12

J1@EF
1~z,t !#N@EF

0 #

J1@EF
0 #N@EF

b~ t !# D , ~5.5a!

]n2

]t
1

]EF
2

]z

]J2

]EF
2

5
c~z!2N@EF

b~ t !#

2te
S 12

J2@EF
2~z,t !#N@EF

0 #

J2@EF
0 #N@EF

b~ t !# D . ~5.5b!

In the nondegenerate limit, one can show that

S 12
J6@EF

6~z,t !#N@EF
0 #

J6@EF
0 #N@EF

b~ t !# D 512e@EF
6

~z,t !2EF
b

~ t !#/kBT.

~5.6!

We assert that this form is the correct one to use even in
degenerate limit, although it requires a better derivation th
the one presented above to obtain it. The reason for
assertion is given in the Appendix. It makes use of stand
expressions for transition rates for Fermi statistics and
tailed balance considerations that relate transition rates in
forward and backward directions.

Equations~5.5! and ~5.6! are the transport equations th
have to be solved for the quantum well in which mob
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carriers can be captured to and emitted from a bound sta
the well. The functionsn6 depend explicitly onz and on
EF

6 and are given by Eq.~2.12! ~degenerate case! or ~2.15!
~nondegenerate case!. The functionsJ6 depend explicitly
only onEF

6 and are given by Eq.~2.11! ~degenerate case! or
~2.13! ~nondegenerate case!. Thus Eq.~5.5! is to be regarded
as a pair of equations forEF

6(z,t). The boundary conditions
are Eqs.~4.1! and~4.3! ~degenerate case! or ~4.8! ~nondegen-
erate case!. The coupling between the two equations aris
via the bound-state occupancy and via the boundary co
tion atz5w, namely, Eq.~4.3! or ~4.8!, if there is a potential
drop across the well.

The bound-state occupancy~or, equivalently,EF
b! must be

determined by a rate equation that describes the transfe
carriers between the bound state and all populations w
which it communicates. This certainly includes the mob
states in the well, but it may include others. For examp
carriers in the bound population might recombine direc
either in a spontaneous or stimulated emission process,
carriers of opposite sign in the same well. Alternatively,
the state discussed so far is not the lowest-energy one,
carriers may transfer between it and the lower-energy bo
states from which the recombinations actually occur. Th
considerations, which will differ from case to case, sho
present no special problems, especially in light of t
progress already made by Grupen and co-workers.16

VI. SUMMARY

We have presented a pair of coupled equations for
scribing the distribution and current in a quantum well
which there is a healthy rate of exchange between the mo
~3D! population in the well and the bound~2D! population.
To capture the essential physics of this situation, it was n
essary to abandon the drift-diffusion formalism and to p
pose a formalism that is in the same spirit as the flux met
used by McKelvey, Longini, and Brody,20 Shockley,21 and
Alam, Tanaka, and Lundstrom.22 The quantum-well situa-
tion, in which injected particles are accelerated to high sp
on entering the well, provides a somewhat clearer phys
justification for the method than exists in the original flu
method papers.

A key feature of quantum-well transport turned out to
the difficulty of changing the number of particles in the le
going and right-going parts of momentum space, where
and right refer to the direction across the well. There is
such difficulty with respect to transport parallel to the pla
of the well. For this reason, ordinary drift-diffusion theo
can be used in the parallel direction. The only change nee
from drift-diffusion theory as used in the bulk is the value
the mobility and diffusion constants to be used in the w
That change comes about because the scattering time i
well is shorter than in the bulk~because of the increase
density of final states at the lowest allowed energy in
restricted momentum space, compared to a lowest allo
energy of zero in the bulk!. There may be experimental da
relating to this point. Such data would, by its nature, a
include a reduction in mobility caused by~or attributed to!
additional interface scattering.

Note added in proof.Just before Eq.~3.9!, the argument
that EF

6 must be independent ofZ is really a consistency
in
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condition on the use of Eqs.~3.7! and ~3.9!. It should be
interpreted as stating that these equations are valid to
extent that the change ofEF over the forward scattering
mean free patht1VZ can be ignored.
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APPENDIX: CAPTURE AND EMISSION RATES

Consider two types of statesi5b,m ~bound and mobile!
that can hold electrons. Letgi(Ei) be the density of states o
type i at energyEi , f i(Ei) be the fraction of states of typ
i occupied atEi , Si j (Ei→Ej ) be the transition probability,
ni(Ei)5gi(Ei) f i(Ei), and n̄i(Ei)5gi(Ei)@12 f i(Ei)#. The
rate equation for the mobile carriers, taking into account
Pauli principle, is

dnm~Em!

dt
5E nb~Eb!Sbm~Eb→Em!n̄m~Em!dEb

2E nm~Em!Smb~Em→Eb!n̄b~Eb!dEb .

~A1!

Similarly, the rate equation for the bound carriers has
same form with the subscriptsm and b interchanged. The
total number of carriers of typei is

Ni5E ni~Ei !dEi .

Thus

dNm

dt
5E E dEbdEmnb~Eb!Sbm~Eb→Em!n̄m~Em!

3S 12
nm~Em!

n̄m~Em!

Smb~Em→Eb!

Sbm~Eb→Em!

n̄b~Eb!

nb~Eb!
D . ~A2!

The first term in the integral in Eq.~A2! is the rate of emis-
sion from the bound states to the mobile population;
second is the rate of capture from the mobile states to
bound population, that is,

dNm

dt
5E2C.

Assume that the mobile population is in a Fermi distrib
tion with a Fermi energyEF

m and that the bound population i
in a Fermi distribution with a Fermi energyEF

b . Then

n̄b~Eb!

nb~Eb!
5e@Eb2EF

b
#/kBT, ~A3a!

nm~Em!

n̄m~Em!
5e2@Em2EF

m
#/kBT. ~A3b!
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In equilibrium, the two Fermi energies are equal and, acco
ing to the principle of detailed balance, the contents of
large parentheses in Eq.~A2! must vanish. Using Eq.~A3!,
this condition requires that

Smb~Em→Eb!

Sbm~Eb→Em!
5e@Em2Eb#/kBT. ~A4!

We assume that the system is not so far out of equilibrium
to affect the transition rates. In that case, the large paren
ses in Eq.~A2! can be evaluated using Eqs.~A3! and ~A4!,

S 12
nm~Em!

n̄m~Em!

Smb~Em→Eb!

Sbm~Eb→Em!

n̄b~Eb!

nb~Eb!
D512e@EF

m
2EF

b
#/kBT.

~A5!

The spirit of the classical development used in the pape
that everything happens locally with no regard to coheren
B

.

J

ch
U.
,

s

r,

e-
-
e

s
e-

is
e.

Clearly, that is not correct, but if this principle were used
a heuristic guide, we could regard Eq.~A2! as a local equa-
tion, in which nb(Eb), n̄m(Em), and EF

m were all
z-dependent quantities. We would then replaceEF

m→EF
6(z)

on the right-hand side of Eq.~A5!, providing thereby the
heuristic justification for the use of Eq.~5.6! in the text.
Furthermore, with the identification

E dEmSbm~Eb→Em!n̄m~Em!5
1

2te~Eb!
, ~A6!

we have

dNm

dt
5~12e@EF

6
~z!2EF

b
#/kBT!E dEb

nb~z,Eb!

2te~Eb!
. ~A7!

The approximation made to go from Eq.~A7! to Eq. ~5.5!
and ~5.6! neglecting the energy dependence ofte .
ate

-

te
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