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Semiclassical description of electron transport in semiconductor quantum-well devices
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Carrier drift, diffusion, and thermionic emission for classical semiconductor de{peesjunctions, hetero-
structures, et¢.is most easily described using expressions derived from a Boltzmann transport equation point
of view. This point of view is not particularly applicable to quantum-well transport. It is shown here that by
postulating a region of phase space that is forbidden to the mobile carriers and then altering the scattering
probability so that no particles are scattered to the forbidden region, a Boltzmann-equation-based formalism
emerges that can describe the mobile-carrier component of quantum-well trahSp&63-182007)01916-4

I. INTRODUCTION based on the point of view that the bound particles do not
interact with each other or, equivalently, that any energy of
In trying to model the dynamics of single- or multiple- their mutual interaction is small compared to the separation
quantum-well semiconductor devices, it is usual to regard th& E between adjacent energiEs.
carriers as belonging téat leas} two distinct populations, This simple picture is harder to justifiand is likely in-
namely, those carriers whose motion is confined to the vicingorrec} when applied to the mobile population of carriers.
ity of a single quantum well and those that are able to travefFor these, the functiong;(z) remain finite even forz far
more or less freely from one well to the néxt The practi-  from the well and the energies; are more closely spaced,
cal question that then arises is how to calculate the currerdecoming continuous in the limit of a large system. As the
and the spatial distribution of carriers in each of the populacarrier density rises, one expects the energy uncertainty as-
tions. This paper is concerned with answering that questioBociated with carrier-carrier scattering also to rise, eventually
for the mobile carriers. becoming greater than the energy spacing between states.
The problem posed here is one of quantum transport. Thishis will result in a reduced phase coherence length. When
paper will not deal with effects that arise because of shortthe phase coherence length becomes smaller than the well
time scales and energy nonconservation or short lengtfidth, the whole picture based on the literal use of Bql)
scales and wave-packet localization. Still, because the sinbecomes suspect: Literal use of Ed.1) predicts strong
plicity of a Boltzmann approach makes it a practical one forresonances in the amplitude of the mobile-carrier wave func-
many aspects of device behavior, it is useful to explore howions in the neighborhood of the well when the shape and
some simple concepts from quantum mechanics may be irepth of the well are such that a quasi-bound-state exists at
corporated into the Boltzmann equation in a way that makegow energieé‘.‘7 These resonances, in turn, lead to strong
it applicable to the transport of mobile carriers in quantum-variation of the capture time because of enhanced overlap
well devices. between the mobile states and the bound state into which the
In contrast to the situation for mobile carriers, the descripcarrier is captured. Experimentally, these oscillations have
tion of how theboundcarriers are distributed is conceptually been hard to obsenfe Experiments cited as supporting
simple: Neglecting tunneling, a self-consistent potential contheir existenc®~!* have been carried out only in a low-
fines the bound carriers to a single well. Assuming that thisjensity regime or at low temperature or both, conditions that
potential depends only oz and that some single-band act to maximize the phase coherence needed to observe these
envelope-function description is adequate, the wave funcresonant phenomena. This challenges the wisdom of basing a
tions for the bound carriers will have the form theory of high-density room-temperature quantum-well
transport on Eq(1.1) as it stands.
B o A completely different point of view, appropriate to elec-
Y= \/_K e"1Pxi(2), (113 tron transport dominated by scattering, is that quantum ef-
fects are ignored entirely and that the flow of particles is

wherep=(x,y) andA is the normalization area. This wave described by a Boltzmann transport equation. This leads to a

function and its energy drift-diffusion description of carrier transpdttin which par-
ticle fluxes arise in response to electric fieldsift curreny,
E=E, +h2kf/2m* (1.1p  to concentration gradientsliffusion curren}, and to concen-

tration discontinuitiegthermionic emission current® This
are determined by the solution to a Sdifirmer equation. point of view does not lend itself readily to describing the
For bound statesy;(z) tends to zero ag leaves the vicinity  specific features of the quantum well and so some synthesis
of the well and the energieE; are discrete. The particle of the classical and quantum descriptions is necessary at this
density is then evaluated by calculating or assuming sompoint.
occupation probability and summing it over the densities as- This problem is not new, and progress has been made by
sociated with states of the forfd.1). Such a description is Grupen and co-workerS. There is a sharp contrast between
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their approach and ours. Their approach treats the states of
the mobile carriers in the well region the same way it treats

the bound states, except for a flow of carriers across the !
edges of the well into and out of the mobile states. They
postulate a separatposition-independejfermi energy for
both the mobile and bound populations. Assuming this for
the mobile states is equivalent to taking the mobile-state
wave functions, like those of the bound states, to be fully
coherent across the well. It is this assumption that we wish to

avoid: it is hard to accept that, in the presence of the large
capture rate that must occur in lasers under operating condi-
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tions, full coherence of the mobile-state wave functions can or—————- U(z) :
be maintained. In this paper, we explore the opposite limit, . | | .
namely, where there is no coherence at all in the mobile Barrier | Well | Barrier
states. Clearly, a better theory is needed to describe the real 0 w
situation where the coherence is likely to be partial and the z
results intermediate to those that would be obtained using
their approach and ours. FIG. 1. Potential used for a quantum well of depthlocated in
To develop a theory of transport of the mobile carriersa region having a nonzero field.
with no coherence, we return solidly to the Boltzmann-
equation point of view. However, certain modifications will U(z)+V,y, 2z<0, z>w (2.2a
be made to account for the possible presence of bound car- V@D=1y(z), o<z<w. (2.2

riers. These madifications can be described by the following
postulates about the phase space in which that equation op-is convenient to choose the zero of potential at the lowest

erates. point in the well and to choose the sense of ztexis so that
(i) There is a well-defined region dfclassical phase  U(w)=U(0). Neglecting the possibility of tunneling

space that is forbidden to the mobile carriers. through the barrier on the left of the wdlsay by setting
(i) The probability for mobile carriers to scatter to the U(z)=0 for z<0] the energy spectrum of E(.1b) divides

forbidden region of phase space is zero. into two regions. FOE,<V,, the spectrum is discrete, while

(iii) The region of phase space allowed to the mobile carfor £,>V,, the spectrum is continuous. The discrete spec-
riers falls into two d|SJO|nt parts, one for the right-traveling trum describes bound Sta@he tWO_dimensione(IZD) popu-
carriers, the other for left-traveling carriers. lation]. The continuous spectrum describes mobile carriers

(iv) The probability to scatter from one allowed region of (the 3D population We assume that the whole region that
phase space to the other is far less than the probability tgight support bound states is unavailable to the mobile car-

scatter within the same allowed region. riers. This restriction, expressed in terms of Ef.1a, is
These postulates will be explained, and to some extent >\, or

rationalized, in Sec. Il. In Sec. Il the transport equation that
results is formul_ated. In Sec. IV the b_oundary condmor_]s are pf>2m[Vo—U(z)]Epﬁ1m(z), 0<z<w. (2.3
presented and in Sec. V the equations are generalized to

include carrier capture and emission. This divides the allowed phase space in the well into two
disjoint regions, one for right-traveling particles and one for

Il. FORCING THE QUANTUM MECHANICS left-traveling particles.

OF THE WELL INTO THE BOLTZMANN EQUATION _ Itis easy to_ see that under the sole influence of the clas-
sical Hamiltonian

In order to use the Boltzmann equation for quantum wells,

a fundamental restriction must be imposed on the scattering p§+ p§
probability in that equation. To motivate the need for that H=— tHAzp) (2.4
change, consideE,, thez component of the energy. Classi-
cally, E; is given by a particle in an allowed region of phase space will never
enter the excluded region. Collisions, however, are a differ-
E,=H/z,p,)= p§/2m+V(z). (2.1a ent matter: A particle whose collision-free trajectory is in the
allowed region might, after alassicalscattering event, be
Quantum mechanicallg, is given by found in the excluded region. If the region is excluded, scat-
tering to it must be prohibited. Although this prohibition may
2 52 seemad hog a quantum-mechanical calculation of scattering
- — —+V(2)—E,|¥(2)=0. (2.1b matrix using _only final states Wh_ose momentum components
2m gz° z are allowed in the well would give rise to a corresponding
restriction.
Consider a typical quantum well of deptl, and widthw The effect of this restriction may be seen as follows. Con-

such as the one whose potential is sketched in Fig. 1: Theider the scattering probabilitfy used in the Boltzmann
potential is taken to be equation:
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becoming “quasi-Fermi energies,” such as those used for
describing the populations of electrons and holes in bulk
semiconductors. The two quasiequilibrium distribution func-
tions are

2
fo =6(p2) 0[H,~ Vol 5253

1

“TredH@p-E @kt Z%
2
fo =6(—p,) 6[H,— Vo] 2nh)?
(a) Well (b) Barrier
1
FIG. 2. Surfaces of constant energy in momentum space avail- X 1+exp{[H(z,p)—Ef (2)1/kg T}’ (2.9
able to moble carriers of total enery=V,+kgT (8 in the quan-
tum well and(b) in the adjacent barriers. where @ is the unit step function. Each of these gives rise to
a large flux of particles
W=W,(E,Q,—E",Q"). (2.5

The pre- and post-collision states of the particle have been
labeled by a total energy given by E@.4) and an angld)
specifying the direction of the momentum. Thenomentum

of a particle in the well must satisfy E.3). Its total mo- jw Vdp,

mentum is pmin( L+ exdH(z,p)—E¢ (2)]/kgT’

X 2
Jo(Z)ZW J’ dp.dpy

p?=2m[E-U(2)]. (2.6 (2.103

After collision, the direction cosing. will therefore be re- 2
stricted by JS(Z)Z(ZW—ma f dp.dpy

#?=(p,/P)*>[Vo— U V[E-U(2)]=pfn (2.7

Surfaces of constant ener@yin momentum space to which
carriers may scatter are sketched in Fig. 2. They are small
polar caps at opposite ends of a sphere whose radius depends (2.100
on the energyE and onz. As E decreases towardg,, the
solid angleAQ) of each cap shrinks towards zer&() is
given by

f— Pmin(2) V., dp,
— 1+exdH(z,p)—Eg(2))/kgT"

In true equilibrium, the two quasi-Fermi energies are equal

and independent of. The two fluxes are then equal and

opposite and there is no net current in the system of carriers.

AQ=27(1— ppin) =27 1= [Vo—U(2) J[E-U(2)]}. In spitg qf the appearance tf(z) in both the integra_nd
2.9 and the limits of Eqs(2.10, the flux depends om only if

E- is z dependent. This can be seen by ushgas the
These are also the surfaces of constant energy that the mObugriable of integration instead @f,. The integrals are then
carriers in the well can occupy. The small area of the polar

caps means that, within the well, carriers are strongly colli- >
mated to travel along the axis. However, outside the well, 3> (z)= f do.d

’ ' 0 =573 pPxap
allowed surfaces of constant energy are small complete 2mh) o

spheres and particles travel more or less uniformly in all -

H dE,

directions. xf — T .
Within the well, the population of each polar cap will be Vo 1+exd (py+py)/2m+E,—EF (2)1/kgT

considered to be a distinct species. The reason for doing so is (2.11)

that for a carrier to scatter from one polar cap to the other, a

momentum of order g2mV, must be supplied. There are In contrast, the densities™(z) depend explicitly orlJ(z),
few scattering mechanisms that can supply this much mo-

mentum. Significant scattering between one cap and the . 2
other is far less likely than scattering within a single cap. Ng(2)= 2nh)? j dp,dpy
In full equilibrium, carriers in the well occupy a Fermi-
Dirac distribution. In partial equilibrium, the two populations Joc dp,
. . . U s « _ .
can have different Fermi energies because of inhibited scat o () 1+ exg H(z,p)—Ez (2) kT

tering from one population to the other. Even farther from
equilibrium, the two Fermi energies can depend on position, (2.12
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When the densities are low enough for the Fermi-Dirac A
Shsrtrr(lezl:tfnndtcc)j:r?sirfpLaeCc%dmt;y the Boltzmann distribution, the : Depletion :
y p-Region ~—Layer— n-Region
migT? . I |
Jg(2) = %5y elFr Vol (2.13
. mkaT 3/2 .
”5:(5527) erfd] pyin(2)2/2m kg T] 26! Er (2~ U@ ke,
(2.143
where
erfo0=—= [ et (2.14b
2P . .
The first factor in Eq(2.13 is the usual Richardson factor Junc_tlon
for thermionic emission. The first factor in E@.143 is half Point

the usual thermal density of states of a bulk semiconductor.

If no phase space is excludgdo that p,,,(2)=0 and | |
erfcx)=1], thenng; andn, each are half the density of Barrier '+ Well i Barrier
carriers in a band whose edge islafz) and whose Fermi : :
energy iSEf . The exclusion makes a profound difference, : :
however. To show this, we work to first order kgT/V, ) |
(which is always small for quantum wells of practical inter- : " :
es) and retain the first two terms in the large argument ex- — EF [
pansion of the complementary error funcfibn : :
1 |
1 2 1 I =
~— o X1 B i
erfa(x) y 7Te (1 vk EC l____f T |
Using the definition ofp,,y(2), this gives T
2
ni:mszT \/ m el EF (2~ Vol/kgT. VO
072703 N 2[Vo+ksT—U(2)]
(2.15 l
The average velocity is | (b)
{ 1
Jo (2) 2[Vo+ksgT—U(2)] ‘
(=22 . (218 0 w
Ny (2) m z

which is the velocity of a particle witle,=Vy+kgT. The

proportionality ofn, (z) to the inverse velocity is expected  FIG. 3. Quasi-Fermi energies versus positior(dha semicon-
classically for a beam of particles whose speed varies. Equaluctor p-n junction, where the two quasi-Fermi energies describe
tion (2.13 is exactly the usual form for thermionic emission electrons and holes, ar{)) a quantum well where the two quasi-
current’>!8 Equations(2.13, (2.15, and(2.16 demonstrate Fermi energies describe right-going and left-going electrons.

that the assumption of a quasiequilibrium distribution func-

tion in a restricted phase space gives a reasonable descriptifi@m one population to the other. If the mechanisms for do-
of particles of lowz kinetic energy &kgT) accelerated by a  ing this are so weak that equilibration does not occur during
strong potential drop/, at the edge of the well and then the traversal time of the well, some measure of the Fermi-

acted upon by a potenti&l(z) in the well itself. level difference between the two reservoirs will persist into
the well.
IIl. BOLTZMANN EQUATION The situation is analogous to that of electrons and holes in

a p-n semiconductor junction. In p-n junction under bias,

A fundamental aspect of transport of mobile carrighe  the two types of carriers may have different quasi-Fermi en-
3D population across the wells is that carriers injecteczat ergies until carrier generation and recombination equilibrate
=0, traveling towards the right, have come out of a reservoithe two populations. A sketch of the quasi-Fermi energies for
whose Fermi energy may differ from that of the other reser-electrons and holes in@n junction under bias and a sketch
voir, which, atz=w, injects the carriers traveling towards of the quasi-Fermi energies for the left-going and right-going
the left. Equilibration of these two populations of traveling electrons in a quantum well under bias have the same form,
carriers will occur only via events that can transfer carriersas illustrated in Fig. 3. In the junction itself, there is insuffi-
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cient time for the electron and hole populations to equilibrate of n“ n7\ fg(p)

and the two quasi-Fermi energies separate there. In the re- —| =|—=+—= —, (3.409
. . . : . L ot /. T T n

gions adjacent to the junction, generation and recombination in

equilibrate the two populations and the two quasi-Fermi en- B B e
ergies coalesce. In the quantum well, the particles in the well (f” ) _ ( n~ n ) fo (P)
in

have been accelerated to high speed and scattering is inef- ot T n (3.4d
fective in equilibrating the two populations. In the regions

adjacent to the wells, the particles are traveling more slowlylntegrating the transport equati¢8.1) over all momenta in

and scattering from the forward to the back direction carthe appropriate allowed region of phase space and using the

take place, equilibrating the two populations. scattering expressior(8.4) gives
To construct a Boltzmann formalism for this situation, N .
two particle distribution functiond™ and f~ are used to 6L+1J+:” —n (3.59
describe the carrier distributions in the two separate allowed at 9z T '
regions of phase space. Each of these distributions separately
satisfies a Boltzmann equation n~ 4 n“—n-
. . et T (350
of= [oH 9 oH o\ , [ofF
gt (a_pz Jz dz ﬁ_pz) _<7) ol B \where the fluxes* andJ are given by
The collisional derivative is the sum of a scattering out term N 3 .
and a scattering in term J (Z,t)Efp - .(Z)d p V.f7(z,p,1), (3.6a
af* af= af*
(7 :(7) ‘(7) : 32 I (2= P Vi
coll in out LA B p Vv (Z,p,t). (3-6b)
pz< pmin(z)

We assume that the scattering probabil(p—p’) 0 1he technique for evaluating the fluxas is similar to that

be used in the Boltzmann equation is of the relaxationa|;seq to evaluate the fluxes in bulk semiconductdi€ The
fo”‘?' Wh'.Ch means tha}t. after scattering, the d|str|bu.t|on Oftransport equation fof* is solved neglecting both the time
particles is a quasiequilibrium one at the local density. Letyenandence and scattering into or out of the distribution be-

p- andp’ be the notation used to indic;ate in which of the .5 ;se these possibilities are already included in the continu-
two allowed regions of phase spae@ndp’ are located. On iy equations(3.5. The transport equatiof3.1) then be-
the assumption that scattering from one region to the other isomes

much less frequent than scattering within the same region,

the scattering probability to be used in the Boltzmann equa- g U o 1\ . fo
tion is 255" 72 &pz+ 7-* f =5 (3.7
+ !
W,(p,—pl)= 1 fo(p") (3.3  This equation is linearized by settifg =5 + 6~ and as-
2 ot nt (2 suming that the scattering term is larger than the convective
flow term. This gives
.o 1 fa(p)
W (pi—pl)=—=——=, (3.3b JEZ ofZ
T n(2 str=—rtv, — 2 (3.9
f+ ’ i 9z aEE
Wz(p—ﬂp;)=i_w, (3.30  The change in the distribution function must produce no
T N2 change in the particle density. This happens automatically
1 f2(p) for bulk semiconductors where the integration of KE8.8
W,(p_—p.)=— Ofp , (3.30) over all momentum space causes the integral to vanish by
T N (2) symmetry. It does not happen here because the integrand for

each of the function$f* extends only over a part of mo-
egiona) and backward(interregional scattering, respec- mrv]ant.um sp?ce '”iWh'Ch the ;]ntegfrandid_ogsdnot chdange sign.
tively. These two are vastly different, with' /7~ <1. The integral of6f~ can vanish only i is independent of

The scattering terms in Eq3.2) can be evaluated using Z N such a'cgseafi.vanishef identically and” andn*
the probabilitiesW,(p—p’), are the explicit functions oEg given in Egs.(2.11) and

(2.12. We can therefore rewrite Eg&3.5) in the form

wherer" andr~ are the scattering times for forwafihtrar-

f=(p), ont  GEE 93" n —n* 20
—+ = .
(3.4a a9z JEF T (3.99

1
—+ —
7'Jr T

(ﬂft) /fi N —
= fdp (P)W(p—p')=

out

I« an~ JEf 93 nt—n~
— = dp fA(p )W,(p'—p), (3.4b — —~
(M)m %f p'tA(p )W,(p'—p), (34D T (3.9b
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The three left-going distributions, corresponding to re-
% flected, injected, and equilibrated particles as described

% VotUw) r————————————— = v,+Ue above atz=w, are

L =

% Vo '—7-—~—:—;_’— fren= 0(—P2) 6[H(W,p) = Vo] [ Vo+ U(W) —H,(w,p)]
m

5 T « 2 1

3 Vy+U(2) (2mh)3 1+exp{[H(w,p)—E; (W) ]/kgT}’

g

(&

/l (429
ol Uz |

finy= 0(—P2) 6 H,(W,p) = Vo—U(W)]

Barrier | Well : Barrier
0 w 2 1
>< 3 1
. (2h)3 1+exp{[H(W,p)— Er(W) 7Kg T}
(4.2b
FIG. 4. Division of the right-going and left-going carriers into
two groups, according to the boundary conditions they must satisfy ~ fq = 6(—p,) 6[H,(w,p)— Vo]
at the edges of the well.
o 2 1
in which EZ (z,t) are the unknowns. To make the solution (27h)* 1+exp{[H(w,p) — Eg (W) ]/Kg T}’
unique, the value€; (0) and Ef (w) must be specified. (4.20
Thermionic emission theory provides the way to specify ) N ) ) -
these boundary conditions. Equating the equilibrated density to the two partial densities,
3p f- 3p £ 3p f-
IV. BOUNDARY CONDITIONS: THERMIONIC EMISSION f d°p f,eﬂ+f d°p fini—J d°p fo (4.3

Thermionic emission theory is based on the idea that thgyhich determines the Fermi ener@y (w).

carriersle_avingfthe _half spaces on both sides of a potential Equations(4.1)—(4.3), plus perhaps an initial condition,
step are in equilibrium distribution's:'® We assume that the are sufficient boundary conditions to use with the transport
carriers leaving the barrier region and entering the well at equations(3.9) when the Fermi energies in the barriers are
=0 are in an equilibrium distribution having a Fermi energy known. However, the Fermi energies of the particles in the
Er(0). Using the Boltzmann equatid@.1), it can be shown  parriers are usually not known at the outset: They are usually
that in the well, the incoming distribution at the left-hand optained in a self-consistent calculation of currents and den-
side has the same Fermi energy as the outgoing carriers Hities throughout the devid8.Such a calculation makes use

the barrier. This gives the boundary condition of the expression for the currents at the edges of the well and
so the distribution of particles transmitted from the well into
Ef (0)=Eg(0). 4.2 the barrier az=w is needed. It is

fr =6(p,) 0[H,(w,p)—Vo—U
The situation at the other side of the well is somewhat " (P2) B[ Ho(W,p) = Vo= U(W)]

more complex. We assume that the carriers leaving the bar- 2 1

rier region have a Fermi enerdy(w). In Fig. 4 it is clear X 2773 1+ exo [H(W.0)—EZ (W) VKaTL "
that the incomingdleft-going) distribution atz=w consists of ( ) AIH(W.p) ~EF (W)]/keT}

two separate parts. FOE, lying betweenV, and V, (4.9

+U(w), the inc_oming distribution contains partic_les that tpe currents across the edges of the well can then be ex-
had been traveling towards the right and have since bee

reflected by the edge of the well. Sincezatw there can be [5‘ressed in terms of these distribution functions as

no current in this energy range, the Fermi energy of this part

of the left-going distribution must equal the Fermi energy of J(O)If d®p sz+[EE(O)]+f d®p V,f[EF(0)],
the right-going particles, namelyEf(w). For E,>V, (4.53
+U(w), the incoming distribution is injected from the bar-

rier. This part of the distribution has the Fermi energy of the

particles in the barrier, namelfg(w). As the two parts of J(W)=J dp sztrans+f d®p V,fi. (45D
the left-going distribution move into the well, rapid forward

scattering blends them into a single equilibrium distributionThese expressions appear to be more familiar when they are
with a single Fermi energy. In the limit that” is very small, evaluated for a nondegenerate distribution

this blending will be complete very close to=w and so

E;(yv) is_de}e_rmined by the requirement thaF _the_density of 3(0)= mkgT? e Vo/keT( oEF(0)keT _ gEr (0)/ksT)
particles inf is equal to the sum of the densities in the two 27h '
parts of the left-going distributions just described. (4.6a
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assumed to be very weak. This will have little effect unless
capture and emission is an even weaker process. We rewrite
Eq. (5.1) in a form that makes use of the relationship be-

migT?

J(w) = 52 e—[V0+U(W)]/kBT(eE;(w)/kBT_eEF(w)/kBT).

(4.60 tween the flux, the density, and the averageelocity,
This expression is, except for the procedures by which the
Fermi energies of the mobile carriers are fixed, the same as ont z?E,J:r aJt  S(zt)  JT[EZ(z,1)]
that used by Grupen and Hess in E) of Ref. 16c). oz Ef 2 rel2(V; (2)) (23
In the nondegenerate limit, the three densities in(B®) P z
atz=w are n B 2 _SzH I (Er@b)] 20
A 1 e YWikeT i 2 (V) 2P
Nret=5 253 € °F "~ VolkeT
2mh Because emission of mobile carriers comes primarily

(Vow))  (V0)) )"

(4.78 from the uppermost bound state in the well, we assume that

meBTZ QLEF(W)~Vo—U(w) JikgT the shape and in.tensity of_ the.source function are propor-
(4.7p  tional to the density of carriers in that state,

N[ER(t
MIET2 glEr (W)~VolikgT S(zt)= M

= 4.7
27 (Vo)) @79 (2) is the wave function for the uppermost bound state and
The equation that determin& (w) is then N(EE) is the occupation of the associated transverse states,
assuming that their occupancy can be characterized by a
eFr W/keT— (1 — a)eE,?(w>/kBT+aeEp<w>/kBT, (4.89  bound-state Fermi energy, is the emission time. In equi-
librium, there will be no time dependence. The two quasi-
(V,(w)) - Fermi energie€ ¢ will be equal and indepegdent of position.
aE( (VZ(O)>) B (4.80  The two fluxes will be equal and opposife2 will have the

same common vaIuE(,l as the other two. From Eq$5.2)
When there is no potential rise across the welz1 and  and(5.3), it follows that

Er (w)=Eg(w). When there is a large potential rise across

T 2a T ()

(5.3

Te

No

the well, «=0 andE¢ (w)=E (w). These limits also hold J*(ER) B ¥(2)>N[E] 5.4
in the degenerate case. (V;(2))Teapl2) 27, ' 6.4
V. CAPTURE AND EMISSION Inserting Eq.(5.4) into Eq.(5.2) gives
Capture and emission processes may be regarded as IW—‘_+ JEF 33*
elastic scattering events in which carriers are transferredgt dz JEZ
back and forth between the mobi(8D) population of the . o
well and the bound2D) population of the wells. From the B P(2)>N[ER(1)] J[Ef (zt)IN[EP]
standpoint of the mobile carrier equatiof89), they are an - 27e - JTEQIN[ER(1)] /) (5.53
additional sink and source of carriers. The transport equa-
tions are now on~  JEf 93~
ant  IEL(z,t) 93" B n~—nt n*(zt) N S(z,t) at dz JEg
at iz JE; T Toapl Z) 2 ¥(z)®N[EL(t)] ( J‘[E;(z,t)]N[Eg]) 550
5.1 = - . )
c18 27, T ETINEERD)]
on”  IEg(z1) 93 n“-n" n(zt) Szt In the nondegenerate limit, one can show that
ot 0z JEE T Tcap(Z) 2 et 0
(5.1b _ J7[Er (U IN[EF — _e[Eé(z,w—EE(t)]/kBT_
. . : : JF[ERINLER(D)]
Teapt (2) is the capture time for transferring carriers from the (5.6)

mobile population to the bound one a8k,t) is the rate of
emission from the bound state to the mobile population. It isNe assert that this form is the correct one to use even in the
assumed that half the carriers will be emitted to the right andlegenerate limit, although it requires a better derivation than
half to the left. the one presented above to obtain it. The reason for this
There are now two mechanisms for equilibrating theassertion is given in the Appendix. It makes use of standard
populations of left-traveling carriers and right-traveling car-expressions for transition rates for Fermi statistics and de-
riers, namely, direct cap-to-cap scattering and capfinoen  tailed balance considerations that relate transition rates in the
one distribution followed by remission(to both distribu- forward and backward directions.
tions). In the absence of precise knowledge of the various Equations(5.5 and(5.6) are the transport equations that
rates, we ignore direct cap-to-cap scatter, which we havblave to be solved for the gquantum well in which mobile
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carriers can be captured to and emitted from a bound state tondition on the use of Eq$3.7) and (3.9). It should be

the well. The functions1™ depend explicitly onz and on interpreted as stating that these equations are valid to the
E; and are given by Eq2.12 (degenerate caser (2.15 extent that the change df: over the forward scattering
(nondegenerate caseThe functionsJ* depend explicitly ~mean free pattr*V, can be ignored.

only onE¢ and are given by Eq2.11) (degenerate caser

(2.13 (nondegenerate cgs@hus Eq.(5.9) is to be regarded ACKNOWLEDGMENT

as a pair of equations fd&¢ (z,t). The boundary conditions

are Eqs(4.1) and(4.3) (degenerate caser (4.8 (nondegen- It is a pleasure to thank M. A. Alam for discussions of

erate case The coupling between the two equations arisesearly versions of this paper and for pointing out that one of
he intermediate assumptions in it has been confirmed by

via the bound-state occupancy and via the boundary condf! ical K fum t 1IR3
tion atz=w, namely, Eq(4.3) or (4.9), if there is a potential numerical work on guantum tunneing.
drop across the well.

The bound-state occupan@yr, equivalently E2) must be APPENDIX: CAPTURE AND EMISSION RATES
determined by a rate equation that describes the transfer of ~gnsider two types of statés=b,m (bound and mobile
carriers between the bound state and all populations with,5t can hold electrons. Let(E;) be the density of states of
which it communicates. This certainly includes the mobiletypei at energyE; , f.(E;) be the fraction of states of type
states in the well, but it may.mcIUQe others. For ex_amplei occupied atE;, S;(E;—E,) be the transition probability,
carriers in the bound populqtlon might recqmblne d'reCtly.’ni(Ei)=9i(Ei)fi(Ei), andn(E))=g,(E)[1-f,(E))]. The
either in a spontaneous or stimulated emission process, Withe ‘equation for the mobile carriers, taking into account the
carriers of opposite sign in the same well. Alternatively, if pg i principle, is
the state discussed so far is not the lowest-energy one, then ’
carriers may transfer between it and the lower-energy bound dn(Ep) L
states from which the recombinations actually occur. These T=f Np(Ep) Som(Ep— Em) Nm(Em) dEy
considerations, which will differ from case to case, should

present no special problems, especially in light of the _
progress already made by Grupen and co-workers. —f Nin( Em) Smb(Em— Ep)Np(Ep)dEy .
VI. SUMMARY (AL)

. . Similarly, the rate equation for the bound carriers has the

\_N_e have p_res_ent_ed a pair of coupled equations for qeéame form with the subscripts and b interchanged. The
scr;bmg the.dlstnbunon and current in a quantum well N tal number of carriers of typeeis
which there is a healthy rate of exchange between the mobile
(3D) population in the well and the bour@D) population.
To capture the essential physics of this situation, it was nec- Ni=f n;(E;)dE;.
essary to abandon the drift-diffusion formalism and to pro-
pose a formalism that is in the same spirit as the flux methodhys
used by McKelvey, Longini, and Brod¥, Shockley?! and
Alam, Tanaka, and Lundstrofd.The quantum-well situa- dN, _
tion, in which injected particles are accelerated to high speed T:f f dEpdEmnp(Ep) Som( Ep— Em)Nim(Em)
on entering the well, provides a somewhat clearer physical
justification for the method than exists in the original flux ( Nm(Em) Smb(Em— Ep) Np(Ep)
method papers. T :

A key feature of quantum-well transport turned out to be Mo Em) Sorm( B Em) Mol Ep)
the difficulty of changing the number of particles in the left- The first term in the integral in EqA2) is the rate of emis-
going and right-going parts of momentum space, where lefsion from the bound states to the mobile population; the
and right refer to the direction across the well. There is ncsecond is the rate of capture from the mobile states to the
such difficulty with respect to transport parallel to the planebound population, that is,
of the well. For this reason, ordinary drift-diffusion theory
can be used in the parallel direction. The only change needed dNp,
from drift-diffusion theory as used in the bulk is the value of dt
the mobility and diffusion constants to be used in the well.
That change comes about because the scattering time in the Assume that the mobile population is in a Fermi distribu-

well is shorter than in the bulkbecause of the increased tion with a Fermi energf™ and that the bound population is

density of final states at the lowest allowed energy in than 3 Fermi distribution with a Fermi enerds? . Then
restricted momentum space, compared to a lowest allowed

energy of zero in the bujk There may be experimental data n(E
; ; : ; Np(Ep) [Ep—E2V/kgT
relating to this point. Such data would, by its nature, also m=e b ERETB (A3a)
include a reduction in mobility caused lgr attributed to bl =b
additional interface scattering. E

Note added in prooflust before Eq(3.9), the argument l“( m) — e [EmEFl/kgT (A3b)
that Ef must be independent & is really a consistency Nm(Em)

(A2)

=E-C.
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In equilibrium, the two Fermi energies are equal and, accord€learly, that is not correct, but if this principle were used as
ing to the principle of detailed balance, the contents of thea heuristic guide, we could regard E#2) as a local equa-

large parentheses in EA2) must vanish. Using EqA3),
this condition requires that

Smp(Em—Ep)

SmbiEmT 7T o[Em EplikeT
Som(Ep—Em)

(Ad)

We assume that the system is not so far out of equilibrium as
to affect the transition rates. In that case, the large parenthe-

ses in Eq(A2) can be evaluated using Eq#&3) and (A4),

Nm(Em) Smp(Em— Ep) nb(Eb)

_ lEP-ERVkgT
m( Em) Som(Ep—Em) Np( Eb)

(A5)

tion, in which ny(Ep), ny(E.), and EF were all
z-dependent quantities. We would then repl&ge—E¢ (2)
on the right-hand side of EqA5), providing thereby the
heuristic justification for the use of Ed5.6) in the text.
Furthermore, with the identification

f dEnSpm(Ep— Em)Nin(Em) = (AB)

1
27¢(Ep)’

we have

dN Np(Z,Ep)

By AT

_(1 e[EF (2)— EF]/kBT)f dEb >

The spirit of the classical development used in the paper i§he approximation made to go from E@7) to Eq. (5.5
that everything happens locally with no regard to coherenceand (5.6) neglecting the energy dependencerpf
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