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Dynamical vortices in superfluid films

Daniel P. Arovas and Jose´ A. Freire
Department of Physics, University of California at San Diego, La Jolla, California 92093

~Received 20 May 1996!

The coupling of superfluid film to a moving vortex is a gauge coupling entirely dictated by topology. From
the definition of a linking number, one can define a gauge fieldAm, whose~211!-dimensional curl is the vortex
three-currentJm, and to which the superfluid is minimally coupled. We compute the superfluid density and
current response to a moving vortex. Exploiting the analogy to~211!-dimensional electrodynamics, we com-
pute the effective vortex massM ~v! and find that it is logarithmically divergent in thev→0 limit, with a
constant imaginary part, yielding a super-Ohmic dissipation in the presence of an oscillating superflow. Nu-
merical integration of the nonlinear Schro¨dinger equation supports these conclusions. The interaction of vor-
tices with impurities coupling to the density also is discussed.@S0163-1829~97!08501-9#
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I. INTRODUCTION

In this paper we investigate the effective action and
namics of vortices in compressible superfluid films at z
temperature. In anincompressibletwo-dimensional super
fluid, vortices behave as massless charges in a uniform m
netic field—their motion is along an equipotential, the su
of logarithmic contributions from each of the poin
‘‘charges.’’ 1 The Lagrangian for a charge-neutral system
vortices may be written

L52kr̄(
i
niXiẎi1

r̄k2

2p (
i, j

ninj lnuX i2X j u

wherek5h/m is the rotational quantum,r̄ is the bulk den-
sity ~or superfluid density2!, ni is the integer charge andX i is
the position of thei th vortex. The equations of motion,

X i5
k

2p (
j

~ jÞ i !

nj
ẑ3~X i2X j !

uX i2X j u2
,

preserve the total potential energy of the vortices, which
course is just the kinetic energy of the superfluid. The
equations are first order in time—there is no inertial te
(i(1/2)MiẊ i

2 in L.
In a compressible superfluid, the speed of soundc is fi-

nite. This leads to retardation effects in the vortex dynam
Furthermore, accelerating vortices may radiate phono
leading to dissipation. Both effects are described by a co
plex frequency-dependent mass termM ~v!, derived below.
This physics is present in granular films and Josephs
junction arrays as well.3 The basic idea is to integrate out th
phonons, which represent a bosonic bath to which vorti
are coupled, in the spirit of Ref. 4, and thereby derive
effective action for the vortices alone.4,5

This paper is organized as follows: In Sec. II we deri
the analog of backflow for moving vortices in superflu
films. In Sec. III we review the correspondence between
perfluid dynamics and electrodynamics in two space dim
sions and show how the results of Sec. II may be obtained
a Lorentz transformation of a static vortex solution. Se
interaction effects, vortex mass, and dissipation are discu
550163-1829/97/55~2!/1068~13!/$10.00
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in Sec. IV. In Sec. V, we report on the results of numeric
simulations of a vortex in an oscillating superflow, fro
which we can extractM ~v! and compare with theoretica
predictions. Section VI discusses the interaction of vortic
and dynamical impurities.

II. ANALOG OF BACKFLOW
FOR DYNAMICAL VORTICES

Consider a vortex moving in a~211!-dimensional Bose
fluid. The only information we have about the vortex is th
it is a point object which accrues a geometric phase of 2p in
the many-body boson propagator each time it encircle
boson. We write the vortex current density as6

Jm5ckE dt(
l
nl
dXl

m

dt
d~3!

„x2Xl~t!…,

wheret parametrizes the vortex ‘‘world lines’’X l
m~t!, which

are one-dimensional filaments running through~211!-
dimensional spacetime. The many-boson Lagrangian is w
ten

L5
1

2
m(

i
S dxidt D

2

2(
i, j

v~ uxi2xj u!1Ltop,

where we assume a simple generic interacting Bose fl
~isotropic, single component!. Here,Ltop is the topological
term in the Lagrangian which counts the winding number
the vortices relative to the bosons. This is explicitly writte
in terms of the linking number of their trajectories,7

Stop5E d2xdtLtop52p\Nlink5
1

c E d2xdt jm
emnl]n

]2
Jl

[E d2xdt jmAm , ~1!

where the boson mass current density isj m5~cr,j !, and
where]n/]2 is a formal expression for a nonlocal operato
Vortex current conservation,]mJ

m50, allows one to con-
struct a gauge potentialAm whose curl isJm,7
1068 © 1997 The American Physical Society
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55 1069DYNAMICAL VORTICES IN SUPERFLUID FILMS
Jm52cemnl]nAl, ~2!

and thereby express the linking number as a local interac
between the boson current densityj m and the vortex gauge
potentialAm .

The time-dependent Hamiltonian for the bosons in
presence of moving vortices is thus

H~Am!5H~0!2E d2x jm
p ~x!Am~x,t !

1
1

2 E d2xr~x!A2~x,t !, ~3!

wherer is the boson density andj p is given by

j 0
p~x!5cr~x!5mc(

i
d~x2xi !,

j p~x!5
1

2 (
i

@pid~x2xi !1d~x2xi !pi #.

The gauge-invariant boson current densityj m is then written
8

j m52
dH
dAm 5 j m

p1rAm~12dm0!.

At this point we have reproduced the well-known analo
between a rotating superfluid and a superconductor in a m
netic field.9 What is new here is the explicit gauge-covaria
time-dependentdescription, through Eqs.~2! and ~3!, of the
coupling of a superfluid to vortices, which are quanta
rotation.

The linear response of the boson system is given by
Kubo formula,

^ j m
~1!~x,t !&5E d2x8dt8Kmn~x,t;x8,t8!An~x8,t8!,

where

Kmn~x,t;x8,t8!5
i

\
^@ j m

p ~x,t !, j n
p~x8,t8!#&0Q~ t2t8!

2^r~x,t !&0dmn~12dm0!d~x2x8!

3d~ t2t8!.

The spatial part ofKmn may be written in terms of longitu
dinal and transverse components in Fourier space, viz.

Ki j ~q!52q̂i q̂ jK i~q!2~gi j1q̂i q̂ j !K'~q!.

Gauge invariance,Kmn(q)q
n50, may be used to relate th

00 and 0i components toK i :

K00~q!52
c2uqu2

v2 K i~q!, Ki0~q!52
cqi

v
K i~q!.

At zero temperature, the single-mode approximation~SMA!
gives for the density response10

K00
SMA~q!5

mc2r̄

\
S~q!H 1

v1cuqu1 i e
2

1

v2cuqu1 i e J ,
n

e

g-
,

f

e

where r̄5^r& is the average mass density andS~q! is the
ground-state static structure function. Note thatK'

SMA(q)5 r̄,
since the phonon is purely longitudinal. Recall th
limq→0\uqu/2mcS(q)51.10

Static Vortex.We choose a gauge in whichA050 and
“3A5nkd~x!ẑ, which is satisfied by A~x,t!5
nk ẑ3x/2puxu2. Now A~q,v!52ink~ẑ3q/uqu2!•2pd~v!
is purely transverse, so the density response vanishes
the current density response gives the us
^j ~1!~x!&5nkr̄ ẑ3x/2puxu2. The absence of a density variatio
in response to the vortex seems to contradict the result
dr(r )/ r̄52n2KSr̄\2/2m2uxu2 far from a vortex of strength
n, whereKS is the adiabatic compressibility. However, th
n2 dependence tells us that this is anonlinearresponse. The
second-order response is formally written

^ j a
~2!&5E d2x8dt8E d2x9dt9Rabg~x;x8;x9!Ab~x8!Ag~x9!.

Rabg[Rabg
I 1Rabg

II may be divided into two contributions
The first,Rabg

I , is the second-order nonlinear susceptibil
arising from the linearj m

pAm coupling inH. The second,
Rabg
II , is the linear susceptibility arising from the~1/2!rA2

term—this is given by the density-density correlation fun
tion, so

Rabg
II ~x;x8;x9!52

1

2c2
K00~x,t;x8,t8!d~x82x9!

3d~ t82t9!dbg~12db0!.

It is easy to check that the nonlinear response arising fr
Rabg
II exactly reproduces the asymptotic density variation d

to the vortex, and thatRabg
I does not contribute toO~1/uxu2!.

Moving vortex.Consider now a vortex moving with uni
form velocity:X5vt. We choose the gaugeA050 and

A~q,v!52 inkF ẑ3q

uqu2
1

q

vuqu2
ẑ•v3qG•2pd~v2q•v!.

Note that this is no longer purely transverse, so there will
a linear response of the density to the moving vortex:

^r~1!~q,v!&58inp2r̄S~q!
c

uqu
ẑ•v3q

~cq!22~v•q!2
d~v2q•v!.

Further assuminguv/cu!1, we obtain, at large distances

^r~1!~x,t !&5
nkr̄

2pc2
ẑ•v3x

ux2vtu2
, ~4!

which is identical to the result obtained by Duan.12

The current density in the presence of a moving vortex
similarly computed and found to be

^ j ~1!~x,t !&5
nkr̄

2p

ẑ3R

R2 H 12
v2

2c2
@~ v̂•R̂!22~ v̂3R̂!2#J ,

valid to orderv2/c2, with R5x2vt.

Contrast with impurity backflow

It is important to contrast this behavior with the standa
picture of backflow in neutral systems. A local perturbati
coupling to the superfluid as
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1070 55DANIEL P. AROVAS AND JOSÉA. FREIRE
H85E d2xr~x!U~x,t !

leads to a superfluid response10

^r~1!~q,v!&52
1

c2
K00~q,v!U~q,v!,

^ j ~1!~q,v!&52
1

c
Ki0~q,v!U~q,v!êi .

Using the SMA response functions, and assum
U~x,t!5U0d~x2vt!, one obtains

^r~1!~x,t !&52
r̄U0

c2
d~R!, ~5!

^ j ~1!~x,t !&52
r̄U0

2pc2
v
R2 $v̂22~ v̂•R̂!R̂%. ~6!

The density response is purely local, in contrast to that of
~4!, and the current, which vanishes in the static casev50, is
dipolar and falls off as 1/R2. The superfluid-vortex gaug
coupling leads to a much different linear response.

III. ANALOGY TO QED 211

These results may be understood in terms of the w
known correspondence between~211!-dimensional super-
fluids and quantum electrodynamics,13–17which we now re-
view. One starts with the standard Ginzburg-Land
Lagrangian density in the presence of an external gauge
Zm,

L@C* ,C#5C* ~ i\] t1eZ0!C2
1

2m US \

i
“1

e

c
ZDCU2

2lS uCu22
r̄

mD 2. ~7!

For a superconductor,Zm would represent the electromag
netic gauge potential, while in our case it can be used
describe an externally imposed current. At this point,
‘‘charge’’ e and velocityc are arbitrary parameters; we wi
takec to be the speed of sound, defined below. One sub
tutes C[Ar/meiueix, where u~x,t! is a smooth ‘‘spin-
wave’’ field andx~x,t! the singular vortex field, which satis
fies Jm(x)5(\c/m)emnl]n]lx. This gives

L852
\r

m S ] tu1] tx2
e

\
Z0D2

\2r

2m2 S“u1“x1
e

\c
ZD 2

2
\2

8m2r
~“r!22

l

m2 ~r2 r̄ !2

after subtracting a time derivative term. Decoupling t
~“u1“x1eZ/\c!2 term, one arrives at

L952
\Q

m
•S“u1“x1

e

\c
ZD2

\r

m S ] tu1] tx2
e

\
Z0D

1
Q2

2r
2

\2

8m2

~“r!2

r
2

l

m2 ~r2 r̄ !2.
g

q.

l-

u
ld

to
e

ti-

Integrating over the spin-wave fieldu~x,t! now generates the
constraint“•Q1]tr502Q is the mass current—which i
satisfied by introducing the gauge fieldAm5~A0,A!, where

~r2 r̄,Q!52
r̄

c
~ ẑ•“3A,cẑ3“A01 ẑ3] tA!.

The coupling of the vortex current to this gauge field is d
to the term

\

m
~Q•“x1r] tx!5

\r̄

m
emnl~Am1am!]n]lx1]~••• !

5
1

c
r̄Jm~Am1am!1]~••• !,

where thenondynamicalgauge fieldam generates a static
magnetic field, i.e.,

e52“a02
1

c

]a

]t
50, b5 ẑ•“3a52c,

which is satisfied by the gauge choicea5~1/2!c(y,2x),
a050, for example. The coupling between the gauge fie
Am andZn is then given by

e

m S rZ02
1

c
Q•ZD5

er̄

mc
emnlZm]n~Al1al!.

Finally, one introduces the field strength tensor

Fmn5]mAn2]nAm5S 02Ex

2Ey

Ex

0
B

Ey

2B
0

D ,
and obtains

Leff52
r̄

4
FmnF

mn2
r̄

c
Jm~Am1am!1

er̄

mc
emnlZm]n

3~Al1al!1
r̄

2c

BE2

~12B/c!
2

r̄

8

~j“B!2

~12B/c!
, ~8!

wherec5A2lr̄/m2 is the speed of sound andj5\/mc is the
coherence length. NoteK s

o5m2/2r̄2l is the bare compress
ibility.

The Lagrangian densityLeff describes ‘‘charged’’ par-
ticles ~vortices! moving in a background ‘‘magnetic field’
2cẑ, minimally coupled to a dynamical gauge fieldAm @note
that this is not the gauge field defined in Eq.~2!#. That the
background magnetic field is the average boson density i
course due to the fact that the vortices see the boson
sources of geometric phase. This was recognized by Hald
and Wu,18 who computed the Berry phase accrued by a v
tex as it executes adiabatic transport in the superfluid film
the vortex position isj, and the adiabatic wave function i
uC&, then

gC5 i R
C
dj•^Cu“juC&522p

r̄

m
SC ,

whereSC is the area enclosed by the pathC along which the
vortex travels. Note that this immediately tells us that vor
ces experience a Lorentz force when moving through a
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55 1071DYNAMICAL VORTICES IN SUPERFLUID FILMS
perfluid. In the nonrelativistic limit, their dynamics can b
described in terms of vortices being advected in each oth
flow field, or as charged particles in a background magn
field moving under the influence of each other’s elect
field. A vortex-antivortex pair, for example, behaves like
exciton in a magnetic field.

The linearized, long-wavelength Lagrangian density
obtained by dropping terms inLeff which are higher than
second order in the field strength or which involve high
derivatives acting on theAm field. One is then left with~2
11!-dimensional quantum electrodynamics,

LQED52
r̄

4
FmnF

mn1
r̄

c S em emnl]nZl2JmD ~Am1am!,

in the presence of a uniform background magnetic fie
Note that the gauge fieldAm couples to a sum of the~quan-
tized! vortex current densityJm and the~not quantized! ex-
ternally imposed ‘‘current’’ (e/m)emnl]mZl , which could
represent a global rotation of the system.9 When no vortices
are present~Jm50!, one can integrate out the gauge fieldAm

to obtain

S5
r̄

2 S e

mcD
2E d2kdv

~2p!3 FZm~2k!S gmn2
kmkn

k2 DZn~k!

1
er̄

m
Z0~k!~2p!3d~3!~k!G ,

wherek25kmkm5c22v22k2, and settinge/mc[1 one can
read off the response tensor

Kmn~k!5 r̄S gmn2
kmkn

k2 D .
WhenZm50, one has a theory of vortices minimally couple
to the gauge fieldAm, and the action extremizing equation
for the fields are Maxwell’s equations:]mF

mn5Jn/c, or

“•E5
1

c
J0,

ẑ•“3E52
1

c

]B

]t
,

“B3 ẑ5
1

c
J1

1

c

]E

]t
.

~Note “•B5]B/]z50, trivially.! For the vortices, one ha
the Lorentz force law,

dX l

dXl
0 5

ẑ3E~X l !

c2B~X l !
, ~9!

which says that the vortices move perpendicular to the lo
electric field, with a magnetic-field strength ofc2B which is
the sum of a uniform background contribution~the average
boson density! and a dynamical contribution~due to fluctua-
tions in the boson density!.
r’s
ic

s

r

.

al

Lorentz transformations

To investigate the effects of moving vortices, it is use
to appeal to the Lorentz invariance ofLQED and transform
static solutions.19 Recall that in~211! dimensions, the Lor-
entz group has three generators, corresponding to two bo
and one rotation. The general boost transformation is writ

Ln
m5~gL!mn5S g gbx

gbx

g21

b2 bx
211

gby

g21

b2 bxby

gby

g21

b2 bxby

g21

b2 by
211

D
~10!

with b5v/c andg51/A12b2. Applying the Lorentz trans-
formation z8m5L n

mzn to the coordinates and field streng
tensor gives the familiar results

x805gx01gb•x

x85gx0b1
g21

b2 ~b•x!b1x

and

E85gE2
g21

b2 ~b•E!b1gBẑ3b

B85g ẑ•b3E1gB.

We may now transform solutions

$xm,Jm,Fmn%→$x8m,J8m,F8mn%.

A static charge 1 vortex generates an electric fi
E5kx/2puxu2 and a magnetic fieldB50. Upon applying the
boost of Eq.~10!, we obtain~dropping primes!,

E5
gk

2p

x'ẑ3b̂1~xi2bx0!b̂

x'
21g2~xi2bx0!2

,

B5
gk

2p

bx'

x'
21g2~xi2bx0!2

, ~11!

where we have writtenx5xib̂1x'ẑ3b̂.
Now the rules for translating fromE andB to j andr are

as follows:

j5 r̄ ẑ3E, r5 r̄~12B/c!.

We now see that the linear-response formulas@Eq. ~4! and
accompanying discussion# exactly reproduce these results
lowest order inb. The vortex velocity is the the ratioj /r,
which is the content of the Lorentz force law, Eq.~9!.

A tale of two vortices

Consider now an elementary vortex-antivortex pair se
rated by a distancea. We chooseX6(t)5vtê16(1/2)aê2 .
Computing the electric and magnetic fields at one of
singularities due to the presence of the other is easily acc
plished with the Lorentz transformation. One obtains
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E~X6!52
gk

2pa
ê2 , B~X6!52

bgk

2pa
.

But if in the moving frame the vortices are stationary, w
must have thatcb5dX6/dt, which leads to the result

b~a!5S j2

a21j2D
1/2

.

Thus, at large separations the pair’s velocity iscj/a, but at
smaller separations the velocity asymptotically approac
the sound speedc. We stress that this is true for the mod
defined byLQED, where the vortices have no core. The na
expressionv(a)5cj/a begins to break down at distances
the order ofj, where a proper accounting of the terms n
glected in the QED action must be taken in order to rep
duce the correct core structure.

Superflow and the magnus force

In the above examples, we derived results for a mov
vortex in a stationary superfluid. In this section, we mak
Galilean transformation~the original theory is Galilean in
variant! in order to discuss what happens to vortices in
presence of a background superflow. Starting with
Galilean-transformed Lagrangian density

L5 i\C* ] tC1 i\v•C*“C2
\2

2m
u“Cu2

2lS UCU22 r̄

mD 2,
and proceeding as before, one derives the effective Lagr
ian density

Leff5
r̄

2 F ~E2Bẑ3b!2

12B/c
2B2G2

r̄

8

~j“B!2

12B/c

2
1

c
r̄Jm~Am1am!,

wheream now generates a static electric field as well as
static magnetic field:

e52cẑ3b, b52c.

The Lorentz force due toe is the Magnus force. The vorte
equation of motion is

dX l

dXl
0 5b1

ẑ3E~X l !2bB~X l !

c2B~X l !
.

WhenE~X l!1e50, the forces on vortexl cancel, and it is
stationary.

IV. SELF-INTERACTION, INERTIAL MASS,
AND DISSIPATION

The analogy to electrodynamics suggests that there sh
be an electrodynamic contribution to the mass and reta
tion effects, as there are in~311!-dimensional classica
electrodynamics.20 In the superfluid, this is due to the pho
non cloud carried by the vortex—a polaronic effect. Ho
s

-
-

g
a

e
e

g-

a

ld
a-

-

ever, as we have seen, the coupling of vorticity to superfl
density and current fluctuations is a gauge coupling which
rather different from the local density coupling used in co
ventional polaron theories. Still, this coupling is of the ge
eral form considered in Ref. 4, i.e., an external coordin
~the vortex position! coupled to a bath of oscillators~the
phonons!.

We wish to integrate out the dynamical fieldAm corre-
sponding to the phonon degrees of freedom and obtain
effective action for the vortices. Working in Lorentz gaug
~]mA

m50!, we integrate out the Gaussian fieldAm in LQED by
solving the equations of motion, yielding

Am5
1

c
h21Jm

and an effective action for the vortices of

Seff52
r̄

c3 E d3xE d3x8Jm~x!h21~x,x8!Jm~x8!

2
r̄

c2 E d3xJm~x!am~x!.

The inverse D’Alambertian has the form

h21~x,x8!5
1

2p

Q~x02x802ux2x8u!

A~x02x80!22ux2x8u2

in ~211! dimensions and

h21~x,x8!5
d~x02x802ux2x8u!

4pux2x8u

in ~311! dimensions. Thus, in contrast to the case of th
spatial dimensions, whereh21 vanishes unlessx2x8 is
lightlike, in our ~211!-dimensional caseh21 is nonzero ev-
erywhere inside the light cone.21 The finite sound speedc
leads to retardation effects. One might naı¨vely think that this
would lead to the collapse of the vortex-antivortex pair, sin
the vortex should ‘‘see’’ the antivortex at earlier times a
vice versa. However, although thepotentialsare retarded, the
fields of a uniformly moving charge point to theinstanta-
neousposition of the charge~as we have derived above!, and
so for the special case of a uniformly moving vorte
antivortex pair, there is no apparent time delay.22

The self-interaction part ofSeff for a vortex of strengthn
is

Sself52
n2k2r̄

4pc E
2`

`

duE
0

`

ds@12b~u!•b~u1s!#

3
Q~s2uX~u1s!2X~u!u!

As22uX~u1s!2X~u!u2
, ~12!

where we have takenx0(u)5u as a parametrization of th
vortex world line, andb(u)5dX(u)/du. If the integrand in
Sself were well-behaved and allowed an expansion of
form

Sself5E
2`

`

dtH 2m0c
21

1

2
m1v

2~ t !1•••J ,
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55 1073DYNAMICAL VORTICES IN SUPERFLUID FILMS
then we would associate a rest mass withm0 and an inertial
mass withm1. The remaining terms, involving higher deriva
tives and powers of the velocity, would be negligible in t
Newtonian limit. However, the integral overs in Eq. ~12!
diverges logarithmically, both for large and smalls. The
smalls divergence is remedied by a proper treatment of
core structure, which lies beyond the QED approximati
The larges divergence, on the other hand, is real. In the c
of the parameterm0, this is to be expected, since we kno
the energy of a static vortex diverges logarithmically w
the size of the system, owing to the slow falloff of the cu
rent densityuj u}1/r . In the electrodynamic language, the e
ergy density,E5~1/2!r̄~E21B2!, dies off as 1/r 2 in the vicin-
ity of a static vortex, yielding a logarithmic divergence wh
integrated over the system. In~311!-dimensional classica
electrodynamics, by contrast, the energy density dies of
1/r 4, and there is no infrared divergence. Now we a
whetherm1 is finite. The answer again is no. SinceSself is a
Lorentz scalar, for constantb one has

Sself~b!52A12b2E
2`

`

dt m0c
2,

which says thatm15m0 . As recently emphasized b
Duan,11,12 this may be understood in terms of the dens
variation ^r~1!&}ẑ•v3x/ux2vt u2, which produces a logarith
mically infinite energy shift

DE5
1

2KSr̄
2 E d2x@dr~x!#2.

Similarly, the total momentumP of the moving vortex,

P~1!~ t !5mE d2x
j ~x,t !

r~x,t !
,

diverges logarithmically.12

Frequency-dependent inertial mass

In this section we compute the low-frequency inert
mass of a single vortex and find that it is frequency dep
dent and logarithmically divergent asv→0. We start by ex-
panding the self-interaction contributionSself for a single
vortex:23

Sself52
n2k2r̄

4pc E
2`

`

duE
0

`

ds@12b~u!•b~u1s!#

3F 1s 1
uX~u1s!2X~u!u2

2s3 1••• G
5Sstatic1

1

2
n2E

2`

` dv

2p
M 8~v!v2uX~v!u21••• ,

whereSstatic is action for a static vortex of strengthn. The
quantityM 8~v! is found to be

M 8~v!52mE
d

` ds

s Fcosvs2
12cosvs

v2s2 G
52mH ci~ uvud!1

12cosvd

v2d2
1
sin vd

vd J , ~13!
e
.
e

s
k

l
-

wherem[pj2r̄5p\2/2l is the ‘‘core mass’’ of the vortex,12

and ci(z) is the cosine integral.24 We have introduced an
ultraviolet temporal cutoffd'j/c to regularize thes inte-
grals. This crudely accounts for the core structure of
vortex which lies beyond the approximation afforded
LQED. The important point is that theinfrared divergence of
~S2Sstatic! is suppressed by the finite frequencyv, leading to
a low-frequency massn2M 8~v! which diverges logarithmi-
cally asv→0:

M 8~v!5m$2 ln~ uvud!2~C1 3
2 !1 11

24v2d21•••%,

whereC50.577215... is Euler’s constant.
The effective LagrangianLeff does contain a term

2~1/8!r̄(j¹B)2 which is dropped in the long-wavelength e
fective theory but is still quadratic in the field strengths.~It
also breaks Lorentz invariance.! Retaining this term, there
are no ultraviolet divergences, and the mass is

M ~v!5
m

2AD~v!
lnS AD~v!11

AD~v!21
D 1

ipm sgnv

2AD~v!

[M 8~v!1 iM 9~v!, ~14!

D~v![11
v2j2

c2
, ~15!

where we have now included the imaginary partM 9~v!. The
logarithmic divergence at smallv is still present, but in the
large-v limit we find thatM 8~v! vanishes asv22 andM 9~v!
asv21. The Fourier transform ofM ~v! is then causal:

M ~ t !5
pmc

2j
@ I 0~ct/j!2L0~ct/j!#Q~ t !

5
pmc

2j F12
2

p
~ct/j!1

1

4
~ct/j!21••• G ~ t→0!

5
m

t
@12~j/ct!21•••# ~ t→`!,

whereI 0(z) andL0(z) are modified Bessel and Struve fun
tions, respectively.24 The logarithmic frequency dependenc
has previously been obtained by Eckern and Schmid,3 who
investigated vortices in granular films, and by Stamp, Ch
novsky, and Barbara25 in the context of magnetic domai
walls.

When several vortices are present, the effective vor
action for low frequencies becomes~see the Appendix!

Seff5
1

2 E dv

2p
M ~v!v2U(

i
niX i~v!U21•••

1
r̄k2

4p E dt(
iÞ j

8ninj lnuX i~ t !2X j~ t !u

2kr̄E dt(
i
niXi~ t !Ẏi~ t !, ~16!

where the first term arises from an expansion ofJmh21Jm in
terms of the vortex coordinates themselves,26 and where the
prime on the sum is a zero total vorticity restriction:( ini50.
Notice that the first~‘‘kinetic’’ ! term, discussed in the Ap
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pendix, involves only the total dipole moment operato
D(t)5( iniX i(t); this fact is intimately connected with Gal-
ilean invariance and the stability of superflow in the absen
of disorder. Consider, for example, an elementary~n561!
vortex-antivortex pair. LetX[~1/2!~X11X2! be the ‘‘center
of mass’’ ~CM! coordinate andx[~X12X21! be the dipole
moment. The CM coordinate appears only in the Berry pha
term of the Lagrangian, which is

LB52kr̄~X1Ẏ12X2Ẏ2!52kr̄~Xẏ2Yẋ!

up to a total time derivative. Thus, a path integral over th
CM coordinates generates ad function at each time step,
enforcingdx(t)/dt50 always.

Relative importance of inertial terms

To investigate the importance of inertial terms relative t
those arising from the Lorentz force, we consider the r
sponse of an isolatedn51 vortex to a time-dependent field
e(t), which might represent a sudden switching on of a s
perflow which will accelerate the vortex3 or an oscillating
superflow. We find that the velocityV~v!52ivX~v! satis-
fies

V~v!5F 1

12r 2~v!G ẑ3e~v!1F ir ~v!

12r 2~v!Ge~v!, ~17!

where the dimensionless function

r ~v![
vM ~v!

kr̄
5

vj

2c

M ~v!

m
,

shown in Fig. 1, describes the inertial and frictional aspec
of the vortex’s motion.

We now see that inertial effects will be relatively unim
portant at frequencies where the ‘‘inertial parameter’’r ~v! is

FIG. 1. Complex frequency-dependent vortex massM ~v! from
Eq. ~14!. Also shown is the complex dimensionless inertial param
eter r ~v!.
r

e

e

e

-

-

ts

small. Note thatr 8~v! vanishes both for very low and ver
high frequencies, as shown in Fig. 1. Takingc;100 m/s and
j;5 Å, one obtains a characteristic frequencyv0[c/j'1011

Hz. At low frequencies, both real and imaginary compone
of r ~v! are small, and inertial effects are relatively unimpo
tant. From Eq.~17!, we find that an elementary vortex in a
oscillating superflow will move at a Hall angl
uH~v!5tan21ur ~v!u relative to theẑ3e direction. The power
dissipation per unit frequency is given by

P~v!5kr̄ Re@V~v!•e* ~v!# 5
v→0

vM 9~v!ue~v!u2, ~18!

which meansP(v)5(p/2)mv s
2uvu for a superfluid velocity

oscillation of amplitudevs .

V. NUMERICAL SIMULATION

Since the predictions of the linearized theory are ess
tially classical, we should expect to see the aforementio
effects of phonon radiation by solving the non-linear Sch¨-
dinger equation~NLSE!,

i ċ52
1

2
“

2c1~ ucu221!c,

where we now measure all distances in units ofj and times
in units of j/c, andc itself in units ofAr̄/m. The NLSE
was numerically integrated on a two-dimensional grid us
an operator splitting method.27 To impose the background
oscillating superflow the condensate was defined as

c~x,t !5e2 ivs~ t !•xw~x,t !,

wherevs(t) is the chosen time-dependent superflow~in units
of c! uniformly defined over the whole region, andw~x,t! is,
initially, a static vortex solution of the NLSE. With the initia
state representing a condensate with a vortexplus a super-

FIG. 2. Amplitude off~x,t! for a uniformly accelerated conden
sate, plotted as a function of length along the direction of flow
ten equally spaced time intervals separated byDt55j/c.
-
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FIG. 3. Complex massM ~v!
inferred from Eq. ~20!. Solid
curves areM 8~v! andM 9~v! from
the linearized electrodynamic
theory.~a! M 8~v! for driving am-
plitude 0.1c. ~b! M 9~v! for driv-
ing amplitude 0.1c. ~c! M 8~v! for
driving amplitude 0.2c. ~d! M 9~v!
for driving amplitude 0.2c. ~e!
M 8~v! for driving amplitude
0.3c. ~f! M 9~v! for driving am-
plitude 0.3c.
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flow given byvs(t50), c~x,t! was evolved according to th
NLSE. The resulting equation forw~x,t! is

i ẇ5~ v̇s•x!w2 1
2 ~“1 ivs!

2w1~ uwu221!w. ~19!

Whenvs is constant in time, Galilean invariance means t
a solution to Eq.~19! is given by

w~x,t !5exp~2 ivs
2t/2! f ~x2vst !

052 1
2“

2f1~ u f u221! f .

In particular, if initially f ~x! is a static vortex solution of the
NLSE, the time evolution ofc~x,t! represents a vortex bein
rigidly translated with velocityvs . The deviations from this
‘‘massless’’ behavior will become evident asvs becomes
time dependent.

In the method used the right-hand side of~19! is split into
two parts which are successively integrated, making the
gorithm first-order accurate in time:27

i ẇ52 1
2“

2w2 ivs•“w ~1st step!,

i ẇ5 v̇s•xw1 1
2vs

2w1~ uwu221!w ~2nd step!.

The first step was integrated using the Crank-Nichols
method,27 which is unconditionally stable and second-ord
accurate in time; the second step was integrated exactly.
t

l-

n
r
he

time step was 0.01j/c and the time-dependent velocity wa
along the longest dimension of the grid, a channel wh
spatial dimensions were 2563400 points, with a spacing
equal to 0.1 or 0.05j. Along the edges we adopted vo
Neumann boundary conditions forw~x,t!, which means that
the superfluid velocity computed fromc~x,t! wasvs(t) at the
beginning and at the end of the channel~this also implies that
the initial circular vortex flow field had to be slightly dis
torted!.

There are other ways of imposing the superflow, for
stance using the boundary conditionn̂•“c5ivsc for the full
condensate. The influence of the edges however takes s
time to reach the center where the vortex is located, wh
can be specially inconvenient if one wantsvs to vary rapidly
with time, another problem is that the velocity field one o
tains is not spacially uniform and does not lend itself
easely to a comparison with the electrodynamical theory

Figure 2 shows the effect of a constant acceleration on
initially uniform condensate. Here one sees a wake in
superfluid density propagating at the speed of sound from
beginning of the channel towards the end, and a counterw
propagating in the opposite direction. This consequence
the imposed accelerated flow takes a finite amount of tim
reach the channel center, where the vortex was placed in
subsequent simulations, and is responsible for an obse
delay in the vortex response. This effect is related to
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finite compressibility of the superfluid and does no harm
the observation of vortex oscillations, it is in fact wh
causes them.

A more dangerous effect is the reflection of the wake
the end of the channel. To avoid it, one has to restrict
observation time to about 40j/c, for a channel length of 40
j. This reflection probably explains problems related to v
tex shedding that were observed in some cases at the e
the observation period.

Results of the simulations

The equation of motion one gets for the vortex position
the presence of a time-dependent background superflo
~n561!

2 ivM ~v!V~v!56kr̄ ẑ3@vs~v!2V~v!#.

Thus, in the absence of the inertial term, the vortex dr
with the superflow.M ~v! is the Fourier transform of the
causal kernel, as above. These dynamics imply that fo
monochromatic flow one should get a response only at
driving frequency or at the resonance whe
v2M2(v)5k2r̄2, which for a frequency-independent ma
corresponds to cyclotron oscillations.

We considered different forms of time-dependent flo
and compared the observed trajectories with the equation
motion above. To simulate an oscillating flow we too
vs(t) to be

vs~ t !5vs
o sin~2pt/T!,

wherev s
o ranged from 0.1 to 0.3c andT ranged from 2 to 30

j/c. The trajectories we have obtained display a nearly p
odic structure with a characteristic frequency equal to
driving frequency. We obtained the frequency dependenc
M ~v!, as implied by the model’s equation of motion, b
taking the Fourier transform of the trajectory and reading
amplitude at the driving frequency according to

FIG. 4. Typical vortex trajectoryX(t) with harmonic forcing of
periodT55j/c.
o

f
e

-
of

is

s

a
e

of

i-
e
of

s

M ~v!57 ikr̄
X~v!

vY~v!
. ~20!

The results are shown in Fig. 3 together with the functio
form obtained from the linearized effective QED theory.

Since we did not get a perfect steady-state response
can be seen in a typical trajectory as in Fig. 4, it was not v
clear which region of the data array to use in taking t
Fourier transform. We chose to ignore an initial structurel
region, corresponding to the delay mentioned above, an
take several Fourier transforms using time intervals equa
an integer number of periods, all starting at the same po
Hence, with the same trajectory, we obtained several va
of M ~v!, which were averaged. The error bars in the figu
correspond to this averaging process.

We obtainedM ~v! for three amplitudes of the oscillator
velocity field, namely 0.3, 0.2, and 0.1c. The last two cases
gave very similar values for the mass, except at lower f
quencies, where the vortex response was further from
steady state, and we could not observe several period
oscillations. Nonetheless, the expected qualitative beha
was observed.

The higher amplitude case,v s
o50.3c, posed more diffi-

culties at low frequencies. Up to the lowest frequency
were able to get, one sees a qualitatively different behav
which may be due to the onset of nonlinearities not visible
the other cases.

Note that in the QED theory the real and imaginary pa
of M ~v! obey a Kramers-Kronig relation. We could no
check if such a relation existed in the measuredM ~v! be-
cause the points obtained were too scattered to allow fo
reliable fit.

We also tried a pulse form forvs(t),

vs~ t !52A2evmaxS tTDe2t2/T2. ~21!

This flow would produce a Gaussian displacement along
channel for a ‘‘massless’’ vortex. What is observed in Fig
is a delayed main peak in the parallel direction with an
companying structure in the perpendicular direction. The r
partM 8~v! is displayed in Fig. 6. Since the channel is fini
in both width and length, the zero-frequency limit ofM ~v!
should cross over to a finite value given by the system s
In our system, with length 40j, values ofM 8~v! greater than
ln 40'3.7 are difficult to interpret.

VI. IMPURITIES AND VORTICES

We consider as a simple model of an impurity a po
object which couples linearly to the boson density,r5r̄(1
2B/c). The Lagrangian describing the impurity is taken
be

L imp5(
a

1

2
maṘa

21
r̄

mc E d2x(
a

Ua~ ux2Rau!B~x!,

whereRa(t) is the position of theath impurity. Upon inte-
grating out the gauge fieldAm~x,t!, we obtain the effective
action
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Seff@$X i~ t !%,$Ra~ t8!%#5E dtH 2
1

2
kr̄(

i
nie

abXi
aẊi

b1(
a

1

2
maṘa

2J
1

r̄k2

4p E dt(
iÞ j

8 ninj lnuX i~ t !2X j~ t !u2E dtE dt8E d2k

~2p!2
E dv

2p

eiv~ t2t8!

v22v2~k!

3H 12 r̄k2(
i , j

ninje
2 ik•@Xi ~ t !2X j ~ t8!#ẑ3 k̂•Ẋ i~ t !ẑ3 k̂•Ẋ j~ t8!

2
i r̄k

m (
i ,a

niUkUUa~k!e2 ik•@Xi ~ t !2Ra~ t8!#ẑ3 k̂•Ẋ i~ t !

1
r̄

2m2 (
aÞb

k2Ua~k!Ub~2k!e2 ik•@Ra~ t !2Rb~ t8!#J , ~22!
ty

n
el
e
l

-

on

e
in
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-
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wherev2(k)5c2k2[11(1/4)j2k2] is the dispersion relation
derived from the nonlinear Schro¨dinger equation. @Super-
scripts in Eq.~22! refer only to spatial indices.# We now
focus on the final two terms, which involve the impuri
coordinates.

The last contribution in Eq.~22! describes the interactio
between impurities mediated by phonons, including a s
interaction term analogous to the self-interaction of vortic
already discussed. Ignoring retardation effects, the purely
cal superfluid response@see Eq.~6!# means that the impurity
impurity interaction will be short-ranged provided theUa(k)
are nonsingular in the infrared. The self-interaction term c
tributes a mass shift

Dma~v!5
r̄

m2 E d2k

~2p!2
k4uUa~k!u2

v2~k!„v2~k!2v2
…

, ~23!

whose imaginary part@takingv(k)5ck#,

Dma9~v!5
r̄

4m2c6
uUa~v/c!u2v2

is super-Ohmic providedU(k→0)}k2s with s,3/2.4

Consider now the vortex-impurity interaction term. W
will ignore retardation effects, and further assume a po
interaction between impurities and superfluid, so t
Ua(k)5Ua is a constant. Without loss of generality, we m
consider a single vortex-impurity pair. The contribution
the effective action is then

Sv2 i52
nUr̄k

2pmc2 E dt
ẑ3~X2R!

~X2R!2
•Ẋ

52
nUr̄k

2pmc2 E dtẊ•
]

]X
Q~X2R!

where n is the integer charge of the vortex,U is the
impurity-boson density coupling, andQ~x!5tan21(y/x) is
the angle function. Note that ifR(t) is time independent
then, for closed paths,Sv2 i is a topological quantity equal to
2(nUr̄k/mc2)Wv2 i , whereWv2 i is the winding number of
the vortex about the impurity. This makes excellent sen
the vortex effectively counts the number of bosons it e
f-
s
o-

-

t
t

e:
-

circles, and the density response of the superfluid genera
point accumulation ofDN52U r̄/m2c2 bosons to ‘‘screen’’
the impurity.

Now let the impurity move throughout the superflui
VaryingSv2 i with respect toX

a(t), we find the force on the
vortex to be

Fa5
dSv2 i

dXa 52
nUr̄k

2pmc2 H dab22D̂aD̂b

D2 J ebgṘg

with D[X2R. This is simply related to the backflow cur
rent. If we ignore the self-interaction term for the vortice
which is appropriate at very low frequencies, then the vor
equation of motion,

nr̄keabẊb5Fa

just says that the vortex moves in the dipolar backflow fi
of the moving impurity.

Finally, consider the force on the impurity due to a mo
ing vortex. We find, neglecting the impurity mass renorm
ization term,

mimpR̈
a5

nUr̄k

2pmc2 H dab22D̂aD̂b

D2 J ebgẊg.

This too has a simple interpretation. The quantityUr~R!/m
is the local potential in which the impurity moves, and hen
the force on the impurity isF52(U/m)“r. Now recall Du-
an’s result@Eq. ~4!# for the density response to a movin
vortex. Taking the gradient gives us the appropriate forc

Polaron model of a quantum vortex

Niu, Ao, and Thouless~NAT! have investigated a mode
of a quantum vortex coupled to superfluid dens
fluctuations.5 They describe the vortex as a nonrelativis
particle of massMe in a background uniform magnetic fiel
~corresponding to the average superfluid density! and assume
a scalar coupling to the phonons, i.e.,
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HNAT5
1

2Me
~p1nkr̄a/c!21(

k
\vkS dk†dk1 1

2D
1(

k
W~k!eik•r~dk1d2k

† !,

wheren is the integer vorticity,“3a52cẑ accounts for the
geometric phase due to the background bosons, andvk is the
phonon frequency at wave vectork. NAT go on to investi-
gate a simple polaronic wave function which accounts for
phonon cloud around a vortex and conclude that an infi
vortex mass would shrink the quantum uncertainty in
vortex position to zero, a situation in conflict with explic
calculations using Feynman’s trial vortex wave function.
this level, the massMe is phenomenological and does n
include the effects of phonons. It may be perhaps more
propriate to considerMe as the mass of an external partic
trapped in the vortex core, as considered by Demircan,
and Niu.28

In keeping with the general philosophy that the vortex i
topological object which couples to the boson density as
Eq. ~3!, we propose a variant of the NAT model:

H5
1

2Me
@p1nkr̄ ~a1A!/c#21(

k
\vkS dk†dk1 1

2D ,
wherevk5\ck and

A~r !5
i

AV
(
k
A \c

2r̄uku
ẑ3 k̂eik•r~dk1d2k

† !

is the quantized radiation field corresponding to the sup
fluid density and current fluctuations29 ~V is the area of the
system!. We rewriteH as

FIG. 5. Vortex trajectoryX(t) for a pulsed superflow given by
Eq. ~21!. In this caseT52j/c andvmax50.4c. The smooth curve is
the pulse shape.
e
e
e

t

p-

o,

a
n

r-

H5
P2

2Me
1
nkr̄

Mec
A•P1

n2k2r̄2

2Mec
2 A

2,

whereP5p2~1/2!nkr̄ ẑ3r is the cyclotron momentum op
erator for the vortex. Note that [Px ,Py]5 i\2/ l o

2, wherel o
[Am/2pnr̄ is the ‘‘magnetic length’’ for a vortex of
strengthn. We now work to lowest order inA, and follow
NAT by assuming a trial state

uC@R,$nk%#&5uxR& ^ uCph&

with

xR~r !5
1

A2p l 2
e2~r2R!2/4l2e2 i ẑ•r3R/2l o

2
,

treatingl as a variational parameter. Taking the expectat
value ofH is the statexR~r !, we obtain the effective phonon
Hamiltonian

Hph5(
k

\vkS dk†dk1 1

2D1(
k
W~k!eik•R~dk1d2k

† !,

W~k!5
nk2

4pc

l 2

l o
2

m

Me
Ar̄\vk

2V
e2~1/2!k2l2.

The phonon ground state is a coherent state,

uCph&5expH(
k

W~k!

\vk
~dke

ik•R2dk
†e2 ik•R!J u0&,

and the total energy is

FIG. 6. Real part of the massM 8~v! obtained from analysis of
response to the pulse flow. Solid curve is the prediction of
linearized electrodynamic theory.
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E5E d2rxR* ~r !S P2

2Me
D xR~r !2(

k

uW~k!u2

\vk

5
\2

4Mel o
2 F l o2l 2 1~12n2m/Me!

l 2

l o
2G ,

where m5pr̄j25k2r̄/4pc2 as before. Setting]E/] l50
gives

l5 l o /A4 12n2m/Me.

Note that no solution exists forMe,n2m, which we interpret
in the following manner. A cyclotron mode will show up a
a pole in the denominator of Eq.~17!, which means
vMe(v)56kr̄. Now no such pole exists in the absence
the external massMe , but if Me is added to ourM ~v!, then
a damped cyclotron resonance does exist at the cyclo
frequencyv'kr̄/Me , provided thatMe*n2m.

NAT compute a renormalized magnetic lengthl̃ accord-
ing to the relation

u^C~R!uC~R1h!&u2[expF2
uhu2

2l̃ 2
1O~ uhu4!G ,

which is obtained from the overlaps

^xRuxR1h&5expF2
i ẑ•R3h

2l o
2 2

uhu2

8l 2
2

uhu2

8l o
2 G

and

^Cph~R!uCph~R1h!&

5expS 2(
k

uW~k!u2

@\vk#
2 ~12cosk•h! D .

We find

1

l̃ 2
5

1

2l 2
1F11

pn

2&
S m

Me
D 2 j3l

l o
4 G 1

2l o
2
.

VII. CONCLUSION

In this paper we have explored the theory of dynami
vortices in superfluid films, deriving a frequency-depend
vortex mass which enters into the vortex equations of m
tion, as well as describing dissipation by radiation
phonons. Numerical simulations corroborating the predic
behavior ofM ~v! were presented as well. These calculatio
may be extended to~311!-dimensional superfluids as well.30

These results will be presented in a future publication.
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APPENDIX: INERTIAL TERM FOR MANY VORTICES

The velocity-dependent part of the effective action
duced by integrating out the phonon field is

DS52
1

2
r̄k2E dtE dt8E d2k

~2p!2
E dv

2p

eiv~ t2t8!

v22v2~k!

3(
i , j

ninje
2 ik•@Xi ~ t !2X j ~ t8!#ẑ3 k̂•Ẋ i~ t !ẑ3 k̂•Ẋ j~ t8!.

We defineDi j (t,t8)5X i(t)2X j (t8). Using

E dk̂

2p
e2 ik•Dk̂ak̂b5

1

2
J0~kD!dab

1
1

2
J2~kD!~dab22D̂aD̂b!,

whereJn(z) is the Bessel function of ordern. Takingv(k)
5ck, we have

DS52
r̄k2

8pc2 E dtE dt8E dv

2p
eiv~ t2t8!

3(
i , j

ninj Ẋi
a~ t !Ẋj

b~ t8!F SK2~2 ivD i j /c!1
2c2

v2D i j
2 D

3~dmn22D̂mD̂n!2K0~2 ivD i j /c!dmnGeamebn,

where Kn(z) is a modified Bessel function, and whe
v→v1i01 is understood. Since the above integrand is
ready quadratic in velocities, which we assume are sm
compared withc, we may approximateDi j as a constant.
Expansions ofKn(z) for small z ~Ref. 24! yield

K0~2 iz!52C2 ln~2 iz/2!1••• ,

K2~2 iz!1
2

z2
5
1

8
z2 ln~2 iz/2!1••• ,

and at low frequencies the first of these terms dominates
providedv!c/Drms we recover the action of Eq.~16!.
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