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Dynamical vortices in superfluid films
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The coupling of superfluid film to a moving vortex is a gauge coupling entirely dictated by topology. From
the definition of a linking number, one can define a gauge fi¢tdwhose(2+1)-dimensional curl is the vortex
three-current)#, and to which the superfluid is minimally coupled. We compute the superfluid density and
current response to a moving vortex. Exploiting the analog§2tel)-dimensional electrodynamics, we com-
pute the effective vortex madd (w) and find that it is logarithmically divergent in the—0 limit, with a
constant imaginary part, yielding a super-Ohmic dissipation in the presence of an oscillating superflow. Nu-
merical integration of the nonlinear Schiinger equation supports these conclusions. The interaction of vor-
tices with impurities coupling to the density also is discus$80163-1827)08501-9

[. INTRODUCTION in Sec. IV. In Sec. V, we report on the results of numerical
simulations of a vortex in an oscillating superflow, from
In this paper we investigate the effective action and dy-which we can extracM(w) and compare with theoretical
namics of vortices in compressible superfluid films at zergpredictions. Section VI discusses the interaction of vortices
temperature. In arincompressibletwo-dimensional super- and dynamical impurities.
fluid, vortices behave as massless charges in a uniform mag-

netic field—their motion is along an equipotential, the sum 1. ANALOG OF BACKFLOW

of Ioganth{mc contributions  from each of the point FOR DYNAMICAL VORTICES

“charges.” * The Lagrangian for a charge-neutral system of

vortices may be written Consider a vortex moving in &+1)-dimensional Bose

fluid. The only information we have about the vortex is that
it is a point object which accrues a geometric phasemfr2
:_K_z XY + 2 ning In[X;=X;| the many-body boson propagator each time it encircles a
boson. We write the vortex current density as
where k=h/m is the rotational quantunp is the bulk den-

sity (or superfluid densify, n; is the integer charge an| is

the position of theéth vortex. The equations of motion, J”=0Kf dTE n| =X(7)),
E o ZX (X~ XZ), wherer parametrizes the vortex “world linesX {*(7), which
] Xi—X; | are one-dimensional filaments running throug@+1)-

(”&') dimensional spacetime. The many-boson Lagrangian is writ-

preserve the total potential energy of the vortices, which oten
course is just the kinetic energy of the superfluid. These
equations are first order in time—there is no inertial term 1 dx;
= (1/2)M;X 2 in L. L=3 mZ (E) —; v (%= X))+ Liop,

In a compressible superfluid, the speed of soand fi- .
nite. This leads to retardation effects in the vortex dynamicswhere we assume a simple generic interacting Bose fluid
Furthermore, accelerating vortices may radiate phonongisotropic, single componentHere, Lyop is the topological
leading to dissipation. Both effects are described by a comterm in the Lagrangian which counts the winding number of
plex frequency-dependent mass teMiw), derived below. the vortices relative to the bosons. This is explicitly written
This physics is present in granular films and Josephsonn terms of the linking number of their trajectoriés,
junction arrays as wefl The basic idea is to integrate out the
phonons, which represent a bosonic bath to which vortices m?
are coupled, in the spirit of Ref. 4, and thereby derive an Sip= fd XAtLiop=27FiNjn= ¢ fdedtJ” P2
effective action for the vortices alod@.

This paper is organized as follows: In Sec. Il we derive o
the analog of backflow for moving vortices in superfluid Ej dxdtj*A,, @)
films. In Sec. Il we review the correspondence between su-
perfluid dynamics and electrodynamics in two space dimenwhere the boson mass current densityjfs=(cp,j), and
sions and show how the results of Sec. Il may be obtained bwhere #/¢ is a formal expression for a nonlocal operator.
a Lorentz transformation of a static vortex solution. Self-Vortex current conservation;, J“=0, allows one to con-
interaction effects, vortex mass, and dissipation are discussexfruct a gauge potentiad* whose curl isJ#’
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J,=—Ceynd" AN, (2)  wherep=(p) is the average mass density aBt) is the

o . _ ground-state static structure function. Note t#&t"(q)=p,
and thereby express the linking n_umber as a local interactioBipce the phonon is purely longitudinal. Recall that
between the boson current densjty and the vortex gauge Iimqaoh|q|/2mcs(q)=1.1°

potential A, . - _ Static Vortex.We choose a gauge in whicH°=0 and
The tlme—depgndent _Ham_lltonlan for the bosons in therAancS(x)i, which is satisfied by A(xt)=
presence of moving vortices is thus nkzxx/2ax2.  Now A(g,w)=—ink(ZXq/|qP) 278 w)
is purely transverse, so the density response vanishes and
H(AM):H(O)_f d2xjP (x) A*(x,t) the current density response gives the usual
# (Yx))=nkpzxx/2mx[*>. The absence of a density variation

in response to the vortex seems to contradict the result that

1 DO e
+= f d?xp(x)A%(x,t), (3)  8p(r)/p=—n*Kgph?/2m?|x|? far from a vortex of strength
2 n, whereKg is the adiabatic compressibility. However, the
wherep is the boson density arjdl is given by n? dependence tells us that this imanlinearresponse. The

second-order response is formally written

iP(x)=cp(x)=mcD, S(x—x;), .
Jo(x)=cp(x) Z ( ) <j(az)>=f dzx’dt’f d2X"dt"R g, (X;X;X") AP(X") AY(X").

. 1 Rupy=Rus,TRug, may be divided into two contributions.
jP(x)= > Z [P 6(X=X;) + 6(X—=X;)pi]- The first,R,,, is the second-order nonlinear susceptibility
arising from the linearj £,.A4* coupling in . The second,
The gauge-invariant boson current dengitys then writtefd R'C'M, is the linear susceptibility arising from thH&/2)p.A?
term—this is given by the density-density correlation func-

. oH . tion, so
1
1l ! e — ! ! ’ "
At this point we have reproduced the well-known analogy Rapy (XXX = = 5 Kool X, GX, 1) 6(X" =)
between a rotating superfluid and a superconductor in a mag-
netic field® What is new here is the explicit gauge-covariant, X (1" —1") 85, (1— 8po).

time-dependentlescription, through Eqs2) and(3), of the It is easy to check that the nonlinear response arising from

f;g‘t)ilc')r:]g of a superfluid to vortices, which are quanta OfR"LBV exactly reproduces the asymptotic density variation due
The I.inear response of the boson system is given b thEz0 the vortex, and tha?l‘w’ does not contribute tO(L/xP.
Kubo formula P Y 9 y Moving vortex.Consider now a vortex moving with uni-

form velocity: X=vt. We choose the gaugd®=0 and

(1) _ 201 At/ T vyl 41 2>< "
(J# (X,t))—f dox'dt’'K ,,(x,t;x",t") A" (X", t"), A(q,0)=—ink _|q|g+_w|(:1|2 z-vX(q|-2m8(w—q-V).
where Note that this is no longer purely transverse, so there will be

i a linear response of the density to the moving vortex:
oy! Hy — P H Ay _ 4!
K/,L,,(X,t,X 7t )_ ﬁ <[JM(X1t)!Jv(X 1t )]>0®(t t ) D ) — Cc E'qu
(p'7(0q,w))=8in7pS(q) 1] (c0?=(v-9)2 (w—q-v).
~(p(X,))08,u( 1= 8,0) S(X—X') aited a
Further assumingy/c|<1, we obtain, at large distances

X &(t—t").
. o . Nkp Z-VXX
The spatial part oK ,, may be written in terms of longitu- (1) = —
© (P (x0) 2mc? X—vt|?’ @

dinal and transverse components in Fourier space, viz.
o nin G which is identical to the result obtained by Du&n.
K a)=—a'a’K,(a)— (9" +a'a)K,(q). The current density in the presence of a moving vortex is
Gauge invariancei,,(q)q"=0, may be used to relate the Similarly computed and found to be

00 and G components td;: — 2

iD(x,1))= nxp ZXR 1— v [(0-R)2—(0XR)?]
00 c?q? i0(q) cq U 2m R 2c* |
K%(q)=— Ki(q), KOqg)=——Kq).
@ w? (@) (@ o ) valid to orderv?/c?, with R=x—vt.

At zero temperature, the single-mode approximati®mA) - _

gives for the density resporilge Contrast with impurity backflow
It is important to contrast this behavior with the standard

Cp 1 1 picture of backflow in neutral systems. A local perturbation

m
SMA —
Keo™(q)= [ S(a) w+clg|+ie o—c|g|+ie]’ coupling to the superfluid as
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) Integrating over the spin-wave fieli{x,t) now generates the
H'=f d“xp(x)U(x,t) constraintV-Q+4,p=0—Q is the mass current—which is
) satisfied by introducing the gauge fiedd=(A°A), where
leads to a superfluid responi&e

J— P A ~ ~
1 —0,Q)=—=(Z-VXA,czZxX VA +Zx 9A).

(p(8,0))= = 22 Ko 0,0)U(0,0), Tl &
The coupling of the vortex current to this gauge field is due

1 . to the term

(i*(q,0)== < K%0)U(q,0)& . " L
P uv

Using the SMA response functions, and assuming m (Q-VxFpix)= me MAL+ ) a0+ )
U (x,t)=Uydx—vt), one obtains

1
— = S PIHALFR) T ),

pYUo
(PP(x0)=="7 5(R), (5)
where thenondynamicalgauge fielda* generates a static
20, o magnetic field, i.e.,
<j(1)(xlt)>:_WEZ{U—Z(uR)R}. (6)

10a R
e=—-Va’~——=0, b=2z-Vxa=-c,
The density response is purely local, in contrast to that of Eq. c dt
(4), and the current, which vanishes in the static aas®,is  \ynich is satisfied by the gauge choiee=(1/2)c(y,—x),

dipolar and falls off as B The superfluid-vortex gauge a%=0, for example. The coupling between the gauge fields
coupling leads to a much different linear response. A* andZ” is then given by

lll. ANALOGY TO QED e 1 ep
QFD 201 — (pZO——QZ):—p e*"Z,0,(A+ay).

These results may be understood in terms of the well- m ¢ mc
known correspondence betweg2+ 1)-dimensional super- Finally, one introduces the field strength tensor

fluids and quantum electrodynamigs’ which we now re-

view. One starts with the standard Ginzburg-Landau 0 Ex E,
Lagrangian density in the presence of an external gauge field Fu=d,A,—3d,A,=| —Ex 0 -BJ,
ZH, -E, B 0
. 1|4 e 2 and obtains
/:[\If*,\If]lef*(|fmt+ez°)\1f—ﬁ TVHoZ|W - o o
p , P ep
, P 2 Leﬁ:_z FM,,F’U“ —EJ’L‘(A#'FB.P')'FRE’U“ }\Z#O"V
—\||W]5— o (7) o

BE*  p (£VB)?
(1-Blc) 8 (1-Blc)’

X(Ay+ay)+ o ®)

For a superconductoZ” would represent the electromag-
netic gauge potential, while in our case it can be used to
describe an externally imposed current. At this point, thewherec=\2xp/m? is the speed of sound ade-i/mcis the
“charge” e and velocityc are arbitrary parameters; we will coherence length. Not€ 3=m?/2p°\ is the bare compress-
takec to be the speed of sound, defined below. One substibility.

tutes W= p/mé %X, where d(x,t) is a smooth “spin-  The Lagrangian density.; describes “charged” par-
wave” field andy(x,t) the singular vortex field, which satis- ticles (vortice§ moving in a background “magnetic field”
fies J4(x) = (hc/m)e*"™ 3,9, x. This gives —cz, minimally coupled to a dynamical gauge fiéd¢ [note

that this is not the gauge field defined in Eg)]. That the

, hp e _, h2p e 2 background magnetic field is the average boson density is of
Li==r|h0tax—5 20| =55 | VO+Vx+ 7 course due to the fact that the vortices see the bosons as
sources of geometric phase. This was recognized by Haldane
_ h? (Vp)— L (p—7)? and W_u,18 who compl_Jted '_[he Berry ph_ase accrued by a vor-
sm%p P T m2 PP tex as it executes adiabatic transport in the superfluid film. If

] . o ] the vortex position i, and the adiabatic wave function is
after subtracting a time derivative term. Decoupling the|y) then

(V6+Vy+eZ/fic)? term, one arrives at

h
Err:__Q .
m

;Zo) vei § d& (WY W)= 27 L 5,

e

ﬁcz

) ) ) whereS; is the area enclosed by the p&thalong which the
+Q__ h* (Vp) _A( st vortex travels. Note that this immediately tells us that vorti-
2p 8m* op mz PP ces experience a Lorentz force when moving through a su-
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perfluid. In the nonrelativistic limit, their dynamics can be Lorentz transformations
described in terms of vortices being advected in each other's 4 investigate the effects of moving vortices, it is useful

f!ow field,_or as charged particles in a background magne}iqo appeal to the Lorentz invariance Gfp and transform
field moving under the influence of each other's electricgiatic solutiond® Recall that in(2+1) dimensions, the Lor-

field. A vortex-antivortex pair, for example, behaves like aNgntz group has three generators, corresponding to two boosts

exciton in a magnetic field. , .. and one rotation. The general boost transformation is written
The linearized, long-wavelength Lagrangian density is
obtained by dropping terms iz which are higher than y ¥ By YBy
second order in the field strength or which involve higher
derivatives acting on thé* field. One is then left with(2 y—1 241 y—1
+1)-dimensional quantum electrodynamics, L#=(gL),,= 7Px _,Bz_ﬁx _,82_’8X’8y
re Y y—1 y-1 ,
Logp=— g F P+ g (% emavzx—w) (A, +a,), By gz BBy pr Byt

(10

in the presence of a uniform background magnetic fieldyith g=v/c and y=1/y1— B2 Applying the Lorentz trans-
Note that the gauge field” couples to a sum of th@uan-  formation z'“=L “z” to the coordinates and field strength
tized vortex current density” and the(not quantizefiex-  tensor gives the familiar results

ternally imposed “current” &/m)e*9,Z, , which could

represent a global rotation of the systgmmen no vortices x'0=yx+ yB-x
are presenfJ#=0), one can integrate out the gauge fi&lti
to obtain , 0, Y1
X'=yx" B+ N (B-X)B+x
I . P P o I .
=5 me @n? (—Klg 2| 24K an
ep £ —yE— 2t (BB B+ yBIX
+HZ°(k)(2w)35<3>(k) , =v 72 (B-E)B+yBzXpB
wherek?=k*k,=c ?w?—k? and settingg/mc=1 one can B'=yz: BXE+yB.
read off the response tensor We may now transform solutions
k#k” {x*,J* FAE X #,J"H FT VY
K (k)=p| "= =z |- _ L
A static charge 1 vortex generates an electric field

E=«x/27(x|? and a magnetic fiel@=0. Upon applying the

WhenZ#=0, one has a theory of vortices minimally coupled boost of Eq.(10), we obtain(dropping primes

to the gauge fieldA*, and the action extremizing equations

T ’ 1 . MY _— v ~ ~ ~
for the fields are Maxwell’'s equations;,F J¥lc, or ok X, 2X B+ (x,— Bx%) B
2m X5+ (= Bx0)?
V.-E=-1°
YK BXy
== : (11
) 1 4B 2m X{ +?/2(XH_'B)EO)2
2 VXE=———, where we have writtem=x,8+ X, ZX 8.
Now the rules for translating froe andB to j andp are
e 1 . 1 0E as follows:
Zet et j=pzXE, p=p(1-Blc).

(Note V-B=3B/dz=0, trivially.) For the vortices, one has W& now see that the linear-response formilag. (4) and
the Lorentz force law, accompanying discussipexactly reproduce these results to
lowest order in8. The vortex velocity is the the ratipp,

dX, B I} E(X)) . which is the content of the Lorentz force law, E§).
dx?  c—B(X))’ ©

A tale of two vortices

which says that the vortices move perpendicular to the local Consider now an elementary vortex-antivortex pair sepa-

electric field, with a magnetic-field strengthof B whichis  rated by a distanca. We chooseX_.(t)=vte; = (1/2)ae,.

the sum of a uniform background contributidihe average Computing the electric and magnetic fields at one of the

boson densityand a dynamical contributiofdue to fluctua-  singularities due to the presence of the other is easily accom-
tions in the boson density plished with the Lorentz transformation. One obtains



1072 DANIEL P. AROVAS AND JOSEA. FREIRE 55
YK . Byk ever, as we have seen, the coupling of vorticity to superfluid
Sma 2 B(X.)=— Sra density and current fluctuations is a gauge coupling which is
rather different from the local density coupling used in con-
But if in the moving frame the vortices are stationary, weventional polaron theories. Still, this coupling is of the gen-

E(X.)=—

must have that B=dX./dt, which leads to the result eral form considered in Ref. 4, i.e., an external coordinate
s L1 (the vortex position coupled to a bath of oscillatorghe
B(a)= phonons.
a’+ &2 We wish to integrate out the dynamical fied* corre-

sponding to the phonon degrees of freedom and obtain an
effective action for the vortices. Working in Lorentz gauge
?&MA":O), we integrate out the Gaussian fiéldt in Logp by
solving the equations of motion, yielding

Thus, at large separations the pair’s velocitc&a, but at

smaller separations the velocity asymptotically approache
the sound speed. We stress that this is true for the model
defined byLqep, Where the vortices have no core. The naive
expression (a) =cé/a begins to break down at distances on

the order of§ where a proper accounting of the terms ne- A"=E O-1t~

glected in the QED action must be taken in order to repro-

duce the correct core structure. and an effective action for the vortices of
Superflow and the magnus force Sei= — Cfg f d3xf d3X’J”(X)D_1(X,X’)JM(X’)

In the above examples, we derived results for a moving
vortex in a stationary superfluid. In this section, we make a ra
Galilean transformatiorfthe original theory is Galilean in- -2 f d®xJ#(x)a,(x).
variand in order to discuss what happens to vortices in the
presence of a background superflow. Starting with theThe inverse D'Alambertian has the form
Galilean-transformed Lagrangian density
O(xP—x'0—|x—x'|)

-1 "N
= (X’X) 24 \/(XO_XIO)2_|X_XI|2

ﬁZ
L=TRW* 9 +ihv- WV — o |V

in (2+1) dimensions and

p 2
_ 2_F
A(\P ;) ’ - S(xO—x"0—|x=x'])
O~ (x,x")= G
and proceeding as before, one derives the effective Lagrang- 4arlx—x'|
ian density in (3+1) dimensions. Thus, in contrast to the case of three
I 2 — 2 spatial dimensions, wher& ™! vanishes unlesx—x’ is
L ﬁ:qﬂ_ BZ} _P (£VB) lightlike, in our (2+1)-dimensional cas&l ! is nonzero ev-
® 2] 1-Blc 8 1-Blc erywhere inside the light corfé.The finite sound speed
1 leads to retardation effects. One mightvedy think that this
—ZJMA + would lead to the collapse of the vortex-antivortex pair, since
pIH(AL+ay), . texf
¢ the vortex should “see” the antivortex at earlier times and

wherea* now generates a static electric field as well as a/Ic€ versaHowever, although thpotentialsare retarded, the
static magnetic field: fields of a _umformly moving charge point to thimstanta-
neousposition of the chargéas we have derived aboyeand
e=—czxpB, b=-c. so for the special case of a uniformly moving vortex-
antivortex pair, there is no apparent time defay.
The Lorentz force due te is the Magnus force. The vortex The self-interaction part o for a vortex of strengtim

equation of motion is is
dX, - ZXE(X))—BB(X) n’k%p (= *
d_)(f)_fhL c—B(X)) . Ssel=~ - f_wdufo do[1-B(u)- B(u+o)]

Wh_en E(X,)+e=0, the forces on vortek cancel, and it is ®(o—|X(u+ o) —X(u)])
stationary. ,
Voo =X (u+ o) —X(u)|*

IV. SELF-INTERACTION, INERTIAL MASS, where we have taker’(u)=u as a parametrization of the
AND DISSIPATION vortex world line, andB(u) =dX(u)/du. If the integrand in

The analogy to electrodynamics suggests that there shouf@er Were well-behaved and allowed an expansion of the
be an electrodynamic contribution to the mass and retardd0"m
tion effects, as there are if8+1)-dimensional classical . 1
electrodynamicé’ In the superfluid, this is due to the pho- Sself:f dt[ eGP = mpA(t) + - |,
non cloud carried by the vortex—a polaronic effect. How- o 2

(12
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then we would associate a rest mass withand an inertial  whereu=m¢*p=mh2/2\ is the “core mass” of the vorteX>
mass withm; . The remaining terms, involving higher deriva- and ci(z) is the cosine integralt We have introduced an
tives and powers of the velocity, would be negligible in theultraviolet temporal cutoffS~¢&/c to regularize thes inte-
Newtonian limit. However, the integral over in Eq. (12) grals. This crudely accounts for the core structure of the
diverges logarithmically, both for large and small The vortex which lies beyond the approximation afforded by
small o divergence is remedied by a proper treatment of theCqep. The important point is that thfrared divergence of
core structure, which lies beyond the QED approximation(S— S0 iS suppressed by the finite frequensyleading to
The largeo divergence, on the other hand, is real. In the casa low-frequency mass®M’(w) which diverges logarithmi-

of the parametemy, this is to be expected, since we know cally asw—0:

the energy of a static vortex diverges logarithmically with

the size of the system, owing to the slow falloff of the cur- M’ (0)=p{—In(|o|8)—(C+ 3)+ Fw?6+---},

rent densitylj|<1/r. In the electrodynamic language, the en-
ergy density£=(1/2)p(E?+B?), dies off as 172 in the vicin-

ity of a static vortex, yielding a logarithmic divergence when

integrated over the system. I8+ 1)-dimensional classical . " . .
electrodynamics, by contrast, the energy density dies off aEeCt'Ve theory but is s.t'" ql_Jadratlc n t.h? f|eld_ strengthslt
’ § also breaks Lorentz invariange.Retaining this term, there

1/r*, and there is no infrared divergence. Now we ask ltraviolet di d th .
whetherm, is finite. The answer again is no. SinSgy;is a are no uftraviolet divergences, and the mass 1S

whereC=0.577215... is Euler’s constant.
The effective Lagrangianles does contain a term
—(1/8)p(£VB)?2 which is dropped in the long-wavelength ef-

Lorentz scalar, for constag® one has o) " . \/m*'l . i sgnw
SselB=—\T= 7| dtme? 2VALD) AL 2vA ()
o =M'(w)+iM"(w), (14)
which says thatm;=m,. As recently emphasized by
Duan!*!? this may be understood in terms of the density I
variation (p™)=Z.vxx/|x—vt[?>, which produces a logarith- Alw)=1+ -7, (15

ically infinit hift
rically iniinite energy shi where we have now included the imaginary pdrt(w). The

1 logarithmic divergence at small is still present, but in the
AE= K2 f d?x[ Sp(x) 1% large-w limit we find thatM'(w) vanishes as 2 andM"(w)
sP asw L. The Fourier transform of1 () is then causal:
Similarly, the total momentun® of the moving vortex,

TMC
i M(t)= — [lo(ct/§) —Lo(ct/€)]O()
(Dsy o 1% 2¢
PY(t) mf d-x oD’ e , .
diverges logarithmically? =2 [1— —(cto)+ 7 (ct/&)?+---| (t—0)

Frequency-dependent inertial mass M 2

=D - (&e?+-] (1),
In this section we compute the low-frequency inertial t L= (&en I :
mass of a single vortex and find that it is frequency depenwherel ,(z) andL,(z) are modified Bessel and Struve func-
dent and logarithmically divergent as—0. We start by ex-  tjons, respectively? The logarithmic frequency dependence
panding the self-interaction contributiofe for a single  has previously been obtained by Eckern and Schimidho

vortex?® investigated vortices in granular films, and by Stamp, Chud-
novsky, and Barbafa in the context of magnetic domain
s ”zkzp_f " duf “dof1- gy put o] walls
= — u oll-pB(u)-p(u+o .
self 4mc - 0 When several vortices are present, the effective vortex

action for low frequencies becomésee the Appendijx

1 |X(uto)—X(u)l? }
X|—+ e

3 1 d 2
7 27 Seﬁ:—J S M(@)0?] S mXi(w)| +-
2 2 i
1 ,(7 do . 2 2
=Sstatic+§ n .2 M (w)w |X(w)| tee,

pK :
+ Z— f dtz_ nin; In|X;(t) —X;(t)]
where Sg.iic IS action for a static vortex of strength The . 17
guantityM'(w) is found to be

- Ff dt> niXi(t)Yi(t), (16)

where the first term arises from an expansiod’tﬁ]’l\lﬂ in
1 5 sinws terms of the vortex coordinates themsel¢®and where the
—COSw sin w i i ici icti =
S 20 (13 prime on the sum s fl zero t,(,)tal vorticity restnct@]n, 0.
w°o wd Notice that the firs{*kinetic” ) term, discussed in the Ap-

= ds

M'(w)=2ML Y

1-cosws

COS wS— 5

0°s
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Vortex Mass: Results of Linearized Effective Action 1.6
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//’/ i s
e Iy
/'/ ‘3’
1 F
4 f / M (@) = Re M(w) —Ho05 "g 1.2
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FIG. 2. Amplitude ofé(x,t) for a uniformly accelerated conden-
sate, plotted as a function of length along the direction of flow, at
ten equally spaced time intervals separated\iby: 5&/c.

FIG. 1. Complex frequency-dependent vortex mislg) from
Eq. (14). Also shown is the complex dimensionless inertial param-
eterr(w).

small. Note thatr'(w) vanishes both for very low and very
high frequencies, as shown in Fig. 1. Taking100 m/s and
~5 A, one obtains a characteristic frequengy=c/é~10"

z. At low frequencies, both real and imaginary components
of r(w) are small, and inertial effects are relatively unimpor-
tant. From Eq(17), we find that an elementary vortex in an

scillating superflow will move at a Hall angle

L (w)=tan Yr (w)| relative to thezxe direction. The power
dissipation per unit frequency is given by

pendix, involves only the total dipole moment operator
D(t)=Z;n;X;(t); this fact is intimately connected with Gal-
ilean invariance and the stability of superflow in the absenc
of disorder. Consider, for example, an elementary +1)
vortex-antivortex pair. LeXK=(1/2)(X,+X_) be the “center

of mass” (CM) coordinate anck=(X,—X_,) be the dipole
moment. The CM coordinate appears only in the Berry phas
term of the Lagrangian, which is

La=—sp{Xs Yy =X-Y-) = —iip{Xy =Y P(0)=xp REV(0) € (0)] = oM"(0)l&(w)?, (19

w—0

up to a total time derivative. Thus, a path integral over the
CM cqordinates generates @function at each time step, which meansP(w)=(7/2)uv §|w| for a superfluid velocity
enforcingdx(t)/dt=0 always. oscillation of amplitudey.

Relative importance of inertial terms V. NUMERICAL SIMULATION

To investigate the importance of inertial terms relative 10 gjnce the predictions of the linearized theory are essen-
those arising from the Lorentz force, we consider the reqjg|ly classical, we should expect to see the aforementioned
sponse of an isolated=1 vortex to a time-dependent field gffects of phonon radiation by solving the non-linear $ehro
e(t), which might represent a sudden switching on of a SUdinger equatior(NLSE),
perflow which will accelerate the vortdor an oscillating

superflow. We find that the velocity (w)=—1 wX(w) satis- . 1_, 5
fies == Vot (¢l =Dy,
_ 1 A ir(w) where we now measure all distances in units @nd times
Viw)= 1-r%(w) zxe(w)+ 1-r?(w) &), 1D iy units of &c, and ¢ itself in units of yp/m. The NLSE

) ) ) was numerically integrated on a two-dimensional grid using
where the dimensionless function an operator splitting methdd. To impose the background
oscillating superflow the condensate was defined as
oM(w) wéM(w)

N pxD =€ 0 g x,1),
shown in Fig. 1, describes the inertial and frictional aspectsvherevg(t) is the chosen time-dependent superfl@wunits
of the vortex’s motion. of ¢) uniformly defined over the whole region, aggx,t) is,

We now see that inertial effects will be relatively unim- initially, a static vortex solution of the NLSE. With the initial
portant at frequencies where the “inertial parametef®) is  state representing a condensate with a vopiiess a super-
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flow given byvg(t=0), ¥(x,t) was evolved according to the time step was 0.0Z/c and the time-dependent velocity was

NLSE. The resulting equation fas(x,t) is along the longest dimension of the grid, a channel whose
S spatial dimensions were 25800 points, with a spacing
ie=(Vs-X)o— 3(V+ivy?e+(le[*~1)e. (19  equal to 0.1 or 0.0%. Along the edges we adopted von

Whenv, is constant in time, Galilean invariance means thaf\eUmann boundary conditions fai(x,t), which means that

a solution to Eq(19) is given by the superfluid velocity computed frogix,t) wasv(t) at the
beginning and at the end of the chan(thls also implies that
e(x,t)=exp( —iv2t/2)f(x—V4) the initial circular vortex flow field had to be slightly dis-
torted.
0=— V2 +(|f|2—1)f. There are other ways of imposing the superflow, for in-

) o _ _ ) stance using the boundary conditionV ¢=ivgy for the full
NLSE, the time evolution of(x,t) represents a vortex being {ime to reach the center where the vortex is located, which

‘r‘igidly tran§lated with vglocitws. The dgviations from this  .on pe specially inconvenient if one wantsto vary rapidly
timgsjlee;esndgﬁthawor will become evident ag becomes iy, time, another problem is that the velocity field one ob-
y . . . - tains is not spacially uniform and does not lend itself so
In the method used the nght-hand side(D9) is Spl.'t Into easely to a comparison with the electrodynamical theory.
two parts which are successively integrated, making the al-~ _; .
gorithm first-order accurate in tinfé: ~ Figure 2 shows the effect of a constant acceleration on an
initially uniform condensate. Here one sees a wake in the
(1st step, superfluid density propagating at the speed of sound from the
beginning of the channel towards the end, and a counterwake
propagating in the opposite direction. This consequence of
the imposed accelerated flow takes a finite amount of time to
The first step was integrated using the Crank-Nicholsorfeach the channel center, where the vortex was placed in the
method?’” which is unconditionally stable and second-ordersubsequent simulations, and is responsible for an observed
accurate in time; the second step was integrated exactly. Trdelay in the vortex response. This effect is related to the

ip=—1V2p—ivyV,

i¢=Vs-xe+ 3020+ (le[*~1)¢ (2nd step.
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’ M(w)=IiprY((w(j).

(20

The results are shown in Fig. 3 together with the functional
form obtained from the linearized effective QED theory.

Since we did not get a perfect steady-state response, as
can be seen in a typical trajectory as in Fig. 4, it was not very
clear which region of the data array to use in taking the
Fourier transform. We chose to ignore an initial structureless
region, corresponding to the delay mentioned above, and to
take several Fourier transforms using time intervals equal to
an integer number of periods, all starting at the same point.
Hence, with the same trajectory, we obtained several values
of M(w), which were averaged. The error bars in the figures
correspond to this averaging process.

We obtainedM (w) for three amplitudes of the oscillatory
velocity field, namely 0.3, 0.2, and Ocl The last two cases
T gave very similar values for the mass, except at lower fre-
0 10 20 30 40 50 quencies, where the vortex response was further from a

tLe/e] steady state, and we could not observe several periods of
oscillations. Nonetheless, the expected qualitative behavior

FIG. 4. Typical vortex trajector¥(t) with harmonic forcing of  \was observed.

period T=5¢/c. The higher amplitude case,2=0.3, posed more diffi-
o o ] culties at low frequencies. Up to the lowest frequency we
finite compressibility of the superfluid and does no harm toere aple to get, one sees a qualitatively different behavior,
the observation of vortex oscillations, it is in fact what \hich may be due to the onset of nonlinearities not visible in
causes them. , , the other cases.

A more dangerous effect is the reflection of the wake off  Note that in the QED theory the real and imaginary parts
the end of the channel. To avoid it, one has to restrict they M(w) obey a Kramers-Kronig relation. We could not
observation time to about 4fc, for a channel length of 40  .heck if such a relation existed in the measuldé) be-

& This reflection probably explains problems related to vor5yse the points obtained were too scattered to allow for a
tex shedding that were observed in some cases at the end fjigple fit.

the observation period. We also tried a pulse form far(t),
Results of the simulations t -
- _ | toT
The equation of motion one gets for the vortex position in vs(t)= V2ev maK('r) € : (22)
the presence of a time-dependent background superflow is
(n==%1) This flow would produce a Gaussian displacement along the
. — channel for a “massless” vortex. What is observed in Fig. 5
—ioM(w)V(w)=*kpzX[vy(w)=V(w)]. is a delayed main peak in the parallel direction with an ac-

Thus, in the absence of the inertial term, the vortex driftscompanying structure in the perpendicular direction. The real
with the superflow.M (w) is the Fourier transform of the PartM’(w) is displayed in Fig. 6. Since the channel is finite
causal kernel, as above. These dynamics imply that for & both width and length, the zero-frequency limit fdf(w)
monochromatic flow one should get a response only at thghould cross over to a finite value given by the system size.
driving frequency or at the resonance where!n our system, with length 46, values ofM’(«w) greater than
w’M?(w) = k°p?, which for a frequency-independent mass N 40~3.7 are difficult to interpret.
corresponds to cyclotron oscillations.

We considered different forms of time-dependent flow V1. IMPURITIES AND VORTICES
and compared the observed trajectories with the equations of
motion above. To simulate an oscillating flow we took We consider as a simple model of an impurity a point

v4(t) to be object which couples linearly to the boson densjiysp(1
—B/c). The Lagrangian describing the impurity is taken to
vs(t)=vg sin(2wt/T), be

wherev 2 ranged from 0.1 to 08andT ranged from 2 to 30 —

&lc. The trajectories we have obtained display a nearly peri- L. =2 } m.R2+ P f dzxz U.(]x—R4])B(x)

odic structure with a characteristic frequency equal to the "™ % 2 %2 mc e a ’
driving frequency. We obtained the frequency dependence of

M(w), as implied by the model's equation of motion, by whereR,(t) is the position of thea™ impurity. Upon inte-
taking the Fourier transform of the trajectory and reading itsgrating out the gauge field*(x,t), we obtain the effective
amplitude at the driving frequency according to action
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Serl {Xi(D}{Ra(t)}]= J dt[ —% k2 e XX+ X % maéi]

d*k [ de e@tt)
+—fdt2 nin; InX;(t) = X;( fdtf dtf 2n )ZJ' 27 =K

1_ . ASENUR N A r S
x{z PKZE ninje*'k'[xi(t)fxi(t NZx k- X;(t)zX K-X;(t")
1]

ipk

-— ni‘kua(k)e—ik'[xi“)—Raﬁ’ﬂzxk-Xi(t)
m Ta
+W 3, K2U4(k)Uy(—kpe Rl ol ”} (22

wherew?(k) =c?k?[1 + (1/4)£%k?] is the dispersion relation circles, and the density response of the superfluid generates a

derived from the nonlinear Schiimger equation. [Super-  point accumulation oAN= — U p/m?c? bosons to “screen”

scripts in Eq.(22) refer only to spatial indices. We now  the impurity.

focus on the final two terms, which involve the impurity  Now let the impurity move throughout the superfluid.

coordinates. Varying S, _; with respect toX*(t), we find the force on the
The last contribution in Eq(22) describes the interaction vortex to be

between impurities mediated by phonons, including a self-

interaction term analogous to the self-interaction of vortices 5 Uore [ 5%—2AAB
already discussed. Ignoring retardation effects, the purely lo- Fa=_vol_ nYpK { - ]EﬁVRV
cal superfluid respongsee Eq(6)] means that the impurity- oX* 2mmc? A

impurity interaction will be short-ranged provided tbig(k)
are nonsingular in the infrared. The self-interaction term conwith A=X—R. This is simply related to the backflow cur-

tributes a mass shift rent. If we ignore the self-interaction term for the vortices,
o which is appropriate at very low frequencies, then the vortex
A p d%k k4 U 4(k)|? 03 equation of motion,
ma(w) (271_)2 Z(k)(wZ(k)_wZ)v ( )
. aﬁl B_pa
whose imaginary pafftaking w(k) = ck], Npxe®X"=F
re just says that the vortex moves in the dipolar backflow field
Amy(w)= 7 2 5 |Ua(w/c)|?w? of the moving impurity.
Finally, consider the force on the impurity due to a mov-
is super-Ohmic provided (k— 0)<k ™ with 0<3/2 ing vortex. We find, neglecting the impurity mass renormal-

Consider now the vortex-impurity interaction term. We ization term,
will ignore retardation effects, and further assume a point

interaction between impurities and superfluid, so that ) nUpx 5B _ 2 AAB )
U.(k)=U, is a constant. Without loss of generality, we may MippRY= =z { - } PYXT.
consider a single vortex-impurity pair. The contribution to 2mm A

the effective action is then
This too has a simple interpretation. The quantity(R)/m

nUpk ZX(X—-R) - is the local potential in which the impurity moves, and hence
Sp-i= 75z | dt (X—R)? -X the force on the impurity i§=—(U/m)Vp. Now recall Du-
an’s result[Eq. (4)] for the density response to a moving
vortex. Taking the gradient gives us the appropriate force.

_ nUpk
27mc?

O(X—R)

X
where n is the integer charge of the vortex) is the Polaron model of a quantum vortex
impurity-boson density coupling, an®(x)=tan (y/x) is Niu, Ao, and Thoules$NAT) have investigated a model
the angle function. Note that iR(t) is time independent, of a quantum vortex coupled to superfluid density
then, for closed pathss, _; is a topological quantity equal to fluctuations. They describe the vortex as a nonrelativistic
—(nUpk/mc)W, _;, whereW, _; is the winding number of  particle of masV, in a background uniform magnetic field
the vortex about the impurity. This makes excellent sense(corresponding to the average superfluid densihd assume
the vortex effectively counts the number of bosons it en-a scalar coupling to the phonons, i.e.,
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FIG. 5. Vortex trajectoryX(t) for a pulsed superflow given by
Eg.(21). In this casel = 2¢&/c andv 4,=0.4c. The smooth curve is
the pulse shape.

FIG. 6. Real part of the masd'(w) obtained from analysis of
response to the pulse flow. Solid curve is the prediction of the
linearized electrodynamic theory.

H2
2M,

Nkp 2k
P a0
MC

2Mc?

H 1 (p+n a/c)2+2ﬁ dd+1
NAT = 2M pTnkp Wk k H= A2,

+ >, W(k)e "(d+dT ), wherell=p—(1/2nkpzXr is the cyclotron momentum op-
K erator for the vortex. Note thafl, I1,] =i#%?/1 5, wherel,,
=ym/2mnp is the “magnetic length” for a vortex of

strengthn. We now work to lowest order i\, and follow

NAT by assuming a trial state

wheren is the integer vorticityVxXa=—cz accounts for the
geometric phase due to the background bosonsggrisi the
phonon frequency at wave vectkr NAT go on to investi-
gate a simple polaronic wave function which accounts for the
phonon cloud around a vortex and conclude that an infinite
vortex mass would shrink the quantum uncertainty in the
vortex position to zero, a situation in conflict with explicit With
calculations using Feynman’s trial vortex wave function. At
this level, the mas$/, is phenomenological and does not
include the effects of phonons. It may be perhaps more ap-
propriate to consideM, as the mass of an external particle
trapped ZIQ the vortex core, as considered by Demircan, P
and Niu:

In keeping with the general philosophy that the vortex is ai\ﬂumeilt?)frﬁalrf the stateyg(r), we obtain the effective phonon
topological object which couples to the boson density as in
Eq. (3), we propose a variant of the NAT model:

[PIRANGD =[xr)® ¥ pr

—(r—R)%42,—i2-rxRi22
1

e e

XR(r): \/ﬁz

Qreatingl as a variational parameter. Taking the expectation

+2 w(k)e'* R(d+dt,),

m how
mo[phox e7(1/2)k2|2.
M, V 20

The phonon ground state is a coherent state,

ph_z ﬁwk(d dk"r‘

H=i[p+nx_(a+A)/c]2+2 fiw| did +1
2Me P " k kYk 2]

nk2 |2

W(k):mz

where w,=hck and
W(k)

A(r)=\/|—_; \/ zxke'k’(dk+d o)

: . o . |W ) =ex

is the quantized radiation field corresponding to the super- kK hoyg
fluid density and current fluctuatiofis(() is the area of the
system. We rewrite’H as

(dkeik'R—dIeik'R)] |0},

and the total energy is
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|=|0/4\/1—n2,u/Me. APPENDIX: INERTIAL TERM FOR MANY VORTICES
Note that no solution exists fol ,<n?u, which we interpret The velocity-dependent part of the effective action in-

in the following manner. A cyclotron mode will show up as duced by integrating out the phonon field is

a pole in the denominator of Eq(17), which means ) (it
©Me(@) == xp. Now no such pole exists in the absence of , o _ }—Kgf dtf dt’j dok j do e

the external mashl,, but if M, is added to ouM (w), then 2P (2m)? ) 27 w?—w?(k)
a damped cyclotron resonance does exist at the cyclotron

frequencyo~xp/M,, provided thatM =n?u. _ x> nine KD O-X5 5 kX (1) 2 k- X ().
NAT compute a renormalized magnetic lengtlaccord- ] ) !
Ing to the relation We definea;(t,t') =X;(t)—X;(t'). Using
|l dk a1
KPRV (R+ 77)>|25€XP[—F+0(|77|4) ) f ﬂe"k‘Ak“kaE Jo(kA) 8P

which is obtained from the overlaps 1 ~ A
+ > Jo(KA)(8*P—2A%AP),

B iZ-Rxy [9? |y?
(XRlXR+p=eXQ — 22 817 81?2 whereJ,(2) is the Bessel function of order. Taking w(k)
=ck, we have
and —
as=— 2 [atf av [ 22 gue-v)
(Wor(R)| W pr(R+ 1)) = 8nc? 27 ©
[W(k)|? S 2¢?
—eXp(‘g Thag? (17c0% . X2 in X OXF(t) (Kz(—iwAij/C)+—w2A;>
) 1
We find o
X (8= 2A*A")—Ko( —iwAj; [c) 6" | P,
11 m [(m\2&a] 1 ( )~ Kol /%)
L 2v2 \M,) 14] 212 where K,(z) is a modified Bessel function, and where

o—w+i0" is understood. Since the above integrand is al-
ready quadratic in velocities, which we assume are small
compared withc, we may approximatey;; as a constant.

In this paper we have explored the theory of dynamicalExpansions oK (z) for smallz (Ref. 249 yield
vortices in superfluid films, deriving a frequency-dependent o .
vortex mass vF\)/hich enters into thegvorte;q equations of mo- Ko(—iz)==C=In(=iz/2)+---,
tion, as well as describing dissipation by radiation of 2 1
phonons. Numerical simulations corroborating the predicted Ky(—iz)+ =< 22 In(—iz/2)+-- ,
behavior ofM (w) were presented as well. These calculations z 8
may be extended t8+1)-dimensional superfluids as wéfl.  and at low frequencies the first of these terms dominates, so

VIl. CONCLUSION

These results will be presented in a future publication. provided w<<c/A,,,s we recover the action of E¢16).
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