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Scaling behavior and universality near the quantum Hall transition

K. Ziegler
Max-Planck-Institut fu¨r Physik Komplexer Systeme, Aubenstelle Stuttgart, Postfach 800665, D-70506 Stuttgart, Germany

~Received 28 June 1996; revised manuscript received 30 October 1996!

A two-dimensional lattice system of noninteracting electrons in a homogeneous magnetic field with half a
flux quantum per plaquette and a random potential is considered. For the large-scale behavior a supersymmet-
ric theory with collective fields is constructed and studied within saddle-point approximation and fluctuations.
The model is characterized by a broken supersymmetry indicating that only the fermion collective field
becomes delocalized whereas the boson field is exponentially localized. Power counting for the fluctuation
terms suggests that the interactions between delocalized fluctuations are irrelevant. Several quasiscaling re-
gimes, separated by large crossover lengths, are found with effective exponentsn for the localization length
j l . In the asymptotic regime there isn51/2 in agreement with an earlier calculation of Affleck and one by
Ludwig et al. for a finite density of states. The effective exponent, relevant for physical system, isn51 where
the coefficient ofj l is growing with randomness. This is in agreement with recent high-precision measure-
ments on Si metal-oxide-semiconductor field-effect transistor and AlxGa12xAs/GaAs samples.
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I. INTRODUCTION

The transition between quantum Hall plateaus in a tw
dimensional electron gas is characterized by a divergen
calization lengthj l with a critical exponentn and a nonzero
longitudinal conductivitysxx . j l is finite andsxx is zero
inside the Hall plateaus whereassxy is a constant.

A direct measurement of the localization length expon
in an AlxGa12xAs/GaAs sample by Kochet al.1 gave a
value forn very close to 7/3. Recent high precision measu
ments on Si metal-oxide-semiconductor field-effe
transistor2,3 and AlxGa12xAs/GaAs samples,

4 however, indi-
cate that j l diverges with the electron densityn like
'bn(nc2n)21 or with the magnetic field H like
'bH(Hc2H)21, where the quantum Hall transition~QHT!
is atn5nc or H5Hc , respectively. The exponentn'1 ap-
pears to be almost independent of the material or the H
plateaus. On the other hand, the coefficientsbn , bH are sen-
sitive to disorder: theyincreasewith increasing disorder.3,4

This is a remarkable observation because in the sca
theory of the Anderson localization5 the coefficient is related
to the mean free path. That means it woulddecreasewith
increasing disorder. The observation ofn'1 is in sharp con-
trast to the experiment by Kochet al.The disagreement wa
explained in Ref. 2 by insufficient sample size in the ear
experiment.

The localization length scale near the QHT was also st
ied intensively in a number of numerical simulations usi
the network model6,7 and the lowest Landau leve
approximation.9,10 These calculations agree on the result t
the critical exponent isn'7/3. Concerning the exponentn
there is a calculation by Affleck11 based on the
U(2n)/U(n)3U(n) nonlinears model with a topological
term in the replica limitn→0.12 He obtainsn51/2. The
same value was found for Dirac fermions with the rand
vector potential if the average density is finite.13

A reason for the impressive agreement of the numer
calculations, on the one hand, and the disagreement betw
550163-1829/97/55~16!/10661~10!/$10.00
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experiments, numerical and analytic calculations, on
other hand, could be the sensitivity of the QHT to the size
the system and to the type of disorder. In particular, it m
be related to the existence of a large characteristic len
scale depending on the disorder. The existence of suc
typical scale is also indicated by the numerical results du
the fact that there is a crossover from the pure netw
model (n51) to the random network model (n'7/3).

The purpose of this paper is to investigate the role
disorder induced length scales in a tight-binding model w
a strong magnetic field. The work is based on an effect
supersymmetric field theory for Dirac fermions with a ra
dom mass which enables us to study large scale proper
The main results are as follows.

~1! Spontaneous breaking of the supersymmetry. Tha
the effective field theory for the QHT isnot a nonlinear
sigma model.

~2! The scaling behavior of the localization length d
pends on the characteristic scale exp(p/g), whereg is the
strength of disorder: Ifj l!exp(p/g) the effective exponent is
n51, whereas forj l@exp(p/g) the exponent isn51/2.

~3! There is a universal value for the conductivi
sxx5e2/hp.

The paper is organized as follows: After the definition
the model in Sec. II an effective field theory is construct
for the averaged Green’s functions~Sec. III!. This field
theory includes the description of the conductivity accord
to Kubo’s formula. Then a collective field representation
introduced in order to cover symmetry breaking effects~Sec.
III A !. The latter are discussed using a saddle-point appr
mation for the collective field~Sec. III B!. Gaussian fluctua-
tions around the saddle points and corrections to Gaus
fluctuations are studied in Secs. III C and III D, respective
Finally, the localization length~Sec. IV! and the conductivity
~Sec. V! are evaluated.

II. THE MODEL

A lattice model is considered in this paper, stressing
universality in terms of the electron density and the magn
10 661 © 1997 The American Physical Society
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10 662 55K. ZIEGLER
field observed in the experiment, to study the asympto
behavior of the localization length near the QHT. A starti
point is a microscopic model for noninteracting electrons
a regular lattice in a homogeneous magnetic field. Disor
enters only through a random potential on the lattice. T
choice guarantees that the disorder does not affect the ho
geneity of the magnetic field. The model is defined by
tight-binding Hamiltonian on a square lattice with magne
flux f5Ba2, wherea is the lattice constant andB the ho-
mogeneous external magnetic field. There is nearest ne
bor hopping with ratet and next nearest neighbor hoppin
with rate t8. The Hamiltonian reads in Landau gauge

H52(
r

@ te2ipBay/f0c~r !c†~r1ex!1tc~r !c†~r1ey!

1t8e2ipBa@y6~1/2!]f0c~r !c†~r1ex6ey!1H.c.#

1(
r
V~r !c~r !c†~r !. ~2.1!

ex,y are lattice unit vectors, andc
† andc are fermion creation

and annihilation operators, respectively.V(r ) is a random
potential representing disorder on the lattice. Without dis
der, i.e., forV(r )50, this model was discussed extensive
in the literature.14–16 A central result is the occurrence o
electron bands with a quantized Hall conductivity in ea
ic

n
er
is
o-
e

h-

r-

band. Gaps can be created in the model, for instance
choosing a staggered potentialV(r )5(21)r11r2m in the
Hamiltonian~2.1!.13 By varying the staggered chemical po
tential one varies the concentration of electrons in the s
tem. There are other methods to create gaps in a ti
binding model. For example, one could vary the magne
field. This, however, would lead to a more complicated si
ation because the corresponding vector potential depend
space. In general, the relevant parameter for the quan
Hall transition is the filling factornF0 /B. This is essentially
determined by the ratio of the concentration of electronsn
and the magnetic fieldB. Therefore, the variation of the con
centration of electrons~i.e., the chemical potential! is equiva-
lent with the variation of the magnetic field in the quantu
Hall system.

In general, the creation of new bands~‘‘gap opening’’!
can be described by Dirac fermions.16–18 Starting from the
tight-binding Hamiltonian the Dirac fermions can be deriv
in a large-scale approximation. The simplest case is that w
half a flux quantum per lattice plaquette (f5f0/2).

13,19

~Such a strong magnetic flux is unrealistic in real crystals
typical for arrays of quantum dots in moderate magne
fields.20! For half a flux quantum per plaquette it is easy
derive the Dirac theory from a sublattice representat
which takes into account the phase factoreipy/a of the tight-
binding Hamiltonian and the staggered potential. The Fou
components of the nonrandom partH(k) read
S m 11e2 ikx z~12e2 iky!~12e2 ikx! 11e2 iky

11eikx 2m 11e2 iky 2z~12e2 iky!~12eikx!

2z~12eiky!~12eikx! 11eiky m 212eikx

11eiky z~12eiky!~12e2 ikx! 212e2 ikx 2m

D , ~2.2!

with z5 i t 8/4. All elements of the matrix are measured in units of the nearest neighbor hopping ratet. After expansion of
k5(6p,6p)1ap for small p vectors around the four nodes and a global orthogonal transformationH(k)→OH(k)O with

O5S s0 2 is0

is0 2s0
D , ~2.3!

the Hamiltonian becomes

H8~p!52S m14i z ipx2py 2i z~px1py! 0

2 ipx2py 2m24i z 0 2i z~px2py!

2i z~px1py! 0 m24i z py1 ipx

0 2i z~px2py! py2 ipx 2m14i z

D [S H11 H12

H21 H22D . ~2.4!

The corresponding Green’s function,

Ĝ5SH111 iv H12

H21 H221 iv D 21

;S ~H111 iv!21 ~H111 iv!21H12~H221 iv!21

~H221 iv!21H21~H111 iv!21 ~H221 iv!21 D , ~2.5!
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decays asymptotically into two diagonal blocks

;S ~H111 iv!21 0

0 ~H221 iv!21D . ~2.6!

The lattice constanta is implicitly scaled out int8, m8, and
pj . ; means asymptotics with respect tom14i z;0 and
px;py;0. Thus the approximation breaks up the Ham
tonian ~2.1! into two independent Dirac Hamiltonian
H11/225sp1s3(m7t8) with Pauli matricess j . The two
Dirac theories describe particles with different mas
m7t8, respectively. The next nearest neighbor hopping te
lifts the degeneracy of the two Dirac particles. Therefore
plays an important role in this model and must be taken i
account. A variation of the chemical potential implies
variation of the Dirac mass. In particular, Dirac fermio
undergo a Hall transition if the mass vanishes.13,21 This is a
consequence of the fact that the mass breaks the t
reversal symmetry: depending on the sign ofm there is a
clockwise or counterclockwise Hall current. If the light Dira
particle undergoes a Hall transition atm2t850 its contribu-
tion to the Hall conductivity changes fromsxy521/2 for
m2t8,0 to sxy51/2 for m2t8.0. ~The conductivity is in
units of e2/h.! The heavy Dirac particle contribute
sxy51/2 because its mass is positive. Thus the combi
effect is a Hall step fromsxy50 to sxy51. This picture is
particularly simple forF5F0/2 but should also hold for
other values of the flux as long as the low energy excitati
are linear and can be described by Dirac fermions.

For large scale properties like for the critical behav
near the Hall transition it is sufficient to consider only t
light particle withm2t8,

~H81 iv!215S iv1m2t8 i¹11¹2

i¹12¹2 iv2m1t8
D 21

[G~ iv!

[SG11 G12

G21 G22
D , ~2.7!

where¹ is the lattice gradient operator. Disorder, origina
introduced inH by the random potentialV, appears in
H11/22 as a diagonal matrixV8 with independent random el
ementsV1, V2. The appearance of two random variables p
site is a consequence of the sublattice representation req
by the phase factoreipy/a of the tight-binding Hamiltonian.
The random matrixV8 is equivalent to a random mas
dms3 and a random energydEs0. For technical reasons th
random energy term will be neglected in the following.

It should be noticed that the random mass is margin
irrelevant on a perturbative level.22 However, going beyond
perturbation theory, it turns out that the random mass le
to spontaneous symmetry breaking which changes the p
erties significantly.23 This effect has not been included
previous studies of the localization properties near the H
transition. It will be important for the considerations in th
paper.

Dirac fermions can also be derived as the large scale
proximation of the network model.24 It was recently pointed
-
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out by Ho and Chalker25 that the network implies a random
Dirac mass~due to fluctuations in the tunneling rates!, a
random energy~due to fluctuations in the flux per plaquette!,
and a random vector potential~due to fluctuations in the
phase of the hopping elements!. That is, in terms of the net
work model the random Dirac mass requires a fixed flux
plaquette and a fixed phase for the current between the
tices of the network. This is probably the simplest situati
for the realization of a QHT.

After averaging with respect to the random mass the
calization lengthj l , measured in lattice unitsa5Af0/2B for
electrons in a magnetic fieldB, is defined as the decay lengt
of the functionCj j 8(r ,v)[^uGj j 8(r ,0;iv)u

2&. The relation
uGj j 8(r ,0;iv)u

25Gj j 8(r ,0;iv)Gj 8 j (0,r ;2 iv) means thatj l
is given by the product of two Green’s function at freque
cies withopposite sign~retarded and advanced Green’s fun
tions!. Due to the 232 block structure ofG there exists a
relation between Green’s functions ativ and Green’s func-
tions at2 iv:

Gj j ~r ,r 8;2 iv!52Gj 8 j 8~r 8,r ; iv!,

Gj j 8~r ,r 8;2 iv!52Gj j 8~r 8,r ; iv! ~ jÞ j 8!. ~2.8!

This identity reflects the Lorentz covariance of the Dir
theory. It implies

uGj j ~r ,r 8; iv!u252Gj j ~r ,r 8; iv!Gj 8 j 8~r ,r 8; iv! ~2.9!

and

uGj j 8~r ,r 8; iv!u252Gj j 8~r ,r 8; iv!Gj 8 j~r ,r 8; iv!.
~2.10!

This means that only the Green’s functions with one f
quency is required for the evaluation of localization prop
ties in the relativistic model. The averaged quant
Cj j 8(r ,v) is translational invariant. Therefore, it can be e
pressed by its Fourier componentsC̃j j 8(k,v). This can be
used to calculate the localization lengthj l . ~The following
discussion holds for any choice ofj , j 8. Therefore, these
labels are not written explicitly.! The correlation function
C(r ,v) for large r is proportional tor2aexp(2r/jl) with
some exponenta for which we assume that it is fixed for th
model and does not depend on the parameters. This imp
that

( r r
2C~r ,v!

( rC~r ,v!
5

( r r
22aexp~2r /j l !

( r r
2aexp~2r /j l !

5j l
2 (xx

22aexp~2x!

(xx
2aexp~2x!

.

~2.11!

Dropping the constant term from the ratio of sums on
right hand side of~2.11!, the localization length can be de
fined in terms of the Fourier components as

j l5UA2
¹k
2C̃~k,v!

C̃~k,v!
U
k50

. ~2.12!

The localization length is finite forvÞ0 but diverges in the
regime of delocalized states withv→0.

The localization length for massless Dirac fermions wi
out disorder diverges likeuvu21 if v50 is approached. This
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10 664 55K. ZIEGLER
behavior is probably unstable against arbitrarily weak r
domness, as it will be shown in this paper. However, it h
been shown in a previous paper26 that the localization length
of the averaged correlation function has a lower bound wh
is the energy-energy correlation length of the 2D rand
bond Ising model. Since the latter diverges at the criti
points, this implies a divergent localization length at t
QHT.

The calculation for the network model of Chalker a
Coddington,6 indicates that the critical exponentn51 of the
pure model may change ton57/3 due to disorder. This wa
discussed as a possible appearance of a new random
point of the random model.13 However, a new fixed poin
with such a behavior has not been found so far in terms
renormalization group calculations.

III. FUNCTIONAL INTEGRAL REPRESENTATION

It is convenient to introduce a functional integral repr
sentation forC(r ,v), because this provides a basis to app
an approximation using a saddle-point integration. The pr
uct of Green’s functions on the right hand side of~2.9! and
~2.10! can formally be written as

~ iv1H !r j ,r 8 j 8
21

~ iv1HT!r 8k8,rk
21

5E x r 8 j 8x̄ r jC rkC̄r 8k8exp~2S0!DCDC̄DxDx̄,

~3.1!

with the quadratic form of the superfield (x r ,C r),

S052 i sign~v!(
r ,r 8

S x r

C r
D S iv1H 0

0 iv1HTD
r ,r 8

S x̄ r 8

C̄r 8
D .

~3.2!

x is a complex field andC a Grassmann field, respectivel
It is important to notice thatH appears in the quadratic form
for the complex field, whereasHT appears for the Grassman
field. This difference will turn out to be crucial for the loca
ization properties of the Dirac fermions. In particular, it w
give all the delocalized states expected near the Hall tra
tion. In contrast, the quadratic form whereH is used in the
Grassmann sector instead ofHT does not give these critica
properties.26,21

Averaging with respect to disorder leads to

^~ iv1H !r j ,r 8 j 8
21

~ iv1HT!r 8k8,rk
21 &

5E x r 8 j 8x̄ r jC rkC̄r 8k8^exp~2S0!&DCDC̄DxDx̄.

~3.3!

A Gaussian distribution of the random Dirac mass is
sumed in the following with meanm and varianceg. Then
the average can be performed exactly giving an additio
quartic interaction term inS0 with coupling constantg. For
weak disorder, i.e., smallg, one could apply perturbation
theory. Unfortunately, this does not lead to interesting res
because it cannot catch spontaneous symmetry breakin
order to deal with the latter one must construct a represe
tion which describes the field which is the conjugate to
-
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ed
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symmetry breaking terms of the Dirac theory, the massm
and the frequencyv. The appearance of the symmetry brea
ing terms inS0 dictates the choice ofx r x̄ r andC rC̄r as the
collective fields.

A. Collective field representation

In general, products of the fieldsx, C, in S0 can be re-
placed by the collective fields asx r x̄ r→Qr , C rC̄r→Pr ,
x rC̄r→Q̄r , and C r x̄ r→Q r . ~Some care is necessary
choose the paths of integration correctly.27! One obtains for
~3.3! in the collective field representation~for details see Ref.
27!

1

g2E Q r ,k jQ̄r 8, j 8k8exp~2S8!DPDQDQDQ̄ ~rÞr 8!,

~3.4!

with the supersymmetric effective action

S85
1

g(r ~Tr2Qr
21Tr2Pr

212Tr2Q̄rQ r !1 ln det@~H01 ivs0

22tQt!~H0
T1 ivs012i tPt!21#

1 ln det@124tQ̄t~H0
T1 ivs012i tPt!21

3tQt~H01 ivs022tQt!21#. ~3.5!

H05 is¹1ms3 is the average Dirac Hamiltonian andt the
diagonal matrix (1,i ). The introduction of the collective
fields is important to discover the finite length scaleep/g,
created by disorder, which is crucial for the properties of
random Dirac mass model.27

B. Saddle-point approximation

A saddle-point~SP! approximation is a crude approac
for a two-dimensional system because it usually gives
wrong results for low dimensional systems due to stro
effects of fluctuations. In the model under consideration
will be used as a starting point to study also the fluctuatio
An argument in favor of a SP approach is the fact that so
features of the model can be described which are not av
able from pertubation theory. An example is the creation
states in the massive Dirac theory due to randomness23,28

The hope is that the fluctuations around the SP are contro
by Gaussian fluctuations, at least if randomness is weak.
will be supported by the discussion presented below. A
other argument for the SP approximation is its equivale
with theN→`-limit, whereN is a formal extension of the
model to one for electrons withN states per lattice site.21

The SP of the functional integral is given by the equatio
dQS85dPS850. The two SP equations are identical if on
substitutesP5 iQ:

s3tQrts35g~H01 ivs022tQt!r ,r
21 . ~3.6!

An ansatz for a uniform SP solution readstQ0t
52( ihs01mss3)/2. The SP equations imply a shift of th
frequencyv→h8[h1v with

h82v5h8gI, ~3.7!
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and a shift of the average massm→m8[m1ms with

ms52mgI/~11gI !, ~3.8!

I;
1

pE0
1

@h821~m1ms!
21k2#21kdk

;2
1

2p
ln@h821~m1ms!

2#

52
1

p
lnumu, ~3.9!

with m5m1ms1 ih8. In the pure limitg→0 the SP equa-
tions lead toh85v andms50. For a giveng.0 the SP
depends on two parameters,m andv. For v50 and large
umu there is only a trivial solution of~3.7! with h85h50
becausegI,1. As one variesumu there is a critical point
mc52mc52e2p/g, where gI,1 approachesgI51. As a
consequence, the SP solution of~3.7! bifurcates fromh50
to hÞ0 at m5mc , and h50 becomes unstable.27 In the
following only the region withhÞ0 is considered, where
sign(h)5sign(v). This has a nonzero density of states

r~m!'~1/2pg! lim
v→0

h8

5~1/2pg!h5~1/4pg!A~mc
22m2!Q~mc

22m2!,

~3.10!

which describes a semicircular behavior. Of course, this m
be normalized with an energy cutoff dependent constant

As an ansatz for the SP approximation withvÞ0 one can
write

h8~v!25h8~v50!21d5
mc
22m2

4
1d, ~3.11!

where the last equation follows from the SP equation
v50. This implies

umu25mc
2/41d ~3.12!

and for Eq.~3.7!
st

r

~g/2p!h8ln~114d/mc
2!5v. ~3.13!

The expansion of the logarithm ford!mc
2/4 yields a cubic

equation ford

Smc
22m2

4
1d D d2'v2S pmc

2

2g D 2. ~3.14!

Although this equation could be solved directly it is simpl
to distinguish two different asymptotic regimes:

~i! (mc
22m2)/4!d!mc

2/4,

d;v2/3S pmc
2

2g D 2/3 ~3.15!

and ~ii ! (mc
22m2)/4@d,

d;v
pmc

2

g

1

Amc
22m2

. ~3.16!

C. Gaussian fluctuations

In order to evaluate the localization lengthj l the Gaussian
fluctuations around the SP must be calculated~semiclassical
approximation!. SinceQ, P, andQ are 232 matrices, the
fluctuations can also be written as four-component vec
fields: q15dQ11, q25(dQ121dQ21)/2, q352 i (dQ12
2dQ21)/2, q45dQ22 with analogous definitions for
p1 , . . . ,p4 and for the Grassmann fieldc1 , . . . ,c4. The ac-
tion of the Gaussian fluctuations reads in the Fourier rep
sentation

S8'E (
m,m851

4

@~ I k!m,m8~qk,mq2k,m81pk,mp2k,m8!

12~ I k8!m,m8c̄k,mc2k,m8#d
2k, ~3.17!

with the fluctuation matricesI k and I k8 . For the large-scale
properties one needs only the asymptotic behavior for sm
wave vectorsk. In particular, for a vanishing wave vecto
there is
I05S 1/g22am* 2 0 0 2b

0 2/g24aumu2 0 0

0 0 2/g24aumu2 0

2b 0 0 1/g22am2

D , ~3.18!

I 805S 1/g22am* 2 0 0 0

0 2~1/g22aumu222b! 0 0

0 0 2~1/g22aumu212b! 0

0 0 0 1/g22am2

D , ~3.19!
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10 666 55K. ZIEGLER
with

a5E ~ umu21k2!22d2k/4p2;umu22/4p51/pmc
2

~3.20!

and

b5E k2~ umu21k2!22d2k/4p2

5I /221/4p;2 lnumu2/4p;1/2g. ~3.21!

These quantities become quite large for smallumu indicating
a short range behavior of the related modes. However,
second diagonal element ofI 8 vanishes for vanishingv be-
cause of 1/g22aumu222b5v/gh8. This is a direct conse
quence of the SP condition~3.7! and indicates a critica
modeck,2 for all umu,mc . Moreover, it implies a divergen
behavior of the localization length ifv→0. The correspond-
ing correlation function of the critical mode can be calc
lated in the large-scale limit by expandingI 8k in powers of
k as

C̃~k,v!5g22~2v/gh81Dk2!21, ~3.22!

where

D54aF11aS m2

1/g22am2 1
m* 2

1/g22am* 2D G . ~3.23!

gh8D/2 is like a diffusion coefficient. It is real and it neve
becomes zero. The critical behavior describes a phase w
divergent sum( r , j^uGj j (r ,r 8)u2&; i.e., the correlation func-
tion decays nonexponentially. It implies th
C̃(k50,v)5h8/2gv5p^r(v)&/v. This holds not only on
the SP level but, in general, due to the ident
( r 8, j , j 8uGj j 8(r ,r 8)u

25pr/v.

C̃ in ~3.22! is an approximation based onDk2!1. Since
D diverges like 1/pmc

2 it is not possible to use this expre
sion for the pure limit. This also reflects the nonperturbat
character of the SP approximation.

Apart from the critical~delocalized! fermion mode there
is a boson mode which becomes critical atm56mc . This is
due to a vanishing eigenvalue ofI0 becauseh50 at
m56mc . Thus there are delocalized states forumu,mc due
to massless fermions, whereas a combination of critical
mions and critical bosons controls the QHT. The band
delocalized fermions simplifies the study of transport pro
erties of the model away from the critical pointsm56mc .

An analogous calculation for the Gaussian fluctuatio
can be performed for Anderson localization@i.e., forf50 in
Eq. ~2.1!#. In that case the Green’s function of Eq.~2.7! must
be replaced by

G~ iv![S iv1M1¹2 0

0 iv2M2¹2D 21

. ~3.24!

Now the matrix H5M1¹2 is symmetric in contrast to
H5 is¹1(m2t8)s3. As a consequence the correspondi
fluctuation matrix is degenerated for the fermion and
boson sector~i.e., I k85I k) with
e

-

a

e

r-

-

s

e

I05S 1/g2a 0 0 0

0 2~1/g2b! 0 0

0 0 2~1/g2b! 0

0 0 0 1/g2a*
D ,
~3.25!

where

a5
1

~2p!d
E ~k22E1 ih!2

@~k22E!21h2#2
ddk ~3.26!

and

b5
1

~2p!d
E 1

~k22E!21h2d
dk. ~3.27!

There are two vanishing eigenvalues ofI0 for vanishingv in
the Grassmann as well as in the complex sector, each of t
is 1/g2b5v/gh8. Therefore, the large-scale behavior
this model is very different, and the critical properties a
described by a nonlinears model including fermion as wel
as boson degrees of freedom.29 This is a consequence of th
fact that f50 preserves the supersymmetry, whereas
model withf5f0/2 breaks the supersymmetry implyingI
ÞI 8. The latter implies that there is only one massless~de-
localized! fermion field, and all other fields are massive~lo-
calized!.

D. Corrections to Gaussian fluctuations

Gaussian fluctuations are usually not sufficient to desc
the properties of a critical system, especially at low dime
sionality, because the interaction between the fluctuations
a relevant perturbation. For Anderson localization the int
action is marginal ind52 as one finds from power countin
of the scaling behavior. This method can also be applied
the effective field theory of random Dirac fermions. It pr
vides a first check for the effect of the interaction among
fluctuations. In the following we will see that the perturb
tion term for random Dirac fermions has dimensional
22. Therefore, the interaction of the fluctuations is irre
evant.~It seems that the dimensionality is reduced by 2
comparison to Anderson localization. This is similar to t
dimensional reduction by 2 in supersymmetric theories,
plied to the average density of states for a particle in a str
magnetic field and a random potential.30,31!

Away from the critical pointsumu5mc it is sufficient to
study the Grassmann fluctuations because the complex
tuations are massive. Their action reads for terms up to
fourth order in the fluctuations,

S8'2E ~2v/gh81Dk2!c̄k,2c2k,2d
2k

28 (
r1 , . . . ,r4

Tr2@Q̄r1
Ḡr1r2

Q r2
Ḡr2r3
T Q̄r3

Ḡr3r4
Q r4

Ḡr4r1
T #,

~3.28!



-

55 10 667SCALING BEHAVIOR AND UNIVERSALITY NEAR THE . . .
FIG. 1. Scaling of the localiza-
tion length as a function of the fre
quency for disorder strength
g50.2 andm2t850.
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whereḠ5tG0t. c2s1 is the only critical mode of the col
lective Grassmann fieldQ r . Thus the interaction term ca
also be written as

28 (
r1 , . . . ,r4

Tr2@s1Ḡr1r2
s1Ḡr2r3

T s1Ḡr3r4
s1Ḡr4r1

T #

3c̄ r1,2
c r2,2

c̄ r3,2
c r4,2

. ~3.29!

The trace term can be evaluated and yields after so
straightforward calculation together with the approximati
Gr ,r 8'umu22@( ih8s02ms3)d r ,r 81 i¹1;r ,r 8s11 i¹2;r ,r 8s2#
the following expression

28umu28 (
r1 , . . . ,r4

@c̄ r1
dr1 ,r2c r2

dr2 ,r3c̄ r3
dr3 ,r4c r4

dr4 ,r1

1c̄ r1
dr1 ,r2
* c r2

dr2 ,r3
* c̄ r3

dr3 ,r4
* c r4

dr4 ,r1#, ~3.30!

where the index 2 of the Grassmann field has been drop
and dr ,r 85(¹1;r ,r 81 i¹2;r ,r 8). This result reflects the fac
that terms with an odd number of¹ operators cancels in
~3.29! and terms quadratic in¹ cancel each other because
the anticommutation rule of the Grassmann fie
c̄ r1

c r1
c̄ r3

c r3
1c̄ r1

c r3
c̄ r3

c r1
50. Higher order terms with a

most second order gradients disappear individually beca
they contain Grassmann fields at the same site. Simple po
counting indicates that this interaction term has dimensi
ality 22. Therefore, the interaction is irrelevant in compa
son with Gaussian fluctuations considered in the previ
section, and it scales quickly to zero under renormalizat
group transformations.

The situation is different if we approachm56mc be-
cause the complex field also becomes critical. As a con
quence, the corrections to Gaussian fluctuations are marg
rather than irrelevant then. It is possible that the localizat
length becomes finite atm56mc due to renormalization
e

ed

:

se
er
-

s
n

e-
al
n

effects. This phenomenon near6mc requires a separat
treatment which will not be considered in this paper.

The irrelevance of the interaction terms is very special
the model under consideration. In similar two-dimension
models, like the Gross-Neveu model or the tight-bindi
model without magnetic field~orthogonal nonlinears
model! or with weak magnetic field~unitary nonlinears
model!, the interaction is always marginal~i.e., dimensional-
ity of the interaction term is zero!.

IV. LOCALIZATION LENGTH

According to the discussion of the Gaussian fluctuatio
in Sec. III C, the leading large scale behavior is given by
correlation function of~3.22!. From the latter the localization
length can be calculated, using Eq.~2.12!, as j l
5(2Dgh8/v)1/2. Together with the SP results~3.11! and
~3.23!, j l reads

j l'A2g

p Smc
22m2

4
1d D 1/4~mc

2/41d!21/2v21/2.

~4.1!

The localization length diverges likev21/2 becauseD and
h8 remain nonzero forumu,mc according to the results o
the SP approximation. To comparej l with numerical or ex-
perimental results it is important thatD can be large
(;umu22) andh8 can be small. Therefore, several quasisc
ing regimes exist as indicated by the graph in Fig. 1 which
simply the plot of ~4.1! together with~3.13!. Only in the
asymptotic regimev;0, i.e., for (mc

22m2)/4@d, the local-
ization length diverges likev21/2,

j l;A2g

p Smc
22m2

4 D 1/4 2mc
v21/2. ~4.2!

Surprisingly, the exponentn51/2 agrees with that of a com
pletely different approach to the QHT by Affleck.11 More-



o
s

-

g

u-

ve

ig-

r-

-

ler

ate

e-

r-

10 668 55K. ZIEGLER
over,n51/2 was also found by Ludwiget al. for Dirac fer-
mions with a random vector potential at that special point
their fixed point line where the average density of state
finite.13

A quasiscaling regime occurs for (mc
22m2)/4

!d!mc
2/4, where we have

j l;A2g

p
~mc

2/41d!21/2S pmc
2

2g D 1/6v21/3

;A2g

p

2

mc
S pmc

2

2g D 1/6v21/3, ~4.3!

i.e., the effective exponent isn51/3.
Going back to the SP equation~3.13! one could also as

sumemc
2/4!d. It gives

2d1/2~g/2p!ln~mc
2!5d1/2;v. ~4.4!

This result implies for the localization length

j l;A2g

p
d21/4v21/2;A2g

p
v21, ~4.5!

i.e., the effective exponent isn51. The coefficient in~4.3!
decaysfor smallg like g1/3e2p/3g whereas the correspondin
coefficient in~4.5! grows like g1/2 with the strength of dis-
order. The coefficients of the power law forn51/3 (c1), for
n51/2 (c2) and forn51 (c3) are plotted in Fig. 2.n51 and
the behavior of the corresponding coefficientc3 agree with
the observation in experiments.2–4

FIG. 2. Coefficientscj of the power laws ofj l for m2t850.
n
is

V. CONDUCTIVITY

The longitudinal conductivity can be calculated via K
bo’s formula,

sxx~v!5
e2

h
v2(

r
r 2^Gj j 8~r ,0;iv!Gj 8 j~0,r ;2 iv!&.

~5.1!

The correlation function is again the expression we ha
considered in the effective field theory. Since for smallv
only the large-scale part of the correlation contributes s
nificantly, we can useC̃(k,v) of ~3.22! to write

sxx~v!52
e2

h
v2¹k

2C̃~k,v!uk505
e2

h
v2g22D~v/gh8!22

5
e2

h
Dh82. ~5.2!

For weak disorder we use the approximationD;4a. Fur-
thermore, forv;0 we geta51/4pumu2;1/pmc

2 . There-
fore, the conductivity reads in the dc limit

sxx~v50!;
e2

ph

mc
22m2

mc
2 Q~mc

22m2!. ~5.3!

Form50 the dc conductivity is independent of disorder,

sxx
c ~v50!;e2/ph. ~5.4!

This result is in agreement with a calculation for Dirac fe
mions with a random vector potential.13 Thus there is a uni-
versal conductivity ind52 at the center of the band of ex
tended states2mc,m,mc .

The Hall conductivity can be calculated using a simp
field theory which does not break the supersymmetry.21 In
units ofe2/h it was found

sxy'1/21sign~m!@1/22~1/p!arctan~Amc
2/m221!

3Q~mc
22m2!#. ~5.5!

Form50 the Hall conductivity is alwayse2/2h, whereas for
mÞ0 it depends on the disorder viamc . The resistivity,
calculated from the averaged conductivities~which is an ad-
ditional approximation because one should actually evalu
the averaged resistivity! yields

rxx
c 5sxx

c /~sxx
c 21sxy

c 2!'0.9h/e2. ~5.6!

This value agrees with an error of about610% with various
experimental results.32

VI. DISCUSSION OF THE RESULTS

For a given strength of randomnessg there are three dif-
ferent regimes of the behavior of the localization length, d
pending on the value ofd. d is directly related to the fre-
quencyv according to the equations~3.15!, ~3.16!, and~4.4!,
respectively. The corresponding power lawsj l;cjv

2n j ap-
pear with effective exponentsn151/3 andn351 and with
the asymptotic exponentn251/2. The exponents and the co
responding coefficientscj are shown in Table I, and theg
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dependence of the coefficients is plotted in Fig. 2. Ludw
et al. evaluated the exponentn for two-dimensional Dirac
fermions with a random vector potential with variancega . In
that case the exponent of the asymptotic localization len
depends smoothly on randomness asn51/(11ga /p).

13 It
should be noticed that the inequalityn>1 of Chayeset al.33

for two-dimensional random systems does not apply to
problem under consideration~cf. also the discussion in Re
13!. It is remarkable though that there is agreement of
asymptotic resultn51/2 between the present calculation f
the random Dirac mass, the random vector potential w
finite average density of states~wherega /p51) ~Ref. 13!,
and the nonlinears model with the topological term.11

The resultn51/3 is not reliable because it appears clo
to the critical pointsumu5mc , where the bosonic degrees
freedom become critical. Moreover, the asymptotic regi
with n51/2 is not realistic: The typical width of the fluctua
tionsAg in a sample is about 10% of the hopping rate. I.
mc52e2p/g is immeasurably small. Therefore, only the r
gime d@mc

2/4 would be accessible, and only the effecti
exponentn51, together with the coefficientA2g/p, is of
practical relevance. Consequently, only the coefficient of
localization length is affected by randomness. This is
agreement with the observations in Refs. 2–4. However,
divergency of the localization length is controversial amo
the various experiments. In this context it would be intere
ing if the crossover length, evaluated in the paper
;exp(p/g), can be observed experimentally.

The density of states is nonzero near the QHT. This re

TABLE I. Exponents for the localization length and the corr
sponding coefficients.

Regime d!(mc
22m2)/4 (mc

22m2)/4!d!mc
2/4 d@mc

2/4

n 1/2 1/3 1
Coefficient c2 c1 c3
B

s.

s.

l,
og
th

e

e

h

e

e

,

e
n
e
g
t-
s

lt

is nonperturbative becauser}exp(2p/g), and it reflects
spontaneous symmetry breaking.23 It agrees with a Monte
Carlo simulation for the network model by Lee and Wang34

with an exact diagonalization of a finite system,35 with a
rigorous estimation,23 and with an exact calculation fo
Lorentzian disorder.28

The longitudinal conductivitysxx(v) is nonzero between
m52mc and m5mc , the transition region between tw
Hall plateaus. In an experiment it may not be possible
resolve the width of this band of delocalized states sin
mc is too small. Therefore, the width of the transition b
tween the Hall plateaus will always be dominated by therm
broadening. Thus a power law for the widthD at temperature
T like D;Tk ~Ref. 36! is a realistic ansatz. The conductivit
at the QHT should agree with the value ofsxx atm50, i.e.,
sxx
c 5e2/hp. Converting this value into the correspondin

value of rxx
c gives '0.9h/e2 which is in good agreemen

with experiments. The universal valuesxx
c 5e2/hp agrees

with the value found for random vector potential,13 but not
with the result found from the numerical simulation of th
network model, wheresxx

c 5e2/2h was found.7 This value
was also obtained for the lowest Landau level projection8

It seems that our results for the 2D Dirac fermions with
random mass are in good agreement with the correspon
results for 2D Dirac fermions with a random vector potent
and with recent experiments. But there is disagreement w
the results of the numerical simulation of the network mod
This may be related to different types of randomness~e.g.,
strong randomness in the magnetic field! or to different ge-
ometries. It is also possible that there is a strong renorm
ization of the localization length nearm56mc , due to ex-
tended boson fields leading to an exponentn'7/3. This,
however, would raise the question about the origin of
experimental valuen'1. Moreover, the disagreement of th
values ofsxx

c for the network model on the one side and f
Dirac fermions withm50 on the other side cannot be e
plained by renormalization effects.
in,
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