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Scaling behavior and universality near the quantum Hall transition
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A two-dimensional lattice system of noninteracting electrons in a homogeneous magnetic field with half a
flux quantum per plaquette and a random potential is considered. For the large-scale behavior a supersymmet-
ric theory with collective fields is constructed and studied within saddle-point approximation and fluctuations.
The model is characterized by a broken supersymmetry indicating that only the fermion collective field
becomes delocalized whereas the boson field is exponentially localized. Power counting for the fluctuation
terms suggests that the interactions between delocalized fluctuations are irrelevant. Several gquasiscaling re-
gimes, separated by large crossover lengths, are found with effective expenfentthe localization length
& . In the asymptotic regime there is=1/2 in agreement with an earlier calculation of Affleck and one by
Ludwig et al. for a finite density of states. The effective exponent, relevant for physical system,lisvhere
the coefficient of¢, is growing with randomness. This is in agreement with recent high-precision measure-
ments on Si metal-oxide-semiconductor field-effect transistor andG&l_,As/GaAs samples.
[S0163-18297)01408-2

I. INTRODUCTION experiments, numerical and analytic calculations, on the
other hand, could be the sensitivity of the QHT to the size of
The transition between quantum Hall plateaus in a twothe system and to the type of disorder. In particular, it may

dimensional electron gas is characterized by a divergent Id2€ related to the existence of a large characteristic length

calization lengthg, with a critical exponent and a nonzero Scale depending on the disorder. The existence of such a
longitudinal conductivityo,. & is finite anday, is zero typical scale is also indicated by the numerical results due to

o . the fact that there is a crossover from the pure network
inside the Hall plateaus whereas, is a constant.

. he model (v=1) to the random network modeb{7/3).
A direct measurement of the localization length exponent e purpose of this paper is to investigate the role of

in an Al,Ga; ,As/GaAs sample by Kocfetal® gave a gisorder induced length scales in a tight-binding model with
value forv very close to 7/3. Recent high precision measurea strong magnetic field. The work is based on an effective
ments on Si metal-oxide-semiconductor field-effectsupersymmetric field theory for Dirac fermions with a ran-
transistof> and Al,Ga; _,As/GaAs samplehowever, indi- dom mass which enables us to study large scale properties.

cate that¢ diverges with the electron densitp like ~ The main results are as follows. _
~b,(n,—n)~! or with the magnetic field H like (1) Spontaneous breaking of the supersymmetry. That is,

~by(H.—H) "%, where the quantum Hall transitid®HT) the effective field theory for the QHT igot a nonlinear

. B T : i del.

is atn=n, or H=H,, respectively. The exponemt~1 ap-  S'gma mo . . .

pears to be almost independent of the material or the Hall (2) The scaling beha_vu_)r of the localization Ie_ngth de-
plateaus. On the other hand, the coefficidns by are sen- pends on thg characteristic scale exfg, whereg IS the.
sitive to disorder: theyncreasewith increasing disordet?  Strength of disorder: If, <exp(a/g) the effective exponent is
This is a remarkable observation because in the scalin@jzl' whereas fok;>exp(m/g) the exponent iy=1/2.
theory of the Anderson localizatidthe coefficient is related (E) 2There is a universal value for the conductivity
to the mean free path. That means it woudlelcreasewith oxx=€/h. ) ) _
increasing disorder. The observation:of 1 is in sharp con- The paper is organized as follows: After the definition of
trast to the experiment by Kot al. The disagreement was the model in Sec. Il an effective field theory is constructed
explained in Ref. 2 by insufficient sample size in the earlief" the averaged Green's functioriSec. Il). This field
experiment. theory includes the description of the conductivity according

The localization length scale near the QHT was also stugto Kubo's formula. Then a collective field representation is
ied intensively in a number of numerical simulations usingIntrOOIUCed in order to cover symmetry breaking effé@isc.

the network mod&’ and the lowest Landau level Il A). The latter are discussed using a saddle-point approxi-

approximatior?1° These calculations agree on the result thatmation for the collective fieldSec. 11l B). Gaussian fluctua-
the critical exponent ig/~7/3. Concerning the exponemt tions around the saddle points and corrections to Gaussian

there is a calculation by Affledk based on the fluctuations are studied in Secs. Ill C and Il D, respectively.
U(2n)/U(n) X U(n) nonlinears model with a topological Finally, the localization lengtfSec. IV) and the conductivity

term in the replica limitn—0.2 He obtainsy=1/2. The (S€C. V) are evaluated.
same value was found for Dirac fermions with the random
vector potential if the average density is fintte.

A reason for the impressive agreement of the numerical A lattice model is considered in this paper, stressing the
calculations, on the one hand, and the disagreement betweeniversality in terms of the electron density and the magnetic

Il. THE MODEL
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field observed in the experiment, to study the asymptotiband. Gaps can be created in the model, for instance, by
behavior of the localization length near the QHT. A startingchoosing a staggered potenti(r)=(—1)"1""2y in the

point is a miqrospopic model for noninteracti_ng'electrqns orHamiltonian(2.1).1% By varying the staggered chemical po-

a regular lattice in a homogeneous magnetic field. Disordefential one varies the concentration of electrons in the sys-
enters only through a rando_m potential on the lattice. Thigem. There are other methods to create gaps in a tight-
choice guarantees that the disorder does not affect the homBi'nding model. For example, one could vary the magnetic
geneity of the magnetic field. The model is defined by thesie|q. This, however, would lead to a more complicated situ-
tight-binding Hamiltonian on a square lattice with magnetic 4ion because the corresponding vector potential depends on

T3 ) ;
flux ¢=Ba", wherea|1 is the Igttl;;elé:onitant and the ho- Space. In general, the relevant parameter for the quantum
bmogﬁneo.us exi(ra]rnatamagé‘netlc tle T tere .|shrt1)earﬁst NeI9R4|| transition is the filling facton®y/B. This is essentially

or hopping with rat& and next nearest neighbor NoppINg yeermined by the ratio of the concentration of electrons

with ratet”. The Hamiltonian reads in Landau gauge and the magnetic fielB. Therefore, the variation of the con-
centration of electrong.e., the chemical potentigis equiva-
lent with the variation of the magnetic field in the quantum

H=—2 [te? ™/ %oc(r)cl(r+e,)+tc(r)cl(r+ey) Hall system.
' In general, the creation of new ban@gap opening”)
+t 2 mBaly= (120 r)cT(r + et @) + H.C] can be described by Dirac fermiotfs!® Starting from the

tight-binding Hamiltonian the Dirac fermions can be derived
+ in a large-scale approximation. The simplest case is that with
+§r: v(rje(rje(r). (2.9 half a flux quantum per lattice plaquettes ¢g/2) 1310
(Such a strong magnetic flux is unrealistic in real crystals but
e,y are lattice unit vectors, ardd andc are fermion creation typical for arrays of quantum dots in moderate magnetic
and annihilation operators, respectivel(r) is a random fields2%) For half a flux quantum per plaquette it is easy to
potential representing disorder on the lattice. Without disorderive the Dirac theory from a sublattice representation
der, i.e., forV(r)=0, this model was discussed extensively which takes into account the phase faa?’? of the tight-
in the literature"*~1% A central result is the occurrence of binding Hamiltonian and the staggered potential. The Fourier
electron bands with a quantized Hall conductivity in eachcomponents of the nonrandom péttk) read

m 1+e 'k L(1—e k) (1—e k) 1+e 'k
1+e — 1+e 'y —{(1—e M) (1—e*)
—{(1—e"y)(1—-e") 1+e™y " —1-e* - @2
1+e'y {(1—e™)(1—e ™) —1-e —

with {=it’/4. All elements of the matrix are measured in units of the nearest neighbor hoppirg Adter expansion of
k= (%, *= ) +ap for small p vectors around the four nodes and a global orthogonal transformd{ikyr—OH(k)O with

o —io
o:<. ° 0), 2.3
|0'0 —0p
the Hamiltonian becomes
utdig ipx_py Zig(px+py) 0
I B 0 2i¢(p,—p,) | (M Ha 0
P74 2icip,+py) 0 p-4C  pytips Hazo Haz)- '
0 2il(px—Py)  Py—ipx —pt4ig
The corresponding Green'’s function,
~ H11+i(1) H12 -1 (H11+iw)71 (H11+iw)71H12(H22+iw)71
N H21 H22+i(1) - (H22+i(1))7lH21(Hll+i(x))71 (H22+i(x))71 ! (25)
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decays asymptotically into two diagonal blocks out by Ho and Chalkér that the network implies a random
Dirac mass(due to fluctuations in the tunneling rates

(Hytio)™ 0 random energydue to fluctuations in the flux per plaquétte

- 0 (Hyptiw) 1) (28 and a random vector potentigtiue to fluctuations in the

phase of the hopping element¥hat is, in terms of the net-
The lattice constara is implicitly scaled out int’, u’, and  work model the random Dirac mass requires a fixed flux per
p;. ~ means asymptotics with respect to+4i{~0 and plaquette and a fixed phase for the current between the ver-
px~py~0. Thus the approximation breaks up the Hamil-tices of the network. This is probably the simplest situation
tonian (2.1) into two independent Dirac Hamiltonians for the realization of a QHT.
Hi1p=op+og(u+t") with Pauli matriceso;. The two After averaging with respect to the random mass the lo-
Dirac theories describe particles with different massesalization length,, measured in lattice unitgs= /¢,/2B for
wn+1t', respectively. The next nearest neighbor hopping ternglectrons in a magnetic fieB, is defined as the decay length
lifts the degeneracy of the two Dirac particles. Therefore, itof the functionc“,(r,w)EqG“,(r,o;iw)|2>_ The relation
plays an important role in this model and must be taken inthle /(r,0;i0)|>=Gj;/(r,0;iw)Gj;(0F; —iw) means that
account. A variation of the chemical pOtential |mp||eS djs given by the product of two Green'’s function at frequen_
variation of the Dirac mass. In particular, Dirac fermions cies Withopposite Sigr‘(retarded and advanced Green'’s func-
undergo a Hall transition if the mass vanish&$! This is a tions). Due to the 2¢2 block structure ofG there exists a

consequence of the fact that the mass breaks the tim@elation between Green's functionsiat and Green's func-
reversal symmetry: depending on the signnofthere is a  tjons at—iw:

clockwise or counterclockwise Hall current. If the light Dirac

particle undergoes a Hall transitionat-t’ =0 its contribu- Gjj(r,r';—iw)=—Gj/j.(r',rjiw),
tion to the Hall conductivity changes from,,=—1/2 for . . o
p—1t'<0 t0 o= 1/2 for u—t'>0. (The conductivity is in Gjj(r,r';—iw)==Gjj. (r',rjiw) (j#j'). (2.9

. 2 . . .
units of e%/h.) The heavy Dirac particle contributes rnis ijentity reflects the Lorentz covariance of the Dirac
oyy=1/2 because its mass is positive. Thus the combmeg.]eory' It implies

effect is a Hall step fromv,,=0 to o.,=1. This picture is

particularly simple for®=®,/2 but should also hold for |G”(r,r’;iw)|2=—ij(r,r’;iw)Gj,j,(r,r’;iw) (2.9
other values of the flux as long as the low energy excitations
are linear and can be described by Dirac fermions. and
For large scale properties like for the critical behavior G (1 i) 2= =Gy (F 1 i @) Gy (F 1 i o)
near the Hall transition it is sufficient to consider only the e e LR '(2.10)

light particle with u—t’, . ) )
This means that only the Green’s functions with one fre-

io+u—t"  iV,+V, |\t quency is required for the evaluation of localization proper-

(H' +iw) t= iv._V io— Lt ties in the relativistic model. The averaged quantity
Wim Ve loma Cjj(r, o) is translational invariant. Therefore, it can be ex-
=G(iw) pressed by its Fourier componergs; (k,). This can be
used to calculate the localization length (The following
E(Gn Glz) 2.7 discussion holds for any choice ¢f j’. Therefore, these
Gy Gy’ ' labels are not written explicitly. The correlation function

. ) . ) . C(r,w) for large r is proportional tor ™~ “exp(-r/§) with
whereV is the lattice gradient operator. Disorder, originally 5me exponent for which we assume that it is fixed for the

introduced inH by the random potentiaV, appears in  madel and does not depend on the parameters. This implies
H11/20 @s a diagonal matri¥’’ with independent random el- 5+

ementsVq, V,. The appearance of two random variables per
site is a consequence of the sublattice representation require® , r?C(r,w) =,r?> “exp(—r/§) 5 3. X2 %exp(—X)
by the phase factog' ™2 of the tight-binding Hamiltonian. 3.C(ro) = S exp—r/g) =& > X exp—x) |

The random matrixV' is equivalent to a random mass

. (2.11
Suas and a random energ§Eog. For technical reasons the ) .
random energy term will be neglected in the following. Dropping the constant term from the ratio of sums on the

It should be noticed that the random mass is marginallyight hand side 0f2.11), the localization length can be de-
irrelevant on a perturbative lev®.However, going beyond fined in terms of the Fourier components as
perturbation theory, it turns out that the random mass leads >
to spontaneous symmetry breaking which changes the prop- ] ViC(kw) 01
erties significanthf> This effect has not been included in IV Tk ) (212
previous studies of the localization properties near the Hall
transition. It will be important for the considerations in this The localization length is finite fow# 0 but diverges in the
paper. regime of delocalized states with— 0.

Dirac fermions can also be derived as the large scale ap- The localization length for massless Dirac fermions with-
proximation of the network modéf. It was recently pointed out disorder diverges likan| ! if @=0 is approached. This

k=0
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behavior is probably unstable against arbitrarily weak ransymmetry breaking terms of the Dirac theory, the mass
domness, as it will be shown in this paper. However, it hasand the frequency. The appearance of the symmetry break-
been shown in a previous papethat the localization length ing terms inS, dictates the choice of, x, and ¥, ¥, as the
of the averaged correlation function has a lower bound whiclgllective fields.
is the energy-energy correlation length of the 2D random
bond Ising model. Since the latter diverges at the critical
points, this implies a divergent localization length at the
QHT. In general, products of the fieldg V¥, in Sy can be re-
The calculation for the network model of Chalker andplaced by the collective fields agx,—Q,, ¥, ¥,—P,,
Coddingtorf indicates that the critical exponent=1 of the  y,¥,—®,, and ¥, y,—®,. (Some care is necessary to
pure model may change to="7/3 due to disorder. This was choose the paths of integration correcfy One obtains for
discussed as a possible appearance of a new random fix€8l3) in the collective field representatigfor details see Ref.
point of the random modéf However, a new fixed point 27)
with such a behavior has not been found so far in terms of
renormalization group calculations.

A. Collective field representation

1 — —
a?[®m@WWWaQ—SﬂPDQD®D® (r#r'),
I1l. FUNCTIONAL INTEGRAL REPRESENTATION (3.4

It is convenient to introduce a functional integral repre-with the supersymmetric effective action
sentation forC(r,w), because this provides a basis to apply
an approximation using a saddle-point integration. The prod-., 1

r_ 2 2 :
uct of Green'’s functions on the right hand side(2f9) and S _52 (TroQr + TroPr+2T1,0,0,) +Inde{ (Ho+iwoy
(2.10 can formally be written as
—27Q7)(H$+iwa'0+ 2i TPT)_]']
(io+H) L lo+HD o — o
+Indef1-4707(Hytiwog+2i7P 1)
:f Xrrj Xrj Yk W expl — So) DY DY Dy Dy, X710 7(Hotiwog—27Q7) 1] (3.9

(3.1 Ho=ioV+moj is the average Dirac Hamiltonian andhe
diagonal matrix (1). The introduction of the collective
fields is important to discover the finite length scaf@?,
created by disorder, which is crucial for the properties of the
random Dirac mass mod#l.

with the quadratic form of the superfielgy(,¥,),

Xrr
v, )
(3.2 B. Saddle-point approximation

x is a complex field and a Grassmann field, respectively. A saddle-point(SP approximation is a crude approach

It is important to .not|ce thaltl appears in the quadratic form for a two-dimensional system because it usually gives the
for the complex field, whereds™ appears for the Grassmann wrong results for low dimensional systems due to strong
field. This difference will turn out to be crucial for the local- effects of fluctuations. In the model under consideration it
ization properties of the Dirac fermions. In particular, it will will be used as a starting point to study also the fluctuations.
give all the delocalized states expected near the Hall transjan argument in favor of a SP approach is the fact that some

tion. In contrast, the quadratic form whelrkis used in the features of the model can be described which are not avail-
Grassmann sector instead ldf does not give these critical able from pertubation theory. An example is the creation of

io+H 0
0 iw+HT

Xr
v,

Sp=—1i sigr(w>2

r,r’

properties®?! states in the massive Dirac theory due to randomfi=ds.
Averaging with respect to disorder leads to The hope is that the fluctuations around the SP are controlled
. ., by Gaussian fluctuations, at least if randomness is weak. This
((lo+H) L (ie+HD L 0 will be supported by the discussion presented below. An-

other argument for the SP approximation is its equivalence
:f Xr'jfX_rj‘I’rk‘?rMeXp(—So)ﬂ?‘l’D‘ITDXDT with the N—ce-limit, where N is a formal extension of the
model to one for electrons witN states per lattice sit&.
(3.3 The SP of the functional integral is given by the equations

. o ) _ 0qS'=0pS'=0. The two SP equations are identical if one
A Gaussian distribution of the random Dirac mass is aSyybstitutesP =iQ:

sumed in the following with meam and variancey. Then

the average can be performed exactly giving an additional 037Q,703=g(Ho+iwoo—27Q7), ! (3.9
quartic interaction term irg, with coupling constang. For

weak disorder, i.e., smalj, one could apply perturbation An ansatz for a uniform SP solution readsQqr
theory. Unfortunately, this does not lead to interesting resultss — (i oo+ Mgo3)/2. The SP equations imply a shift of the
because it cannot catch spontaneous symmetry breaking. frequencyw— 7' =7+ o with

order to deal with the latter one must construct a representa-

tion which describes the field which is the conjugate to the 7' —w=7n'gl, 3.7
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and a shift of the average mass—m’'=m+ mg with (g/27r)97’ln(1+45/m§)=w. (3.13

(3.9 The expansion of the logarithm fat< m§/4 yields a cubic

ms=—mgl/(1+gl), equation foré

11
|~—f "2+ (m+mg)2+k?]~ tkdk mz—m? mg\?
o L7 )] 45| P~ 0?5 . (3.14
29
1 12 2 . . . .. .
~ = 5 Inly" "+ (m+my)?] Although this equation could be solved directly it is simpler
to distinguish two different asymptotic regimes:
1 (i) (m2—m?)/4< s<mi/4,
=——Infpul, (3.9
a
2\ 23
v_vith p=m+ms+izn’. Inthe pure Iimitg.—>0 the SP equa- 5~w2/3( C) (3.19
tions lead ton'=w and mg=0. For a giveng>0 the SP 29
depends on two parameters, and w. For «=0 and large
i Vi i ith 7/ = — and (i) (m2—m?)/4s> 8

|m| there is only a trivial solution 0f3.7) with ' =#%=0 c ,
becausegl<1. As one variegm| there is a critical point
m.=2u.=2e ™9, wheregl<1 approachegjl=1. As a m2 1
consequence, the SP solution(8t7) bifurcates from»=0 S~ — — (3.19
to 7#0 at u=u., and 7=0 becomes unstabfé.In the 9 ym;—m

following only the region withn#0 is considered, where
sign(n) =sign(w). This has a nonzero density of states

C. Gaussian fluctuations

p(M)~(1/27g) lim n’

w—0

In order to evaluate the localization lengththe Gaussian
fluctuations around the SP must be calculasamiclassical
=(1/27'rg)77=(1/47rg)W®(m§—m2), approximation. SinceQ, P, and® are 2<2 matrices, the

fluctuations can also be written as four-component vector
310 fields: d1=6Q11, 02=(6Q12+Q21)/2, g3=—i(5Qq2

which describes a semicircular behavior. Of course, this must 9Q20/2, da=35Q, with analogous  definitions  for

be normalized with an energy cutoff dependent constant, P1: - - ::P4 and for the Grassmann fieif,, . . . .4/, The ac-
As an ansatz for the SP approximation w0 one can tion of the Gaussian fluctuations reads in the Fourier repre-
write sentation
m2—m? !
7' (@)= 7' (@=0)+6=——7—+5, (3.1D s~| X L0008+ PrcsPcr)
Mot =
where the last equation follows from the SP equation for +2(|&)#,M'%,Ml//—k,w]d2ka (3.17
w=0. This implies
with the fluctuation matrice$, andly . For the large-scale
| |?=mZl4+ 6 (3.12  Pproperties one needs only the asymptotic behavior for small
wave vectorsk. In particular, for a vanishing wave vector
and for EQ.(3.7) there is
1g—2au*? 0 0 28
0 21g—4a|u|? 0 0
IOZ 2 ’ (31&
0 0 20— 4a|ul 0
28 0 0 1h—2au?
Ug—2au*? 0 0 0
’ 0 2(1/lg—2alul*-2B8) 0 0 a1
o 0 0 2(1/g—2a|pl?+2p) 0 ’ 319

0 0 0 1h—2au?
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with 19— a 0 0 0
0  2(1lg-p) 0 0
‘FJ (| ul?+ k)~ 2d*kidm®~ | |~ *14m=Llmrm] G o 2Aug-p 0 |
(3.20 0 0 0 14— a*
and (3.25
where

B= f K2(| w|?+ k?) ~2d%k/4m?
1 (K>—E+in)?

=1/2— Ul ~ —In| u|%47~ 1/2g. 3.2 -

>d9k (3.26

These guantities become quite large for small indicating
a short range behavior of the related modes. However, thgnq
second diagonal element bf vanishes for vanishing be-
cause of Id—2a|u|>*—2B=w/gn’. This is a direct conse-
guence of the SP conditiof8.7) and indicates a critical B= 1 f 1
mode g , for all |[m|<mj. Moreover, it implies a divergent (2m¢) (K*=E)?+ 9
behavior of the localization length &— 0. The correspond-
ing correlation function of the critical mode can be calcu-There are two vanishing eigenvaluesl gfor vanishingw in
lated in the large-scale limit by expandimg in powers of  the Grassmann as well as in the complex sector, each of them
k as is 1/[g— B=wl/gn'. Therefore, the large-scale behavior of
- this model is very different, and the critical properties are
C(k,w)=9g %(2w/gn'+Dk?) 1, (3.22 described by a nonlinear model including fermion as well

as boson degrees of freeddiirhis is a consequence of the

5 ddk. (3.27

where fact that =0 preserves the supersymmetry, whereas the
2 %2 model with ¢= ¢o/2 breaks the supersymmetry implyirg
D=4a| 1+« # 5+ d —||. (3.23 #1'. The latter implies that there is qnly one massl(_rlm
19—2ap®  1lg—2ap localized fermion field, and all other fields are massite-

g7'D/2 is like a diffusion coefficient. It is real and it never Ci2€0-

becomes zero. The critical behavior describes a phase with a
divergent sums, ;{|G;;(r,r')|%); i.e., the correlation func- D. Corrections to Gaussian fluctuations
tion decays nonexponentially. It implies that

Gaussian fluctuations are usually not sufficient to describe
C(k=0,0)=7'/2gw=m{p(w))/ w. This holds not only on y

_ : __the properties of a critical system, especially at low dimen-
the SP Ievel/ Igut, ingeneral, due to the identity 5ij5najity, hecause the interaction between the fluctuations are
ET',J,J"|GJ'J"(r'r )*=mplw. a relevant perturbation. For Anderson localization the inter-
C in (3.22 is an approximation based ddk’<1. Since  action is marginal ird=2 as one finds from power counting
D diverges like 1#m? it is not possible to use this expres- of the scaling behavior. This method can also be applied to
sion for the pure limit. This also reflects the nonperturbativethe effective field theory of random Dirac fermions. It pro-
character of the SP approximation. vides a first check for the effect of the interaction among the
Apart from the critical(delocalized fermion mode there fluctuations. In the following we will see that the perturba-
is a boson mode which becomes criticah@at =m,. Thisis  tion term for random Dirac fermions has dimensionality
due to a vanishing eigenvalue df becausen=0 at —2. Therefore, the interaction of the fluctuations is irrel-
m==m,. Thus there are delocalized states|fof<m, due evant. (It seems that the dimensionality is reduced by 2 in
to massless fermions, whereas a combination of critical fereomparison to Anderson localization. This is similar to the
mions and critical bosons controls the QHT. The band of dimensional reduction by 2 in supersymmetric theories, ap-
delocalized fermions simplifies the study of transport prop-plied to the average density of states for a particle in a strong
erties of the model away from the critical points=+m..  magnetic field and a random potenti&f?
An analogous calculation for the Gaussian fluctuations Away from the critical pointgm|=m, it is sufficient to
can be performed for Anderson localizatiore., for¢=0 in  study the Grassmann fluctuations because the complex fluc-
Eg.(2.D]. In that case the Green’s function of E8.7) must  tuations are massive. Their action reads for terms up to the

be replaced by fourth order in the fluctuations,
. io+M+V2 0 -1 a0 o
o=l o oMy 0 B2 s iy DK gt
Now the matrix H=M+V? is symmetric in contrast to - — —— —
H=ioV+(u—t')os. As a consequence the corresponding ~ —8 > Tl 0r,Gr r,01,Grr 0r,Gryr 00,Gr 1,

fluctuation matrix is degenerated for the fermion and the M- 4
boson sectofi.e., I, =1,) with (3.28
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whereG=rGgr. ,0, is the only critical mode of the col- effects. This phenomenon nearm. requires a separate
lective Grassmann fiel®, . Thus the interaction term can treatment which will not be considered in this paper.

also be written as The irrelevance of the interaction terms is very special for
the model under consideration. In similar two-dimensional
models, like the Gross-Neveu model or the tight-binding
model without magnetic field(orthogonal nonlinearo
mode) or with weak magnetic fieldunitary nonlinearo
mode), the interaction is always margin@le., dimensional-
ity of the interaction term is zejo

-8 Er Trz[o'lGrlrza'lG;rzr3UlGr UlG;r4r1]

3fa

le,zlﬂrz,zzg,zl//u,z- (3.29

The trace term can be evaluated and yields after some
straightforward calculation together with the approximation IV. LOCALIZATION LENGTH
Gr,r’%lﬂrz[(' 7' 00=M03) S (1 +iVyy o1 TV, 105]

. . According to the discussion of the Gaussian fluctuations
the following expression

in Sec. lll C, the leading large scale behavior is given by the
correlation function of3.22. From the latter the localization

—8lu|"® > [¢d, 0 d .de b d length can be calculated, using Eq2.12, as §
et a T T T T e T =(2Dg7'/w)*2 Together with the SP result8.11) and
— — (3.23, &, reads
S 20K M/ LT i R B (3.30 !
29 m2— m?2 1/4
where the index 2 of the Grassmann field has been dropped ¢~ +/— (°—+ S (m§/4+ 8) Y2y ~12
and d; ;r=(Vy,, +iVy, ). This result reflects the fact 77 4
that terms with an odd number &f operators cancels in (4.1

(3.29 and terms qu_adratic iM cancel each other becausg of The localization length diverges like Y2 becauseD and
the anticommutation rule of the Grassmann field:,’ remain nonzero fotm|<m, according to the results of
e Y Y e T by Y e e, =0. Higher order terms with at - the SP approximation. To compagewith numerical or ex-
most second order gradients disappear individually becauggerimental results it is important thad can be large
they contain Grassmann fields at the same site. Simple powérvl,ul’z) andn’' can be small. Therefore, several quasiscal-
counting indicates that this interaction term has dimensioning regimes exist as indicated by the graph in Fig. 1 which is
ality —2. Therefore, the interaction is irrelevant in compari- simply the plot of(4.1) together with(3.13. Only in the
son with Gaussian fluctuations considered in the previoussymptotic regimes~0, i.e., for (mﬁ—mz)/4> 8, the local-
section, and it scales quickly to zero under renormalizationization length diverges like» 2
group transformations.

The situation is different if we approaam==*m, be- 2g(m§—m2)1/4 2

. " —-1/2
cause the complex field also becomes critical. As a conse- &~ o 4 ch : (4.2

guence, the corrections to Gaussian fluctuations are marginal
rather than irrelevant then. It is possible that the localizatiorSurprisingly, the exponent=1/2 agrees with that of a com-
length becomes finite ain=+*m, due to renormalization pletely different approach to the QHT by Affleck More-
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FIG. 2. Coefficients; of the power laws of; for u—t'=0.

over, v=1/2 was also found by Ludwigt al. for Dirac fer-
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V. CONDUCTIVITY

The longitudinal conductivity can be calculated via Ku-
bo’s formula,

2
€ i .
o—xx(w):—h w? Er‘, r2(Gjj (r,0;iw)G;/;(0r; —iw)).

(5.9

The correlation function is again the expression we have
considered in the effective field theory. Since for small
only the large-scale part of the correlation contributes sig-
nificantly, we can us€(k,w) of (3.22 to write

e’ ~ e’
T @)= = T 0?V(C(K,0)|-0= - w’g ?D(w/gn’) 2

2
e
—_ 12
h Dxp'~.
For weak disorder we use the approximation-4«. Fur-
thermore, foro~0 we geta= 1/4m|u|?>~1/mm?. There-
fore, the conductivity reads in the dc limit

(5.2

e? mi—m?
ox(w=0)~— m2

ah

O(mZ—m?). (5.3

For m=0 the dc conductivity is independent of disorder,

oS (w=0)~e? 7h. (5.4

This result is in agreement with a calculation for Dirac fer-
mions with a random vector potentiglThus there is a uni-

mions with a random vector potential at that special point orversal conductivity ind=2 at the center of the band of ex-
their fixed point line where the average density of states i¢ended states-m.<m<m,.

finite. 3
A quasiscaling regime
< 8<mZ/4, where we have

Zg 2 —1/2] 7Tm(2: 1o -1/3

§|’V V?(mc/4+ 5) —29 w
[2g 2 [ mm?
"N m| 2g

i.e., the effective exponent is=1/3.

occurs  for mg—m?)/4

1/6
—-1/3
)

4.3

Going back to the SP equatidB.13 one could also as-

sumem?Z/4< 8. It gives

— 8Y%(gl2m)In(m?) = 6¥2~ w. (4.4
This result implies for the localization length
/2 /2
EIN _g§—1/4w—l/2~ _gw—l, (45)
o T

i.e., the effective exponent is=1. The coefficient in(4.3)

decaysfor smallg like g*%e?™%9 whereas the corresponding

coefficient in(4.5) growslike g'? with the strength of dis-
order. The coefficients of the power law for1/3 (c,), for
v=1/2 (c,) and forv=1 (c3) are plotted in Fig. 2v=1 and
the behavior of the corresponding coefficiegtagree with
the observation in experimerfts?

The Hall conductivity can be calculated using a simpler
field theory which does not break the supersymmétrin
units ofe?/h it was found

Oxy~ 112+ sign(m)[ 1/2— (1/m)arctari ymz/m?— 1)

X @(mZ—m?)].

(5.9

Form=0 the Hall conductivity is always?/2h, whereas for
m=0 it depends on the disorder via,. The resistivity,
calculated from the averaged conductivit{@ghich is an ad-
ditional approximation because one should actually evaluate
the averaged resistivityyields

pe =0 l(os2+ a’iyz) ~0.%h/e?. (5.6
This value agrees with an error of abaufl0% with various
experimental result®

VI. DISCUSSION OF THE RESULTS

For a given strength of randomneggshere are three dif-
ferent regimes of the behavior of the localization length, de-
pending on the value of. § is directly related to the fre-
quencyw according to the equatiori8.15), (3.16), and(4.4),
respectively. The corresponding power lagys-c;o ™ "i ap-
pear with effective exponents;=1/3 andvy=1 and with
the asymptotic exponemt, = 1/2. The exponents and the cor-
responding coefficients; are shown in Table I, and thg
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TABLE l. E?(ponents for the localization length and the corre- jg nonperturbative becausexexp(—/g), and it reflects
sponding coefficients. spontaneous symmetry breakifiglt agrees with a Monte
Carlo simulation for the network model by Lee and Wafg,
with an exact diagonalization of a finite systémwith a

v 1/2 1/3 1 rigorous estimatioR® and with an exact calculation for
Coefficient C c1 Cs Lorentzian disordef®

The longitudinal conductivityr,,(w) is nonzero between
m=—m, and m=m,, the transition region between two
dependence of the coefficients is plotted in Fig. 2. LudwigHall plateaus. In an experiment it may not be possible to
et al. evaluated the exponem for two-dimensional Dirac resolve the width of this band of delocalized states since
fermions with a random vector potentia' with Variaw In mc iS too Sma”. Therefore, the W|dth Of the transition be'
that case the exponent of the asymptotic localization lengtfween the Hall plateaus will always be dominated by thermal
depends smoothly on randomnessias1/(1+g,/ 7). It broadening. Thus a power law for the widihat temperature
should be noticed that the inequa|W1 of Chaye$t a|_33 T like A~T* (Ref 36 is a realistic ansatz. The CondUCtiVity
for two-dimensional random systems does not apply to th@t the QHT should agree with the value®f, atm=0, i.e.,
problem under consideratidief. also the discussion in Ref. o%,=€’/hm. Converting this value into the corresponding
13). It is remarkable though that there is agreement of thevalue of pS, gives ~0.9h/e? which is in good agreement
asymptotic resuliv=1/2 between the present calculation for with experiments. The universal value;,= e’/hm agrees
the random Dirac mass, the random vector potential withwith the value found for random vector potentialbut not
finite average density of statéwhereg,/7=1) (Ref. 13,  with the result found from the numerical simulation of the
and the nonlineas model with the topological terri. network model, whererS, =e?/2h was found’ This value

The resultv=1/3 is not reliable because it appears closewas also obtained for the lowest Landau level projection.
to the critical pointgm|=m,, where the bosonic degrees of |t seems that our results for the 2D Dirac fermions with a
freedom become critical. Moreover, the asymptotic regimeandom mass are in good agreement with the corresponding
with »=1/2 is not realistic: The typical width of the fluctua- results for 2D Dirac fermions with a random vector potential
tions \/g in a sample is about 10% of the hopping rate. l.e.,and with recent experiments. But there is disagreement with
m.=2e" ™9 is immeasurably small. Therefore, only the re- the results of the numerical simulation of the network model.
gime &> m§/4 would be accessible, and only the effective This may be related to different types of randomnéss.,
exponenty=1, together with the coefficieny2g/=, is of ~ strong randomness in the magnetic fietd to different ge-
practical relevance. Consequently, only the coefficient of th@metries. It is also possible that there is a strong renormal-
localization length is affected by randomness. This is inization of the localization length nean=+mc, due to ex-
agreement with the observations in Refs. 2—4. However, théended boson fields leading to an exponent7/3. This,
divergency of the localization length is controversial amonghowever, would raise the question about the origin of the
the various experiments. In this context it would be interestexperimental value~ 1. Moreover, the disagreement of the
ing if the crossover length, evaluated in the paper awalues ofcy, for the network model on the one side and for
~exp(mr/g), can be observed experimentally. Dirac fermions withm=0 on the other side cannot be ex-

The density of states is nonzero near the QHT. This resulplained by renormalization effects.

Regime 6<(m?—-m?)/4 (mZ—md)/4<s<mi/4 S>mila
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