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Coulomb blockade threshold in inhomogeneous one-dimensional arrays of tunnel junctions
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A general expression is given for the change in free energy when a charge tunnels through a junction in a
one-dimensional array & metallic islands with arbitrary capacitances and arbitrary background charges. This
is used to obtain expressions for tteverage threshold voltage of the Coulomb blockade for a few charac-
teristic geometries. We find that including random background charges has a large effecNodeihendence
of the threshold voltage: In an array with identical junction capacitaesd gate capacitances,, the
threshold voltage, averaged over the background charge, is proportiddd| wherea crosses over fron% to
1 whenN becomes larger than 2/&/C.

[S0163-18207)04616-X

I. INTRODUCTION ever, as we show in Sec. IV, a random variation in back-
ground charges may change the threshold voltage consider-

Since the pioneering work by Gorter in 195kingle ably: In a short array with weak gate coupling
charge tunneling effects have been extensively studied iiN“C4/6.25C<1) and random charges on &llislands, we
various kinds of geometri¢sResearch on single electronics find (Vt>oc\/ﬁ. In a long array with strong gate coupling
has led to potential applications in, e.g., current standatds, (NZCg/6.25C>1, but still C4<C), we find (V;)=N. We
ultradense integrated digital electronfahiermometnf’and ~ compare our results with experimenfs,
room-temperature memofyln many of these applications,
tunneling occurs through a large number of junctions in se-
ries. Most theoretical work has assumed homogeneous Il. FREE ENERGY

arrays.” **The problem is that the number of available states The system under consideration is shown schematically in
at a finite current rapidly increases with the circuit size, so Y y

that one either restricts the analysis to homogeneous arraF g. 1. Within the orthodox model, the state of the system is

or adopts a numerical approathUsing modern techniques, es_:crlbed by th_e m_"mbem ofeelectrons on théth island,

it is possible to fabricate arrays of metallic islands separate¥hich we comb|n§ in a vecton=(ny,nz, ... ,Ny-1). The
by tunnel junctions with almost uniform capacitances. It istunneling rate]'(n), corresponding to a single electron tun-
however very difficult to avoid nonuniform background neling from islandk— 1 to islandk is given by

charges on the islands. This is relevant, since the charging

energy is very sensitive to the background charge. _

The aim of this paper is to provide results fahomoge- - AG,(n)
neousone—dimensional arrays of meFaIIic isIaan. The inho.— I'(n)= eZRk{l—exq—AGk(ﬁ)/kBT]}' 21
mogeneity can be both in the junction capacitances and in
the background charges on the islands in the array. In par-
ticular, we study the threshold voltage for charge transport.

The results obtained are exact within the classioethodox C, C, C; Cn-1 Cy
model of single-electron tunnelifigwhich is accurate when \'A \'A
guantum size effects and macroscopic quantum tunneling ef- o m m [I} """ I:D_—m_o

fects may be ignored.

Using a general expression for the inverse capacitance C.3 Cos CynT
matrix, we calculate in Sec. Il the change in the free energy 91_ 91— 9 l—
of anN junction array due to an arbitrary tunneling event. In
Sec. lll, we focus on the threshold voltage for transport Voi Vg2 VgN-1

V;, which is an observable quantity. We find that inhomo-

geneity of the junction capacitanc€shas a small effect on FIG. 1. Schematic diagram of a one-dimensional arrayNof
the threshold voltage in large arrays: The expectation valugnne| junctions. Island is coupled to island+1 by a tunnel
asN—« for the threshold voltage of an array without gate parrier with capacitanc€; . ,, and to a gate electrode by an insu-
coupling (gate capacitanc€,=0 for each junction and |ating barrier with capacitandg, ; . The capacitanc€,; (Cy) de-
without background charges i§V,)=3Ne(C™ 1), with  notes the coupling of the firgtash island to the emittefcollecton
(C™1) being typically not much different from dC). How-  electrode.
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Here R, is the resistance of th&th tunnel junction and For a homogeneous array with identical capacitances,
AG(n) is defined as the difference in free energy of theC1=Cs2=...=Cy andCy;=Cqyo= ... =Cyn_1, We re-
final and initial states. The free energy comprises the eleccover the inverse capacitance matrix of Ref. 12.

trostatic energies of the charged capacitors in the system, as We now derive a general expression for the difference in
well as the potential energies of all electrodes: free energyAG,(n) when an electron tunnels from island
k—1 to islandk. Applying Eqg.(2.7) and making use of the

N—-1 . .
orthogonality relation

N
-1 1
G(n)=3 2 Cai(¢i=Vg)*+ 52 Ci(i=¢i-1)’
(Ci+Cit1+tCy )R j=CR_1j+Ci 1Riy1j+ 5,
N-1 (2.8
~VeQe—VcQc— VyiQgi - 2.2 -
Qe VeQo ;1 9i Qui @22 we find thatAG,(n) takes the form

We denote by¢; the electrochemical potential of island e?

I (¢o=Ve and ¢y=V), and byQ., Q., andQq; the AGk(n):_?(kal,kfl_F Rik—Rk-1x— Rikk-1)
charges on the emitter, collector, and gates, respectively:

N—-1
Qe=Cu(Ve= 1) +ene, (2.39 +e> Qi(Rix-1—Riy +e(Ve—Vg 1Ak
=1
Qc=Cn(Ve—¢n-1) +eng, (2.3b N—1
Qqi=Cq.i(Vgi— b)) (2.39 +ei:22 (Vgi—1=Vg)Ai k+e(Vgn-1—Ve)An k.
Heren, (n.) is the number of electrons that has tunneled (2.9a
from the emitter(collectop electrode through the firgtas)
capacitor. _ o _ A =Ci(R-1k TR k-1~ Ri—1x-1— R+ ik
The difficulty in determining the energy difference (2.9p
AG'f(n)J'ES in the determination of the electrochemical po'Here,Ri'N:Ro,i=O is implied, andQ;=en+ Qg .
tentials=(¢1, %5, .. .,¢n-1). They follow from the con- Although we are now able to construct all relevant tran-
dition that the total capacitive charge on each islaeduals  sjtion rates from expression@.6) and (2.9), the analytic
en; plus a background charg@y, : evaluation of the current-voltage characteristic at arbitrary

voltage remains a technically involved problem. The thresh-
Coil(hi=Vgi) +Cihi = i-1) T Cira( i~ diva) old voltage, however, is determined by a single transition
_ . B rate and is therefore easier to evaluate. In the next two sec-
=en+Qq, 1=12,... .N=1 24 tions, we apply our results to this quantity for several char-
The background charg®; € (—e/2,e/2) is due to incom- acteristic geometries.
pletely screened charges in the environment of the island.

Equation(2.4) can be written in matrix form a@&zé)’, Ill. THRESHOLD VOLTAGE

with Electron transport through a one-dimensional array is re-

Cij=6,(Ci+Ciy1+Cqi)— 8+1,C;— 8,;:1Ci, alized by a sequence of tunneling events through all junc-
’ ’ ' ’ (2.59 fions between the emitter and the collectave refer to this
as a tunneling sequencdét zero temperature, a specific tun-
Q/=en+Qq;+Cqy;Vyi+ 8 1C1Ve+ & n—1CnVe. neling sequence contributes to the conductance if the free
(2.5b energy difference of each tunneling event in the sequence is
positive. The threshold voltagé; of the Coulomb blockade
is the smallest voltage at which a current can flow through
the array at zero temperature. Whgh,—V |<|V,|, there
exists no conductive tunneling sequence. We first consider
the simple case where the system is not gateg; &0 for
all i), and then discuss the turnstile configuration, i.e., an
array which is coupled to a gate electrode via a single island:
Cg,i = Cgéi'n .

The capacitance matri€ can be inverted exactly. The ele-
mentsR; ; of the inverse capacitance matrR= c!are
given by

R =Ci 1Ciyo- 'CjDi—le+1D§E1, i<j,
Rji=Ri;. (2.6

Here we have introduced the subdetermin&hts(SN_i) of
the upper left(lower right capacitance submatrix of dimen- A. No gate coupling

sioni. These can be found recursively from _ In the absence of gate coupling, the determin&htand

Di=(Ci+Ci;1+Cq4 )D_1—C?D;_,, (2.7a D, following from Eq.(2.7), have a simple form. For conve-
’ nience, we introduce the notation
Di=(Ci+Ci;1+Cgi)Dis1~C11Di1p, (27D o
| _

L a_d _ N
Do=Dy=1. 2.79 5= 2 ST ST (3.9
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In terms of these quantities, 1 k—1 N-1
1) — S IN_ T | 2 i 2 o
Vt,k(q) 2 S C' e, qIS +e, q|S| +Cg
Dy=CiCy- - - Cyy 1S4, (3.29 k =1 1=k
= S,(1+3C.,S,) Y,  k=n
Di=CiCis1---CnSe-1, (3.2 X[Vg=3(Vet Vol °
—S“(1+%CgS“)‘1, k>n,
R ;=S's/SVisj. (3.20 (3.6)

We further define gq=n+do, Go=€ *(Qo1,Qo.  WhereS' is defined as in Eq(3.1) in terms of modified
...,.Qon-1). From the conditiolAG,(q) =0, we determine ~ capacitance€:
the threshold voltage/t,k(ﬁ) for tunneling through capaci-

tanceC, at arbitrary occupation of the array: C/=Ci(1+3C¢S)(1+CgSy) %, k=n,I<n,
k—1 N—-1 ’ 1
. e 1 . C/=C|(1+3C4S)), k=n,I>n,
Vek(@) =5 SN—C—k) —e2, gS+e2 aS. (33 ’

C/=Ci(1+3C4S"), k>n,I=n,
The threshold voltage is determined as follows. For an initial
charge state, we determine the minimal activation energy

e\/t,k(ﬁ) to allow a tunneling event in the array, as well as
the corresponding final charge state. The final charge state
becomes the initial state in the next step. The minimal acti- IV. BACKGROUND CHARGE

vation energy for the new charge state and the corresponding

final charge state are again determined, and this procedure is The background charge in a single-electron tunneling de-
repeated until one electron has been transported from emitt@ice has a large influence on its properties. For example, by
to collector. The largest of the activation energies founduning the background charge in a double junction with one
equalseV,. In the special case that all background chargegate one can set the threshold voltage to any value between

C/=Ci(1+3C,S)(1+C,S") L, k>n,I>n. (3.7)

are zero, one has zero ande/(2C+Cy). In this section, we investigate the ef-
fect of background charges on the threshold voltage of an
N array of tunnel junctions. For reasons of clarity, we choose
V,=1le z 1/C,— Max{1/C;,1/C,, ... ,1IC\] ]|, identical junction capacitances in the followin@;& C for
=1 all i). We start by investigating an array with a nonzero

(34 background charge on a single island. We then give
ensemble-averaged results for random background charges

which is an gxter_\sio7n of the resM:%eMin[llc},llcg] _on all islands and compare with the experiments of Delsing
for a double junctiort! For N—, V, has a Gaussian distri- et a6

bution W'Eq average;Ne(C™*) and variance Vaf,=; In the absence of gate coupling;=0 for all i) and for
Ne? varC™. a nonzero background chargg ,=Qqn/€e on island m,
there are three initial tunneling events which may form the
B. Turnstile configuration bottleneck for conduction(i) transfer of an electron from the

We next consider a turnstile configuration, i.e., an arrayemltter to the first islandelectron injection through junction

with a single gate electrode coupled capacitivetpapaci- k=1), (i) tunneling through junctiok=m-+ 1 if do;>0 or

. . . through junctionk=m if qo,,<<O (electron-hole creation at
tanceC,) to island n. The elements of the inverse capaci- island m); (iii) transfer from the last island to the collector
tance matrix are then given by

(hole injection through junctiok= N).
, - N e 1 o An analysis of the corresponding tunneling sequences re-
Rij=(S+C¢S'S)§(ST+CeS'Sy) 5 n<sis|, sults in the threshold voltage

R j=SS(SV+C,S"s) L, i=n<j, . |
Vi=5g {N=1=2Min[mdym,(N=m)(1=dom 1},
R j=S(§+CySS)(S"+CyS"Sy) "%, i<j=n,

qO,mZOr (413
Rj,i:Ri,j . (35)
In order to determine the threshold voltagg,(q), we have Vt:i{N— 1—2Min[m(1—|dom|),(N—m)|dom|1}
to distinguish betweek<n andk>n. From Egs.(2.9) and 2C

(3.5 we find thatvtyk(ﬁ) now depends on the gate voltage

Vg:t® Qom<0. (4.1



55 COULOMB BLOCKADE THRESHOLD IN INHOMOGENEOW . . . 10 641

For a uniform distribution ofj,,, between= 3 and a uniform
distribution of m between 1 andN—1 its expectation value

is (V{)=(5N—7)e/12C, with variance Va¥,=(e/2C)*(N

+1)(3N?—5N+8)/18N. The expectation value is slightly
smaller than for a homogeneous array without background
chargesV,=(N—1)e/2C. In the limit N— o the root-mean-
square deviation is rnvg«Ne/C, of the same order as the

threshold voltage itself.

We next consider a one-dimensional array of equally
gated islands@;=C, C,;=C, foralli). In Refs. 9 and 12
the charge transport in homogeneous arrays by solitonlike
excitations was introduced. In terms of the soliton width
N~ 1=[2arsinh/C,/4C] ! of Ref. 9, the threshold voltage

for an electron tunneling through junctidnis given by
k-1
.. e L N
Vi) = i( ~23, (g+qg)sinh(in)costi (N—k-+ §)A]

N—-1

+2 Zk (gi+0dg)sin{ (N—i)\]cosh (k—3)\]

+sinf{(N—3)\]—cosh (N—2k+ 1))\]sinh%)

NA  (N—2k+1)A) *

o« si
smh)xcoshz—cos 5

4.2

Here, the gate-induced chargg=Cy[Vy— 3(Vo+ V)] acts

as an offset on the background charge. The average thresh
voltage (averaged over the background chargetherefore

independent oV, . ForN=2, we find
(Viy=¢el(4C+2Cy). 4.3

In the absence of background charges andyfer 0, we
find

Ve e sinf(N—1)\/2]
t72C cosNA/2)sinh(\/2)’

(4.9

which approaches a constant value Ms-«, provided

A#0, i.e., providedCy,/C+#0. In Fig. 2 we show the effect

of random background charges on all islands in arrays of
different lengths for several gate couplings, as calculated
from Eg. (4.2). The averages are computed numerically by ¢

putting a random charggy € (— 3,3) on each island. The

dependence ofV,) on the array length differs drastically
from the result(4.4) without background charges: Instead of 5+ %
a threshold voltage which exponentially approaches a con- r E

stant value adl— o, we find(V,)=N—1 for small arrays, % % .

with a crossover to a lineaM dependence for large arrays.

For C4<C, the array lengtiN. at which the crossover oc-

curs is found to be 2.5 times the soliton width,

Ne~2.5/C/Cq~2.5\"1. (4.5

«

In [d(CV,/e)/dN]

_alLx0
31" 20.001
L 20.003
50.01
—4 1 00.03
L 0.1
| I R AT SRR SR |
1 2 3 4 5 8

In N

FIG. 2. Derivative of the average threshold voltage with respect
to the array lengtiN, for ensembles of arrays with identical capaci-
tances C;=C and Cy;=C, for all i) and random background
charges on all islands, calculated from E4.2). The average is
determined numerically from ensembles of 10 000 samples for
N=128 and ensembles of 1000 samples for larger arrays. A cross-
over from(V,)=N*? to (V;)«N occurs atN.~2.5/C/C,. Solid
lines are the extrapolation formuldd.6) and (4.7). The dashed
curves are obtained from the resuy#.4) for zero background
charges andCy/C=0 (upper curvg and C,/C=0.01 (lower

Oﬁarve).
For N>N, we can describe the numerical data by

(Vi)
dN

(VO =(V{In=n,+ (N=Np)

N=N,
N+ N, 1).

2N,

_ e 1
~ 4C+2Cq \2-1

4.7

10 -

(Cv,/e)

by an extrapolation of the resul#.3) for N=2:

e \/ﬁ—l

4C+2C4 2-1°

(V)= (4.6

from Ref. 16, solid dotswith the result of Eq(4.2), averaged over
the random background char¢epen squares with error barsVe
used identical gate and junction capacitances, with
C4/C=0.044 (N.=12), as estimated in Ref. 16. There are no ad-
justable parameters.
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The crossover to a linedf dependence supports the intuitive arhitrary occupatiom of the islands. We have calculated the
idea that the background charge in the array is screened bgyerage threshold voltage for transport and its fluctuations in
yond N.. The rms deviation rm&=0.31e(VN—1)/ 4 few simple cases. In particular, we have found that includ-

(2C+Cy) for all N. The rms deviation of the threshold volt- jng random background charges results iNadependence
age for tunneling through a specific junctiénhas a muc?h of (Vy), with a=3 for N<2.5\/TCQ and a=1 for
stronger dependence onN than rm¥, itself:

i ; ) N>2.5/C/C,. We have made a comparison with the avail-
3/2 9
rmsVy N, SinceV, is chosen as the maximal threshold experimental data on gated one-dimensional affays,
voltage in a sequence df minimal values for single tunnel-

ing events, the fluctuations i, are smaller than those in and found a reasonable agreement.
Vik. In Fig. 3 we compare the threshold voltage from Eq.

(4.2), averaged over all background charges, with experi-
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