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Spin precession and time-reversal symmetry breaking in quantum transport of electrons
through mesoscopic rings
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We consider the motion of electrons through a mesoscopic ring in the presence of a spin-orbit interaction,
Zeeman coupling, and magnetic flux. The coupling between the spin and the orbital degrees of freedom results
in the geometric and the dynamical phases associated with a cyclic evolution of a spin state. Using a non-
adiabatic Aharonov-Anandan phase approach, we obtain the exact solution of the system and identify the
geometric and the dynamical phases for the energy eigenstates. Spin precession of electrons encircling the ring
can lead to various interference phenomena such as oscillating persistent current and conductance. We inves-
tigate the transport properties of the ring connected to current leads to explore the roles of the time-reversal
symmetry and its breaking therein with the spin degree of freedom being fully taken into account. We derive
an exact expression for the transmission probability through the ring. We point out that the time-reversal
symmetry breaking due to Zeeman coupling can totally invalidate the picture that spin precession results in an
effective, spin-dependent Aharonov-Bohm flux for interfering electrons. We carry out numerical computation
to illustrate the joint effects of the spin-orbit interaction, Zeeman coupling, and magnetic flux. By examining
the resonant tunneling of electrons in the weak-coupling limit, we establish a connection between the observ-
able time-reversal symmetry-breaking effects manifested by the persistent current and by the transmission
probability. For a ring formed by a two-dimensional electron gas, we propose an experiment in which the
direction of the persistent current can be determined by the flux dependence of the transmission probability.
That experiment also serves to detect if the electron-electron interaction can qualitatively alter the electronic
states[S0163-182607)05816-3

[. INTRODUCTION obtained specific reduction factors for harmonics in AB
oscillations®>**When the AC flux is not random, it can lead
The Aharonov-Bohm(AB) effect leads to a number of to interference phenomena as AB flux. Mathur and Stone
remarkable interference phenomena in mesoscopic systeni¥oposed an observation of the AC oscillation of the conduc-
especially in rings.Based on the discovery of the geometric tance on semiconductor sampféBalatsky and Altshulé?
phaseg, including the adiabatic Berry phasand the non- and Chot® studied the persistent currents produced by the
adiabatic Aharonov-Anandaf®A) phase' it has been pre- AC effect. _
dicted that analogous interference phenomena can be in- InSpired by the study on textured rings, the AC effect has
duced by the geometric phases that originate from the inte@'SC Peen analyzed in connection with the spin geometric

play between electrons’ orbital and spin degrees of freedon{?has.e' Aronov gnd Il_yanda—GeIIer considered the_spin evplu—
ion in conducting rings and found that the SO interaction

Such interplay can be produced by external electric and ma . : . . . )
netic fields, which lead to Zeeman coupling and the Sping_iesults in a spin-orbit Berry phase, which plays an interesting

orbit (SO) interaction, respectively role in the transmission probability of the rintfsin their
. - ' . .. models, there is a Zeeman coupling from a uniform magnetic
Losset al. first studied the textured ring embedded in in- Ping g

h  fididrh d the inh field, but the SO Berry phase can be caused by the SO inter-
omogeneous magnetic fieldchey found the inhomogene- ;o ajone. So they have indeed shown the existence of the

ity of the field results in a Berry phase, which can producegerry phase in the AC effect. Since the SO interaction is
the persistent currents. The effects of this Berry phase Ofisually not strong enough to guarantee the validity of the

conductivity were then discussédt was further pointed out adiabatic approximation, a nonadiabatic treatment of the
that the adiabatic condition is not necessary for the geometriﬁromem is necessary. In Ref. 15 we demonstrated the exis-
phase to exist, and the AA phase in textured rings can prorence of a nonadiabatic AA phase in the AC effect in 1D
duce the persistent currents as well. rings. We found that the AC flux and local spin orientations
On the other hand, the Aharonov-Caskec) effecf in  of the electronic eigenstates are determined by a spin cyclic
mesoscopic systems has attracted much attention.éfleir ~ evolution. In particular, we showed that the AC phase com-
showed that the SO interaction in one-dimensiofiHD) prises both the AA and the dynamical phases that are ac-
rings results in an effective magnetic fliathur and Stone  quired in the cyclic evolution and the adiabatic limit of the
then pointed out that observable phenomena induced by th®A phase is just the SO Berry phase. Based on this geomet-
SO interaction are the manifestations of the AC effect inric phase approach for the AC effect, Oh and Ryu studied the
electronic system¥ These authors investigated the effectspersistent currents produced by the cylindrically symmetric
of the SO interaction on the persistent-current paramagne8O interaction in 1D ring&®
ism and the quantum transport in disordered systems and As is well known, the SO interaction is time-reversal in-
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variant, while Zeeman coupling breaks the time-reversal
symmetry(TRS). Many prior works have shown the signifi-
cance of the TRS and its breaking with regard to various
interference phenomena caused by the AB flux and SO in-
teraction. It is therefore worthwhile to investigate if the co-
existence of the SO interaction and Zeeman coupling can
produce any new observable effect with the spin degree of
freedom being fully taken into account. However, most of
the previous studies have focused on the rings in the pres-
ence of Zeeman coupling or the SO interaction only. In Ref.
17 we have demonstrated that the competition between Zee-
man coupling and the SO interaction can produce persistent
currents through the TRS breaking in a many-electron ring
with a complete set of current-carrying single-particle states. FIG. 1. Schematic representation of the electronic waves propa-
For the transport properties, Aronov and Lyanda-G¥ller gating through the ring connected to current leads. The right junc-
have derived a transmission probability for a conducting ringion is located ap=0 and the left junction a#= 7, with the upper

in the presence of both the SO interaction and the Zeemapfanch lying within (0, w) and the lower branch within
coupling by making use of the concept of the Berry phase(”* 2m).
Unfortunately, they failed to take into account correctly the
different properties of the SO interaction and Zeeman cou-

pling under the time-reversal transformation. As a result, The Hamiltonian for an electron in the electric field
they did not realize that their picture of the effective flux for E= —VV and the magnetic fielB=V XA is

the interference of spin-polarized electrons is actually invali-

Il. TRANSMISSION PROBABILITY

dated by the TRS-breaking Zeeman coupling. Furthermore, 1 e \? eh e
even if the Zeeman coupling is absent, their expression for T 2m, p— EA +eV— 2’ EX|p— EA
. . . . . . e
the effective flux induced by the SO interaction is still not
complete. So the transport properties of a ring in the pres- B geh B )
ence of both the SO interaction and Zeeman coupling have 4mec(r '
not been solved yet and the roles of TRS and its breakin%v _ ] _ _ ] )
therein need to be clarified. e consider a ring that is effectively one dimensional and

In this paper we will discuss the transport properties of ¢he _ fields that are cylindrically =~ symmetric, ie.,

ring in the presence of both the SO interaction and the Zed==E(COS01& —sinx.&,), B=B(sinx.€ +cosy,&,) in the cy-
man coupling. We will explore the roles of the TRS and itglindrical coordinate system. For the ring lying in thg plane

breaking in the transport phenomena when the spin degree &Fth its center at the origin, the Hamiltonian is given by

freedom is taken into account explicitly. We will also show 52 P 5

the connection between the observable TRS-breaking effects = 5| =i = + ¢+ a(siny,o, + COS(17,)
manifested by the persistent current and by the transmission 2mea a0

probability. Throughout the discussion, we will emphasize fwg

the TRS by investigating how the TRS-breaking Zeeman +T(sin)(2cr,+cosX2crz), 2

coupling affects the thermodynamic and transport properties

of the system. The paper is organized as follows. First wgyith 0,= 0O+ a,sing,  a=—eaBdmc?, and wg

identify the electronic states for the ring connected to current _ geg2m.c, wherea is the ring radiusg is the angular

leads by making use of the exact solution of the closed ringeoordinate, ands is the enclosed magnetic flux in units of

Then we derive an exact expression for the transfer matricefux quantum. The exact solution for the closed ring is given

of the two ring brancheg@rms by introducing four auxiliary  in the Appendix.

spin states, which exhibit the orbital quantum number depen- To investigate the transport properties, we discuss the ring

dence of the spin orientations in electronic eigenstates. Fronhat is connected to external current leads, schematically il-

the transfer matrices, we obtain the transmission probabilityustrated in Fig. 1. We adopt the standard formulation devel-

of the ring by adopting the standard formulation developedped in the study of quantum oscillations in 1D rings

in Ref. 18. Finally, we carry out some numerical calculationsthreaded by the AB fluX® In the upper and the lower

to illustrate the effects of the SO interaction and Zeemarbranches, the wave amplitudes at one end are related to the

coupling. We find that there is an interesting and observabl#ave amplitudes at the other end by the transfer matrices as

correspondence between the TRS-breaking effects mani-

fested by the transmission probability and by the persistent B2 B1
B B1

current. That correspondence, if experimentally verified or

excluded in some specific ring, may serve to detect if the

electron-electron interaction is of qualitative importance inwheret; andt;, denote the transfer matrices of the upper and
determining electronic states. We conclude this paper with éwer branches, respectively, and they depend on the energy
summary of our results. E of the incident wave. At the two junctions, the amplitudes

!
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of the three outgoing wavesx(,B’,y’) are related to the ﬁ2k§ hw g
amplitudes of the incoming waves(3,vy) by o EM=T(n+ d)+ T(az—acoql)
a’ —(atb) e Vel «
B|=| Ve —a b||B], fiw
: + (1= peoBy) + pahwncos By = x1)
y Ve b ally
wherea=*+(\/1—2e—1)/2 andb=*(y1—2€+1)/2 with
0=€e=<1/2. When considering a wave incident from the right phog
junction, we havex]a;=1 anda,=0. The amplitude of the + =50 Bnx2) ®

transmitted wave is

to find four solutions ofn, which are positiven, , and
a1, (3)  negativen_ ,, with =+, and positiven, _ and negative
n_ _, with u=—. For arbitrarykg, these quantum numbers
with II given by are not integers in general. For eagh, we can obtain a
wave functionllfnw,u that bears the same form ds, , of
H_i( t,([bz_az a (1 the closed ring, but witm being substituted by, , and
T p? n —a 1 s accordingly the spin tilt angles, being substituted by
4 B”m from Eq.(A2). These fourtPnM,M are actually eigen-
states of the Hamiltoniaf®) at energyEg, but the periodic
boundary conditionV,, ,(6)=¥, ,(6+2m) is resolved due

b—a

® T
-1 0

€
ay=— F([b_a , 1]®0'o)tlﬂl(

b’-a? a

® o
—-a 1 0

®O’0

whereo is the 2< 2 unit matrix in spin space. This formu-

lation is in general applicable to the derivation of the transt th i ot I duct The electroni
mission probability through any ring, provided the corre-© N€ connection with extemal conductors. 'he electronic

sponding transfer matrices are known. Note that in the study\’a\’e inside the ring is a superposition of the fd%,wﬂ by

of the ring only threaded by the AB flux, electrons can bewhich the eight amplitudeg,,8;, ... can be represented.
treated as spinless particles, so that all amplitudes are simplyhis is a natural conclusion from the steadiness of the elec-
represented by complex numbers and the matgxcan be tronic state that transports electrons at fixed enefgy
dropped. In this papew, a}, ... have to be represented through the r!ng. With this understanding, we can derive the
by two-component spinors artgl,t, are 4X4 matrices. transfer matrices in terms of, .

To derive an explicit expression for the two transfer ma- As shown in the Appendix, the Zeeman coupling brings
trices, we first identify the electronic states in the ring bythe dependence on orbital quantum number to spin orienta-
making use of its cylindrical symmetry. If we writg,t; ina  tions. As a result¥, ., and¥, _, which carry the
2% 2 matrix form, then each matrix element is 2 matrix  clockwise (.= —) or the counterclockwise\(= +) wave,
in spin space. We can easily conclude that the off-diagonadre of nonorthogonal spin stateazn (6 and
elements oft,,t; are zero because of the conservation of’l/; (6) unless in the absence of Zeeh’rr;an counling. To
—i(d9/96)+ 30,, which indicates that in each branch any "~ ™+ % _ _ _ oupiing.
propagating wave with fixed energy can possess a welderive the. tr_ansfer.matrlx .agsoc!ated with spin-polarized
defined momentum and pass each branch without reflectiof@nSPOrt, it is crucial to distinguish the=+ from the
as a result of the cylindrical symmetry of the external fields# = — contribution for any wave propagating in fixed direc-
and the absence of scattering potential. So our task reducégn- For this purpose, we define four auxiliary spin states
to finding the four 22 matrices that, respectively, relate
B1 with B, and 8, with B; for the upper branch ang, with 1 -
y1 and y, with y; for the lower branch. These four2 7, ,(6)= R—[zpnA u(0)
matrices are the four nonzero diagonal elements of di- A “
rectly. —ut U i

The electrons’ tunneling through the ring is carried out by %“‘/‘ ~u(0) %“‘ 0 lﬁn“" ~u O] ®
the energy eigenstate of the ring connected to two ideal con-
ductors. Consider an incident wave with wave vedtpr WhereRx=1—|E$ M(g)@ﬂ —u(0)[% 1t is easy to verify
The corresponding eigenenergy of the steady transport staffa relatio M »
is EF=h2k§/2m. In the right conductor the electronic state is
a superposition of the incident plane wawg and the re-
flec_ted plane_wfavezi, while in fche left conductor the propa- %)\,,u(a)Tan A0)=6,, (7)
gating wave is just the transmitted plane waxe The state a
inside the ring is a superposition of four wave functions of
energyE . They actually determine the four nonzero matrix and
elements defined above for the two diagonal transfer matri-
ces.

Tc_> find the_ four components of the elegtronic wave inside E @n A 0) 7 u 9)t= oo (8)
the ring, we first use the energy expression w ' ’

ns of redefined orthogonality and completeness,
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In the upper branch, the wave propagating counterclockwisand(7), we obtain
consists of the two componerts, . and¥,  _. B1

and B, can thereby be expressed as . - ~
’ Bo=[e™ gy (M7 (0)
Bi=c1¥y, , +(0)+c ¥, (0, +eM Ty ()7 _(0)1B5, (10)
9 '
Ba=c1¥y,  s(m)+c¥,  _(m), and therefore find the 22 matrix that is the first diagonal

element oft,. The other three matrix elements in diagonal

wherec; andc, are two specific constants. Using E¢a1)  t, andt, can be derived in the same way. We finally obtain
the two transfer matrices in the form of

% e (ML () 0
t,= : (11)
0 2 e, WM L(0)
% e, (07 () 0
= _ : (12)
0 2 &y (007" ()

From Eq.(3), the transmission probability for unpolarized Zeeman coupling is absent, the last two terms give the
incident electrons i€, o) in which { ) denotes an aver- 1/27 of the AC phaseb4./2m (Ref. 15 and
aging overa with fixed a{alz 1. Explicitly, it is given by

1
Ny ,=Akpa— o+ Ed)ﬁc (15

1
T= EE

€ -1
= _F([b_a ) 1]®0'0)E|H

becomes an exact relation without the quasiclassical approxi-

2 mation. Sinced4c is n independent, Eq15) indicates that

(13  the effect of the SO interaction can be regarded as an AB
effect of the effective flux-® /27 in units of &, for the
locally polarized electron gases with local spin statgs

We can derive fowg=0 the transmitted amplitude

b—a
-1

X ®0’0

ij
in whicht,, t;, andII are all known.
In the absence of Zeeman coupling, the expression of the
transmission probability can be greatly simplified and explic- _ LAY
itly related to the spin-independent transmission probability ab(d,a))=, ['J/L(O)al]t< b— ﬂ) W, (m), (16)
through the ring threaded by the AB flux only. From Eq. s 2m
(A2), itis obvious that ifwg=0, ¢, ., are independent of \heret(¢) is the transmitted amplitude for the ring threaded
n, . defined in Eq.(5) and can be denoted by, with b_y magneti_c fluxg _(Re_f. 18 with vanishing the SO interacT
=¥, . Combining this fact with Eqs(7)—(9), we see tion. Equauor_w(lG} indicates cIe_e_lrIy that the real electronic
that in the absence of Zeeman coupling, the electronic wav®ave in the ring is a superposition of the two locally polar-
in the ring actually consists of two orthogonal amplitudes,ized waves, which enclose different effective fluxes and

which propagate coherently and independently, with their loPropagate indepen,?er?tly. The transmission probability
cal spin states being given g, . We then turn to the phase Tas.ac i given bya;'a;:
shift for spin-polarized electrons. Whega is very large D
. ) S 2 - K
and the quas_,lclasswal apprc_mmatlon is therefore applicable, TAB,AC(¢va1):2 |¢L(0)011|2TAB( b— ) (17)
it is worthwhile to writen, , in Eq. (5) as m 2w

1 where Tag(¢)=t"t is the transmission probability of the
Ny ,=Akpa—o— 5(1—/4005)(nA M)—,U«aCO@(m K (149 ring threaded by the magnetic fluk with the vanishing SO
' ’ interaction. To see what happens for an unpolarized incident
where the last three terms on the right-hand side are bf2 wave, we averageTagac Over a; and obtain Tagac
the AB phase, the spin AA phase, and the dynamical phase =, Tag(¢— ®ac/27)/2, which agrees with the relation
contributed by the SO interaction, respectively. When thepredicted in Ref. 9 for general spin-independent ther-
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FIG. 2. Transmission probability as a function of the AB flux  F|G. 3. Transmission probability as a function of the energy of
for e=0.25,ka=60.239,a=1 um, andy,=«/6. The dotted and jcident electrons E-=7%2k%2m) for €=0.25, a=1 um,
the solid lines are associated with the absence of and the presenge-1 g x»=16, and $=0. The dotted line corresponds to the
of the SO interaction o&= 1.8, respectively. absence of the SO interaction and Zeeman coupling, the solid line

corresponds to the presence of the SO interaction only, and the

modynamic and transport quantities. However, in the comdash-dotted line corresponds to the presence of both the SO inter-
petition with the SO interaction, the Zeeman coupling bringsaction and the Zeeman coupling Bf= 30 G.
the n dependence to the spin orientations of energy eigen-

states. Then-dependent spin precession then results in th,;=0, since the Kramers degeneracy makes each two
n-dependent spin phases. It is seen that in the presence of tegyenstates of the closed ring have the same energy, at cer-
Zeeman coupling, the last two terms in Ei4) aren depen-  tain Ex the transmission probabilities in the two spin
dent and the effect of the spin phases can no longer be r¢yranches can reach their highest value 1 simultaneously,
garded as that from thg effec_tive flux, which must be i”deThereby makingT ag ac=1. After the Zeeman coupling is
pendent of the specific orbital quantum numbers of thgymed on, the resuited energy spliting destroys the simulta-
states. neous happenings of the resonances in the two spin branches

A numerical calculation has been carried out to illustrateyng we see the maximum values bidecrease appreciably
some essential characteristics of the transmission probability;ith the strength of Zeeman coupling.

derived here. We find that the respective effects of the Zee- \yjith ¢ being even smaller, the energy dependence of the
man coupling and SO interaction can be reflected by thgansmission probability manifests as an interesting TRS-
resonance of the transmission probability in the weakyreaking effect, which also has its corresponding observabil-
coupling limit at smalle. In particular, we can see an inter- ji in the persistent current. In Ref. 17 it has been demon-
esting correspondence between the TRS-breaking effeclgrated that in the presence of the SO interaction, the TRS-
manifested by the transmission probability and by the persisyreaking mechanism due to Zeeman coupling is intrinsically
tent current. , ~ different from that due to the AB flux. As the corresponding
We adopt the model of an InAs rirt§ The Hamiltonianis  gpservable effect, it has been found that the direction of the
of the form persistent current induced by Zeeman coupling changes pe-
riodically with the particle numbeN with the periodicity
+Ar[ X pl,— ﬂa. B, (18) AN=2, while the direction of the_: persistent_ current induced
amc ’ by the AB flux never changes with the particle number. The
dependence of the current direction on the particle number is
where m=0.023n, is the effective mass, i’  actually the dependence on the Fermi energy. Such an en-
=6.0x10 *° eV cm is the SO coefficient, arg=15. Here  ergy dependence of the current direction, an equilibrium phe-
the effective electric field is in the direction, hence nomenon as it is, can actually be manifested in the resonant
x1= /2. For thering of radiua=1 um, the dimensionless tunneling of electrons, a transport phenomenon as it is, in the
coefficienta in Eq. (2) is found to bemax=1.8, which is  weak-coupling limit. Fore— 0, the peaks oT (E¢) locate at
large enough to result in an AC phase of order uffitfhe  the eigenenergiek, .. Of the closed ring® In the presence
Fermi velocityvr is approximately %10’ cms ™, corre-  of the SO interaction and a weak Zeeman coupling, the trans-
sponding to{ng|~60. mission probability is plotted as a function of the incident
The effective flux induced by the SO interaction and itSenergy in Fig. 4. Every two peaks, which are closest to each
effect on the transmission probability can be clearly seen ither, locate at a pair of splitted energy levels, which come
Fig. 2, whereT,g and Tpgac are plotted as functions of from the Kramers doublet¥, ,, ¥_,_;_,) in the ab-
¢. The magnitude of the AC phase can actually be approxisence of Zeeman coupling. With the AB flux being zero, the
mately measured by a comparison betweengtomordinates energy splittings in all the splitted energy levels are the
of the transmission probabilities’ peaks in the absence and isame. Here we use the first-order perturbation, which gives
the presence of the SO interaction. The energy splitting duthe energy correction but does not change the eigenfunction.
to Zeeman coupling is illustrated in Fig. 3. Fgr=0 and As shown in Ref. 17, those eigenstates of the closed ring,

1 2

HInAs:ﬁ(p_T
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! , i the Zeeman coupling. We want to point out that the essential
character of the above correspondence between the equilib-
rium and the transport properties can be quantitatively, but

o 7 not be qualitatively, affected by the disorder or scattering
o7t 1 potential in the ring as long as the single-particle picture
ool , holds for electronic states. In particular, such a correspon-

dence, if experimentally verified or excluded in some spe-
cific ring, may serve to detect if the electron-electron inter-
] action qualitatively alters the electronic states.

TRANSMISSION PROBABILITY

I1Il. CONCLUSION AND DISCUSSION

il il In summary, we have studied the motion of electrons con-
o e R fined in the perfect ring in the presence of the cylindrically
(@) ka symmetric spin-orbit interaction and Zeeman coupling, and
. the magnetic flux. Starting from the exact solution for the
closed ring, we have investigated the transport properties of
the ring connected to current leads, with emphasis on the
o8 ] roles of the TRS and its breaking therein. We have provided
07k . the numerical results for illustrating the joint effects of the
spin-orbit interaction, Zeeman coupling, and magnetic flux.
From the resonance behavior of the transmission probability
in the weak-coupling limit, we have found the observable
] correspondence between the TRS-breaking effects mani-
1 fested by the persistent current and by the transmission prob-
ability as long as the single-particle picture of electronic
states holds. As the relation between transmission probability
and persistent current is discussed for 1D noninteracting
electrons with spin, the effect of the electron-electron inter-
ke action is yet to be investigated. It is interesting to note that,
o N _ for 2D interacting electrons, the effects of the electron-
_ FIG. 4. Transmission probability as a function of the energy ofelectron interaction on the persistent current and conductance
incident  electrons Ep=7A%"2m) for €=0.005, a=1 um,  has peen discussed, but only in the spinless tagm the
a=1.8, andXZ:w/(_ﬁ. The solid line corresponds to the p_resence Ofother hand, in the presence of disorder, though the exact
the Zeeman coupling dB=15 G and the dash-dotted line corre- .0 1ation can no longer be carried out, our observation that
sponds to the presence of the same Zeeman coupling and a ma%a TRS breaking due to Zeeman coupling invalidates the

netic ﬂux.Of ¢=0.02. (3 Constant and alternating d'Stances be- effective flux picture is still correct. In addition, the shift of
tween paired peaks vs energy, represented by the solid and tr%e

dash-dotted lines, respectivelyn) Taken from(a) for a clear illus- ranls.tmtl.ss'fm peaks depicted in Figby does not change
tration of the effect caused by=0.02. qualitatively.

0.9 i

0.6 —
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APPENDIX A: GEOMETRIC PHASE

with increasing energy, have the spin orientations and cur- AND EXACT SOLUTION

rent directions in a sequence of
The eigenvalue equation of the closed ring can be solved

o [(Hd)(=w ] [(=d), ()], through a straightforward diagonalization, as presented in
Ref. 17. Here we adopt the geometric phase apprdanh
[(+.d),(=.w], [(=.d(+WwW], ... 19  Sderto identify the geometric and the dynamical phases in

where 6,,s,) refers to a single quantum state, with= -+ current-carrying eigenstates, which are responsible for trans-
(counterclockwise or — (clockwis@ denoting the current porting electrons when the ring is connected to current leads.
direction ands,=u (up) or d (down) denoting the spin ori- How the phases and the spin orientations jointly affect the
entation, and(s;,s,),(—S;,—S,)] refers to a pair of energy transmission probability will be elaborated on in Sec. Il.
levels from the Kramers doublet. The eigenstate correspon- The cylindrical symmetry of the system leads to the con-
dence so identified fo leads to interesting resonance be-Servation of total angular momentumid/d6+ 307, which
havior, as depicted in Fig. 4. It is seen that when a small ABMeans that the eigenstates of the Hamiltor{@nare of the

flux is added to distinguish the current directions, each twdorm \PM(G)=exp@n6)¢//n#(0)/\/ﬂ, in whichu=+,n are
paired peaks are separated by a distance, which takes thgbitrary integers, and the spin states are given by

larger or the smaller value alternatingly. The reason is al-

ready clear in the sequentE9). In essence, since the current Cos& sin&
direction determines the sign of the energy shift caused by a _ 2 - 2
small AB flux, for[(—,d),(+,u)] the energy splitting due ()= g | Yo —(0)= _ ol
to the small AB flux enhances that first caused by the Zee- e "sin7 —€ (’COS?

man coupling, while fof (+,d),(—,u)] the energy splitting
due to the small AB flux cancels part of that first caused by (A1)
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where g, is 6 independent. Frorﬂfﬁlﬂai\lfnyﬂ as a function wherew, is given bywo(n+ 3+ ¢) with wo=%/ma’. Here

of 6, it is readily seen that the local spin orientatiorgas in  the geometric AA phasé,, , is the —1/2 of the solid angle

the direction of u(cosB.e,+sinB.g). The explicit expres- sqbtended by a circui.t traceq on a sphere by the local spin
sion for the spin tilt anglgs,, can be obtained by introducing Orientation of¥, . It is readily seen that the Zeeman cou-

a cyclic evolution of the spin state for electrons encirclingPling makes the spin orientations of electronic eigenstates
the ring, as presented in Ref. 15. The geometric and thgepend on the orbital quantum number. The consequence of
dynamical phases associated with the spin precession ¢ ch an lnt_erplay between the spin and_the orbital degrees of
thereby be identified for all of the energy eigenstates to dell¢edom will be explored when we discuss the transport

- ; properties of the ring. With use @,,, 6 andy, ,, the
tsi)rir:ltrillf ;2ZI\éVhOIe energy spectrum. Fby, , we obtain the eigenvalueE, , of ¥, , is found to be ©

nuo

2aw,siny; + wgsin E hwo( + )2+ hwo( 2 )
aw w =——(Nn —F —aCo
tang, = nSINMY 1T wgSINY> (A2) ne= o o) 5 (a—a SY1
2aw,COSy1+ wgCOSY— Wy,
and the geometric and the dynamical phasgs, and —?(%,ﬁ)’n - (A5)
Yo,us ™
_ The first term in the right-hand side represents the energy
Snu=—m(1—pucosBy), (A3) from orbital motion, the second term the zero-point energy,
© while the third term comes from the spin precession origi-
B ) . . h
Ynu=— 07| 2aC08 Bn— x1) + w—cos{ﬂn—h) , (A4) ggg?ge;r%rpfrt::d?;qerplay between the spin and the orbital
n .
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