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Spin precession and time-reversal symmetry breaking in quantum transport of electrons
through mesoscopic rings
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We consider the motion of electrons through a mesoscopic ring in the presence of a spin-orbit interaction,
Zeeman coupling, and magnetic flux. The coupling between the spin and the orbital degrees of freedom results
in the geometric and the dynamical phases associated with a cyclic evolution of a spin state. Using a non-
adiabatic Aharonov-Anandan phase approach, we obtain the exact solution of the system and identify the
geometric and the dynamical phases for the energy eigenstates. Spin precession of electrons encircling the ring
can lead to various interference phenomena such as oscillating persistent current and conductance. We inves-
tigate the transport properties of the ring connected to current leads to explore the roles of the time-reversal
symmetry and its breaking therein with the spin degree of freedom being fully taken into account. We derive
an exact expression for the transmission probability through the ring. We point out that the time-reversal
symmetry breaking due to Zeeman coupling can totally invalidate the picture that spin precession results in an
effective, spin-dependent Aharonov-Bohm flux for interfering electrons. We carry out numerical computation
to illustrate the joint effects of the spin-orbit interaction, Zeeman coupling, and magnetic flux. By examining
the resonant tunneling of electrons in the weak-coupling limit, we establish a connection between the observ-
able time-reversal symmetry-breaking effects manifested by the persistent current and by the transmission
probability. For a ring formed by a two-dimensional electron gas, we propose an experiment in which the
direction of the persistent current can be determined by the flux dependence of the transmission probability.
That experiment also serves to detect if the electron-electron interaction can qualitatively alter the electronic
states.@S0163-1829~97!05816-5#
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I. INTRODUCTION

The Aharonov-Bohm~AB! effect leads to a number o
remarkable interference phenomena in mesoscopic syst
especially in rings.1 Based on the discovery of the geomet
phases,2 including the adiabatic Berry phase3 and the non-
adiabatic Aharonov-Anandan~AA ! phase,4 it has been pre-
dicted that analogous interference phenomena can be
duced by the geometric phases that originate from the in
play between electrons’ orbital and spin degrees of freed
Such interplay can be produced by external electric and m
netic fields, which lead to Zeeman coupling and the sp
orbit ~SO! interaction, respectively.

Losset al. first studied the textured ring embedded in i
homogeneous magnetic field.5 They found the inhomogene
ity of the field results in a Berry phase, which can produ
the persistent currents. The effects of this Berry phase
conductivity were then discussed.6 It was further pointed out
that the adiabatic condition is not necessary for the geome
phase to exist, and the AA phase in textured rings can p
duce the persistent currents as well.7

On the other hand, the Aharonov-Casher~AC! effect8 in
mesoscopic systems has attracted much attention. Meiret al.
showed that the SO interaction in one-dimensional~1D!
rings results in an effective magnetic flux.9 Mathur and Stone
then pointed out that observable phenomena induced by
SO interaction are the manifestations of the AC effect
electronic systems.10 These authors investigated the effec
of the SO interaction on the persistent-current paramag
ism and the quantum transport in disordered systems
550163-1829/97/55~16!/10631~7!/$10.00
s,

in-
r-
.
g-
-

e
n

ric
o-

he

t-
nd

obtained specific reduction factors for harmonics in A
oscillations.9–11When the AC flux is not random, it can lea
to interference phenomena as AB flux. Mathur and Sto
proposed an observation of the AC oscillation of the cond
tance on semiconductor samples.10 Balatsky and Altshuler12

and Choi13 studied the persistent currents produced by
AC effect.

Inspired by the study on textured rings, the AC effect h
also been analyzed in connection with the spin geome
phase. Aronov and Lyanda-Geller considered the spin ev
tion in conducting rings and found that the SO interacti
results in a spin-orbit Berry phase, which plays an interest
role in the transmission probability of the rings.14 In their
models, there is a Zeeman coupling from a uniform magn
field, but the SO Berry phase can be caused by the SO in
action alone. So they have indeed shown the existence o
Berry phase in the AC effect. Since the SO interaction
usually not strong enough to guarantee the validity of
adiabatic approximation, a nonadiabatic treatment of
problem is necessary. In Ref. 15 we demonstrated the e
tence of a nonadiabatic AA phase in the AC effect in 1
rings. We found that the AC flux and local spin orientatio
of the electronic eigenstates are determined by a spin cy
evolution. In particular, we showed that the AC phase co
prises both the AA and the dynamical phases that are
quired in the cyclic evolution and the adiabatic limit of th
AA phase is just the SO Berry phase. Based on this geom
ric phase approach for the AC effect, Oh and Ryu studied
persistent currents produced by the cylindrically symme
SO interaction in 1D rings.16

As is well known, the SO interaction is time-reversal i
10 631 © 1997 The American Physical Society
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variant, while Zeeman coupling breaks the time-rever
symmetry~TRS!. Many prior works have shown the signifi
cance of the TRS and its breaking with regard to vario
interference phenomena caused by the AB flux and SO
teraction. It is therefore worthwhile to investigate if the c
existence of the SO interaction and Zeeman coupling
produce any new observable effect with the spin degree
freedom being fully taken into account. However, most
the previous studies have focused on the rings in the p
ence of Zeeman coupling or the SO interaction only. In R
17 we have demonstrated that the competition between
man coupling and the SO interaction can produce persis
currents through the TRS breaking in a many-electron r
with a complete set of current-carrying single-particle sta
For the transport properties, Aronov and Lyanda-Gelle14

have derived a transmission probability for a conducting r
in the presence of both the SO interaction and the Zee
coupling by making use of the concept of the Berry pha
Unfortunately, they failed to take into account correctly t
different properties of the SO interaction and Zeeman c
pling under the time-reversal transformation. As a res
they did not realize that their picture of the effective flux f
the interference of spin-polarized electrons is actually inv
dated by the TRS-breaking Zeeman coupling. Furtherm
even if the Zeeman coupling is absent, their expression
the effective flux induced by the SO interaction is still n
complete. So the transport properties of a ring in the pr
ence of both the SO interaction and Zeeman coupling h
not been solved yet and the roles of TRS and its break
therein need to be clarified.

In this paper we will discuss the transport properties o
ring in the presence of both the SO interaction and the Z
man coupling. We will explore the roles of the TRS and
breaking in the transport phenomena when the spin degre
freedom is taken into account explicitly. We will also sho
the connection between the observable TRS-breaking eff
manifested by the persistent current and by the transmis
probability. Throughout the discussion, we will emphas
the TRS by investigating how the TRS-breaking Zeem
coupling affects the thermodynamic and transport proper
of the system. The paper is organized as follows. First
identify the electronic states for the ring connected to curr
leads by making use of the exact solution of the closed r
Then we derive an exact expression for the transfer matr
of the two ring branches~arms! by introducing four auxiliary
spin states, which exhibit the orbital quantum number dep
dence of the spin orientations in electronic eigenstates. F
the transfer matrices, we obtain the transmission probab
of the ring by adopting the standard formulation develop
in Ref. 18. Finally, we carry out some numerical calculatio
to illustrate the effects of the SO interaction and Zeem
coupling. We find that there is an interesting and observa
correspondence between the TRS-breaking effects m
fested by the transmission probability and by the persis
current. That correspondence, if experimentally verified
excluded in some specific ring, may serve to detect if
electron-electron interaction is of qualitative importance
determining electronic states. We conclude this paper wi
summary of our results.
l
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II. TRANSMISSION PROBABILITY

The Hamiltonian for an electron in the electric fie
E52¹V and the magnetic fieldB5¹3A is

H5
1

2me
S p2

e

c
AD 21eV2

e\

4me
2c2

s•E3S p2
e

c
AD

2
ge\

4mec
s•B. ~1!

We consider a ring that is effectively one dimensional a
the fields that are cylindrically symmetric, i.e
E5E(cosx1er2sinx1ez), B5B(sinx2er1cosx2ez) in the cy-
lindrical coordinate system. For the ring lying in thexy plane
with its center at the origin, the Hamiltonian is given by

H5
\2

2mea
2 F2 i

]

]u
1f1a~sinx1s r1cosx1sz!G2

1
\vB

2
~sinx2s r1cosx2sz!, ~2!

with s r5sxcosu1sysinu, a52eaE/4mec
2, and vB

52geB/2mec, wherea is the ring radius,u is the angular
coordinate, andf is the enclosed magnetic flux in units o
flux quantum. The exact solution for the closed ring is giv
in the Appendix.

To investigate the transport properties, we discuss the
that is connected to external current leads, schematicall
lustrated in Fig. 1. We adopt the standard formulation dev
oped in the study of quantum oscillations in 1D rin
threaded by the AB flux.18 In the upper and the lowe
branches, the wave amplitudes at one end are related to
wave amplitudes at the other end by the transfer matrice

Fb2

b28
G5t IFb18

b1
G , Fg1

g18
G5t II8Fg28

g2
G ,

wheret I andt II8 denote the transfer matrices of the upper a
lower branches, respectively, and they depend on the en
E of the incident wave. At the two junctions, the amplitud

FIG. 1. Schematic representation of the electronic waves pro
gating through the ring connected to current leads. The right ju
tion is located atu50 and the left junction atu5p, with the upper
branch lying within (0, p) and the lower branch within
(p, 2p).
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55 10 633SPIN PRECESSION AND TIME-REVERSAL SYMMETRY . . .
of the three outgoing waves (a8,b8,g8) are related to the
amplitudes of the incoming waves (a,b,g) by

F a8

b8

g8
G5F 2~a1b! Ae Ae

Ae a b

Ae b a
GF a

b

g
G ,

wherea56(A122e21)/2 andb56(A122e11)/2 with
0<e<1/2. When considering a wave incident from the rig
junction, we havea1

†a151 anda250. The amplitude of the
transmitted wave is

a2852
e

b2
~@b2a , 1# ^ s0!t IP

21S Fb2a

21 G ^ s0Da1 , ~3!

with P given by

P5
1

b2 S Fb
22a2 a

2a 1G ^ s0D t II8 S Fb22a2 a

2a 1G ^ s0D t I21,

~4!

wheres0 is the 232 unit matrix in spin space. This formu
lation is in general applicable to the derivation of the tra
mission probability through any ring, provided the corr
sponding transfer matrices are known. Note that in the st
of the ring only threaded by the AB flux, electrons can
treated as spinless particles, so that all amplitudes are sim
represented by complex numbers and the matrixs0 can be
dropped. In this paper,a1, a18 , . . . have to be represente
by two-component spinors andt I ,t II8 are 434 matrices.

To derive an explicit expression for the two transfer m
trices, we first identify the electronic states in the ring
making use of its cylindrical symmetry. If we writet I ,t II8 in a
232 matrix form, then each matrix element is a 232 matrix
in spin space. We can easily conclude that the off-diago
elements oft I ,t II8 are zero because of the conservation
2 i (]/]u)1 1

2sz , which indicates that in each branch an
propagating wave with fixed energy can possess a w
defined momentum and pass each branch without reflec
as a result of the cylindrical symmetry of the external fie
and the absence of scattering potential. So our task red
to finding the four 232 matrices that, respectively, rela
b18 with b2 andb1 with b28 for the upper branch andg28 with
g1 and g2 with g18 for the lower branch. These four 232
matrices are the four nonzero diagonal elements oft I ,t II8 di-
rectly.

The electrons’ tunneling through the ring is carried out
the energy eigenstate of the ring connected to two ideal c
ductors. Consider an incident wave with wave vectorkF .
The corresponding eigenenergy of the steady transport
is EF5\2kF

2/2m. In the right conductor the electronic state
a superposition of the incident plane wavea1 and the re-
flected plane wavea18 , while in the left conductor the propa
gating wave is just the transmitted plane wavea28 . The state
inside the ring is a superposition of four wave functions
energyEF . They actually determine the four nonzero mat
elements defined above for the two diagonal transfer ma
ces.

To find the four components of the electronic wave ins
the ring, we first use the energy expression
t
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\2kF
2

2m
5En,m5

\v0

2
~n1f!21

\v0

2
~a22acosx1!

1
\vn

2
~12mcosbn!1ma\vncos~bn2x1!

1
m\vB

2
cos~bn2x2! ~5!

to find four solutions ofn, which are positiven1,1 and
negativen2,1 , with m51, and positiven1,2 and negative
n2,2 , with m52. For arbitrarykF , these quantum number
are not integers in general. For eachnl,m we can obtain a
wave functionCnl,m ,m that bears the same form asCn,m of

the closed ring, but withn being substituted bynl,m and
accordingly the spin tilt anglebn being substituted by
bnl,m

from Eq. ~A2!. These fourCnl,m ,m are actually eigen-

states of the Hamiltonian~2! at energyEF , but the periodic
boundary conditionCn,m(u)5Cn,m(u12p) is resolved due
to the connection with external conductors. The electro
wave inside the ring is a superposition of the fourCnl,m ,m by

which the eight amplitudesb1 ,b18 , . . . can be represented
This is a natural conclusion from the steadiness of the e
tronic state that transports electrons at fixed energyEF
through the ring. With this understanding, we can derive
transfer matrices in terms ofCnl,m ,m .

As shown in the Appendix, the Zeeman coupling brin
the dependence on orbital quantum number to spin orie
tions. As a result,Cnl,1 ,1 andCnl,2 ,2 , which carry the

clockwise (l52) or the counterclockwise (l51) wave,
are of nonorthogonal spin statesc̃nl,2 ,2(u) and

c̃nl,1 ,1(u) unless in the absence of Zeeman coupling.
derive the transfer matrix associated with spin-polariz
transport, it is crucial to distinguish them51 from the
m52 contribution for any wave propagating in fixed dire
tion. For this purpose, we define four auxiliary spin state

h̃l,m~u!5
1

Rl
@c̃nl,m ,m~u!

2c̃nl,2m ,2m
† ~u!c̃nl,m ,m~u!c̃nl,2m ,2m~u!#, ~6!

whereRl512uc̃nl,m ,m
† (u)c̃nl ,2m(u)u2. It is easy to verify

the relations of redefined orthogonality and completenes

h̃l,m~u!†c̃nl,n ,n
~u!5dmn ~7!

and

(
m

c̃nl,m ,m~u!h̃l,m~u!†5s0 . ~8!
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In the upper branch, the wave propagating counterclockw
consists of the two componentsCn1,1 ,1 andCn1,2 ,2 . b18

andb2 can thereby be expressed as

b185c1Cn1,1 ,1~0!1c2Cn1,2 ,2~0!,
~9!

b25c1Cn1,1 ,1~p!1c2Cn1,2 ,2~p!,

wherec1 andc2 are two specific constants. Using Eqs.~A1!
d
-

t
lic
ili
q
f

a
s
l
e

b

a
th
seand ~7!, we obtain

b25@ein1,1pc̃n1,1 ,1~p!h̃1,1
† ~0!

1ein1,2pc̃n1,2 ,2~p!h̃1,2
† ~0!#b18 , ~10!

and therefore find the 232 matrix that is the first diagona
element oft I . The other three matrix elements in diagon
t I and t II can be derived in the same way. We finally obta
the two transfer matrices in the form of
t I5F (
m

ein1,mpc̃n1,m ,m~p!h̃1,m
† ~0! 0

0 (
m

ein2,mpc̃n2,m ,m~p!h̃2,m
† ~0!

G , ~11!

t II85F (
m

ein1,mpc̃n1,m ,m~0!h̃1,m
† ~p! 0

0 (
m

ein2,mpc̃n2,m ,m~0!h̃2,m
† ~p!

G . ~12!
h
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From Eq. ~3!, the transmission probability for unpolarize
incident electrons iŝa28

†a28& in which ^ & denotes an aver
aging overa1 with fixed a1

†a151. Explicitly, it is given by

T5
1

2(i , j U H 2
e

b2
~@b2a , 1# ^ s0!t IP

21

3S Fb2a

21 G ^ s0D J
i j
U2, ~13!

in which t I , t II8 , andP are all known.
In the absence of Zeeman coupling, the expression of

transmission probability can be greatly simplified and exp
itly related to the spin-independent transmission probab
through the ring threaded by the AB flux only. From E
~A2!, it is obvious that ifvB50, c̃nl,m ,m are independent o

nl,m defined in Eq.~5! and can be denoted byc̃m with
h̃l,m5c̃m . Combining this fact with Eqs.~7!–~9!, we see
that in the absence of Zeeman coupling, the electronic w
in the ring actually consists of two orthogonal amplitude
which propagate coherently and independently, with their
cal spin states being given byc̃m . We then turn to the phas
shift for spin-polarized electrons. WhenkFa is very large
and the quasiclassical approximation is therefore applica
it is worthwhile to writenl,m in Eq. ~5! as

nl,m5lkFa2f2
1

2
~12mcosxnl,m

!2macosxnl,m
, ~14!

where the last three terms on the right-hand side are 1/2p of
the AB phase, the spin AA phase, and the dynamical ph
contributed by the SO interaction, respectively. When
e
-
y

ve
,
-

le,

se
e

Zeeman coupling is absent, the last two terms give
1/2p of the AC phaseFAC

m /2p ~Ref. 15! and

nl,m5lkFa2f1
1

2p
FAC

m ~15!

becomes an exact relation without the quasiclassical appr
mation. SinceFAC

m is n independent, Eq.~15! indicates that
the effect of the SO interaction can be regarded as an
effect of the effective flux2FAC

m /2p in units ofF0 for the
locally polarized electron gases with local spin statesc̃m .

We can derive forvB50 the transmitted amplitude

a28~f,a1!5(
m

@c̃m
† ~0!a1#tS f2

FAC
m

2p D c̃m~p!, ~16!

wheret(f) is the transmitted amplitude for the ring thread
by magnetic fluxf ~Ref. 18! with vanishing the SO interac
tion. Equation~16! indicates clearly that the real electron
wave in the ring is a superposition of the two locally pola
ized waves, which enclose different effective fluxes a
propagate independently. The transmission probab
TAB,AC is given bya28

†a28 :

TAB,AC~f,a1!5(
m

uc̃m
† ~0!a1u2TABS f2

FAC
m

2p D , ~17!

where TAB(f)5t†t is the transmission probability of th
ring threaded by the magnetic fluxf with the vanishing SO
interaction. To see what happens for an unpolarized incid
wave, we averageTAB,AC over a1 and obtain T̄AB,AC
5(mTAB(f2FAC

m /2p)/2, which agrees with the relation
predicted in Ref. 9 for general spin-independent th
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modynamic and transport quantities. However, in the co
petition with the SO interaction, the Zeeman coupling brin
the n dependence to the spin orientations of energy eig
states. Then-dependent spin precession then results in
n-dependent spin phases. It is seen that in the presence o
Zeeman coupling, the last two terms in Eq.~14! aren depen-
dent and the effect of the spin phases can no longer be
garded as that from the effective flux, which must be ind
pendent of the specific orbital quantum numbers of
states.

A numerical calculation has been carried out to illustr
some essential characteristics of the transmission probab
derived here. We find that the respective effects of the Z
man coupling and SO interaction can be reflected by
resonance of the transmission probability in the we
coupling limit at smalle. In particular, we can see an inte
esting correspondence between the TRS-breaking eff
manifested by the transmission probability and by the per
tent current.

We adopt the model of an InAs ring.14 The Hamiltonian is
of the form

H InAs5
1

2m S p2
eA

c D 21\k@s3p#z2
ge\

4mc
s•B, ~18!

where m50.023me is the effective mass, \2k
56.0310210 eV cm is the SO coefficient, andg515. Here
the effective electric field is in thez direction, hence
x15p/2. For the ring of radiusa51 mm, the dimensionless
coefficienta in Eq. ~2! is found to bemak51.8, which is
large enough to result in an AC phase of order unity.15 The
Fermi velocityvF is approximately 33107 cm s21, corre-
sponding tounFu'60.

The effective flux induced by the SO interaction and
effect on the transmission probability can be clearly seen
Fig. 2, whereTAB and T̄AB,AC are plotted as functions o
f. The magnitude of the AC phase can actually be appro
mately measured by a comparison between thef coordinates
of the transmission probabilities’ peaks in the absence an
the presence of the SO interaction. The energy splitting
to Zeeman coupling is illustrated in Fig. 3. Forf50 and

FIG. 2. Transmission probability as a function of the AB flu
for e50.25,ka560.239,a51 mm, andx25p/6. The dotted and
the solid lines are associated with the absence of and the pres
of the SO interaction ofa51.8, respectively.
-
s
n-
e
the

e-
-
e

e
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e
-

cts
s-

in
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in
e

vB50, since the Kramers degeneracy makes each
eigenstates of the closed ring have the same energy, at
tain EF the transmission probabilities in the two sp
branches can reach their highest value 1 simultaneou
thereby makingT̄AB,AC51. After the Zeeman coupling is
turned on, the resulted energy splitting destroys the simu
neous happenings of the resonances in the two spin bran
and we see the maximum values ofT decrease appreciabl
with the strength of Zeeman coupling.

With e being even smaller, the energy dependence of
transmission probability manifests as an interesting TR
breaking effect, which also has its corresponding observa
ity in the persistent current. In Ref. 17 it has been dem
strated that in the presence of the SO interaction, the T
breaking mechanism due to Zeeman coupling is intrinsica
different from that due to the AB flux. As the correspondin
observable effect, it has been found that the direction of
persistent current induced by Zeeman coupling changes
riodically with the particle numberN with the periodicity
DN52, while the direction of the persistent current induc
by the AB flux never changes with the particle number. T
dependence of the current direction on the particle numbe
actually the dependence on the Fermi energy. Such an
ergy dependence of the current direction, an equilibrium p
nomenon as it is, can actually be manifested in the reson
tunneling of electrons, a transport phenomenon as it is, in
weak-coupling limit. Fore→0, the peaks ofT(EF) locate at
the eigenenergiesEn,m of the closed ring.18 In the presence
of the SO interaction and a weak Zeeman coupling, the tra
mission probability is plotted as a function of the incide
energy in Fig. 4. Every two peaks, which are closest to e
other, locate at a pair of splitted energy levels, which co
from the Kramers doublet (Cn,m , C2n21,2m) in the ab-
sence of Zeeman coupling. With the AB flux being zero, t
energy splittings in all the splitted energy levels are t
same. Here we use the first-order perturbation, which gi
the energy correction but does not change the eigenfunc
As shown in Ref. 17, those eigenstates of the closed r

nce

FIG. 3. Transmission probability as a function of the energy
incident electrons (EF5\2k2/2m) for e50.25, a51 mm,
a51.8, x25p/6, andf50. The dotted line corresponds to th
absence of the SO interaction and Zeeman coupling, the solid
corresponds to the presence of the SO interaction only, and
dash-dotted line corresponds to the presence of both the SO i
action and the Zeeman coupling ofB530 G.
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with increasing energy, have the spin orientations and c
rent directions in a sequence of

. . . , @~1,d!,~2,u!#, @~2,d!,~1,u!#,

@~1,d!,~2,u!#, @~2,d!,~1,u!#, . . . , ~19!

where (s1 ,s2) refers to a single quantum state, withs151
~counterclockwise! or 2 ~clockwise! denoting the curren
direction ands25u ~up! or d ~down! denoting the spin ori-
entation, and@(s1 ,s2),(2s1 ,2s2)# refers to a pair of energy
levels from the Kramers doublet. The eigenstate corresp
dence so identified forT leads to interesting resonance b
havior, as depicted in Fig. 4. It is seen that when a small
flux is added to distinguish the current directions, each t
paired peaks are separated by a distance, which takes
larger or the smaller value alternatingly. The reason is
ready clear in the sequence~19!. In essence, since the curre
direction determines the sign of the energy shift caused b
small AB flux, for @(2,d),(1,u)# the energy splitting due
to the small AB flux enhances that first caused by the Z
man coupling, while for@(1,d),(2,u)# the energy splitting
due to the small AB flux cancels part of that first caused

FIG. 4. Transmission probability as a function of the energy
incident electrons (EF5\2k2/2m) for e50.005, a51 mm,
a51.8, andx25p/6. The solid line corresponds to the presence
the Zeeman coupling ofB515 G and the dash-dotted line corr
sponds to the presence of the same Zeeman coupling and a
netic flux of f50.02. ~a! Constant and alternating distances b
tween paired peaks vs energy, represented by the solid and
dash-dotted lines, respectively.~b! Taken from~a! for a clear illus-
tration of the effect caused byf50.02.
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the Zeeman coupling. We want to point out that the essen
character of the above correspondence between the equ
rium and the transport properties can be quantitatively,
not be qualitatively, affected by the disorder or scatter
potential in the ring as long as the single-particle pictu
holds for electronic states. In particular, such a corresp
dence, if experimentally verified or excluded in some sp
cific ring, may serve to detect if the electron-electron int
action qualitatively alters the electronic states.

III. CONCLUSION AND DISCUSSION

In summary, we have studied the motion of electrons c
fined in the perfect ring in the presence of the cylindrica
symmetric spin-orbit interaction and Zeeman coupling, a
the magnetic flux. Starting from the exact solution for t
closed ring, we have investigated the transport propertie
the ring connected to current leads, with emphasis on
roles of the TRS and its breaking therein. We have provid
the numerical results for illustrating the joint effects of th
spin-orbit interaction, Zeeman coupling, and magnetic fl
From the resonance behavior of the transmission probab
in the weak-coupling limit, we have found the observab
correspondence between the TRS-breaking effects m
fested by the persistent current and by the transmission p
ability as long as the single-particle picture of electron
states holds. As the relation between transmission probab
and persistent current is discussed for 1D noninterac
electrons with spin, the effect of the electron-electron int
action is yet to be investigated. It is interesting to note th
for 2D interacting electrons, the effects of the electro
electron interaction on the persistent current and conducta
has been discussed, but only in the spinless case.19 On the
other hand, in the presence of disorder, though the e
calculation can no longer be carried out, our observation
the TRS breaking due to Zeeman coupling invalidates
effective flux picture is still correct. In addition, the shift o
transmission peaks depicted in Fig. 4~b! does not change
qualitatively.

APPENDIX A: GEOMETRIC PHASE
AND EXACT SOLUTION

The eigenvalue equation of the closed ring can be sol
through a straightforward diagonalization, as presented
Ref. 17. Here we adopt the geometric phase approach15 in
order to identify the geometric and the dynamical phase
current-carrying eigenstates, which are responsible for tra
porting electrons when the ring is connected to current lea
How the phases and the spin orientations jointly affect
transmission probability will be elaborated on in Sec. II.

The cylindrical symmetry of the system leads to the co
servation of total angular momentum2 i ]/]u1 1

2sz , which
means that the eigenstates of the Hamiltonian~2! are of the
form Cn,m(u)5exp(inu)c̃n,m(u)/A2p, in whichm56, n are
arbitrary integers, and the spin states are given by

c̃n,1~u!5F cos
bn

2

eiusin
bn

2
G ; c̃n,2~u!5F sin

bn

2

2eiucos
bn

2
G ,
~A1!

f

f
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wherebn is u independent. FromCn,m
† s iCn,m as a function

of u, it is readily seen that the local spin orientation atu is in
the direction ofm(cosbnez1sinbner). The explicit expres-
sion for the spin tilt anglebn can be obtained by introducin
a cyclic evolution of the spin state for electrons encircli
the ring, as presented in Ref. 15. The geometric and
dynamical phases associated with the spin precession
thereby be identified for all of the energy eigenstates to
termine the whole energy spectrum. ForCn,m we obtain the
spin tilt angle

tanbn5
2avnsinx11vBsinx2

2avncosx11vBcosx22vn
~A2!

and the geometric and the dynamical phasesdn,m and
gn,m ,

dn,m52p~12mcosbn!, ~A3!

gn,m52mpF2acos~bn2x1!1
vB

vn
cos~bn2x2!G , ~A4!
. B
.

-

e
an
-

wherevn is given byv0(n1 1
21f) with v05\/ma2. Here

the geometric AA phasedn,m is the21/2 of the solid angle
subtended by a circuit traced on a sphere by the local s
orientation ofCn,m . It is readily seen that the Zeeman co
pling makes the spin orientations of electronic eigensta
depend on the orbital quantum number. The consequenc
such an interplay between the spin and the orbital degree
freedom will be explored when we discuss the transp
properties of the ring. With use ofbn , dn,m , andgn,m , the
eigenvalueEn,m of Cn,m is found to be

En,m5
\v0

2
~n1f!21

\v0

2
~a22acosx1!

2
\vn

2p
~dn,m1gn,m!. ~A5!

The first term in the right-hand side represents the ene
from orbital motion, the second term the zero-point ener
while the third term comes from the spin precession ori
nating from the interplay between the spin and the orb
degrees of freedom.
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35, 1039~1987!; M. Büttiker, Y. Imry, and R. Landauer, Phys
Lett. 96A, 365 ~1983!; Y. Gefen, Y. Imry, and M. Ya. Azbel,
Phys. Rev. Lett.52, 129 ~1984!.

2Geometric Phases in Physics, edited by A. Shapere and F. Wil
czek ~World Scientific, Singapore, 1989!.

3M. V. Berry, Proc. R. Soc. London Ser. A392,45 ~1984!.
4Y. Aharonov and J. Anandan, Phys. Rev. Lett.58, 1593~1987!.
5D. Loss, P. Goldbart, and A. V. Balatsky, Phys. Rev. Lett.65,
1655 ~1990!.

6D. Loss and P. M. Goldbart, Phys. Rev. B45, 13 544~1992!; A.
Stern, Phys. Rev. Lett.68, 1022~1992!; D. Loss, H. Schoeller,
and P. M. Goldbart, Phys. Rev. B48, 15 218~1993!.

7X. C. Gao and T. Z. Qian, Phys. Rev. B47, 7128~1993!.
8Y. Aharonov and A. Casher, Phys. Rev. Lett.53, 319 ~1984!.
9Y. Meir, Y. Gefen, and O. Entin-Wohlman, Phys. Rev. Lett.63,
798 ~1989!; O. Entin-Wohlman, Y. Gefen, Y. Meir, and Y
Oreg, Phys. Rev. B45, 11 890~1992!.

10H. Mathur and A. D. Stone, Phys. Rev. Lett.68, 2964~1992!.
11H. Mathur and A. D. Stone, Phys. Rev. B44, 10 957~1991!.
12A. V. Balatsky and B. L. Altshuler, Phys. Rev. Lett.70, 1678

~1993!.
13M. Y. Choi, Phys. Rev. Lett.71, 2987~1993!.
14A. G. Aronov and Y. B. Lyanda-Geller, Phys. Rev. Lett.70, 343

~1993!; Y. Lyanda-Geller,ibid. 71, 657 ~1993!.
15T. Z. Qian and Z. B. Su, Phys. Rev. Lett.72, 2311~1994!.
16S. Oh and C.M. Ryu, Phys. Rev. B51, 13 441~1995!.
17Tie-Zheng Qian, Ya-Sha Yi, and Zhao-Bin Su, Phys. Rev. B55,

4065 ~1997!.
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