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Delocalization in continuous disordered systems

M. Hilke" and J. C. Florés
Universitede Genge, Dgartement de Physique Towéque, 24 Quai Ernest-Ansermet, CH-1211 Gend, Switzerland
(Received 3 December 1996

Continuous one-dimensional models supporting extended states are studied. These delocalized states occur
at well-defined values of the energy and are consequences of simple statistical correlation rules. We explicitly
study alloys ofs-barrier potentials as well as alloys and liquids of quantum wells. The divergence of the
localization length is studied and a critical exponém found for thes-barrier case, whereas for the quantum
wells we find an exponent of 2 c%depending on the well's parameters. These results support the idea that
correlations between random scattering sequences break Anderson localization. We further calculate the con-
ductance of disordered superlattices. At the peak transmission the relative fluctuations of the transmission
coefficient are vanishindS0163-18207)11116-X]

I. INTRODUCTION versial because it depends on the existence of states in the
interval |E—E.| and, moreover, is very different from the
Recently, the interest has increased substantially in ordassual one related to true delocalizeshnormalizablgstates.
to find theoretical evidence for the breaking of AndersonFor instance, in the dimer modef a band of delocalized
localization by internal correlations in  disordered states is found to follow a8 E~ \/L, whereL is proportional
systemd: 1" For instance, in Refl a tight-binding Hamil-  to the number of impuritiedl, nevertheless, the total number
tonian with site correlations between the diagonal and thef states grows ag& and therefore the relative number of
off-diagonal potentials was studied. A divergence of the lo-delocalized states tends to zero aglLl/Furthermore, it has
calization length was obtained with a critical exponentrecently been shown that additional perturbations on the
v=2 outside the band edges. In Refs. 2—6 a simple discretgimer potentials lead to a suppression of these extended
model with correlations expressed by pairitdjmen was  states’® Therefore these delocalization properties become
studied. Their main result was the existence of a divergentore relevant in finite systems, as presented in the last part
localization length at some critical energies. In fact, this di-of this paper. In quasi-one-dimensional systems, such as
vergence is related to the existence of delocalized statesodels with dimerized interchain couplingsleading to a
found explicitly in Ref. 7, which can be related to random cantor-set-like conducting band, the finite temperature trans-
phases and thus to extended states. Similar dimer models faiission can be greatly enhanced by the resonance energies.
classical systems were studied in Ref. 8. Using the inter- As noticed, internal correlations break strong localization.
relation between a disordered Kronnig-Penney system angh this paper we consider some simple models showing de-
the dimer modelPoincafemap,®™* an infinite set of such |ocalization properties. For a general point of view we con-
delocalized states exist. The generalization of the dimegider the 1D disordered Hamiltonian of a particle in a ran-
model to theN-mer case was considered, for instance, indom potential,
Refs. 13-16. In this context perturbative methods were used
in Ref. 17. p2
In this way, delocalized states have been found “contra- H= —+2 Vi(X—X;), 2
dicting” the usual belief that all eigenstates are localized in 2m
one dimensioni1D). In fact, this is only apparent because the
theorems related to localization in 1D consider strictly un- #0, —a<x<q
correlated random potentialsee, for instance, Refs. 18522 V| (x)
Interesting numerical simulations were carried out for binary

disordered systems in Ref. 23. . .
. thus, a sequence of scattering barriers centered at the random
Usually these correlated disordered systems support delo-

calized states for well-defined energies. In this respect, E:r?étc')o;);'uwngftlg (;\gzrlﬁlpé Ei\éﬁgﬁct:aag:aet\:vseiytr\?v ?i:lr(;i(\;\ghis
“band of delocalization” can be defined when the lendith PP !

()

=0 otherwise,

of the sample is smaller than the localization lengt{E), given by
which diverges near the critical enery.. Quantitatively,
the region of delocalization can be defined approximately as X 41— X =d, 4

1 which is a random quantity.
L<L (E)~ W (1) Between consecutive barriers the particle propagates
¢ freely and its wave function can be expressed as

wherev has been determined explicitly in some models. Evi- . ,
dently this definition of a band of delocalization is contro- #(x)=Ae**+Be ™ for x+a<x<x 1—a+1, (5
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where k is the wave number related to the energy by Il. DELOCALIZATION IN A 6-BARRIER SEQUENCE

E=%2k?/2m. Theoretical group arguments®® relate the

amplitudes A, 1,B,.,) o (A .B,) by means of Consider a sequence of potentials that are statistically

distributed over lattice site&@lloy). Thus consider the se-

(A|+1) _(eikx| 0 )( a B )(eikx| 0 )(Al) quence
Bii/ | 0O &igr aff| 0 e B'(e;) V,(x)=V,8(x—x) and d,=d, (14)

where V|, are random uncorrelated parameters ahis a
constant lattice parameter. In this case, the elements of the
collision matrix are given by

where the elementg, 8 of the collision matrix are inter-
related like|a|?—|B|?=1 and we further assumg* = —

(symmetric barrier This form of the collision matrix is re-
lated to the fact that the time-independent Sdimger equa-

V V

tion is real. a=1+i 2—||( and B,=i 2_I|< (15

Defining the wave function just after the collision with the
Ith barrier as The delocalization conditiof®) becomes explicitly

¢_I+ :Aleik(X|+a|)+ Ble—ik(X|+a|), (7) V
ikd_ 1 —
a condition of delocalization is € k sin(kd)= 1. (16)
b=y, 8 In general, for any arbitrary momentui this condition

] o ) does not hold because of the random quantity Neverthe-

which relates the elements of the collision matrix as less, if k=n/d (neZ*), as first observed by Ishi® we
@K@ 1) gr k(A A A g ) have a set of delocalized states whepe, 1| =||. At first

sight this is very surprising because of the simplicity of the
The above delocalization condition is a sufficient one and, agisordered model. Evidently, correlations exist and are re-

expected, is not verified for totally uncorrelated systemslated to the choiced,=d for any I. In fact, assuming a
Condition (9) yields using |a|>—|B|?=1 the following sample withN barriers, the usual I2 random parameters

simple delocalization condition: characterizing the uncorrelated system are reduced be-
cause of the constraim=d.
||=1 and B=0, (10 In this model the physical interpretation is simple, in fact

as long ak=n/d the electron does not “feel” the random
potential because the distandebetween consecutive barri-
&' is a multiple of its wavelength.

At this point, it is interesting to study the divergence of
e localization lengthL.(E) near the critical energy
E.=(1/2m)(Ana/d)2. Using the Poincarenap(12) for this
model we have

which leads tdA,, 1|=|A|| and|B, 4|=|B||.

Condition (9) inter-relates the random parameters lde
andd, in the disordered system and is therefore a source
correlation between these random parameters. In fact, iﬂ1
some simple systems, relatiof® and(10) can be satisfied
and we present two examples: Thebarriers alloy and the
guantum well liquid alloy with inter-related random param-
eters. Vv

To end this section, we remark that any relation similar to Yot = 2{ coskd—'sinkd] . (17)
Eg. (6) can be formally written as a tight-binding Schro k

dinger equatior(Poincafema) by considering For e=E.—E<1 and#/2m taken as unity, Eq(17) can be

o= aekdrani-a) = gek@raita) (1) rewritten
and dd
¢|+1+¢|1:i<2_vlfnzwz)¢|- (kS)
Dis1ths 1t DI =Vigy, (12)
h This last model was extensively studied in the limi€1 by
where Derrida and Gardné’. They calculated the complex
D(k Lyapunov exponeny, where the real part corresponds to the
= A( ) _ inverse localization length and the imaginary partittimes
2i(Ima;—1mp)) the integrated density of states. Their results can be ex-
pressed as follows:
and
Vi={Dia(en+ B1)+Di(af 1= B} (13 Re(y) =K1 (Vo).

We notice that the above expression is only a formal one.

For models such as thé&barriers sequencd, is well de- PN

fined for anyk with the arbitrary choic® (k) = 2i sirk. Nev- IM(y)=Kae™Vo) = e (19)
ertheless, in other systems singularities for some values of

the wave numbek can appear. whereK;=0.29... andK,=0.16... and ) is the aver-
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age over all impurities. From Eq19) it is straightforward
that the inverse localization lengtty * scales as Vi —a
L*lw 62/3<V2> 1/3 (20) zy i1
c

d

and the density of states is

p(e)=almy(e)~e 3 (21 FIG. 1. Rectangular well potentials.

The main result of this section is to show that a continu- )
ous disordered model, where the potential amplitudes ar@herep;=v|k*—V,|. We have to point out that these results

random but placed on a lattice, exhibits extended states fgi€ only valid wherE=V,. For the cas& <V, we have to
discrete values of the energy. We recall that for this modeleplace cos() and sin() in Eq&2) and(23) by their hyper-
the result was first pointed out by IsAfiHowever, the ex- bolic counterparts. N

ponentZ we obtain is different from thég obtained by Ishii, Using the delocalization conditiofl0) we have an ex-
who considered a Cauchy distribution. The correlation in thigended state wheg,=0, thus

model comes from the fact that the impurities are placed on

a regular lattice. This in fact is a very natural physical as- 22
sumption, as one can imagine an alloy where different atoms E=k2=V,+ ! 772 with n, an integer. (24)
are placed randomly, described by the random amplitude of a

the potential, but on a lattice. This system would lead to a

similar model studied above. In fact the models where thel his means that if we have a discrete set of impurity con-
locations of the impurities are continuously random, no exfigurations, we have critical energié&s at which the states
tended states have been found so farddike potentials. For ~are delocalized. The impurities just have to be constructed

finite potentials they do exist as we will mention in the nextWwith the help of Eq.(24) once we replac& by E., where
section. we can take different values fof; or a by changingn,. A

very remarkableaspect of these disordered models is that
they areindependentf the space disorder expresseddpyrs
IIl. DELOCALIZATION was already appreciated by Tofidor a different model.
IN A QUANTUM WELL SEQUENCE We evaluate the exponent for the following case: suppose

The case ofs impurities considered in the previous sec- d|=d2anda|=a, i.e., we are left with a pure shape disorder.
tion is very special and cannot be used in order to describk€t Kc=E¢ be the critical energy defining the correlation
more general impurity potentials. This is why it is of interest (24) of the disorder and writing the Poincareap (12)
to study other types of potentials, which could eventuallyaroundk=Kk.+ €, with € very small, we obtain
describe more general impurity potentials. One of the sim-

plest examples of such a potential is the rectangular well _ _
potential. In principle one could approximate any potential heat o1 ={2c08ke(d—2a) [T eqign, (25

with rectangular wells _if the _elementary_ Width is small where¢, is random and a function &, . For the case where
enough. Therefore we will restrict our considerations to recty (d—2a)/# is an integer, we obtain the same result as for
C )

angular well potentials. _ the o-barrier case (18)—(21), thus »=2 When
As an important result we observe the existence of exy

ded f h h . (d—2a)/# is not an integer we can also use Derrida and
tended states for systems where we have continuous Spaté%\rdner’ég result for the case inside the band, yielding
disorder and discrete shape disorder. This has to be con-

trasted with th f delta i i h tend =2. For the most general case, whekeand a, are ran-
rasted wi € case of delta impurities where extendeq,, anq when no particular configuration is used, we obtain
states exist only when we have shape disorder alone, i.

here th litud fihe i " tential d en’umerically the exponent=2.
where Ihe ampiitudes of the impurity potentials aré random. -, interesting aspect of these continuous disordered sys-

The aspect and definitions of the rectangular well potense g g that they can describe a real physical situation of

tial are s_hown in Fig. 1. electrons in a certain potential. The problem with continuous
For this case we have models is that the expressions of the transfer matrices can be
much more complicated except if one consid&isnpurities
e-i2ak or rectangular well potentials. For more general impurity po-
a :ﬂ[Zp,kcos{Za,pl)H(pH k?)sin(2a,p;))] (22  tentials one can either approximate them with a sum of rect-
Pi angular barriers or use the semiclassical WKB approxima-
tion. This last approximation can, however, have dramatic
and effects on the localization properties, especially around some
critical energies, as they are very sensitive to small perturba-
tions.
B=i (pf—K?)sin(2ap)) (29 Summarizing the localization length divergences for the
! 2pk ' 6 impurity and quantum wells we have
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1 of layers differently. In this case the potential looks more
LC(E)~W wherev like a rectangular well potential, where the amplitude de-
¢ pends on the concentration of the doping used. In this way it

2 s—barrier andk (d—2a)/ 7 is possible to grow one-dimensional quantum wires where

) both directions of the layers are etched, two-dimensional sys-

= an integer for the quantum well (26)  tems where only one of the direction of the layers is etched,
2 otherwise. and finally three-dimensional systems.

The two probe conductance is simply given by the sum of

V. ELUCTUATIONS AND CONDUCTANCE the transmission coefficients thus

. . . . 2
In one-dimensional disordered systems, the relative fluc-

e

tuations of the transmission coefficients diverge with the size Glu)= kIEE:u (k) h’ (31)

of the systent® Therefore the average transmission is a bad

statistical quantity. However, at the critical energies dis-wherepu is the chemical potential.

cussed above, the states are deterministic and therefore oneFor a one-dimensional quantum wire the conductance is

would expect no fluctuations. In the following we evaluatejust given by the transmission coefficient, as there is only

the relative fluctuations explicitly and calculate the conduc-one conducting channel. Around the critical energies we

tance for superlattices around these critical energies. evaluated the localization length dependence on energies;
Around the critical energf, we evaluated the localiza- therefore usingTy~e ™ N'tc, where Ty is the transmission

tion length dependence on energies, therefige-e "¢,  coefficient afterN barriers, we obtain conductance peaks at

whereT) is the transmission coefficient afthdir barriers and the critical energies of the form

N is proportional toL. The relative fluctuations are then

given by G(u)~e MuEl", (32
AT AL, wherey is the chemical potentialy depends on the size and
T”NTZ_- (27) disorder of the system, arfgl, are the critical energies. For

c

the 6 doping E,= (1/2m)(An=/d)? and v= 2. For the rect-
Using the central limit theorem, valid for the logarithm of the angular case we have one critical enekjyand the random
product of random determinant one matrices, the relative\l doping potentials are given by

fluctuations of the localization length can be expressed as

nZm?

AL, Vi=E.— Iaz with n; a random integer (393
Lc

hence using Eqg26)—(28)

~N~ 1/2, (28)

anda is the width of the doped layers. The width of the
undoped layers can be random and we obisi2. For the
AT special case wheré,=d is constant the value of the expo-
— ~NYJE-E". (29)  nentv depends on the rati.(d—2a)?/ 2. If this ratio is
T an integer the exponent is=  but remainsy=2 otherwise.

In usual one-dimensional disordered systems the average di§D€ interesting feature of this system is that it would behave
tance between eigenvalues is of the ordler!; therefore, 25 @ perfect filter. The bandwidth could be controlled by the

using|[E—E.|~N~1, we obtain size of y and the desired critical energy by the choice of the
dopants.
In order to evaluate the conductance of the three-
7~|E— E Y2 (300  dimensional system, as defined above, we have to sum over

all possible channels. In the directionsy) perpendicular to
This demonstrates that for the case of interest here, bottie grown layers the density of states is simply the usual box
casesy=2 and v=3% have vanishing relative fluctuations filling density. In the infinite limit we have to integrate over
near the critical energies. This fluctuation analysis gives als¢he Brillouin zone which yields
a bound on the possible divergence exponenin fact as
long asv>13, the average transmission around the critical
energies is a good statistical quantity.

Many physical systems can be very well approximated
with either rectangular well potentials érpotentials. Thisis The plots of the conductance from E&4) as a function of
the case for superlattices of heterostructures. One can grotlie chemical potential are given in Fig. 2 for different system
very precise, up to the atomic precision, layers of GaAssizes characterized by and for the two caseg=2 and
Then one dopes differently one layer with Al and then againv=3.
the same layer and one obtains in this way a single so-called The two-dimensional case is presented in Fig. 3. In this
S-doped layer. This can then be repeated as often as ormase the behavior is consequently different for2 and
wishes. This last structure is very well described in the di-v= 2. Indeed forv=2/3 we have a singular derivative, which
rection of the layers by impurity models. Instead of doping could be observed experimentally, in order to distinguish be-
differently only one layer we can also dope a finite numbertween the two cases.

G~f2 e KeK-Eldrdk,. (34
kx+kySM
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FIG. 2. Conductance for=2 andv= 3 (right graph as a func- FIG. 3. Conductance for the two-dimensional case with the

tion of the chemical potential, for the case where the resonancéame parameters as in Fig. 2.
energy isE.=1. The different curves represent different values of
vy=2", with n=1,2,3,4,5. The uppermost curve represents the cas
y=2.

models with shapend space disorder can also exhibit ex-

fended states. The only constraint on the disorder distribution
is that it must be discrete for the shape disorder but can be
The quantitative values can also be estimated. In thé:ontlnuous for the space disorder. In this case the correlation

5-doping case the typical Fermi wavelength is of the order of" disorder leading to the existence of delocalized states is
200 A and the typical layer thickness is of the order of 5 A simply the fact that the distribution mentioned above is dis-

This means that we have to construtioped layers with crete and obeys relatiof24). Therefore one has to be very

around 40 layers in between. In order to obtain the disordecareful when one discusses disordered systems using discrete

we iust have to chose randomlv the dopant or the concentr a_isorder distributions as there can exist singularities in the
Ve ) . y P . %pectrum. The exponents of the localization length diver-
tion of the doping for the’ layers. The same reasoning can

; . ence are very interesting. In fact, depending on the param-
be held for _rectangular _potentl_als, W.hefe one just has t(gters of the quantum wells, we obtain different exponents,
chose a particular potential configuration.

eitherv=13 or v=2.
The relative fluctuations of the conductance around these
V. CONCLUSIONS critical energies are vanishing. Therefore the conductance is

In the first section we demonstrated the existence of ex2 well-defined statistical average and represents the transport

tended states in continuous disordered systems &vithpu- properties of these disordered systems.

ritie_s_placed on a lattice and obtained_ for_ the exponeznt de- ACKNOWLEDGMENTS

scribing the divergence of the localization length- 5.
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