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Delocalization in continuous disordered systems

M. Hilke* and J. C. Flores†
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~Received 3 December 1996!

Continuous one-dimensional models supporting extended states are studied. These delocalized states occur
at well-defined values of the energy and are consequences of simple statistical correlation rules. We explicitly
study alloys ofd-barrier potentials as well as alloys and liquids of quantum wells. The divergence of the
localization length is studied and a critical exponent2

3 is found for thed-barrier case, whereas for the quantum
wells we find an exponent of 2 or23 depending on the well’s parameters. These results support the idea that
correlations between random scattering sequences break Anderson localization. We further calculate the con-
ductance of disordered superlattices. At the peak transmission the relative fluctuations of the transmission
coefficient are vanishing.@S0163-1829~97!11116-X#
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I. INTRODUCTION

Recently, the interest has increased substantially in o
to find theoretical evidence for the breaking of Anders
localization by internal correlations in disordere
systems.1–17 For instance, in Ref. 1 a tight-binding Hamil-
tonian with site correlations between the diagonal and
off-diagonal potentials was studied. A divergence of the
calization length was obtained with a critical expone
n52 outside the band edges. In Refs. 2–6 a simple disc
model with correlations expressed by pairing~dimer! was
studied. Their main result was the existence of a diverg
localization length at some critical energies. In fact, this
vergence is related to the existence of delocalized st
found explicitly in Ref. 7, which can be related to rando
phases and thus to extended states. Similar dimer model
classical systems were studied in Ref. 8. Using the in
relation between a disordered Kronnig-Penney system
the dimer model~Poincare´ map!,9–12 an infinite set of such
delocalized states exist. The generalization of the dim
model to theN-mer case was considered, for instance,
Refs. 13–16. In this context perturbative methods were u
in Ref. 17.

In this way, delocalized states have been found ‘‘cont
dicting’’ the usual belief that all eigenstates are localized
one dimension~1D!. In fact, this is only apparent because t
theorems related to localization in 1D consider strictly u
correlated random potentials~see, for instance, Refs. 18–22!.
Interesting numerical simulations were carried out for bin
disordered systems in Ref. 23.

Usually these correlated disordered systems support d
calized states for well-defined energies. In this respec
‘‘band of delocalization’’ can be defined when the lengthL
of the sample is smaller than the localization lengthLc(E),
which diverges near the critical energyEc . Quantitatively,
the region of delocalization can be defined approximately

L,Lc~E!;
1

uE2Ecun
, ~1!

wheren has been determined explicitly in some models. E
dently this definition of a band of delocalization is contr
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versial because it depends on the existence of states in
interval uE2Ecu and, moreover, is very different from th
usual one related to true delocalized~unnormalizable! states.
For instance, in the dimer model2–4 a band of delocalized
states is found to follow asDE;AL, whereL is proportional
to the number of impuritiesN, nevertheless, the total numbe
of states grows asL and therefore the relative number o
delocalized states tends to zero as 1/AL. Furthermore, it has
recently been shown that additional perturbations on
dimer potentials lead to a suppression of these exten
states.24 Therefore these delocalization properties beco
more relevant in finite systems, as presented in the last
of this paper. In quasi-one-dimensional systems, such
models with dimerized interchain couplings,25 leading to a
cantor-set-like conducting band, the finite temperature tra
mission can be greatly enhanced by the resonance ener

As noticed, internal correlations break strong localizatio
In this paper we consider some simple models showing
localization properties. For a general point of view we co
sider the 1D disordered Hamiltonian of a particle in a ra
dom potential,

H5
p2

2m
1(

l
Vl~x2xl !, ~2!

Vl~x!H Þ0, 2al,x,al

50 otherwise,
~3!

thus, a sequence of scattering barriers centered at the ran
positionxl without overlap. Every barrier is symmetric wit
random support 2al and the distance between two barriers
given by

xl112xl5dl , ~4!

which is a random quantity.
Between consecutive barriers the particle propaga

freely and its wave function can be expressed as

c l~x!5Ale
ikx1Ble

2 ikx for xl1al,x,xl112al11 , ~5!
10 625 © 1997 The American Physical Society
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10 626 55M. HILKE AND J. C. FLORES
where k is the wave number related to the energy
E5\2k2/2m. Theoretical group arguments26–28 relate the
amplitudes (Al11 ,Bl11) to (Al ,Bl) by means of

S Al11

Bl11
D 5S e2 ikxl 0

0 eikxl D S a l b l

b l* a l*
D S eikxl 0

0 e2 ikxl D S Al

Bl
D ,
~6!

where the elementsa,b of the collision matrix are inter-
related likeuau22ubu251 and we further assumeb*52b
~symmetric barrier!. This form of the collision matrix is re-
lated to the fact that the time-independent Schro¨dinger equa-
tion is real.

Defining the wave function just after the collision with th
l th barrier as

c l
15Ale

ik~xl1al !1Ble
2 ik~xl1al !, ~7!

a condition of delocalization is

c l11
1 56c l

1 , ~8!

which relates the elements of the collision matrix as

a le
ik~dl1al112al !1b l* e

2 ik~dl1al111al !561. ~9!

The above delocalization condition is a sufficient one and
expected, is not verified for totally uncorrelated system
Condition ~9! yields using uau22ubu251 the following
simple delocalization condition:

ua l u51 and b l50, ~10!

which leads touAl11u5uAl u and uBl11u5uBl u.
Condition ~9! inter-relates the random parameters likeal

anddl in the disordered system and is therefore a sourc
correlation between these random parameters. In fact
some simple systems, relations~9! and ~10! can be satisfied
and we present two examples: Thed-barriers alloy and the
quantum well liquid alloy with inter-related random param
eters.

To end this section, we remark that any relation similar
Eq. ~6! can be formally written as a tight-binding Schr¨-
dinger equation~Poincare´ map! by considering

â l5a le
ik~dl1al112al !, b̂ l5b le

ik~dl1al111al ! ~11!

and

Dl11c l11
1 1Dlc l21

1 5Vlc l
1 , ~12!

where

Dl5
D~k!

2i ~ Imâ l2Imb̂ l !

and

Vl5$Dl11~ â l1b̂ l* !1Dl~ â l21* 2b̂ l21* !%. ~13!

We notice that the above expression is only a formal o
For models such as thed-barriers sequence,Dl is well de-
fined for anyk with the arbitrary choiceD(k)52isink. Nev-
ertheless, in other systems singularities for some value
the wave numberk can appear.
s
.
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o
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II. DELOCALIZATION IN A d-BARRIER SEQUENCE

Consider a sequence ofd potentials that are statisticall
distributed over lattice sites~alloy!. Thus consider the se
quence

Vl~x!5Vld~x2xl ! and dl5d, ~14!

where Vl are random uncorrelated parameters andd is a
constant lattice parameter. In this case, the elements of
collision matrix are given by

a l511 i
Vl

2k
and b l5 i

Vl

2k
. ~15!

The delocalization condition~9! becomes explicitly

eikd2
Vl

k
sin~kd!561. ~16!

In general, for any arbitrary momentumk, this condition
does not hold because of the random quantityVl . Neverthe-
less, if k5np/d (nPZ* ), as first observed by Ishii,19 we
have a set of delocalized states whereuc l11u5uc l u. At first
sight this is very surprising because of the simplicity of t
disordered model. Evidently, correlations exist and are
lated to the choicedl5d for any l . In fact, assuming a
sample withN barriers, the usual 2N random parameters
characterizing the uncorrelated system are reduced toN be-
cause of the constraintdl5d.

In this model the physical interpretation is simple, in fa
as long ask5np/d the electron does not ‘‘feel’’ the random
potential because the distanced, between consecutive barr
ers, is a multiple of its wavelength.

At this point, it is interesting to study the divergence
the localization lengthLc(E) near the critical energy
Ec5(1/2m)(\np/d)2. Using the Poincare´ map~12! for this
model we have

c l111c l2152H coskdVl

k
sinkdJ c l . ~17!

For e5Ec2E!1 and\/2m taken as unity, Eq.~17! can be
rewritten

c l111c l2156S 22Vle
d3

n2p2Dc l . ~18!

This last model was extensively studied in the limite!1 by
Derrida and Gardner.29 They calculated the comple
Lyapunov exponentg, where the real part corresponds to t
inverse localization length and the imaginary part top times
the integrated density of states. Their results can be
pressed as follows:

Re~g!.K1e
2/3^Vn

2&1/3
d

~np!2/3
,

Im~g!.K2e
2/3^Vn

2&1/3
d

~np!2/3
, ~19!

whereK150.29 . . . andK250.16 . . . and̂ & is the aver-
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55 10 627DELOCALIZATION IN CONTINUOUS DISORDERED SYSTEMS
age over all impurities. From Eq.~19! it is straightforward
that the inverse localization lengthLc

21 scales as

Lc
21;e2/3^V2&1/3 ~20!

and the density of states is

r~e!5]eImg~e!;e21/3. ~21!

The main result of this section is to show that a contin
ous disordered model, where the potential amplitudes
random but placed on a lattice, exhibits extended states
discrete values of the energy. We recall that for this mo
the result was first pointed out by Ishii.19 However, the ex-
ponent23 we obtain is different from the12 obtained by Ishii,
who considered a Cauchy distribution. The correlation in t
model comes from the fact that the impurities are placed
a regular lattice. This in fact is a very natural physical a
sumption, as one can imagine an alloy where different ato
are placed randomly, described by the random amplitud
the potential, but on a lattice. This system would lead t
similar model studied above. In fact the models where
locations of the impurities are continuously random, no
tended states have been found so far ford-like potentials. For
finite potentials they do exist as we will mention in the ne
section.

III. DELOCALIZATION
IN A QUANTUM WELL SEQUENCE

The case ofd impurities considered in the previous se
tion is very special and cannot be used in order to desc
more general impurity potentials. This is why it is of intere
to study other types of potentials, which could eventua
describe more general impurity potentials. One of the s
plest examples of such a potential is the rectangular w
potential. In principle one could approximate any poten
with rectangular wells if the elementary width is sma
enough. Therefore we will restrict our considerations to re
angular well potentials.

As an important result we observe the existence of
tended states for systems where we have continuous sp
disorder and discrete shape disorder. This has to be
trasted with the case of delta impurities where exten
states exist only when we have shape disorder alone,
where the amplitudes of the impurity potentials are rando

The aspect and definitions of the rectangular well pot
tial are shown in Fig. 1.

For this case we have

a l5
e2 i2alk

2plk
@2plkcos~2alpl !1 i ~pl

21k2!sin~2alpl !# ~22!

and

b l5 i
~pl

22k2!sin~2alpl !

2plk
, ~23!
-
re
or
l
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wherepl5Auk22Vl u. We have to point out that these results
are only valid whenE>Vl . For the caseE<Vl we have to
replace cos( ) and sin( ) in Eqs.~22! and~23! by their hyper-
bolic counterparts.

Using the delocalization condition~10! we have an ex-
tended state whenb l50, thus

E5k25Vl1
nl
2p2

4al
2 with nl an integer. ~24!

This means that if we have a discrete set of impurity con
figurations, we have critical energiesEc at which the states
are delocalized. The impurities just have to be constructe
with the help of Eq.~24! once we replaceE by Ec , where
we can take different values forVl or al by changingnl . A
very remarkableaspect of these disordered models is tha
they areindependentof the space disorder expressed bydl as
was already appreciated by Tong30 for a different model.

We evaluate the exponent for the following case: suppos
dl5d andal5a, i.e., we are left with a pure shape disorder.
Let kc

25Ec be the critical energy defining the correlation
~24! of the disorder and writing the Poincare´ map ~12!
aroundk5kc1e, with e very small, we obtain

c l111c l215$2cos@kc~d22a!#1ej l%c l , ~25!

wherej l is random and a function ofVl . For the case where
kc(d22a)/p is an integer, we obtain the same result as fo
the d-barrier case ~18!–~21!, thus n5 2

3. When
kc(d22a)/p is not an integer we can also use Derrida and
Gardner’s29 result for the case inside the band, yielding
n52. For the most general case, wheredl and al are ran-
dom, and when no particular configuration is used, we obtai
numerically the exponentn52.

The interesting aspect of these continuous disordered sy
tems is that they can describe a real physical situation o
electrons in a certain potential. The problem with continuou
models is that the expressions of the transfer matrices can
much more complicated except if one considersd impurities
or rectangular well potentials. For more general impurity po
tentials one can either approximate them with a sum of rec
angular barriers or use the semiclassical WKB approxima
tion. This last approximation can, however, have dramati
effects on the localization properties, especially around som
critical energies, as they are very sensitive to small perturba
tions.

Summarizing the localization length divergences for the
d impurity and quantum wells we have

FIG. 1. Rectangular well potentials.
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10 628 55M. HILKE AND J. C. FLORES
Lc~E!;
1

uE2Ecun
wheren

5H 2
3 d2barrier andkc~d22a!/p

an integer for the quantum well

2 otherwise.

~26!

IV. FLUCTUATIONS AND CONDUCTANCE

In one-dimensional disordered systems, the relative fl
tuations of the transmission coefficients diverge with the s
of the system.28 Therefore the average transmission is a b
statistical quantity. However, at the critical energies d
cussed above, the states are deterministic and therefore
would expect no fluctuations. In the following we evalua
the relative fluctuations explicitly and calculate the cond
tance for superlattices around these critical energies.

Around the critical energyEc we evaluated the localiza
tion length dependence on energies, thereforeTN;e2L/Lc,
whereTN is the transmission coefficient afterN barriers and
N is proportional toL. The relative fluctuations are the
given by

DT

T
;N

DLc
Lc
2 . ~27!

Using the central limit theorem, valid for the logarithm of th
product of random determinant one matrices, the rela
fluctuations of the localization length can be expressed a

DLc
Lc

;N21/2, ~28!

hence using Eqs.~26!–~28!

DT

T
;N1/2uE2Ecun. ~29!

In usual one-dimensional disordered systems the average
tance between eigenvalues is of the orderN21; therefore,
using uE2Ecu;N21, we obtain

DT

T
;uE2Ecun21/2. ~30!

This demonstrates that for the case of interest here, b
casesn52 and n5 2

3 have vanishing relative fluctuation
near the critical energies. This fluctuation analysis gives a
a bound on the possible divergence exponentn. In fact as
long asn. 1

2, the average transmission around the criti
energies is a good statistical quantity.

Many physical systems can be very well approxima
with either rectangular well potentials ord potentials. This is
the case for superlattices of heterostructures. One can g
very precise, up to the atomic precision, layers of Ga
Then one dopes differently one layer with Al and then ag
the same layer and one obtains in this way a single so-ca
d-doped layer. This can then be repeated as often as
wishes. This last structure is very well described in the
rection of the layers byd impurity models. Instead of doping
differently only one layer we can also dope a finite numb
c-
e
d
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-

e

is-
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d

ow
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of layers differently. In this case the potential looks mo
like a rectangular well potential, where the amplitude d
pends on the concentration of the doping used. In this wa
is possible to grow one-dimensional quantum wires wh
both directions of the layers are etched, two-dimensional s
tems where only one of the direction of the layers is etch
and finally three-dimensional systems.

The two probe conductance is simply given by the sum
the transmission coefficients,31 thus

G~m!5 (
kuE5m

T~k!
e2

h
, ~31!

wherem is the chemical potential.
For a one-dimensional quantum wire the conductanc

just given by the transmission coefficient, as there is o
one conducting channel. Around the critical energies
evaluated the localization length dependence on energ
therefore usingTN;e2N/Lc, whereTN is the transmission
coefficient afterN barriers, we obtain conductance peaks
the critical energies of the form

G~m!;e2gum2Enun, ~32!

wherem is the chemical potential,g depends on the size an
disorder of the system, andEn are the critical energies. Fo
the d dopingEn5(1/2m)(\np/d)2 andn5 2

3. For the rect-
angular case we have one critical energyEc and the random
Al doping potentials are given by

Vl5Ec2
nl
2p2

a2
with nl a random integer ~33!

anda is the width of the doped layers. The widthdl of the
undoped layers can be random and we obtainn52. For the
special case wheredl5d is constant the value of the expo
nentn depends on the ratioEc(d22a)2/p2. If this ratio is
an integer the exponent isn5 2

3 but remainsn52 otherwise.
The interesting feature of this system is that it would beha
as a perfect filter. The bandwidth could be controlled by
size ofg and the desired critical energy by the choice of t
dopants.

In order to evaluate the conductance of the thr
dimensional system, as defined above, we have to sum
all possible channels. In the directions (x,y) perpendicular to
the grown layers the density of states is simply the usual
filling density. In the infinite limit we have to integrate ove
the Brillouin zone which yields

G;E
kx
2
1ky

2<m
e2gum2kx

2
2ky

2
2Ecu

n
dkxdky . ~34!

The plots of the conductance from Eq.~34! as a function of
the chemical potential are given in Fig. 2 for different syste
sizes characterized byg and for the two casesn52 and
n5 2

3.
The two-dimensional case is presented in Fig. 3. In t

case the behavior is consequently different forn52 and
n5 2

3. Indeed forn52/3 we have a singular derivative, whic
could be observed experimentally, in order to distinguish
tween the two cases.
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55 10 629DELOCALIZATION IN CONTINUOUS DISORDERED SYSTEMS
The quantitative values can also be estimated. In t
d-doping case the typical Fermi wavelength is of the order
200 Å and the typical layer thickness is of the order of 5 Å
This means that we have to constructd-doped layers with
around 40 layers in between. In order to obtain the disord
we just have to chose randomly the dopant or the concen
tion of the doping for thed layers. The same reasoning ca
be held for rectangular potentials, where one just has
chose a particular potential configuration.

V. CONCLUSIONS

In the first section we demonstrated the existence of e
tended states in continuous disordered systems withd impu-
rities placed on a lattice and obtained for the exponent d
scribing the divergence of the localization lengthn5 2

3.
Hence this model demonstrates the existence of exten
states in systems with only shape disorder. In the seco
section, using rectangular potentials we demonstrated t

FIG. 2. Conductance forn52 andn5
2
3 ~right graph! as a func-

tion of the chemical potential, for the case where the resonan
energy isEc51. The different curves represent different values o
g52n, with n51,2,3,4,5. The uppermost curve represents the ca
g52.
e
f
.

er
a-

to

x-

e-

ed
nd
at

models with shapeand space disorder can also exhibit ex-
tended states. The only constraint on the disorder distributio
is that it must be discrete for the shape disorder but can b
continuous for the space disorder. In this case the correlatio
in disorder leading to the existence of delocalized states
simply the fact that the distribution mentioned above is dis
crete and obeys relation~24!. Therefore one has to be very
careful when one discusses disordered systems using discr
disorder distributions as there can exist singularities in th
spectrum. The exponents of the localization length diver
gence are very interesting. In fact, depending on the param
eters of the quantum wells, we obtain different exponents
eithern5 2

3 or n52.
The relative fluctuations of the conductance around thes

critical energies are vanishing. Therefore the conductance
a well-defined statistical average and represents the transp
properties of these disordered systems.
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FIG. 3. Conductance for the two-dimensional case with the
same parameters as in Fig. 2.
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