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Exciton magnetic polaron in semimagnetic semiconductor nanocrystals
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We present a theoretical study of the magnetic polaron associated with an electron-hole pair in a diluted
magnetic semiconductor quantum dot. It is based on the effective-mass approximation in the strong confine-
ment regime, which incorporates the coupling between the light- and heavy-hole bands. The magnetic polaron,
arising from thesp-d exchange interaction between the confined carriers and the magnetic ions, is treated in
a self-consistent mean-field approach that leads to coupled nonlinear Schro¨dinger equations for the electron
and the hole. The local response to the effective field is modeled by the experimental high-field magnetization
curve in the bulk. The electron-hole Coulomb interaction is taken into account. An exact numerical solution of
the three coupled equations is used to calculate the equilibrium polaron size, binding energy (Ep), and spin
(Sp). Results are first presented for Cd12xMn xTe nanocrystals withx50.11.Ep decreases and the orbital
contraction increases with an increasing quantum dot radius (a). In small dots, approaching saturation in the
core region,Ep decreases slowly as the temperature (T) increases. In large dotsEp(T) decreases rapidly
towards the fluctuation regime, whereEp}a

23. A similar temperature dependence is obtained forSp ; the
fluctuation-regime value is, however, size independent. The light-induced magnetization enhancement due to
polaron formation is considered and an optimal quantum dot radius is predicted to be;30 Å. We have also
calculatedEp as a function of an applied magnetic field, which shows a decreasing behavior that depends on
a and T. Theoretical results for Cd12xMn xSe nanocrystals show a good agreement with recently reported
experimental data on the photoluminescence Stokes shiftversusmagnetic field.@S0163-1829~97!02508-3#
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I. INTRODUCTION

Semiconductor nanocrystallites, also called quantum d
~QD’s!, have been studied a lot in recent years.1 In particular,
high-quality nanocrystals of II-VI compounds have been fa
ricated and their optical properties investigated in gr
detail,2 including well-characterized ‘‘band-edge’’ lumines
cence. The confinement-induced blueshift of the fundame
gap and the discretization of the energy spectrum have b
observed. On the other hand, semimagnetic or diluted m
netic semiconductors~DMS! based on II-VI compounds
such as Cd12xMn xTe, are known for giant magneto-optic
properties and magnetic polarons.3 These effects arise from
strongsp-d exchange interactions between the band carr
and the Mn21 ions. Bound magnetic polarons associat
with shallow impurities~donors and acceptors! have been
extensively studied.4 Localized exciton magnetic polaron
have also been reported in bulk and in epilay
Cd12xMn xTe ~Ref. 5! and in CdTe/Cd12xMn xTe
heterostructures.6 Acceptor-bound magnetic polarons a
proach the saturation regime at low temperature;7–13 the mu-
tual spin polarization between the bound hole and the
ions situated in its orbit tends to form a ferromagnetic cl
ter. A similar situation is expected in an optically excite
small DMS nanocrystal with additional contribution from th
electron. In fact, such a QD should be a model for a ze
dimensional exciton magnetic polaron, provided that the
laron formation time is shorter than the lifetime of th
electron-hole pair.
550163-1829/97/55~16!/10613~8!/$10.00
ts

-
t

al
en
g-

rs
d

r

n
-

-
-

Wang et al.14 reported an experimental investigation o
DMS nanocrystals. Zn0.93Mn0.07S crystallites of average di
ameter.25 Å were grown in a glass matrix. The observ
photoluminescence~PL! peak at 2.12 eV corresponds to th
well-known Mn21 internal emission. The PL-excitatio
spectrum yielded a quantum-confinement blueshift of 0
eV for the fundamental gap. They also measured the st
magnetic susceptibility from 2.3 K to 314 K; the data fit th
Curie-Weiss law with a negligibly smallQ value, suggesting
a smaller contribution of antiferromagnetic Mn-Mn intera
tion in the QD than in the bulk. More recently, Bharga
et al.15 studied coated Mn-doped ZnS particles of diame
varying from 35 to 75 Å; they focused on the characterist
of the Mn21 luminescence. In fact, DMS materials such
Zn12xMn xS with the bulk band gap well above 2.12 e
seem unsuitable for studying the magnetic polaron, as the
spectrum is dominated by the Mn emission. This is beca
the time of energy transfer from an electron-hole pair to
Mn d shell is short (,500 psec!,15 perhaps in the range o
the polaron formation time (;100 psec in the bulk!.5 In this
respect, magneto-optical studies of Cd12xMn xSe nanocrys-
tals embedded in quartz glass, reported by Yanataet al.,16

are more interesting; their exciton luminescence data do
vide evidence for magnetic polaron. The PL Stokes shift
der selective excitation was found to decrease in the pres
of a magnetic field and to saturate in a field of 6 T. Such
behavior is typical of localized exciton magnetic polaro
Moreover, picosecond time-resolved spectroscopy indica
10 613 © 1997 The American Physical Society
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10 614 55A. K. BHATTACHARJEE AND C. BENOIT à la GUILLAUME
a decrease of the QD exciton lifetime from 900 to 400 ps
a magnetic field of 5 T.

An early theoretical study of the magneto-optical prop
ties of DMS nanocrystals was presented by one of us.17 It
was based on the effective-mass approximation in the str
confinement regime.21,22 The confinement-induced mixin
between the light- and heavy-hole states was found to yie
reduction of the Zeeman splitting of the fourfold hole grou
state. An exactly soluble ‘‘spin cluster’’ model was used f
calculating the equilibrium properties of the magnetic p
laron associated with an electron-hole pair in the zinc-ble
Cd12xMn xTe quantum dot. The calculation was later18 ex-
tended to the hexagonal case Cd12xMn xSe and compared
with the experimental data of Ref. 16. The reduced Zeem
shift fitted the magnetoabsorption data, while the field dep
dence of the polaron binding energy showed qualitat
agreement with the PL Stokes shift data.

In this paper we present a more realistic model for
magnetic polaron~MP!. It is based on a self-consisten
mean-field approach previously applied to the cases
bound19 and free20 hole magnetic polarons. We first genera
ize the theory in order to incorporate the fourfold degener
of the unperturbed valence band. In the spherical approxi
tion, assuming a 1S3/2 ground state for the confined hole
after averaging out the angular dependence of thesp-d ex-
change field, we deduce the effective-mass equations. T
are three coupled nonlinear differential equations for
three radial envelope functions corresponding to the elect
and thes- and d-like parts of the hole. An experimenta
high-field magnetization curve is then used to modelize
response of the Mn spins to the local exchange field du
the electron and the hole. The direct Coulomb interact
between the carriers is also taken into account in the Har
approximation. An exact numerical solution is used to cal
late the equilibrium properties of the magnetic polaron. R
sults are first presented for QD’s of Cd12xMn xTe with
x50.11. The self-consistent contraction of the hole and e
tron radii is discussed. In addition to the characteristic
creasing behaviors of the polaron binding energy with
creasing temperature or magnetic field, we find that
energy decreases with increasing QD radius. The temp
ture and size dependence of the spontaneous magnetic
ment of the polaron is also investigated. The saturation
gime is approached in small dots. The ratio of t
superparamagnetic polaron magnetization to the param
netic QD magnetization in the low-field limit, which shou
be an indication of the light-induced magnetization enhan
ment, is studied. We thus estimate the optimum QD rad
for this effect to be around 30 Å. Finally, the model is a
plied to the case of Cd0.9Mn0.1Se nanocrystals; the calcu
lated field dependence of the polaron binding energy show
good agreement with the experimental photoluminesce
Stokes shift data.16

II. THEORY

We consider a spherical QD of radiusa smaller than the
bulk exciton Bohr radiusaB ; in this strong confinement re
gime, neglecting the small excitonic correlation, the lowe
energy state of an electron-hole (e-h) pair can be written as
n
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Cmm
e-h~re ,rh!5cm

e ~re!cm
h ~rh!. ~1!

Here the electron wave function is

cm
e ~r !5f~r !um

c ~r !. ~2!

In a spherical potential the envelope functionf(r ) is of the
1s type; the unperturbed version is given by22

f0~r !5A2

a

sin~pr /a!

r
Y00. ~3!

um
c (r ) is the conduction band Bloch function atG, with
m5sz56 1

2. In the spherical approximation for the Luttinge
Hamiltonian the hole wave functions are

cm
h ~r !5(

n
Fnm~r !un

h~r !, ~4!

wherem, n run through 3
2,

1
2, 2 1

2, and2 3
2. un

h(r ) are the
time-reversed valence band Bloch functions atG, with
j z5n. Note that, following Xia21 and Efros,22 we have in-
cluded only the fourfoldG8 valence band in Eq.~4!. Very
recently, Richardet al.23 have reported that the contributio
from the spin-orbit split-off bandG7 might be of crucial
importance for the QD hole level ordering. Here, we co
sider the dipole-active fourfold ground state 1S3/2 that corre-
sponds to

Fnm~r !5dnmR0~r !Y001^ 3
2 ,n;2,~m2n!u 32 ,m&

3R2~r !Y2,m2n~u,w!, ~5!

where Clebsch-Gordan coefficients have been used.
above functional forms remain valid in any potential
spherical symmetry.24 So, we can use them as long as t
effective exchange field retains this symmetry. The unp
turbed QD functionsR0(r ) and R2(r ) can be written in
terms of the spherical Bessel functions.22

Now, the expectation value of the exchange interact
between the carriers and the Mnd electrons~total ionic spin
S5 5

2! is given by17

^Hex&mm52a(
i

uf~Ri !u2mSiz

2
b

3(
i ,l,j

Flm* ~Ri !^lu j•Si uj&Fjm~Ri !, ~6!

where i labels the Mn ion sites anda (b) denotes the
sp-d exchange parameter for an electron~hole!. The effec-
tive exchange field acting on a Mn spin atr is thus

Beff~r !5
1

gmB
Famuf~r !u2ẑ1

b

3(l,j Flm* ~r !

3^lu j uj&Fjm~r !G . ~7!

Note that the exchange field of the hole contains an ang
dependence even if we neglect its transverse component
order to restitute the spherical symmetry of our se
consistent problem we, therefore, average over the orie
tions r in Eq. ~7!. Then
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Beff~r !5
1

gmB
Famuf~r !u21

b

3
mS u f ~r !u21

1

5
ug~r !u2D G

~8!

along the mean-field axisz. Here,

f ~r ![
1

A4p
R0~r !, g~r ![

1

A4p
R2~r ! ~9!

so that

E
0

a

~ u f ~r !u21ug~r !u2!4pr 2dr51. ~10!

The magnetic free energy can be written as

Gmag52E drE
0

Beff~r !
M ~B!dB, ~11!

whereM (B) is the magnetization of the Mn spin syste
~assumed continuous!. The total free energy of thee-h pair
and the Mn magnetization cloud is

G5Gmag1Te1Th1Vdir1Vexch, ~12!

whereTe (Th) is the expectation value of the electron~hole!
kinetic energy in the effective-mass approximation.Vdir
(Vexch) represents the direct~exchange! Coulomb interaction
between the electron and the hole. The different terms
given below. We have

Te5E drf* ~r !F2
\2

2me
S d2dr2 1

2

r

d

dr D Gf~r !, ~13!

whereme is the electron effective mass. The hole kine
energy is given by24

Th52
\2

2m0
g1F E dr f * ~r !H S d2dr2 1

2

r

d

dr D f ~r !

2mBLS d2dr2 1
5

r

d

dr
1

3

r 2Dg~r !J
1E drg* ~r !H 2mBLS d2dr2 2

1

r

d

dr D f ~r !

1S d2dr2 1
2

r

d

dr
2

6

r 2Dg~r !J G . ~14!

Herem0 is the free-electron mass. The Baldereschi-Lip
parametermBL[(4g216g3)/(5g1), whereg1, g2, andg3
are the Luttinger parameters. Thee-h Coulomb interaction
energy

Vdir52
e2

e E drE dr 8
1

r.
uf~r !u2~ u f ~r 8!u21ug~r 8!u2!,

~15!

wheree is the static dielectric constant andr. the greater of
r and r 8.

Starting from the effectivee-h exchange Hamiltonian o
the form2Ds• jd(re2rh) we have the expectation value
re

i

Vexch52DmmE dr uf~r !u2~ u f ~r !u21ug~r !u2!. ~16!

After collecting all the terms in the total free energyG we
apply the usual variational recipe for minimization:

d

df*
~G2EeNe!50,

d

d f *
~G2EhNh!50,

~17!

d

dg*
~G2EhNh!50,

whereNe,h andEe,h represent the norms and the Lagran
multipliers, respectively. We thus obtain a system of th
coupled Schro¨dinger equations

2
\2

2me
S d2dr2 1

2

r

d

dr Df~r !2F am

gmB
M „Beff~r !…

1
e2

e E dr 8
1

r.
$u f ~r 8!u21ug~r 8!u2%1Dmm$u f ~r !u2

1ug~r !u2%Gf~r !5Eef~r !, ~18!

2
\2g1

2m0
S d2dr2 1

2

r

d

dr D f ~r !2F bm

3gmB
M „Beff~r !…

1
e2

e E dr 8
1

r.
uf~r 8!u21Dmmuf~r !u2G f ~r !

1
\2g1

2m0
mBLS d2dr2 1

5

r

d

dr
1

3

r 2Dg~r !5Ehf ~r !,

~19!

2
\2g1

2m0
S d2dr2 1

2

r

d

dr
2

6

r 2Dg~r !2F bm

15gmB
M „Beff~r !…

1
e2

e E dr 8
1

r.
uf~r 8!u21Dmmuf~r !u2Gg~r !

1
\2g1

2m0
mBLS d2dr2 2

1

r

d

dr D f ~r !5Ehg~r !. ~20!

For the local magnetization functional, following Ref. 1
we shall use the experimental high-field magnetizat
curve25

M ~H !5gmBN0xeffSBSS SgmBH

k~T1T0!
D1a lH, ~21!

whereBS is the Brillouin function andS55/2. N0 is the
number of cations per unit volume. The phenomenologi
parametersxeff ~reduced effective concentration of Mn! and
T0 account for the reduced single-ion contribution due to
antiferromagnetic Mn-Mn coupling, while the linear ter
with the coefficienta l arises from the Mn cluster contribu
tions. Recall that the effective fieldBeff(r ) is given by Eq.
~8!. Thus, even in the spherical approximation we are
with the formidable problem of solving three nonline
coupled differential equations. Only some limiting cases c
be discussed analytically. Note that the total polaron spin



-

,
a

-
he

s-

uin
ly

rm
t-
on
ec
as

re
n
m

ely

to
f

e
it.

on
n in

ore,
etic
his

n a
n-

ri-
elf-

n
re
of
the

n
e

in
and
is

the

tio

next

tals
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Sp5
1

gmB
E
0

a

4pr 2drM „Beff~r !… ~22!

and the polaron binding energy

Ep5E
0

a

4pr 2drBeff~r !M „Beff~r !…. ~23!

Clearly, the~hypothetical! complete saturation limit corre
sponds toM sat5gmBN0x(5/2) giving

Ep
sat5N0x

5
2 ~am1 1

3bmrp! ~24!

where

rp[E
0

a

4pr 2dr~ u f ~r !u21 1
5 ug~r !u2!. ~25!

In this limit, which would correspond to very small QD’s
we can neglect the orbital contraction due to polaron form
tion. With the nonmagnetic QD hole wave functions22 for
f (r ) andg(r ) we can identifyrp as the Zeeman effect re
duction factorr defined in Ref. 17 that depends only on t
ratio of the light- and heavy-hole effective masses.

The Mn-Mn antiferromagnetic coupling makes it impo
sible to achieve complete saturation whenx;0.1. But partial
saturation corresponding to the saturation of the Brillo
function in Eq.~21! can be realized in QD’s of moderate
small sizea;15 Å asT→0. In this regime

M „Beff~r !…5gmBN0xeff~5/2!1a lBeff~r ! ~26!

giving

Sp5N0xeff~5/2!
4pa3

3
1

a l

~gmB!2 S am1
1

3
bmrpD ~27!

and

Ep5N0xeff~5/2!~am1 1
3bmrp!1a lE

0

a

4pr 2dr@Beff~r !#2.

~28!

It is important to notice that, asBeff(r ) increases with de-
creasingr , near the center of small-size QD’s the linear te
in Eq. ~26! has to be limited to the maximum value compa
ible with complete local saturation. However, this situati
does not arise in moderately small QD’s. Then, if we negl
the QD size dependence of the orbital contraction, it is e
to check that the integral in Eq.~28! is inversely proportional
to the QD volume.

Let us now consider the high-temperature fluctuation
gime realized in larger QD’s, when the Brillouin functio
can be approximated by the linear ter
$BS(x);@(S11)/S#(x/3)%. Then

Sp5FN0xeff~35/12!

k~T1T0!
1

a l

~gmB!2G S am1
1

3
bmrpD ~29!

and

Ep5FN0xeff~35/12!

k~T1T0!
1

a l

~gmB!2G E0a4pr 2dr@mBgBeff~r !#2 .

~30!
-

t
y

-

Thus, roughly speaking, at highT the total polaron spin is
almost size independent and the polaronic binding invers
proportinal to the QD volume.

Note that thee-h exchange interaction has been found
yield a substantial singlet-triplet splitting in small QD’s o
CdSe~see Ref. 26!. As a.0 andb,0, the doubly degen-
erate mean-field polaron ground state is given bym
56 1

2,m57 3
2, with the electron spin aligned parallel to th

average Mn spin direction and the hole spin antiparallel to
This, of course, corresponds to thee-h singlet. We have
verified that the triplet magnetic polaron, with the electr
and hole spins parallel, has a much higher energy eve
small-size QD’s where thee-h exchange interaction partly
compensates for the polaronic energy difference. Theref
we focus our attention on the lowest-energy singlet magn
polaron. Note, however, that the polaronic energy of t
ground state would be slightly affected by thee-h exchange
through orbital extension. It is estimated to be less tha
percent in the smallest QD’s considered. In view of the u
certainties concerning the exchange parameterD, we have
chosen to drop this term altogether.

We finally solve the coupled equations@Eqs. ~18!–~20!#
for the MP ground state exactly through an iterative nume
cal procedure explained in the Appendix. The resulting s
consistent solution$f(r ), f (r ),g(r )% shows an orbital con-
traction due toe-h Coulomb attraction and magnetic polaro
formation. The polaron binding energy and total spin a
calculated as functions of temperature for different values
the QD radius. In order to compute the polaron energy in
presence of an external magnetic field (B), we replaceBeff
by B1Beff in the equations above. The true polaro
binding energy inB is then obtained after subtracting off th
Zeeman shift of the e-h excitation energy: EZ
5 1

2(a2rb)M (B)/(gmB) from Ep given by Eq.~23!.
Light-induced magnetization enhancement is studied

the superparamagnetic picture in the low-temperature
low-field limit. The equilibrium polaron magnetic moment
then

Mp5
1

3
~gmB!2Sp

2S BkTD . ~31!

On the other hand, in the absence of polaron formation,
QD magnetic moment is given byM05(4pa3/3)M (B).
Thus the low-field magnetization enhancement ra
R[Mp /M0 is

R5
4

35S T1T0
T D Sp

2

Neff
~12d!, ~32!

whereNeff5N0xeff(4pa3/3) and

d5S 1235D k~T1T0!

N0xeff~gmB!2
a l . ~33!

Numerical results are presented and discussed in the
section.

III. RESULTS AND DISCUSSION

Most of our numerical results correspond to nanocrys
of Cd12xMn xTe, because experimental high-field~up to 40
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55 10 617EXCITON MAGNETIC POLARON IN SEMIMAGNETIC . . .
T! magnetization curves are available25 for the bulk material.
We choosex50.11, which is close to the maximum of su
ceptibility, as a function of concentration. The
xeff50.038,T052.5 K, anda l50.2231024 erg/~G2 cm3).
Also, we use the following CdTe parameters:e510,
N051.4731022/cm3, and me50.096m0. For the valence
band Luttinger parameters, we use a recently determ
set:27 g154.7, g251.45, g351.9, giving mBL50.732. Fi-
nally, the exchange parameters areN0a50.22 eV and
N0b520.88 eV.28

Figure 1 illustrates the orbital contraction due toe-h Cou-
lomb interaction and magnetic polaron formation. The rad
probability density of the electron (4pr 2uf(r )u2) and that of
the hole (4pr 2@ u f (r )u21ug(r )u2#) are plotted againstr for a
QD of radiusa54 nm. The dashed curves correspond to
noninteracting confined particles. The dot-dashed curves
obtained when thee-h Coulomb interaction is considered
Finally, the solid curves correspond to the equilibrium ma
netic polaron atT54.2 K. Clearly, the orbital contraction o
the electron is much smaller than that of the hole, becaus
the smaller effective mass and weaker exchange coup

FIG. 1. Radial probability densities of the electron and hole~in
units of nm21) are shown for a Cd0.89Mn0.11Te quantum dot of
radiusa54 nm. The dashed curves correspond to noninterac
confined particles; the dot-dashed ones result from the electron-
Coulomb interaction. The solid curves represent the equilibri
magnetic polaron atT54.2 K.

FIG. 2. The solid~dashed! curve shows the temperature depe
dence of the average radius of the hole~electron! in the magnetic
polaron in a Cd0.89Mn0.11Te quantum dot of radiusa54 nm.
ed

l

e
re

-

of
g.

Note also that thee-h Coulomb interaction leads to a sub
stantial orbital contraction, which tends to enhance the
laron binding energy and reduce the polaron spin. In Fig
we present the average electron (r e) and hole (r h) radii of
the magnetic polaron as functions of temperature. Note
r h(T) shows a well-defined minimum, which is related to t
competition between the polaronic and localization energ

Figure 3 shows the zero-field polaron binding energyEp

as a function of temperature for different values of the Q
radiusa. Clearly,Ep decreases with increasing QD radius.
small QD’s (a<2 nm! the decrease ofEp vs T is relatively
slow; here saturation is approached in the core region
large QD’s (a>4 nm! the decrease is faster and the fluctu
tion regime is approached atT.30 K, whereEp}1/a

3. The
temperature dependence of the total polaron spinSp , which
is proportional to the spontaneous magnetic moment
shown in Fig. 4 for the same values ofa. As for the quali-
tative behavior, theSp(T) curves are rather similar to th
Ep(T) curves. They, however, show a faster initial decrea
and in the fluctuation regimeSp tends to a value that is
independent of the QD size, in agreement with Eq.~29!.

We show the dependence of the polaronic binding ene
on the applied magnetic field in Figs. 5 and 6, fora5 1.5

g
le

FIG. 3. Zero-field polaron binding energy~meV! vs temperature
~K! in Cd0.89Mn0.11Te quantum dots. Different curves correspond
the different values ofa: 1.5, 2, 2.5, 3 , 4 , and 5 nm.

FIG. 4. Zero-field polaron spin vs temperature~K! in
Cd0.89Mn0.11Te quantum dots. Different curves correspond to t
different values ofa: 1.5, 2, 2.5, 3, 4, and 5 nm.
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10 618 55A. K. BHATTACHARJEE AND C. BENOIT à la GUILLAUME
and 5.0 nm, respectively. In both figures three different te
peratures are considered:T5 1.8, 4.2, and 10 K. Let us
recall that the Zeeman shift of thee-h creation energy has
been subtracted fromEp in order to deduce the true polaro
binding energy shown here. The decrease of polaron bind
with increasingB is faster at lower temperatures. In sma
size QD’s~Fig. 5! there remains a substantial binding ener
even at 10 T, because the polaronic effective field in the c
region is much larger thanB and can orient Mn spins further
On the other hand, in large dots~Fig. 6! the binding energy
tends to decrease faster towards a small value.

Figure 7 presents the light-induced magnetization
hancement factorR defined in Eq.~32!. In fact, it is the ratio
of the magnetization due to polaron orientation in a sm
external field over that due to the Mn spins~in the absence o
polaron formation!. We plotR againsta atT51.8 and 4.2 K
only. The superparamagnetic picture would probably br
down at higher temperatures. The curve forT51.8 K shows
a rather well-defined maximum arounda53 nm. It is an
indication of the optimum QD size for observing ligh
induced magnetization enhancement due to polaron for
tion suggested previously.17

It is interesting to note that the results presented above
quite sensitive to the values of the Luttinger parameters.

FIG. 5. Polaron binding energy~meV! vs magnetic field~tesla!
in a Cd0.89Mn0.11Te quantum dot of radius 1.5 nm at different tem
peratures:T51.8, 4.2, and 10 K.

FIG. 6. Polaron binding energy~meV! vs magnetic field~tesla!
in a Cd0.89Mn0.11Te quantum dot of radius 5 nm at different tem
peratures:T51.8, 4.2, and 10 K.
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example, with the Lawaetz values for CdTe,g155.29 ,
g251.89, g352.46, giving m50.844, we obtain
Ep(T50)5 74.2 and 33.2 meV, fora5 1.5 and 5.0 nm,
respectively. These energy values are smaller than the co
sponding ones in Fig. 3, obtained from the Luttinger para
eters of Ref. 27.

Previously,29 for numerical calculations, we resorted
the usual approximation of the MP theory for the hole, whi
neglects the mixing of the light- and heavy-hole bands
amounted to formally settingg(r )50 in Eqs. ~18!–~20!,
thus reducing the problem to a set of two coupled equatio
A comparison of the results~an example can be seen in Fi
8! shows that the simplifying approximation is utterly ina
equate. In particular, it yields a larger hole radius, leading
a smaller polaron binding energy; the quantitative diffe
ences with the exact solution presented here are indeed la

While Figs. 1–7 all correspond to Cd0.89Mn0.11Te, Fig. 8
corresponds to Cd0.9Mn0.1Se. It shows the polaron bindin
energy as a function of applied field in a QD of radi
a58 nm atT54.2 K. The parameters used for calculatin
the theoretical curves are as follows:e58.9, me50.15m0,

FIG. 7. Light-induced magnetization enhancement factorR plot-
ted against the QD radiusa ~nm! at T51.8 and 4.2 K for
Cd0.89Mn0.11Te quantum dots.

FIG. 8. Polaron binding energy~meV! vs magnetic field~tesla!
in a Cd0.9Mn0.1Se quantum dot of radius 8 nm atT54.2 K. The
solid curve is the result of the present calculation; the dashed on
from Ref. 29~simplified model!. The circles represent experiment
values deduced from photoluminescence Stokes shift data~Ref. 16!
for x50.12 andaverageradius 8 nm.
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and N051.7731022/cm3. Using m'
A50.45m0 and

mi
A51.15m0 from Ref. 30, we obtaing151.77 and

mBL50.509. Also,N0a50.26 eV andN0b521.11 eV.31

From the experimental magnetization data up to 8 T~Ref.
31!. we havexeff50.039 andT052.3 K. In view of the
closeness of these two values to those for Cd0.9Mn0.1Te and
in the absence of high-field magnetization data
Cd0.9Mn0.1Se, we have assumed the same value ofa l for the
linear coefficient in Eq.~21!. Anyway, for such a large value
of a, the contribution of the linear term is small. The so
curve in Fig. 8 results from the exact solution presented h
while the dashed one is from Ref. 29 and is based on
simplifying approximation explained in the preceding pa
graph. In addition to the theoretical curves, Fig. 8 also sho
the experimental16 photoluminescence Stokes shift values
ter subtracting 50 meV for the exciton localization energ
following the authors of Ref. 16. It is satisfying to see th
the exact solution yields a significantly better agreement w
experiment. Note that no adjustable parameter has been
One should, however, keep in mind that herea580 Å is
larger than the CdSe exciton Bohr radiusaB556 Å and we
are apparently beyond the strong~independent particle! con-
finement regime assumed throughout this paper. Let us
point out that the application of our model to the case of
wurtzite crystal Cd12xMn xSe assumes that the splitting b
tweenA andB hole bands is smaller than the hole confin
ment energy, and the magnetic field is parallel to thec axis.18

IV. CONCLUDING REMARKS

We have presented a self-consistent mean-field mode
the magnetic polaron associated with an electron-hole pa
a semimagnetic semiconductor nanocrystal. The effec
Schrödinger equations are derived for a fourfold degener
valence band in the spherical approximation. An experim
tal high-field magnetization curve in the bulk is used
model the local response of Mn spins to the exchange fiel
the confined carriers. Numerical results are presented mo
for Cd0.9Mn0.1Te nanocrystals in the radius range 15–50
at temperatures up to 50 K and fields up to 10 T. The pola
binding energy decreases with increasing size, tempera
or magnetic field. The spontaneous magnetic moment of
polaron also decreases with increasing temperature. S
QD’s show saturating polaron behavior at low temperatu
while large ones approach the fluctuation regime at high t
perature. Light-induced magnetization enhancement du
polaron formation is predicted to be maximum arou
a530 Å at T51.8 K. No experimental data are, howeve
available in Cd12xMn xTe nanocrystals. Yanataet al.16 re-
ported experimental evidence of localized exciton magn
polaron in Cd0.9Mn0.1Se nanocrystals of average radius
Å. Our theoretical curve for polaron binding energyversus
applied field shows a good agreement with the experime
values derived from the photoluminescence Stokes shift
der selective excitation. Hopefully, the present work wou
stimulate more systematic experimental studies of D
nanocrystals.

APPENDIX: NUMERICAL METHOD

Here we present our method for an iterative numeri
solution of the three coupled effective Schro¨dinger equations
e,
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e
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-
to
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l

@Eqs.~18!–~20!#. Neglecting thee-h exchange term and se
ting m573/2,m561/2 for the MP ground state, the equ
tions can be rewritten as

2
\2

2me
D rf~r !1Ue~r !f~r !5Eef~r !, ~A1!

2
\2g1

2m0
FD r f ~r !2mBLS d2dr2 1

5

r

d

dr
1

3

r 2Dg~r !G
1Uf~r ! f ~r !5Ehf ~r !, ~A2!

2
\2g1

2m0
F S D r2

6

r 2Dg~r !2mBLS d2dr2 2
1

r

d

dr D f ~r !G
1Ug~r !g~r !5Ehg~r !, ~A3!

with D r[d2/dr21(2/r )(d/dr). Each effective potentia
Ui(r )[UC

i (r )1UM
i (r ) is a sum of the Coulomb and mag

netic contributions given by

UC
e ~r !52~e2/e!E dr 8@ u f ~r 8!u21ug~r 8!u2#/r. ,

UM
e ~r !52~a/2gmB!M „Beff~r !…,

UC
f ~r !5UC

g ~r !52~e2/e!E dr 8uf~r 8!u2/r. ,

UM
f ~r !52~ ubu/2gmB!M „Beff~r !…,UM

g ~r !5UM
f ~r !/5.

The effective exchange field is

Beff~r !5
1

2gmB
@auf~r !u21ubu~ u f ~r !u21 1

5 ug~r !u2!#.

Now, in order to solve Eqs.~A1!–~A3!, we write the en-
velope functions in terms of the sine series:21

f~r !5
1

A2pa
S 1r D (n51

N

fnsinS npr

a D ~A4!

and similarly for f (r ) and g(r ) with the expansion coeffi-
cients f n and gn , respectively. The functions satisfy th
boundary condition atr5a and their normalization corre
sponds to(ufnu251 and((u f nu21ugnu2)51. The number
N is eventually chosen large enough to achieve converge
Equations~A1!–~A3! are thus reduced to the~formally! lin-
ear equations

m2fm1( umn
e fn5~Ee /Ee0!fm , ~A5!

m2f m1( umn
f f n2mBLm

2gm1~3mBL /p!( nVmn
1 gn

5~Eh /Eh0! f m , ~A6!
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m2gm1( @umn
g 1~6/p!~mVmn

2 1nVmn
1 !#gn2mBLm

2f m

1~3mBL /p!m( Vmn
2 f n5~Eh /Eh0!gm . ~A7!

Here Ee05\2p2/2mea
2, Eh05g1\

2p2/2m0a
2,

umn
e 5Umn

e /Ee0, umn
f 5Umn

f /Eh0, umn
g 5Umn

g /Eh0, with

Umn
i [~2/a!E

0

a

sin~mpr /a!Ui~r !sin~npr /a!dr, ~A8!

andVmn
6 5Si@(m1n)p#6Si@(m2n)p#, where Si(x) is the

usual sine integral. We see that the problem has been
duced to the diagonalization of oneN3N matrix and one
.
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.
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re-

2N32N matrix. In our applications,N530 is found suffi-
cient to assure a good convergence of the eigenvalues.
self-consistent potential problem is solved iteratively, sta
ing from the free particle case:Ui(r )50. At each step of
iteration the potentials are calculated from the ground-s
vectors of the preceding diagonalization. The matrix e
ments of the Coulomb potential can be expressed in term
the Si functions and those of the exchange field calcula
through fast Fourier transform routines. Depending on
MP binding energy, only 5 to 15 iterations are necessary
obtain a convergence better than 1024. The practically exact
solution$f(r ), f (r ),g(r )% thus obtained is used to calcula
the MP equilibrium properties: orbital size, binding ener
(Ep), and total spin (Sp).
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