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Scaling and crossover functions for the conductance in the directed network model of edge states
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We consider the directed netwofRN) of edge states on the surface of a cylinder of lerigigind circum-
ferenceC. By mapping it to a ferromagnetic superspin chain and using a scaling analysis we show its
equivalence to a one-dimensional supersymmetric nonliaeaodel in the scaling limit for any value of the
ratio L/C, except for short systems whelds less than of orde€ For thes model, the universal crossover
functions for the conductance and its variance have been determined previously. We also show that the DN
model can be mapped directly onto the random maffiakker-Planck approach to disordered quasi-one-
dimensional wires, which implies that the entire distribution of the conductance is the same as in the latter
system for any value df/C in the same scaling limit. The results of Chalker and Dohfiigys. Rev. Lett.

75, 4496(1999] are explained quantitativelyS0163-18207)05616-9

I. INTRODUCTION ferromagnets$? Scaling arguments, similar to those of Ref.
12, show that all the moments of the conductance and other
Disordered conductors have been at the focus of experPbservables behave universally in the scaling lifiné., they
mental and theoretical research for quite some time. Eve@re given by universal scaling functions of dimensionless
properties of a single electron in random potential are quitéemMpinations of théarecouplings of the continuum model
nontrivial. One of the challenging problems still open in this In particular, we show that when the ferromagnetic chain

area is the description of the transition between the plateauur%n;"i Lﬁgngfsesrii:??n'SR'thhle;CISSf I\,(\:ZI (rjerzglfntﬁl(lae% o:jeiﬁgrr-b o
in the integer quantum HallQH) effect. Chalker and L) b

; . . . cause, due to the no-scale-factor universafitgp coupling
Coddingtor introduced a network model to deal with this (o c e o re renormalizedt can be further reduced to a 1D

problem and studied it numerically. Later several authorg|,ggical nonlinear model, studied before by Mirliet al.
mapped this model to an antiferromagnetic spin ch_am,_ using, the context of localization in quasi-1D wirésBased on
replicas or supersymmetry to average over the disdrder. this reduction, we show that in this classical scaling regime
The an.aly5|s of this spin chain is still complicated, and thisy)| the moments of the conductangeare the same for both
model is not solved at present. models. Thus, borrowing results of Ref. 13, we can fully
Recently Chalker and Dohmgnintroduced a three- determine the crossover functions for the mean and variance
dimensional3D) version of the network model to study the of the conductance of the DN model fany ratio of the
possibility of QH effect in 3D conductors. This 3D network length and circumference of the cylinder in the scaling re-
models a conductor composed of stacked coupled layers pegime. This classical scaling regime daast include the re-
pendicular to a strong magnetic field. Each layer may sepagime of very smallL<O(C'?) that was termed 0D in Ref.
rately exhibit the QH transition and is represented by theS.
usual 2D network. In this system there exists a phase in A recent papéf shows how one can in principle obtain
which each individual layer is in the middle of a QH plateauthe full probability distribution of the transmission eigenval-
and all the electronic states in the bulk are localized. Thales from the nonlineas- model and proves that this distri-
only current-carrying states are the edge states on the surfaBgltion is identical to the one obtained from the Dorokhov-
of the conductor. These chiral surface states were studied iello-Pereyra-Kuma(DMPK) equatiori®*® of the Fokker-
Refs. 5-10. In the framework of the network model, these”!anck (FP) ~approach, which ~describes the universal
surface states form a 2Birectednetwork (DN), equivalent ~Pehavior of localization in quasi-1D wires. In view of this
to one studied before. A distinguishing feature of the model equivalence, the probab|l|ty (_j|str|but|_on of the C(_)nductance
studied by Chalker and Dohmen is the periodic boundar)Pf the DN model in the classical scaling regime is the same

o : s that of the quasi-1D model. For the quasi-1D model, much
ggzgl(tzlé)r;fog ct:gﬁn?ji?e of each layer, making the system th% known exactly about this distributidd,and thus a nearly

In this paper, we studgfollowing Chalker and Dohmen complete description of the conductance properties of the

the conductance properties along the axis of the cylinder irPN model is avallable. In Sec. IV we give a direct argument

the DN model. The paper is organized as follows. We set uIg)hat shows how the DN model is related to a quasi-1D model

a general formalism for the description of the DN modeland thus to the DMPK equation. We compare our results

using supersymmetry and the approach of Ref. 2 in Sec. II\{vith those of Chalker and Dohmé&nwe conclude in Sec. V.

Then we go to a continuum limit and map the DN model to
a spin chain in Sec. ll{this was also done in Refs. 5, 7, and
8). Unlike the case of the QH transition, this spin chain is
ferromagnetic This allows us to analyze its properties using The DN is shown in Fig. 1 and consists of links and

ideas of a recent paper on continuum quanturmodes. The links carry complex fluxes and the nodes repre-

Il. THE DIRECTED NETWORK MODEL:
GENERAL SETUP AND THE SYMMETRY
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In the second quantized language, the sum over paths may
be written as a trace of an “evolution” operator in a Fock
space of bosons and fermions. To repreggnft’;) we in-
troduce a retardethdvanceylbosona; (b;) and fermionf;

(g;) on each linki. The numbers of bits of paths on each link
play the role of occupation numbers of these bosons and
fermions, and the collection of these numbers on horizontal
section at a givern coordinate specifies a state in the Fock
space. Then the evolution operatdi, for a single node
between sites 1 and 2, which evolves quantum states on these
sites by one step in thedirection, is given by the sum of the
contributions of all possible scattering events, described by
S. In a typical event involving only retarded bosoris,
bosons are transferred from site 1 to site 2 with amplitude
_ _ v, | bosons are transferred from site 2 to site 1 with ampli-

FIG. 1. The directed networtDN) model. The particles move y,qe g and the remaining bosons stay on their respective
on the links in the directions shown by the arrows. The bold “nesites, each contributing factors for site 1 ands for site 2.
represents a typical path. The scattering amplitudes on such a parlkhis event gives the term y(‘,B'/k! I
are as shown on the right. PP N D e e :

X(ay)“(a;) a"ats"a2aza) (where ny,;=a;a,, etc) in the
evolution operato/1,. After some rearrangement, the sum
sent (unitary) scattering matricesS connecting incoming  of all such terms for all the bosons and fermions may be

(i,i") and outgoing ¢,0") fluxes: written as
o i a B\[i Voo=" Yoot f1s E T 1
g |= ) 12~ 18Xp (@ + fafy) +5 (a8, + f1f2)
o’ i’ y &)\
a B T
2 _(pt t (el . Nap+n
The scattering amplitudes, . .. ,5 correspond to elemen- T (baby+9591) + 5 (biby+0;9,) |:@Mar ™
tary scattering events shown on the right in Fig. 1. For the R o o en
time being they are assumed to be arbitrary complex num- X (™)1 N1 gMa2 ™ Ni2( 5% ) 2™ Mgz, (2

bers different for different nodes, which allows us to formu-\ynere colons stand for normal ordering.

late our model for disordered samples with any realization of The contribution of the boundary nodes connected to the
disorder. A particular distribution for the scattering ampli- |oads is different. When representifigy|2, every leftmost
tudes will be specified later. The vertical direction in Fig. 1is,g4e atr= 7, has only paths reflected off the left boundary
along th.e cirqumfergnce of the cyli_nder. Later it will play the (with the corresponding amplitudé or 6*) because only
role_ of imaginary time for th(_e spin chain, so we call the ., paths contribute ta;;|2. Then the only possible event
vertical coordinater. In the 7 direction the network has the at such a node is that all the particles stay on the site 1, each

size C=N.a., where N, is the number of “channels”  .qninyting factorss for retarded and* for advanced ones.
through the system aral, is a microscopic sce_lle of the or(.jer. The corresponding evolution operator is simply
of the mean free path of electrons. We impose periodic

boundary conditions in this direction. In thedirection the Vpi= &Mt M1 5% )Mot N1, (3
network has finite length =Na,, whereN is the number of
layers(or “sites”) anda, is the distance between them. In
this direction the system is connected to ideal leads. In Fig.
the edge states are numbered from Nte 5, andN .= 3.

For the leftmost node at; we also need to inject one re-

iarded and one advanced path into the system. This is repre-
sented by the event where we create additional retarded and
Different correlation functions may be defined for this advanced patrticles on the site 1. For definiteness we choose

model and each of them may be represented in the first (itlhezmTtoT br? l:+)cr)1$ons. ;I' hfnccgresgopd#ng evol_utl_on operator is
second quantized way. As an illustrative and important ex.?] @1P10"1 " "1(6%)1 1= y|%a1b; Vo, . Similarly, for
ample, we derive expressions for the conductance. The dil'€ rightmost nodes at# 7¢ we have

mensionless conductance is given by the Landauer formula
g=trt"t="=, {t;t|?, wheret is the total transmission matrix
(with matrix elements;;) between left and right boundaries and for the boundary node at the evolution operator is
of the system. In the first quantized languaggeis given by |y|2VN,N+1aNbN.

the sum over “retarded” paths connecting an incoming link The total evolution operatod is composed of all the
at 7; on the left boundary and an outgoing link gton the  V;;.’s in the following manner. Assume for definiteness
right boundary. Each path follows links only in the direction that the number of sitell is odd. Then in our system we
of the arrows and its contribution is the product of the scathave even rows of links at integer timesa0,2a,, etc.,
tering amplitudes along the path. One such path is shown owhere fluxes enter the system from the left and exit it to the
Fig. 1 with bold lines. Similarlyt; is given by the sum over right, and odd rows of links at half-integer times
“advanced” paths where each node contributes the comple®./2,3a,/2, etc., where fluxes enter from the right and exit to
conjugate scattering amplitude. the left. For even rows we form the product

VN 1= a"an TN o ) Ton T Mg, (4)
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Ve(7)=Vou( T)Vos(7) - - - V_1n(7), (5) in the Hamiltonian and in the action and will fix the bound-
ary conditions in the continuum field theory; see E20)
and for odd ones below.
_ We now discuss the supersymmetry properties of our for-
Vol =Vid Vs 1) -Vivsa(7)- ©®  mulation. For each site we can form 16 bilinears in our
The operatotJ is then given by the product bosonic and fermionic operators. They represent the 16 gen-
N1 erators of the Lie superalgebra u([12). We arrange these

generators in a %4 matrix, or “superspin”J;:

U=TI V((n+1/2a)Ve(na,), )
=0
" aiaiT—1/2 aifiT aibi a;0;

which is ordered with the earliest times at the right. Note that ¢ af £T_1/2 tb ¢
the only 7 dependence in the operatdrs,V, is through the 3= i i i igi
S-matrix elements, which implicitly depend érand 7. ! -bfal  -blfl  —blo-12 -b]g,

With the help of the operatdd, the conductance is given
by P P ? glal  g'f] g'bi  ggi—112

(10)
— 12aT( VR (- 2 We adopted the “advanced-retarded” arrangement of the
g ST’( Tf,Eff [7il*aa(7)ba() vl "an(rb( U | generators rather than the “boson-fermion” ofsee Ref. 4

(8)  for detailg. In this scheme the diagonalX2 blocks ofJ;
contain the generators of the subalgebra Ul u(1] 1).
Then one can show théhe operator \{, commutes with all
16 components of,3 J, [and thus hasi(1,] 2) as the sym-
metry algebr3,

Here 7, and 7¢ label the times at which the creation and
annihilation operators act on the statgs.and y; are theS
matrix elements at the corresponding nodes, d@nadrders
times, placing the earliest at the right. “STr” stands for the
sgpertrace in the Fo?\lk space, Whictheights all _the states (314 J5)Vio= Vil Iy + ), (12)
with the factor of (- 1)"F, whereNg=Z3L ;(n¢;+ng;) is the
total number of fermions in a state, STr() if and only if the scattering matri§ is unitary. S 1=5" (the
=Tr(—1)NF...]. That is, states with an odd number of analogous result for the Chalker-Coddington model was
fermions contribute to the sum with a negative sign. Thisfound in Ref. 2. Thus the products of th¥, ; ,;'s in V and
together with the periodicity in the direction, ensures the V, commute with the total superspE{_,J; for any realiza-
cancellation of bosonic and fermionic contributions from tion of disorder, provided that all the scattering matrices are
closed paths not connected to the leads. These closed pathisitary, except for the boundary operatdfg, andVy n+1.
were, as usual, absent from the original first quantized forThese boundary operators commute only with generators
mulation of the problem. from diagonal blocks ofl; and Jy, correspondingly, and
In Eq. (8), 7; and 7; take only half-integer valuea,/2, break the symmetry of the total evolution operatbidown
3a,/2, so on, because we create and destroy bosons only éa u(1| 1)@u(1| 1). Therefore, for any realization of the
half of the links belonging to the sites 1 aiM Using the disorder, the unitarity of the scattering matrices ensures the
commutation relations between the bosonic operators anglobal u(1,12) symmetry of our problem, which is broken
V's, we can rewrite the expression fgrin the form only by the boundary constraint. The use of the supertrace,
not the ordinary trace, is essential in maintaining the super-
g=STr( TE sTaI( r)bI(T)E e an(7)by(7)U || ;zrr?metry in the presence of the periodicity in thalirec-
! (9) In terms of the superspins, E¢Q) for the conductance

) may be rewritten as

where nowr and 7' take all possible values, but, =1
(—1) for integer(half-integey values ofr/a,. a1 N 113

This is a good place in which to discuss in more detail the g=ST TET &1 (T)Z ex(—=1)NN(7HU]. (12
choice of boundary conditions for our model. In thelirec- T
tion the presence of the ideal absorbing leads at the bounql-1ereJ§1: _b’lfa’lf andJ§3= ayby are particular components
aries of the system means in the first quantized language thgf superspingl; andJy at the boundaries of the system. The
we do not include contributions from the paths leaving orajternating sums of the type

entering the system unless we specifically calculate some

correlators between the boundariésich as conductance : ab

g). In the second quantized language this translates to the L=(-1'X .37 (7) (13
following. We can imagine having two additional vertical !

sets of links in the lead®th andN + 1st site$ on which we  represent the total current through the system inxtliérec-
have no bosons or fermions, so these sites always carry thmn. Using the supersymmetry of the operatuisEq. (11),
vacuum staté0). With this constraint the boundary opera- we can show that this current is conserved, i.e., correlators of
tors Vo; andVy n+1 are seen to be special forms of generalZ;’s do not depend on the position labélsexcept at the
Vii+1's, Eq. (2), acting on the vacuum at the left or right. boundaries. We see then that Etp) is the usual Kubo-type
Later this constraint on the states at the boundaries will giveformula, relating the conductance to a current-current corr-
in the 7-continuum formulation, the symmetry-breaking term elator,g= — STr(7Z;Z;U), for i #].
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Similarly, we can write down expressions for the mo- =1—1t%strJ,J; , ; + O(t*), whereJ; are superspins in the high-
ments of the conductance or other correlators. For momenisst weight representation mentioned above. Here “str”
higher than the second, we need to introduce some additiongtands for the matrix supertrace in the space labeled by the
structure. Namely, we introducereplicas of our bosons and ypper indices oﬂ?b_ In other words, for any 4 4 superma-
fermions and sum the bilinear operators in the exponentialgix A, sttA=trpA, where “tr” is the usual matrix trace and
necessary because to representntitie power of the conduc-  combine all theV’s and reexponentiate. We also replace

tance we need to create at the boundarylifferentretarded  syms overr by integrals. The result is the evolution operator
andm d|fferentadva.nced partlcles and we ne@é m/2 The in imaginary timeT of a 1D quantum ferromagnetic Spin

corresponding model has globalryg| 2n) symmetry bro-  cpain with the Hamiltonian

ken down to ugi|n)@u(n|n) by the boundary constraint. We

should point out that in this case replicas am introduced , N1

to average over the disorder and their numteés not taken _ 1

to zero in the end. In this model, results for tinéh moment HLJ]= a, ,21 SWidiaF 5SA(J+ ) | (19
are independent ofi, provided m=2n, because any “ex-

cess” replicas cancel by supersymmetry. For simplicity Weliare A is the diagonal matrix diag(1,4,1,—1). The last

continue to assume=1. . )

; . . term inH comes from the boundary nodes. It may be inter-
o e oL e Lo sl e e of 1 0 et as saying that there ar, at the oundares, o acd-
ing matrices, used before in Refs. 1 and 6. Namely, we taktlonal spinsJo and Jy., fixed to a particular “direction

every scattering matrix to consist of a product of two diago- 0 IN+1=A/2 by an infinitely strong magnetic field cou-
ys 9 ) P : J1ag pling via a Zeeman term in the superspin space. This is an-
nal unitary matrices with a real orthogonal matrix, with en-

tries other manifestation of the boundary constraint mentioned
above.
Using the algebra of the generatodé® in the same
7-continuum limit, the expressiofiL3) for the total current
|becomes

—B=y=t>0, a=45=(1-t)"? (14)

in between them, the latter matrix being the same for al
nodes. The phases from the diagonal unitary matrices are
associated with links rather than with nodes and are assumed t? (c t2 [c
to be uniformly distributed between 0 andr2independently IF;L dr{Ji,di-1]=— a_fo dr{Ji,Ji+1].  (16)
for each link>® Thus averaging over disorder corresponds to 7 7
integration over all the link phases. )
It is easy to see that this averaging produces a local corf0r the particular components of the current at the
straint on the states in the Fock space. Let each retarded fipundaries  these  expressions  reduce  td;
on a given link at théth site at timer contribute the factor = (t?/2a,)fdr{J;,AT*'=(t¥a,)fd7I3" and, similarly,
e'® and each advanced one the faatof® to the amplitude  Zio=(t%/a,) [drJy2.
associated with a given path. Then if we haweetarded and Next, we introduce supercoherent states and represent
n advanced bits on the link, averaging over random phasguantities of interest as path integrals over some supermani-
@ givesfgﬂexm(m—n)(p]d(p: Smn, that is, we get zero un- fold; see Refs. 8 and 18 for details. The resulting theory has
less the number of retarded and advanced bits is the sami&€ action
Thus we have a local constraint on the number of bits of
paths on each link. In the second-quantized language this c
means that the averaging projects our evolution operator to S= SB+f d7H[Q(7)], 17
the subspace specified Ioy;+ n¢; =ny;+ng; for eachi and 0
each timer. This subspace forms a highest weight irreduc-
ible representation of the algebra u(|12), with the vacuum whereSg is the Berry phase terispecified below Q;(7) is
|0) for the sitei being the “highest weight” vector. This a supermatrix taking values in the coset space
representation was obtained for the Chalker-CoddingtotJ(1,1 2)/U(1| 1)XU(1]| 1) [where U(1,12) is the super-
modef in Ref. 2 and was also discussed in Ref. 4. group of which the Lie superalgebra is u([12}, etc)], and
H[Q(7)] is obtained fromH[J] by replacing everny; with
Qi(7)/2 (we make the same replacement in the expressions
for the total current In the path integral, all the components
of Q obey periodic boundary conditions. The difference, in
So far in our derivation we retained discreteness of thehe case of the fermionic components, from the usual path
DN. Unlike in the other published derivatiof$2we did not  integrals for fermions, which obey antiperiodic boundary
have to take the time-continuum limit from the start. How- conditions'® is a direct consequence of the facter 1)"F in
ever, we do so now in order to obtain a continuum fieldthe definition of STr.
theory for our system and to study its universal scaling prop- The scaling properties of quantum ferromagnets were dis-
erties. In ther-continuum limit we assume<1 and expand cussed in Ref. 12. Following that paper, we take the spatial
theV; ;. ’s, projected to the constrained subspace, to secondontinuum limit of the actiors and the curreng;. The re-
order in t. The result of the expansion is/;;,;  sulting continuum ferromagnet has the action

IIl. MAPPING TO A SPIN CHAIN
AND SCALING ANALYSIS
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L C [Mg (2 dQ(u) dQ(u) Although S, is a highly nontrivial interacting quantum
Seont= JO dXJO dT<7JO dustrQ(u) — = —— field theory, it is nevertheless possible to make some simple
exact statements about it. First, its “ground stat@vhich
Ps ) dominates the functional integral in the limit of zero “tem-
+5stVQ) ) (18)  perature,” C=0) is fully polarized and fluctuationless, so
(Q)c=o=A. As aresult, the parametbt,, which measures
and the current becomes the Berry phase due to adiabatic changes in the ground-state
polarization, cannot have any nontrivial zero-temperature
c renormalizationt? Second, not only the ground state, but
Z(x)=—2ps J 0 d7QVQ. 19 some low-lying excited states are also known exactly: the
linearized single spin-wave states are in fact exact eigen-
HereMo=1/2a, andps=t2a,/4a, are the magnetization per states of the full Hamiltonian and their dispersion
unit length and the spin stiffness in the ferromagnetic grounds=2pk? M, has no corrections from the nonlinearities.
state, respectively. Also, in the Berry phase term, the firsThis implies thatp, also has no nontrivial zero-temperature
term in Seont, Q(U)=Q(X,7,u) is some smooth homotopy renormalizatiort> We also mention, as an aside, that the
betweenQ(x,7,0)=A and Q(x,7,1)=Q(x,7) (for details mapping from the DN model t&,,,; can be generalized to
see Ref. 18 The circumference of the cylind& plays the higher spatial dimensiong. As a result, the critical dimen-
role of the inverse temperature. The last terrirQ(7)], or  siond=2 (for the properties at larg€) pointed out in Ref.
the interpretatioly=Jy+ 1= A/2, forces the fieldd(x,7) to 12 is related to the same fact obtained in Ref. 11.

take the boundary values The absence of any nontrivial renormalizationdvbf and
ps, the absence of any additional relevant operators in
Q(0,7)=Q(L,7)=A. (20 1+1 dimensions, and the related absence of ultraviolet di-

A boundary condition of this form to represent ideal absorb-Yérgences in physical quantities in the1)-dimensional

ing leads is usual in the nonlinearmodel formulation of the ~ duantum field theory are responsible for the phenomenon of
theory of localizatior[to which, we note, the modélLg) is . "O-Scale-factor universality.”" Among its implications
notequivalent. Given that the effective supersymmetric spin IS that scaling analysis @, reduces to the naive analysis
system is ferromagnetic and that fluctuations in the length off €ngineering dn;nensmns. The fied(x, 7), being subject
the spins can be neglected, the form of the acSog, is to the constrainQ<(x,7) =1, is dimensionless. Then simple

dictated by the supersymmetry, which holds universally forPOWer counting gives th(flengjneering dimensions of the cou-
any short range form of disorder. plings: dimMy=(length) =, dimps=Ilength/time. The no-

The action(18) clearly shows an anisotropic scaling that scale-factor universality also implies that all the observables
reflects the difference between theand = directions in the &' functions of dimensionless combinations of the bare cou-

DN. In the original discrete version of the DN model, if we Plings Mo and ps and the large scales, which, for the con-

consider the local behavior without the periodic boundaryductance, are judt andC. For example, the mean conduc-
condition, the mean conductivity behaves diffusively in thet@nCe is given by a function
x direction, with 7 playing the role of time, with the diffu-

. L L
sion constant (9)=o, CrilMa ™ Cpe)" (23

2 2

— t . a (21) Clearly, we could have chosen other combinations of the two
1-t2a;’ arguments of theb,, and the physics behind our particular

choices will become clear as we proceed. The continuum

as shown in Refs. 6 and 11However, even without the ; . ;
theory S.ont @pplies to any particular lattice quantum ferro-

periodic boundary condition, less trivial behavior is found magnet provided the lengthk,C are sufficiently large
for higher moments?}) In the spin chain language this an- Specifically’2 we require M L,>1 and o.M-C> 1 [or.
isotropy is manifest in the usual quadratic dispersion relatiori_>a andé>a (1-t2)/t2 ag well asC>gs] %:om arin
of the spin waves. The actidd8), linearized near the ferro- with ?he functioTnCD (. )’ we see that tr;e. cond?tion %n
magnetic ground state, descrides analytic conginuation to C implies thatl1>lzg aln'dzd; becomes universal in this re-

[ ti i ith the di ian=2pk“/ M. Th . ; 1o 9 >
rgf? Im@ spin waves r\:\" © 'Sper_s"ﬁ‘“z Ps ﬁ .? gime, with no nonuniversal factors in either the scale of
di erence betwegn the rat|0pg/Mo_—t a,/a, and t. e dif- d,, or its arguments. Notice that the argumdnts, can take
fusion constanD is due to the particular order of time- and allg positive value 6<1,,1,<o while satisfying!,>|,. We

. i imi i 1,125 1= 12

space-continuum limits taken to obtain the actidg). The also emphasize that the condition for universality may be

more general long-wavelength  behavior k,&,<1, - . .
k,a,<1), consistent with Eq(21), should be described by i;lltilrfggss for any ratid./C, i.e., for short as well as long

]ng tizrgeiﬁcst'tﬁcﬁ%’g;bm with the more accurate expression We first present our results for the cadex>L,
P =(Cps/Mg)Y2 The lengthL, was identified in Ref. 8, and

2 a we will discuss the regime.<L later (see Fig. 2 For
pe= - (22 L>L,, we have from Eq(23)
1-t2 4a,
In general, the continuum description requires tGata,, (g)=d L , (24)
L>a,. dc
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(Note that we do not include any spin degeneracy, unlike

2D CHIRAL 1D 1D
METAL METAL | INSULATOR Ref. 13)
> In the 1D metallic limit of short cylinderd, ;<L <<¢, Eq.
Lo S L (26) reduces td
FIG. 2. Sketch of the crossovers as a function of the lehgth & C t? a 28
The first crossovefRef. 8 is at the scald.~Lo=(Cps/Mg)*?, <9>L<g—z— L1-12 a_T' (28)

where the low-lying energy-level splittings of the quantum ferro-

magnet~ ps/MyL? are of order the “temperature” @. The sec- while in the opposite 1D localized limit of long cylinders,
ond crossover is near the localization length8Cpg. The condi- L> ¢, one obtains

tions for the validity of the continuum theory requi¢e-L,, and so

the two crossover scales are well separated. The quantum ferromag- 312

net behaves classically for dll>L, (but with no restriction on <g>L>§:2(Z) eXF{ - 2_5) (29)
L/¢) and is then described by the one-dimensional supersymmetric

nonlinearo- modelS, [Eq. ( 25)], which is therefore valid across the - An expression similar to Eq26) can also be written for the
crossover at. ~¢. The Fokker-Planck approach of Sec. IV has the5riance vag; see Ref. 13. In the metallic regime
same regime of validityl(>L, L/¢ arbitrary). The 2D chiral metal Lo<L<¢, this yields the known result for universal conduc-
regime was labeled QD in Ref. 8, but we prefer the present termifance fluctuations in 1D, vge= 1/15.

nology for reasons discussed below ). We now turn to a discussion of the regimeL, (Fig. 2.
Different behavior arises here becafise the ferromagnetic
language, the “temperature” C/becomes of order the low-
lying level splittings, which are of ordgs,/MgL2. In con-

where @4, (1)=®y(,l). Notice that the ratid/C is still
allowed to be arbitrary. The fornt24) implies that any lo-
calization lengthé must obey¢xCps, which was the basic  gaqt the classical regime we have discussed above is where
res_ult of Cha”“?f and Dohménwhich we have NOW X~ the temperature is much greater than these quantum-
plained. One might have been tempted to use the incorreghq chanjcal splittings. The crossover from the very short re-
naive argument, that distances in thedirection (such as gimeL <L, (termed OD in Ref. Bto the 1D metallic regime

&) should scale as the square root of distances inrtidée Lo<L<¢ will be described by thé./Cp.— 0 limit of scal-
rection (such asC). However, under such scaling, is not ing forms such as Eq23). The scaling forms can be ex-

scale invariant, while&Cps doesscale as a length. In the un- han4eq as a perturbation series in increasing powers of
derlying continuum quantum ferromagnet, there are two dIL/CpS, times a universal function df/L, in each term. For

mensionful parametergg and My, so this is not a scale- (g), we can show that this takes the form
invariant system either, unlike, for example, the usual 2D’

nonlineare model at the QH critical point. 4Cp, L L L \2

It is possible to obtain scaling functions suchdyg, di- (g)= T C—Y L—) +O< ( c ) . (30)
rectly from a certain field theory. They are current-current Ps 0 Ps
correlators in the path integral with the 1D action To leading order irL/Cp; there is no dependence L,

and the resulf28) is valid in both the OD and the 1D metallic
regimes. The possible term of ordér/Cps)° vanishes iden-
tically, consistent with the known result that the leading
“weak localization” correction to(g) vanishes in the
obtained fromS,,, by neglecting ther dependence o.?!  quasi-1D metallic regimé./L,— in the presenfunitary)
The contributions of all modes with a nonzero “frequency” case. The next term in the expansionLifCpg in Eq. (30)
along ther direction to the coefficient of{Q)? in S, are  does have a nontrivial crossover at the stajedescribed by
suppressed by powers bf,/¢ andL,/L. Equation(25) is  the universal functio’, which should approach the known
exactly the action of the 1D nonlinear model studied by quasi-1D metallic result-1/180 asL/Ly,— .3 In contrast,
Mirlin et al. in Ref. 13. In that paper, the authors used har-for the variance ofy we expect

monic analysis on superspaces to diagonalize the transfer

Cpq (L
S,= Z’Jfodxstr(VQ)z, (25)

matrix of this 1D model. As a result they were able to ex- ~( L
press the mean conductang) and its variance var as varg=Y Lo +0 Cp ) (3D
rather simple integrals/sums over spectral parameters. For *
example{g) is given by where the universal crossover from the 0D to the 1D metallic
regime is now evident in the leading terify which must
o TN M\ (m2+\?)L tend to 1/15 a&./L,— . A result of this type, for vay, has
<g>:2n12>:o o ditanh—- m2+)\2exp< Y ) been claimed by Mathdrand Yu!® who find vag
odd «Cps/MoL2? in the OD limit L<L,. This result resembles

(26)  that in isotropic systems, for example, in two dimensions in
the metallic regimgg)>1, where vagcW/L (whereW is
the width, asW/L—x (see the results in Ref. 22Thus a
22 g better name for this regime in the DN model would be 2D
== (27)  chiral metal, and the crossover lag=(Cps/M)*? is from
1-t“a; 2D to 1D behavior.

whereé is the localization length

§=8Cps=C



55 SCALING AND CROSSOVER FUNCTIONS FOR THE ... 10599
IV. FOKKER-PLANCK APPROACH AND COMPARISON with «, ... ,8 being the same as in E(l). After going from
TO EARLIER WORK one site to the next through one column of nodes the direc-

The 1D nonlinears model considered in the preceding tions of the fluxes are .reversed at eaat_nordinate. Thgn the
section is well suited for obtaining moments of the conduc-nmautll,iirallieg)ag?;ercommatggggﬂ io}léia ﬁ 1trfév/2]’|§r}o?i3vob Z ds;rgg&/
tance, but not for its distribution. However, as we pointed out | P f th pd to the left and riaht fl thh
in the Introduction and as we now discuss, this 1D model jgolumns ot the -nodes to the 1eft and right o i
completely equivalent to the FP approach to the conductanc%gge stateb. The ftota(; transfer matr.|x for: the I.DN W'tg an
of quasi-1D wires in the limit of infinite number of channels 0 . humber of edge stateN is then given by
(“thick wire limit” ); see Ref. 14. Then we can use the re-MN_.MN*%N*l' My Mo,.  This matrix  connects
sults of this approach to obtain further properties of the DNNT—d|r’nen§|onal vectors of fluxes on .the right of the system
model. In the FP approach one concentrates on the eigenva(l'— ,0") with the ones on the leftl (O):
uesT,= (coshx,) "2 of the transmission matri't. The prob- o | Mo mo\ [
ability distribution of the parameters, satisfies the DMPK ( )ZMN< >:< ! 2)( )
equation, which was solved approximately in the localized
and metallic regimegsee, for example, Ref. 2&nd exactly ) o
(for the unitary casein Ref. 17. We summarize some of the NOW we neglect all the link phaséae will reinstate them
results of this solution. laten and consider the limiting casex=6=0 and

In the metallic limitL <¢, thex,, have statistical fluctua- Y=~ 8=1, where backscattering from the right- to left-

tions, but the mean density af's is uniform and the mean moving flux, or vice versa, is absent. In this limit, the column
conductance is equal to this density. This may be rephrasdf@nsfer matriM;_;, , becomes the “shift” matrix, which

by saying that the parametexs are equally spaced in the M€ans that all the rightdeft-) moying_fluxes are transferred
average Xn),<s=N(X;) < and the mean conductance is without any change along thedirection by 2a, and along

equal to the inverse of the first parametég), -, the r dir_ection bya, (.— a,). In-other wordsM;_; 1 cycli-
= (xy) L= &/2L cally shifts all the right-moving fluxes by, and all the
< :

left-moving fluxes by—a.. It is now easy to see that, due to
the periodicity in ther direction, if we multiply together

their mean positions are again equally spaced, but they allélf S.UCh golumn _transfer matrlces, s_tartlng vty ., we ggt
offset from the origin by a half of the spacing between themne |der_1t|ty_matr|xM an,-1=1. This is exactly the situation
(Xn)Lse=(N—=1/2)(2L/§). In the localized limit, the con- shown in Fig. 1, where we cho$¢=2N,—1=5. _
ductance is dominated by the smallest parameter When we introduce a small amount of backscattering, tak-

g~4exp(2x,) and therefore its logarithm is normally dis- ing @=6<1 andy=— B=1+0(a?), the total transfer ma-
tributed with trix My -4 is still close to the identity matrix. However, the
backscattering will produce nonzero off-diagonal elements.
The paths contributing to the elements of bloaks and
(ING)Ls¢= = 2(X)L5¢= — & (32 m, of the matrixM,y ;1 will have at least one backscatter-

ing event on them and therefore all the matrix elements of
The product 0fg), <, and(Ing).. is a universal number:  m, andm; will be of O(«). Similarly, the off-diagonal ele-
ments inm,; andm, will come from the paths having at least
(DL<LIng) s =1, (33 two backscattering events and will be @{«?).

S o ) When we reinstate the link phases, the matrix elements of
which is characteristic of the universal crossover from Meihe matrix M,y will also acquire some phase factors.

tilrlg nigtcla?gaelxlsz?g th)gp aglozr'(g ”\_A;i not\;]velr?;tryogluce:rcejgaled These phases are correlated, because the paths contributing
\?vhich for a qiven value of differs bv a factolr (L)?ilz trom [0 two different matrix elements may have links in common.
(v1) =ZCg/§ y However, the resulting transfer matrix must be pseudouni-
VlThzfe Uivalence. mentioned above. of the &Dmodel 7Y due to current conservation and can be factorized into a
and the gp a roaéh motivated us to I,ook for a direct ma product, consisting of a real matrix sandwiched between two
PP pblock—diagonal unitary matrices. The real factor in this de-

ping from the DN model to the FP equation and thus for acomposition is of the form described in the preceding para-

better understanding of why the DN model behaves as raph. Thus the backscattering is of the same order between
quasi-1D conductor. For this purpose, instead of ConSiderinanypright- and left-moving chgnnel on a mesoscopic scale
the evolution operator¥, andV,, which are the transfer 2N, a,, which is much smaller than the localization length

rances n st or o tr e o £ 1 ke e it we ar aessan o
q guage, (1—t?) =(Bla)?>1. This equal mixing among the chan-

transfer matrices in the direction, or “column transfer ma- - : .
trices.” For a single node such a transfer mathkix connects nels,_ ha_ppenlng_ n _the metalllc_ reginte<¢, well be_fore
fluxes; on the left ,0) and on the righti(’,0’) of the node localization sets in, is the es_sentlal property of quasi-1D sys-
and is given by ’ ’ tems. By contrast, in isotropic 2D systems, such as the origi-
nal Chalker-Coddington modélthe backscattering mixes
, N the channels only locally in the transverse direction, and
0 ) _ (0 _ o 1y )(0 (34) when the system is at the QH critical point, the value of the
1B —alB)\i)]’ lengthL at which the channels are all equally mixed is of the

. 35
I’ o ms; my/\O 39

In the opposite localized limit > ¢, the parameters, are
self-averaging(with normally distributed fluctuationsand
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order of the widthw. For such systems with>W localiza- conductance one finds that the universal number of(&8).
tion sets in with localization lengt~W, so there is no is —2. This may be explained as follows. Chalker and
metallic quasi-1D regime. Such a regime occurs when @&ohmen used rescaled parameteys introduced above, and
separation of scales>W takes place, but only if the dimen- made a conjecturéseemingly based on the 1D mopéhat
sionless 2D conductivityr,, is large, whereas at the QH the value ofy, is the same in the metallic and localized
critical point o, takes on a universal value of order 1. For limits. For the 1D model this conjecture does not hold, as we
the DN model the crossover to 1D behavior occurs ataw above. If instead of this conjecture Chalker and Dohmen
L~ Lo~ C*2 which is much less than the localization length had assumed that thg’s behave in the same way as in the
£~C, so a 1D metallic regime occurs. 1D model, i.e., that%;)| <,=2(v1) ¢, as predicted by our

In quasi-1D wires(see Ref. 24 for a review of the scat- mapping, their expressions would completely agree with Eq.
tering approach to disordered conducjpmme starts with the (33). We conclude that our results agree with the numerics of
idea that a wire of lengtl. can be obtained by combining Chalker and Dohmen and explain why their heuristic argu-
many short(mesoscopicbuilding blocks of lengthdL. The  ment works(after factors of 2 are corrected
transfer matrixM  for the wire is a product of the transfer
matricesMg,_ for the individual blocks. The parametexs,

introduced abovg, are simply rgla_ted.to the eigenvalues of V. CONCLUSION
the transfer matrices. Upon multiplication of the transfer ma-
trices of the building blocks, the parameteqs perform a In conclusion, we have considered the directed network

random walk and their probability distribution for the total (DN) of edge states on the surface of a cylinder. We claim
transfer matrix is obtained by repeated convolution of thethat, in a certain scaling limit, the DN is equivalent to the 1D
distribution of x,, for the building blocks. Upon taking a supersymmetric nonlinear model and to the random matrix
limit, in which My —1 as 6L—0, the distribution of the model used before to describe the transport properties of
X, is described by a universal FP equation witla continu-  quasi-1D wires. Using the known results for this 1D model,
ous variable; this is the DMPK equation. In our system, thewe obtain a description of the conductance properties of the
building block is the cylindrical DN of lengthi2.a,. There- DN model in this scaling limit. In particular, we give exact
fore, the universal properties of the DN model in theexpressions for the mean conductarge and the correla-
quasi-1D scaling limit should coincide with those of the tion length ¢ of the DN model in the scaling limit foany
DMPK equation, at least whet$/(1—t%)>1. value of the raticC/L of the circumference and the length of
Finally, we want to compare our results with those ofthe cylinder, Eqs(26) and (27), while expressions for the
Chalker and Dohmeh.They introduced an amplitude ratio variance and the distribution of the conductance may be
Acp=£cp/C and found that it was equal t8/(1—t2) in  found in the literature on quasi-1D wiré$!"*These results
agreement with numerical simulations, while from our Eq.are universal; in particular, they should not depend on the
(27) we find for this ratioA=2t%a,/(1—t?)a,. First, we precise distribution chosen for the disordprovided its cor-
should point out that Chalker and Dohmen measured theirelations are short rangedThey are valid except for short
L andC in units ofa, anda,, respectively. This takes care systems withL~L,=(Cps/Mg)*2 or less, which are ex-
of the factora,/a,. We attribute the remaining factor of 2 pected to behave as 2D chiral metals. In essence, the cross-
difference betwee and Acp to the different conventions over from 2D to quasi-1D behavior is governed by aniso-
used in the definitions of the localization lengthit appears ~ tropic scaling and hence occurs &t-Ly~CY2 while
from the equations of Chalker and Dohmen that they definedbcalization sets in at larger scales- £~ C.
their localization lengtlécp through the decay of the typical
conductance in the localized regime, @&g)=—L/¢qp,

while we used the more conventional definition, such that
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