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Scaling and crossover functions for the conductance in the directed network model of edge state

Ilya A. Gruzberg, N. Read, and Subir Sachdev
Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120

~Received 25 November 1996!

We consider the directed network~DN! of edge states on the surface of a cylinder of lengthL and circum-
ferenceC. By mapping it to a ferromagnetic superspin chain and using a scaling analysis we show its
equivalence to a one-dimensional supersymmetric nonlinears model in the scaling limit for any value of the
ratioL/C, except for short systems whereL is less than of orderC1/2. For thes model, the universal crossover
functions for the conductance and its variance have been determined previously. We also show that the DN
model can be mapped directly onto the random matrix~Fokker-Planck! approach to disordered quasi-one-
dimensional wires, which implies that the entire distribution of the conductance is the same as in the latter
system for any value ofL/C in the same scaling limit. The results of Chalker and Dohmen@Phys. Rev. Lett.
75, 4496~1995!# are explained quantitatively.@S0163-1829~97!05616-6#
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I. INTRODUCTION

Disordered conductors have been at the focus of exp
mental and theoretical research for quite some time. E
properties of a single electron in random potential are q
nontrivial. One of the challenging problems still open in th
area is the description of the transition between the plate
in the integer quantum Hall~QH! effect. Chalker and
Coddington1 introduced a network model to deal with th
problem and studied it numerically. Later several auth
mapped this model to an antiferromagnetic spin chain, us
replicas or supersymmetry to average over the disorde2–5

The analysis of this spin chain is still complicated, and t
model is not solved at present.

Recently Chalker and Dohmen6 introduced a three-
dimensional~3D! version of the network model to study th
possibility of QH effect in 3D conductors. This 3D netwo
models a conductor composed of stacked coupled layers
pendicular to a strong magnetic field. Each layer may se
rately exhibit the QH transition and is represented by
usual 2D network. In this system there exists a phase
which each individual layer is in the middle of a QH plate
and all the electronic states in the bulk are localized. T
only current-carrying states are the edge states on the su
of the conductor. These chiral surface states were studie
Refs. 5–10. In the framework of the network model, the
surface states form a 2Ddirectednetwork ~DN!, equivalent
to one studied before.11 A distinguishing feature of the mode
studied by Chalker and Dohmen is the periodic bound
condition on the edge of each layer, making the system
surface of a cylinder.

In this paper, we study~following Chalker and Dohmen!
the conductance properties along the axis of the cylinde
the DN model. The paper is organized as follows. We se
a general formalism for the description of the DN mod
using supersymmetry and the approach of Ref. 2 in Sec
Then we go to a continuum limit and map the DN model
a spin chain in Sec. III~this was also done in Refs. 5, 7, an
8!. Unlike the case of the QH transition, this spin chain
ferromagnetic. This allows us to analyze its properties usi
ideas of a recent paper on continuum quant
550163-1829/97/55~16!/10593~9!/$10.00
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ferromagnets.12 Scaling arguments, similar to those of Re
12, show that all the moments of the conductance and o
observables behave universally in the scaling limit~i.e., they
are given by universal scaling functions of dimensionle
combinations of thebarecouplings of the continuum model!.

In particular, we show that when the ferromagnetic ch
under consideration is in the classical regime~called ‘‘renor-
malized’’ classical in Ref. 12, but we drop the modifier b
cause, due to the no-scale-factor universality,12 no coupling
constants are renormalized!, it can be further reduced to a 1D
classical nonlinears model, studied before by Mirlinet al.
in the context of localization in quasi-1D wires.13 Based on
this reduction, we show that in this classical scaling regi
all the moments of the conductanceg are the same for both
models. Thus, borrowing results of Ref. 13, we can fu
determine the crossover functions for the mean and varia
of the conductance of the DN model forany ratio of the
length and circumference of the cylinder in the scaling
gime. This classical scaling regime doesnot include the re-
gime of very smallL,O(C1/2) that was termed 0D in Ref
8.

A recent paper14 shows how one can in principle obtai
the full probability distribution of the transmission eigenva
ues from the nonlinears model and proves that this distr
bution is identical to the one obtained from the Dorokho
Mello-Pereyra-Kumar~DMPK! equation15,16 of the Fokker-
Planck ~FP! approach, which describes the univers
behavior of localization in quasi-1D wires. In view of th
equivalence, the probability distribution of the conductan
of the DN model in the classical scaling regime is the sa
as that of the quasi-1D model. For the quasi-1D model, m
is known exactly about this distribution,17 and thus a nearly
complete description of the conductance properties of
DN model is available. In Sec. IV we give a direct argume
that shows how the DN model is related to a quasi-1D mo
and thus to the DMPK equation. We compare our resu
with those of Chalker and Dohmen.6 We conclude in Sec. V.

II. THE DIRECTED NETWORK MODEL:
GENERAL SETUP AND THE SYMMETRY

The DN is shown in Fig. 1 and consists of links an
nodes. The links carry complex fluxes and the nodes re
10 593 © 1997 The American Physical Society
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10 594 55ILYA A. GRUZBERG, N. READ, AND SUBIR SACHDEV
sent ~unitary! scattering matricesS connecting incoming
( i ,i 8) and outgoing (o,o8) fluxes:

S o

o8
D 5SS ii 8D 5S a b

g d D S ii 8D . ~1!

The scattering amplitudesa, . . . ,d correspond to elemen
tary scattering events shown on the right in Fig. 1. For
time being they are assumed to be arbitrary complex n
bers different for different nodes, which allows us to form
late our model for disordered samples with any realization
disorder. A particular distribution for the scattering amp
tudes will be specified later. The vertical direction in Fig. 1
along the circumference of the cylinder. Later it will play th
role of imaginary time for the spin chain, so we call th
vertical coordinatet. In the t direction the network has th
size C5Ntat , where Nt is the number of ‘‘channels’’
through the system andat is a microscopic scale of the orde
of the mean free path of electrons. We impose perio
boundary conditions in this direction. In thex direction the
network has finite lengthL5Nax , whereN is the number of
layers~or ‘‘sites’’ ! andax is the distance between them.
this direction the system is connected to ideal leads. In Fi
the edge states are numbered from 1 toN55, andNt53.

Different correlation functions may be defined for th
model and each of them may be represented in the firs
second quantized way. As an illustrative and important
ample, we derive expressions for the conductance. The
mensionless conductance is given by the Landauer form
g5trt†t5( i , f ut i f u2, where t is the total transmission matri
~with matrix elementst i f ) between left and right boundarie
of the system. In the first quantized language,t i f is given by
the sum over ‘‘retarded’’ paths connecting an incoming li
at t i on the left boundary and an outgoing link att f on the
right boundary. Each path follows links only in the directio
of the arrows and its contribution is the product of the sc
tering amplitudes along the path. One such path is shown
Fig. 1 with bold lines. Similarly,t i f* is given by the sum ove
‘‘advanced’’ paths where each node contributes the comp
conjugate scattering amplitude.

FIG. 1. The directed network~DN! model. The particles move
on the links in the directions shown by the arrows. The bold l
represents a typical path. The scattering amplitudes on such a
are as shown on the right.
e
-
-
f

ic

1

or
-
i-
la

t-
on

x

In the second quantized language, the sum over paths
be written as a trace of an ‘‘evolution’’ operator in a Foc
space of bosons and fermions. To representt i f (t i f* ) we in-
troduce a retarded~advanced! bosonai (bi) and fermionf i
(gi) on each linki . The numbers of bits of paths on each lin
play the role of occupation numbers of these bosons
fermions, and the collection of these numbers on horizon
section at a givent coordinate specifies a state in the Fo
space. Then the evolution operatorV12 for a single node
between sites 1 and 2, which evolves quantum states on t
sites by one step in thet direction, is given by the sum of the
contributions of all possible scattering events, described
S. In a typical event involving only retarded bosons,k
bosons are transferred from site 1 to site 2 with amplitu
g, l bosons are transferred from site 2 to site 1 with amp
tude b, and the remaining bosons stay on their respec
sites, each contributing factorsa for site 1 andd for site 2.
This event gives the term (gkb l /k! l !)
3(a2

†)k(a1
†) lana1dna2a2

l a1
k ~where na15a1

†a1, etc.! in the
evolution operatorV12. After some rearrangement, the su
of all such terms for all the bosons and fermions may
written as

V125:expS g

a
~a2

†a11 f 2
†f 1!1

b

d
~a1

†a21 f 1
†f 2!

1
g*

a*
~b2

†b11g2
†g1!1

b*

d*
~b1

†b21g1
†g2! D :ana11nf1

3~a* !nb11ng1dna21nf2~d* !nb21ng2, ~2!

where colons stand for normal ordering.
The contribution of the boundary nodes connected to

leads is different. When representingut i f u2, every leftmost
node attÞt i has only paths reflected off the left bounda
~with the corresponding amplituded or d* ) because only
such paths contribute tout i f u2. Then the only possible even
at such a node is that all the particles stay on the site 1, e
contributing factorsd for retarded andd* for advanced ones
The corresponding evolution operator is simply

V015dna11nf1~d* !nb11ng1. ~3!

For the leftmost node att i we also need to inject one re
tarded and one advanced path into the system. This is re
sented by the event where we create additional retarded
advanced particles on the site 1. For definiteness we cho
them to be bosons. The corresponding evolution operato
ugu2a1

†b1
†dna11nf1(d* )nb11ng15ugu2a1

†b1
†V01. Similarly, for

the rightmost nodes attÞt f we have

VN,N115anaN1nfN~a* !nbN1ngN, ~4!

and for the boundary node att f the evolution operator is
ugu2VN,N11aNbN .

The total evolution operatorU is composed of all the
Vi ,i11’s in the following manner. Assume for definitene
that the number of sitesN is odd. Then in our system we
have even rows of links at integer times 0,at ,2at , etc.,
where fluxes enter the system from the left and exit it to
right, and odd rows of links at half-integer time
at/2,3at/2, etc., where fluxes enter from the right and exit
the left. For even rows we form the product

ath
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Ve~t!5V01~t!V23~t!•••VN21,N~t!, ~5!

and for odd ones

Vo~t!5V12~t!V34~t!•••VN,N11~t!. ~6!

The operatorU is then given by the product

U5 )
n50

Nt21

Vo„~n11/2!at…Ve~nat!, ~7!

which is ordered with the earliest times at the right. Note t
the onlyt dependence in the operatorsVe ,Vo is through the
S-matrix elements, which implicitly depend oni andt.

With the help of the operatorU, the conductance is give
by

g5STrS T(
t i ,t f

ug i u2a1
†~t i !b1

†~t i !ug f u2aN~t f !bN~t f !U D .
~8!

Here t i and t f label the times at which the creation an
annihilation operators act on the states,g i andg f are theS
matrix elements at the corresponding nodes, andT orders
times, placing the earliest at the right. ‘‘STr’’ stands for t
supertrace in the Fock space, which weights all the st
with the factor of (21)NF, whereNF5( i51

N (nf i1ngi) is the
total number of fermions in a state, STr(
5Tr@(21)NF•••#. That is, states with an odd number
fermions contribute to the sum with a negative sign. Th
together with the periodicity in thet direction, ensures the
cancellation of bosonic and fermionic contributions fro
closed paths not connected to the leads. These closed
were, as usual, absent from the original first quantized
mulation of the problem.

In Eq. ~8!, t i and t f take only half-integer valuesat/2,
3at/2, so on, because we create and destroy bosons on
half of the links belonging to the sites 1 andN. Using the
commutation relations between the bosonic operators
V’s, we can rewrite the expression forg in the form

g5STrS T(t
«ta1

†~t!b1
†~t!(

t8
«t8aN~t8!bN~t8!U D ,

~9!

where nowt and t8 take all possible values, but«t51
(21) for integer~half-integer! values oft/at .

This is a good place in which to discuss in more detail
choice of boundary conditions for our model. In thex direc-
tion the presence of the ideal absorbing leads at the bo
aries of the system means in the first quantized language
we do not include contributions from the paths leaving
entering the system unless we specifically calculate so
correlators between the boundaries~such as conductanc
g). In the second quantized language this translates to
following. We can imagine having two additional vertic
sets of links in the leads~0th andN11st sites! on which we
have no bosons or fermions, so these sites always carry
vacuum stateu0&. With this constraint the boundary oper
torsV01 andVN,N11 are seen to be special forms of gene
Vi ,i11’s, Eq. ~2!, acting on the vacuum at the left or righ
Later this constraint on the states at the boundaries will g
in thet-continuum formulation, the symmetry-breaking ter
t
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in the Hamiltonian and in the action and will fix the boun
ary conditions in the continuum field theory; see Eq.~20!
below.

We now discuss the supersymmetry properties of our
mulation. For each sitei we can form 16 bilinears in ou
bosonic and fermionic operators. They represent the 16 g
erators of the Lie superalgebra u(1,1u 2). We arrange these
generators in a 434 matrix, or ‘‘superspin’’Ji :

Ji5S aiai†21/2 ai f i
† aibi aigi

f iai
† f i f i

†21/2 f ibi f igi

2bi
†ai

† 2bi
†f i

† 2bi
†bi21/2 2bi

†gi

gi
†ai

† gi
†f i

† gi
†bi gi

†gi21/2

D .
~10!

We adopted the ‘‘advanced-retarded’’ arrangement of
generators rather than the ‘‘boson-fermion’’ one~see Ref. 4
for details!. In this scheme the diagonal 232 blocks ofJi
contain the generators of the subalgebra u(1u 1)%u(1 u 1).
Then one can show thatthe operator V12 commutes with all
16 components of J11J2 @and thus hasu(1,1u 2) as the sym-
metry algebra#,

~J11J2!V125V12~J11J2!, ~11!

if and only if the scattering matrixS is unitary: S215S† ~the
analogous result for the Chalker-Coddington model w
found in Ref. 2!. Thus the products of theVi ,i11’s in Ve and
Vo commute with the total superspin( i51

N Ji for any realiza-
tion of disorder, provided that all the scattering matrices
unitary, except for the boundary operatorsV01 andVN,N11.
These boundary operators commute only with genera
from diagonal blocks ofJ1 and JN , correspondingly, and
break the symmetry of the total evolution operatorU down
to u(1u 1)%u(1 u 1). Therefore, for any realization of th
disorder, the unitarity of the scattering matrices ensures
global u(1,1u 2) symmetry of our problem, which is broke
only by the boundary constraint. The use of the supertra
not the ordinary trace, is essential in maintaining the sup
symmetry in the presence of the periodicity in thet direc-
tion.

In terms of the superspins, Eq.~9! for the conductance
may be rewritten as

g5STrS T(t
«tJ1

31~t!(
t8

«t8~21!NJN
13~t8!U D . ~12!

HereJ1
3152b1

†a1
† andJN

135aNbN are particular component
of superspinsJ1 andJN at the boundaries of the system. Th
alternating sums of the type

Ii5~21! i(
t

«tJi
ab~t! ~13!

represent the total current through the system in thex direc-
tion. Using the supersymmetry of the operatorsV, Eq. ~11!,
we can show that this current is conserved, i.e., correlator
Ii ’s do not depend on the position labelsi , except at the
boundaries. We see then that Eq.~12! is the usual Kubo-type
formula, relating the conductance to a current-current co
elator,g52STr(TIiIjU), for iÞ j .
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10 596 55ILYA A. GRUZBERG, N. READ, AND SUBIR SACHDEV
Similarly, we can write down expressions for the m
ments of the conductance or other correlators. For mom
higher than the second, we need to introduce some additi
structure. Namely, we introducen replicas of our bosons an
fermions and sum the bilinear operators in the exponen
in the expressions forVi ,i11’s over replica indices. This is
necessary because to represent themth power of the conduc-
tance we need to create at the boundarym differentretarded
andm differentadvanced particles and we needn>m/2. The
corresponding model has global u(n,nu 2n) symmetry bro-
ken down to u(nun)%u(nun) by the boundary constraint. W
should point out that in this case replicas arenot introduced
to average over the disorder and their numbern is not taken
to zero in the end. In this model, results for themth moment
are independent ofn, providedm<2n, because any ‘‘ex-
cess’’ replicas cancel by supersymmetry. For simplicity
continue to assumen51.

So far we did not have to specify the nature of the dis
der. Now we assume a particular distribution of the scat
ing matrices, used before in Refs. 1 and 6. Namely, we t
every scattering matrix to consist of a product of two diag
nal unitary matrices with a real orthogonal matrix, with e
tries

2b5g5t.0, a5d5~12t2!1/2 ~14!

in between them, the latter matrix being the same for
nodes. The phases from the diagonal unitary matrices
associated with links rather than with nodes and are assu
to be uniformly distributed between 0 and 2p, independently
for each link.1,6 Thus averaging over disorder corresponds
integration over all the link phases.

It is easy to see that this averaging produces a local c
straint on the states in the Fock space. Let each retarde
on a given link at thei th site at timet contribute the factor
eiw and each advanced one the factore2 iw to the amplitude
associated with a given path. Then if we havem retarded and
n advanced bits on the link, averaging over random ph
w gives*0

2pexp@i(m2n)w#dw5dm,n , that is, we get zero un
less the number of retarded and advanced bits is the s
Thus we have a local constraint on the number of bits
paths on each link. In the second-quantized language
means that the averaging projects our evolution operato
the subspace specified bynai1nf i5nbi1ngi for eachi and
each timet. This subspace forms a highest weight irredu
ible representation of the algebra u(1,1u 2), with the vacuum
u0& for the site i being the ‘‘highest weight’’ vector. This
representation was obtained for the Chalker-Codding
model1 in Ref. 2 and was also discussed in Ref. 4.

III. MAPPING TO A SPIN CHAIN
AND SCALING ANALYSIS

So far in our derivation we retained discreteness of
DN. Unlike in the other published derivations,5,7,8we did not
have to take the time-continuum limit from the start. Ho
ever, we do so now in order to obtain a continuum fie
theory for our system and to study its universal scaling pr
erties. In thet-continuum limit we assumet!1 and expand
theVi ,i11’s, projected to the constrained subspace, to sec
order in t. The result of the expansion isVi ,i11
ts
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512t2strJiJi111O(t4), whereJi are superspins in the high
est weight representation mentioned above. Here ‘‘s
stands for the matrix supertrace in the space labeled by
upper indices ofJi

ab . In other words, for any 434 superma-
trix A, strA[trhA, where ‘‘tr’’ is the usual matrix trace and
h is a diagonal matrix with entries (1,21,1,21). Now we
combine all theV’s and reexponentiate. We also repla
sums overt by integrals. The result is the evolution operat
in imaginary timet of a 1D quantum ferromagnetic spi
chain with the Hamiltonian

H@J#5
t2

at
S (
i51

N21

strJiJi111
1

2
strL~J11JN!D . ~15!

HereL is the diagonal matrix diag(1,1,21,21). The last
term inH comes from the boundary nodes. It may be int
preted as saying that there are, at the boundaries, two a
tional spinsJ0 and JN11 fixed to a particular ‘‘direction’’
J05JN115L/2 by an infinitely strong magnetic field cou
pling via a Zeeman term in the superspin space. This is
other manifestation of the boundary constraint mention
above.

Using the algebra of the generatorsJab in the same
t-continuum limit, the expression~13! for the total current
becomes

Ii5
t2

at
E
0

C

dt@Ji ,Ji21#52
t2

at
E
0

C

dt@Ji ,Ji11#. ~16!

For the particular components of the current at t
boundaries these expressions reduce toI131
5(t2/2at)*dt@J1 ,L#315(t2/at)*dtJ1

31 and, similarly,
IN135(t2/at)*dtJN

13.
Next, we introduce supercoherent states and repre

quantities of interest as path integrals over some superm
fold; see Refs. 8 and 18 for details. The resulting theory
the action

S5SB1E
0

C

dtH@Q~t!#, ~17!

whereSB is the Berry phase term~specified below!, Qi(t) is
a supermatrix taking values in the coset spa
U(1,1u 2)/U(1 u 1)3U(1 u 1) @where U(1,1u 2) is the super-
group of which the Lie superalgebra is u(1,1u 2), etc.#, and
H@Q(t)# is obtained fromH@J# by replacing everyJi with
Qi(t)/2 ~we make the same replacement in the express
for the total current!. In the path integral, all the componen
of Q obey periodic boundary conditions. The difference,
the case of the fermionic components, from the usual p
integrals for fermions, which obey antiperiodic bounda
conditions,19 is a direct consequence of the factor (21)NF in
the definition of STr.

The scaling properties of quantum ferromagnets were
cussed in Ref. 12. Following that paper, we take the spa
continuum limit of the actionS and the currentIi . The re-
sulting continuum ferromagnet has the action
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Scont5E
0

L

dxE
0

C

dtSM0

2 E
0

1

dustrQ~u!
]Q~u!

]u

]Q~u!

]t

1
rs
2
str~¹Q!2D ~18!

and the current becomes

I~x!522rsE
0

C

dtQ¹Q. ~19!

HereM051/2ax andrs5t2ax/4at are the magnetization pe
unit length and the spin stiffness in the ferromagnetic grou
state, respectively. Also, in the Berry phase term, the fi
term in Scont, Q(u)[Q(x,t,u) is some smooth homotop
betweenQ(x,t,0)5L and Q(x,t,1)5Q(x,t) ~for details
see Ref. 18!. The circumference of the cylinderC plays the
role of the inverse temperature. The last term inH@Q(t)#, or
the interpretationJ05JN115L/2, forces the fieldQ(x,t) to
take the boundary values

Q~0,t!5Q~L,t!5L. ~20!

A boundary condition of this form to represent ideal abso
ing leads is usual in the nonlinears model formulation of the
theory of localization@to which, we note, the model~18! is
notequivalent#. Given that the effective supersymmetric sp
system is ferromagnetic and that fluctuations in the length
the spins can be neglected, the form of the actionScont is
dictated by the supersymmetry, which holds universally
any short range form of disorder.

The action~18! clearly shows an anisotropic scaling th
reflects the difference between thex andt directions in the
DN. In the original discrete version of the DN model, if w
consider the local behavior without the periodic bound
condition, the mean conductivity behaves diffusively in t
x direction, witht playing the role of time, with the diffu-
sion constant

D5
t2

12t2
ax
2

at
, ~21!

as shown in Refs. 6 and 11.~However, even without the
periodic boundary condition, less trivial behavior is fou
for higher moments.11! In the spin chain language this an
isotropy is manifest in the usual quadratic dispersion rela
of the spin waves. The action~18!, linearized near the ferro
magnetic ground state, describes~on analytic continuation to
real time! spin waves with the dispersionv52rsk

2/M0. The
difference between the ratio 2rs /M05t2ax

2/at and the dif-
fusion constantD is due to the particular order of time- an
space-continuum limits taken to obtain the action~18!. The
more general long-wavelength behavior (kxax!1,
ktat!1), consistent with Eq.~21!, should be described b
the same actionScont but with the more accurate expressio
for the spin stiffness

rs5
t2

12t2
ax
4at

. ~22!

In general, the continuum description requires thatC@at ,
L@ax .
d
t

-

f

r

y

n

AlthoughScont is a highly nontrivial interacting quantum
field theory, it is nevertheless possible to make some sim
exact statements about it. First, its ‘‘ground state’’~which
dominates the functional integral in the limit of zero ‘‘tem
perature,’’C5`) is fully polarized and fluctuationless, s
^Q&C5`5L. As a result, the parameterM0, which measures
the Berry phase due to adiabatic changes in the ground-
polarization, cannot have any nontrivial zero-temperat
renormalization.12 Second, not only the ground state, b
some low-lying excited states are also known exactly:
linearizedsingle spin-wave states are in fact exact eige
states of the full Hamiltonian and their dispersio
v52rsk

2/M0 has no corrections from the nonlinearitie
This implies thatrs also has no nontrivial zero-temperatu
renormalization.12 We also mention, as an aside, that t
mapping from the DN model toScont can be generalized to
higher spatial dimensionsd. As a result, the critical dimen
siond52 ~for the properties at largeC) pointed out in Ref.
12 is related to the same fact obtained in Ref. 11.

The absence of any nontrivial renormalizations ofM0 and
rs , the absence of any additional relevant operators
111 dimensions, and the related absence of ultraviolet
vergences in physical quantities in the (111)-dimensional
quantum field theory are responsible for the phenomeno
‘‘no-scale-factor universality.’’12,20 Among its implications
is that scaling analysis ofScont reduces to the naive analys
of engineering dimensions. The fieldQ(x,t), being subject
to the constraintQ2(x,t)51, is dimensionless. Then simpl
power counting gives the engineering dimensions of the c
plings: dimM05(length)21, dimrs5 length/time. The no-
scale-factor universality also implies that all the observab
are functions of dimensionless combinations of the bare c
plingsM0 and rs and the large scales, which, for the co
ductance, are justL andC. For example, the mean condu
tance is given by a function

^g&5FgS L

~Crs /M0!
1/2,

L

Crs
D . ~23!

Clearly, we could have chosen other combinations of the
arguments of theFg , and the physics behind our particula
choices will become clear as we proceed. The continu
theoryScont applies to any particular lattice quantum ferr
magnet provided the lengthsL,C are sufficiently large.
Specifically,12 we require M0L@1 and rsM0C@1 @or
L@ax andC@at(12t2)/t2, as well asC@at#. Comparing
with the functionFg( l 1 ,l 2), we see that the condition o
C implies thatl 1@ l 2, andFg becomes universal in this re
gime, with no nonuniversal factors in either the scale
Fg or its arguments. Notice that the argumentsl 1 ,l 2 can take
all positive value 0, l 1 ,l 2<` while satisfying l 1@ l 2. We
also emphasize that the condition for universality may
satisfied for any ratioL/C, i.e., for short as well as long
cylinders.

We first present our results for the caseL@L0
[(Crs /M0)

1/2. The lengthL0 was identified in Ref. 8, and
we will discuss the regimeL<L0 later ~see Fig. 2!. For
L@L0, we have from Eq.~23!

^g&5Fg1S L

Crs
D , ~24!
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whereFg1( l )[Fg(`,l ). Notice that the ratioL/C is still
allowed to be arbitrary. The form~24! implies that any lo-
calization lengthj must obeyj}Crs , which was the basic
result of Chalker and Dohmen,6 which we have now ex-
plained. One might have been tempted to use the incor
naive argument, that distances in thex direction ~such as
j) should scale as the square root of distances in thet di-
rection ~such asC). However, under such scaling,rs is not
scale invariant, whileCrs doesscale as a length. In the un
derlying continuum quantum ferromagnet, there are two
mensionful parametersrs and M0, so this is not a scale
invariant system either, unlike, for example, the usual
nonlinears model at the QH critical point.

It is possible to obtain scaling functions such asFg1 di-
rectly from a certain field theory. They are current-curre
correlators in the path integral with the 1D action

S15
Crs
2 E

0

L

dxstr~¹Q!2, ~25!

obtained fromScont by neglecting thet dependence ofQ.21

The contributions of all modes with a nonzero ‘‘frequency
along thet direction to the coefficient of (¹Q)2 in S1 are
suppressed by powers ofL0 /j and L0 /L. Equation~25! is
exactly the action of the 1D nonlinears model studied by
Mirlin et al. in Ref. 13. In that paper, the authors used h
monic analysis on superspaces to diagonalize the tran
matrix of this 1D model. As a result they were able to e
press the mean conductance^g& and its variance varg as
rather simple integrals/sums over spectral parameters.
example,̂ g& is given by

^g&52(
m.0
odd

E
0

`

dltanh
pl

2

ml

m21l2 expS 2
~m21l2!L

2j D ,
~26!

wherej is the localization length

j58Crs5C
2t2

12t2
ax
at
. ~27!

FIG. 2. Sketch of the crossovers as a function of the lengthL.
The first crossover~Ref. 8! is at the scaleL;L0[(Crs /M0)

1/2,
where the low-lying energy-level splittings of the quantum fer
magnet;rs /M0L

2 are of order the ‘‘temperature’’ 1/C. The sec-
ond crossover is near the localization lengthj58Crs . The condi-
tions for the validity of the continuum theory requirej@L0, and so
the two crossover scales are well separated. The quantum ferro
net behaves classically for allL@L0 ~but with no restriction on
L/j) and is then described by the one-dimensional supersymm
nonlinears modelS1 @Eq. ~ 25!#, which is therefore valid across th
crossover atL;j. The Fokker-Planck approach of Sec. IV has t
same regime of validity (L@L0, L/j arbitrary!. The 2D chiral metal
regime was labeled 0D in Ref. 8, but we prefer the present te
nology for reasons discussed below Eq.~31!.
ct

i-

t

-
fer
-

or

~Note that we do not include any spin degeneracy, unl
Ref. 13.!

In the 1D metallic limit of short cylinders,L0!L!j, Eq.
~26! reduces to6

^g&L!j5
j

2L
5
C

L

t2

12t2
ax
at
, ~28!

while in the opposite 1D localized limit of long cylinders
L@j, one obtains

^g&L@j52S pj

2L D 3/2expS 2
L

2j D . ~29!

An expression similar to Eq.~26! can also be written for the
variance varg; see Ref. 13. In the metallic regim
L0!L!j, this yields the known result for universal condu
tance fluctuations in 1D, varg51/15.

We now turn to a discussion of the regimeL<L0 ~Fig. 2!.
Different behavior arises here because,8 in the ferromagnetic
language, the ‘‘temperature’’ 1/C becomes of order the low
lying level splittings, which are of orderrs /M0L

2. In con-
trast, the classical regime we have discussed above is w
the temperature is much greater than these quant
mechanical splittings. The crossover from the very short
gimeL!L0 ~termed 0D in Ref. 8! to the 1D metallic regime
L0!L!j will be described by theL/Crs→0 limit of scal-
ing forms such as Eq.~23!. The scaling forms can be ex
panded as a perturbation series in increasing powers
L/Crs , times a universal function ofL/L0 in each term. For
^g&, we can show that this takes the form

^g&5
4Crs
L

1
L

Crs
YS LL0D1OS S L

Crs
D 2D . ~30!

To leading order inL/Crs there is no dependence onL/L0
and the result~28! is valid in both the 0D and the 1D metalli
regimes. The possible term of order (L/Crs)

0 vanishes iden-
tically, consistent with the known result that the leadi
‘‘weak localization’’ correction to ^g& vanishes in the
quasi-1D metallic regimeL/L0→` in the present~unitary!
case. The next term in the expansion inL/Crs in Eq. ~30!
does have a nontrivial crossover at the scaleL0, described by
the universal functionY, which should approach the know
quasi-1D metallic result21/180 asL/L0→`.13 In contrast,
for the variance ofg we expect

varg5ỸS LL0D1OS L

Crs
D , ~31!

where the universal crossover from the 0D to the 1D meta
regime is now evident in the leading termỸ, which must
tend to 1/15 asL/L0→`. A result of this type, for varg, has
been claimed by Mathur9 and Yu,10 who find varg
}Crs /M0L

2 in the 0D limit L!L0. This result resembles
that in isotropic systems, for example, in two dimensions
the metallic regimêg&@1, where varg}W/L ~whereW is
the width!, asW/L→` ~see the results in Ref. 22!. Thus a
better name for this regime in the DN model would be 2
chiral metal, and the crossover atL05(Crs /M0)

1/2 is from
2D to 1D behavior.
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55 10 599SCALING AND CROSSOVER FUNCTIONS FOR THE . . .
IV. FOKKER-PLANCK APPROACH AND COMPARISON
TO EARLIER WORK

The 1D nonlinears model considered in the precedin
section is well suited for obtaining moments of the cond
tance, but not for its distribution. However, as we pointed
in the Introduction and as we now discuss, this 1D mode
completely equivalent to the FP approach to the conducta
of quasi-1D wires in the limit of infinite number of channe
~‘‘thick wire limit’’ !; see Ref. 14. Then we can use the
sults of this approach to obtain further properties of the D
model. In the FP approach one concentrates on the eigen
uesTn5(coshxn)

22 of the transmission matrixt†t. The prob-
ability distribution of the parametersxn satisfies the DMPK
equation, which was solved approximately in the localiz
and metallic regimes~see, for example, Ref. 23! and exactly
~for the unitary case! in Ref. 17. We summarize some of th
results of this solution.

In the metallic limitL!j, thexn have statistical fluctua
tions, but the mean density ofxn’s is uniform and the mean
conductance is equal to this density. This may be rephra
by saying that the parametersxn are equally spaced in th
average (xn)L!j5n(x1)L!j and the mean conductance
equal to the inverse of the first parameter^g&L!j

5(x1)L!j
21 5j/2L.

In the opposite localized limitL@j, the parametersxn are
self-averaging~with normally distributed fluctuations! and
their mean positions are again equally spaced, but they
offset from the origin by a half of the spacing between the
^xn&L@j5(n21/2)(2L/j). In the localized limit, the con-
ductance is dominated by the smallest parame
g'4exp(22x1) and therefore its logarithm is normally dis
tributed with

^ lng&L@j522^x1&L@j52
2L

j
. ~32!

The product of̂ g&L!j and ^ lng&L@j is a universal number:

^g&L!j^ lng&L@j521, ~33!

which is characteristic of the universal crossover from m
tallic to localized behavior. If we now introduce rescal
parameters as in Ref. 6,nn5(C/L)xn , then^n1&L@j5C/j,
which for a given value ofC differs by a factor of 1/2 from
(n1)L!j52C/j.

The equivalence, mentioned above, of the 1Ds model
and the FP approach motivated us to look for a direct m
ping from the DN model to the FP equation and thus fo
better understanding of why the DN model behaves a
quasi-1D conductor. For this purpose, instead of conside
the evolution operatorsVe and Vo , which are the transfe
matrices in thet direction ~or ‘‘row transfer matrices’’! in
the second quantized language, we should concentrate o
transfer matrices in thex direction, or ‘‘column transfer ma-
trices.’’ For a single node such a transfer matrixM connects
fluxes on the left (i ,o) and on the right (i 8,o8) of the node
and is given by

S o8

i 8
D 5MS o

i D 5S d/b 1/g*

1/b 2a/b D S o

i D , ~34!
-
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with a, . . . ,d being the same as in Eq.~1!. After going from
one site to the next through one column of nodes the dir
tions of the fluxes are reversed at eacht coordinate. Then the
natural transfer matricesMi21,i11 ~which can be simply
multiplied! are composed of all theM’s for two adjacent
columns of the nodes to the left and right of thei th
edge state. The total transfer matrix for the DN with
odd number of edge statesN is then given by
MN5MN21,N11•••M2,4M0,2. This matrix connects
Nt-dimensional vectors of fluxes on the right of the syste
(I 8,O8) with the ones on the left (I ,O):

SO8

I 8
D 5MNS IOD 5Sm1 m2

m3 m4
D S IOD . ~35!

Now we neglect all the link phases~we will reinstate them
later! and consider the limiting casea5d50 and
g52b51, where backscattering from the right- to lef
moving flux, or vice versa, is absent. In this limit, the colum
transfer matrixMi21,i11 becomes the ‘‘shift’’ matrix, which
means that all the right-~left-! moving fluxes are transferre
without any change along thex direction by 2ax and along
thet direction byat (2at). In other words,Mi21,i11 cycli-
cally shifts all the right-moving fluxes byat and all the
left-moving fluxes by2at . It is now easy to see that, due t
the periodicity in thet direction, if we multiply together
Nt such column transfer matrices, starting withM0,2, we get
the identity matrixM2Nt2151. This is exactly the situation

shown in Fig. 1, where we choseN52Nt2155.
When we introduce a small amount of backscattering, t

ing a5d!1 andg52b511O(a2), the total transfer ma-
trix M2Nt21 is still close to the identity matrix. However, th
backscattering will produce nonzero off-diagonal elemen
The paths contributing to the elements of blocksm2 and
m3 of the matrixM2Nt21 will have at least one backscatte
ing event on them and therefore all the matrix elements
m2 andm3 will be of O(a). Similarly, the off-diagonal ele-
ments inm1 andm4 will come from the paths having at leas
two backscattering events and will be ofO(a2).

When we reinstate the link phases, the matrix element
the matrixM2Nt21 will also acquire some phase factor
These phases are correlated, because the paths contrib
to two different matrix elements may have links in commo
However, the resulting transfer matrix must be pseudou
tary due to current conservation and can be factorized in
product, consisting of a real matrix sandwiched between
block-diagonal unitary matrices. The real factor in this d
composition is of the form described in the preceding pa
graph. Thus the backscattering is of the same order betw
any right- and left-moving channel on a mesoscopic sc
2Ntax , which is much smaller than the localization leng
j of Eq. ~27!, because in the limit we are discussing no
t2/(12t2)5(b/a)2@1. This equal mixing among the chan
nels, happening in the metallic regimeL!j, well before
localization sets in, is the essential property of quasi-1D s
tems. By contrast, in isotropic 2D systems, such as the or
nal Chalker-Coddington model,1 the backscattering mixe
the channels only locally in the transverse direction, a
when the system is at the QH critical point, the value of t
lengthL at which the channels are all equally mixed is of t
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order of the widthW. For such systems withL@W localiza-
tion sets in with localization lengthj;W, so there is no
metallic quasi-1D regime. Such a regime occurs whe
separation of scalesj@W takes place, but only if the dimen
sionless 2D conductivitysxx is large, whereas at the QH
critical point sxx takes on a universal value of order 1. F
the DN model the crossover to 1D behavior occurs
L;L0;C1/2, which is much less than the localization leng
j;C, so a 1D metallic regime occurs.

In quasi-1D wires~see Ref. 24 for a review of the sca
tering approach to disordered conductors!, one starts with the
idea that a wire of lengthL can be obtained by combinin
many short~mesoscopic! building blocks of lengthdL. The
transfer matrixML for the wire is a product of the transfe
matricesMdL for the individual blocks. The parametersxn ,
introduced above, are simply related to the eigenvalue
the transfer matrices. Upon multiplication of the transfer m
trices of the building blocks, the parametersxn perform a
random walk and their probability distribution for the tot
transfer matrix is obtained by repeated convolution of
distribution of xn for the building blocks. Upon taking a
limit, in which MdL→1 as dL→0, the distribution of the
xn is described by a universal FP equation withL a continu-
ous variable; this is the DMPK equation. In our system,
building block is the cylindrical DN of length 2Ntax . There-
fore, the universal properties of the DN model in t
quasi-1D scaling limit should coincide with those of th
DMPK equation, at least whent2/(12t2)@1.

Finally, we want to compare our results with those
Chalker and Dohmen.6 They introduced an amplitude rati
ACD[jCD/C and found that it was equal tot2/(12t2) in
agreement with numerical simulations, while from our E
~27! we find for this ratioA52t2ax /(12t2)at . First, we
should point out that Chalker and Dohmen measured t
L andC in units ofax andat , respectively. This takes car
of the factorax /at . We attribute the remaining factor of
difference betweenA andACD to the different conventions
used in the definitions of the localization lengthj. It appears
from the equations of Chalker and Dohmen that they defi
their localization lengthjCD through the decay of the typica
conductance in the localized regime, as^ lng&52L/jCD,
while we used the more conventional definition, such t
Eq. ~32! holds. Then ourj52jCD, which explains the factor
of 2.

There is one more discrepancy between our results
those of Chalker and Dohmen. From their expressions for
B

a

t
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e

e

f
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ir
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nd
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conductance one finds that the universal number of Eq.~33!
is 22. This may be explained as follows. Chalker a
Dohmen used rescaled parametersnn , introduced above, and
made a conjecture~seemingly based on the 1D model! that
the value ofn1 is the same in the metallic and localize
limits. For the 1D model this conjecture does not hold, as
saw above. If instead of this conjecture Chalker and Dohm
had assumed that thenn’s behave in the same way as in th
1D model, i.e., that (n1)L!j52^n1&L@j , as predicted by our
mapping, their expressions would completely agree with
~33!. We conclude that our results agree with the numerics
Chalker and Dohmen and explain why their heuristic arg
ment works~after factors of 2 are corrected!.

V. CONCLUSION

In conclusion, we have considered the directed netw
~DN! of edge states on the surface of a cylinder. We cla
that, in a certain scaling limit, the DN is equivalent to the 1
supersymmetric nonlinears model and to the random matri
model used before to describe the transport properties
quasi-1D wires. Using the known results for this 1D mod
we obtain a description of the conductance properties of
DN model in this scaling limit. In particular, we give exa
expressions for the mean conductance^g& and the correla-
tion lengthj of the DN model in the scaling limit forany
value of the ratioC/L of the circumference and the length o
the cylinder, Eqs.~26! and ~27!, while expressions for the
variance and the distribution of the conductance may
found in the literature on quasi-1D wires.13,17,23These results
are universal; in particular, they should not depend on
precise distribution chosen for the disorder~provided its cor-
relations are short ranged!. They are valid except for shor
systems withL;L05(Crs /M0)

1/2 or less, which are ex-
pected to behave as 2D chiral metals. In essence, the c
over from 2D to quasi-1D behavior is governed by anis
tropic scaling and hence occurs atL;L0;C1/2, while
localization sets in at larger scalesL;j;C.
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