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Asymptotic behavior of the distribution functions of eigenstate intensities and current relaxation times in
disordered conductors is studied in the weak disorder limit by means of an optimal fluctuation method. It is
argued that this method is more appropriate for the study of rare events in three-dimensional conductors than
the approaches based on nonlineamodels because it is capable of correctly handling fluctuations of the
random potential with large amplitude as well as the short-scale structure of the corresponding solutions of the
Schralinger equation. It also helps to clarify the physical picture of such events in one and two dimensions.
For two- and three-dimensional conductors, the asymptotics of the distribution functions obtained by this
method differ, in some cases significantly, from previously established refsslt$63-1827)00316-0

I. INTRODUCTION tion may have the meaning, e.g., of the current relaxation
time 7,, or the normalized local density of states at the
It has been well known for at least a decafi¢hat a  Fermi energyp(Eg,r)/vq4. In closed samples it can be asso-
complete description of the Anderson localization transitionciated with the local wave-function intensity: V| yg(r)|? of
in disordered mesoscopic conductors must necessarily bgnh energyE eigenstatery is the average-dimensional den-
formulated in terms of the full distribution functions of con- sty of states an¥ is the volume of the sample. One excep-
ductanceg and/or other quantities characterizing the sampletion is thee—" law obtained in Ref. 12 for the distribution

As a consequence, even well into the metallic regime it f wave-function amplitudes ithree-dimensionakamples
should be possible to observe the onset of localization b o Pt . L Pies.
e will discuss a possible origin of this difference in Sec.

studying deviations of asymptotic tails of the distribution
functions from their behavior in the infinite conductance’*" - _

limit. Such a study was performed analytically in Refs. 3 and  1he coefficientsC, in general depend on the strength of
4 within the framework of the nonlinear modef based on  disorder and, fod<2, on the sample size. In the two-
the replica techniqu&lt was demonstrated in Ref. 4 that in dimensional case the calculations basedocomodels give
two spatial dimensions the tails of the distributions of suchC2=Bm*v,D/2 In(LN),*****2 wherepe is the Fermi mo-
guantities as conductance, local density of states, current réentum,D = 3lv¢ is the electron diffusion constaritjs the
laxation times, etc., are all described by rather similar logamean free patlwhich is assumed to be much larger than the
rithmically normal asymptotes—whereas Gaussian distribuelectron wavelengtp: '), andv is the Fermi velocity 8 is
tions would be expected fag— . Recently, Muzykantskii a numerical coefficient which, depending on the symmetry of
and Khmelnitskif proposed a more straightforward and el- the ensemble of random potentials, takes the following val-
egant method to obtain these asymptotes which utilizes thees:8=1 in time-reversal-invariant systenthe orthogonal
optimal fluctuation method in conjunction with the super-symmetry class and 8=2 when symmetry with respect to
symmetric version of the nonlinear model® In a series of time reversal is completely brokefthe unitary symmetry
subsequent publications the method was employed to studstass. In Ref. 13 only the unitary ensemble was considered.
the statistics of eigenfunction amplitudes in weakly localizedWe will argue below that there exist corrections to this value
two-dimensional conductotsind the distribution of the local of C, which may become essential in sufficiently st
density of state$’ An extension of the method to quasi-one- sufficiently clean systems when the inequalitypgL
dimensional and three-dimensional systems was achieved i (pgl)? is violated. Such a situation may be easily realized,
Refs. 10-13. for example, in the experiments of Ref. 14.

The common feature of all the results obtained so far with  In the one-dimensional case all eigenstates are localized,
the use of variousr models is that the large-asymptotic  and the distribution of wave-function amplitudes in a closed
behavior of a distribution functiorP(z) has the following sample has a simple exponential form exglt/V).X® Current
form for two-dimensional §=2) and three-dimensional relaxation timer, in an open sample, on the other hand, is
(d=3) systems: characterized by a much broader logarithmically normal dis-

tribution
P(z) ~exp(— Cq4lnYz). )

In open samples, the argumenbof the distribution func- P(7,)~exp —CqIn?7A), 2
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whereC,=1/2L for a sample of length 2, andA=1/v4V is Our calculations are performed in the limit of the largest
the mean level spacing:'® possible values of the eigenstate intensitiesonstrained

In Refs. 10 and 12 saddle-point solutions of the supersymenly by the conditiont<<V. To determine the low-limit of
metric nonlinearc models were obtained for the three- applicability of the results and investigate their crossover to
dimensional case. However, conventional nonlineanod-  the universal Porter-Thomas distribution, the study of the
els used in Refs. 4, 7, 9, 10, and 12 are low-"energy” fluctuations around the saddle point is necessary. Such a

effective field theories in which the role of energy is playedStudy is in progress, and will be reported elsewhere.

by the diffusion operatobV2. As such they are only appli- .The rest o_f the paper is organized as follows. I|_‘| Sec. Il we
cable to describing phenomena that can be characterized gef!y descrlbe_the method a}nd pre;ent the main result;. A
diffusive—the mean free path is the smallest relevant etailed derivation of the basic equations and the analysis of

length scale in these theories. Formally this is expressed ast%e. saddle point solut'|ons IS deferred until Sec. Mil. Sectlon
requirement that the scale of spatial variations of the fundal-. Is devoted to t_he dISCUS.SIOn of our resuilts and their rel_a-
. . tion to those obtained previously. A short summary and a list
mental variables of the theory—tl‘@ matrlces—must 'be of open questions can be found in Sec. V.
much larger thah. The optimal fluctuations of th® matri-
ces computed in Refs. 10 and 12 were found to vary rapidly
over distances-1 in three-dimensional systems, which made
it impossible to obtain rigorous results. The coeffici€ht A typical wave function in a metallic sample is spread
was estimated in Ref. 10 to be of the order pgk)2. more or less uniformly throughout the sample volume
In an attempt to overcome the limitations of diffusiwe  V~LY, so that its amplitude does not differ much from the
models and account exactly for the spatial variation of theaverage value of 1V anywhere in the sample. In the me-
optimal fluctuation in three-dimensional systems on the scaléallic (or weakly localizediregime such states account for the
of the mean free path, a generalized version of the moddiulk of the distribution of the local density of state&’) or
(ballistic nonlinears mode) was introduced in Ref. 17 and ©f the current relaxation times; in open samples. The
used in Ref. 13 to compute the distribution of current relax-chances of observing anomalously large values of these
ation times. The functional form of Eq1) was reproduced duantities are related to the probability of finding an
in that calculation and a numerical valug9y3(pgl)2 for ~ anomalously localized state.” Such a state would be char-
C, was found. We will argue based on the calculations pre&ctérized by an amplitude reaching a value much larger than
sented below that all the results for the three-dimensiond® average at some pointinside the sample. In what fol-
systems quoted above underestimate the probailiaf oc- Iows.we WI||' concentrate on the distributions of wave-
currence of rare events, with a single exception: in the limitftunction amplitudes in closed samples and current relaxation

Int>pel (which is admissible in the three-dimensional dase times in open ones. Other distributions, e.g., that of the local
Ref. 12 overestimates this probability. density of states, can be more or less straightforwardly de-
In this paper we propose an alternative method for thdived within the framework of the same formalism. It is im-
investigation of the distribution function asymptotics. InsteadPOtant to note that in the metallic regime the same type of
of integrating out the disorder degrees of freedom trah ~ States Is responsible for optimally achieving large values of
looking for a saddle point of the resulting effective field CUTTent relaxation times and wave-function amplitudes. In

theory (the nonlinears mode), we suggest that largebe- the Anderson insulator. r(_agime, typified by purely one-
havior of the distribution functions is governed by a saddledimensional samples, this is no longer true. While the states

point of the original theory based on the Saflirger equa- responsible for long current relaxation times do have a peak
tion for a particle in a random potential. The distribution IN the bulk of the sample, they are not the same states that

functions are expressed as functional integrals over botqominate the distribution function of eigenstate intensities
electronic degrees of freedom and realizations of the randorive€ Pelow, Sec. Il A _ _

potential. The saddle points of these functional integrals cor- 1 ne Problem can be formulated in the following way. Let
respond to optimal fluctuations, i.e., the highest-probability!S consider a sphericdin three dimensionsor a disk-
configurations of disorder that let the electronic eigenstate§haPedin two dimensionsconductor of radiu., and com-

at a given energ¥ have the desired property—for example, pute the probability that an e|gen_sta&eof energyE (Wh'Ch_

an anomalously large intensi| e(r)|2 at some point. In we take t(_) be equal to the Fermi enerfgy) h_as an ampli-
our view, this approach possesses the advantage of beisﬁd@de_vt/\_/ in the center of the sample £ 0), witht>1. The
applicable to systems of arbitrary dimensionality, as well a istribution of .the disorder potential is assumed to be uncor-
being able to take into account nonsemiclassical effects. It j§elated Gaussian,

also conceptually simpler, and makes the physical origin of

the results much more transparent. In many respects our ap- WIUN)]=N, ex;{ _ m’de Uz(r)dr), 3)
proach is similar to the ideas utilized in Refs. 18 and 19 to 2

study the tails of the density of states in doped semiconduc- . o .
tors. We were able to reproduce the generain- Inz be- where A, is the normalization constant andis the mean

havior of the distribution functions fa¥=2 and 3 as well as free time. Such a probability is then naturally expressed as

the log-normal form of the distribution of the current relax- P(1) = (V| (0)|>— 1))y , (4)
ation times ford=1. In the two- and three-dimensional cases

we obtain values for the coefficien®, [see Eq.(5)] that  where( ) denotes the averaging with the weightover all
differ from their previously published estimations. possible configurations df, and(r) is the solution of the

IIl. ASYMPTOTES OF THE DISTRIBUTION FUNCTIONS
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Schralinger equation with the Hamiltoniakl =H,+U(r)
and energyE. Ho:ﬁzl(Zm) is a Hamiltonian of free par-

ticles with a massm, and p is the canonical momentum
operator.

The requirement thaE must be an eigenvalue éf was
enforced explicitly in Ref. 9 by introducing the correspond-
ing & function into the definition ofP. In the alternative . 5
approach proposed here—the direct optimal fluctuation =
method—this requirement is easier to impose, if necessary;
at a later stage in the calculations through appropriate bound==’
ary conditions for the saddle point equaticfis.

Rewriting Eq.(4) as a constrained functional integral and
introducing Lagrange multipliers to enforce the constraints
(see Sec. lll for detai)s one can demonstrate that the result- -5
ing “action” A possesses a saddle point, and the leading
contribution to IrP(t) is given by — Ay, the value of the
action at that point. With exponential accuracy the results for L. 0 v v v 0 10 000 0 1)
the distribution function of eigenstate intensities are 0 pr 5 10 15 20

P(t)~exfd — x(pel)Int]  (3D), (53
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FIG. 1. Profile of an optimal configuration of the potential in
Int three dimensions as a function of the radial coordinate.

0 (Fig. 1) such that the whole structure supports a narrow reso-
where « is a number which we estimate as<30°3. The hance in thes-wave channel. Anomalously large values of
length scaler, in Eq. (5b) is of the order of the electron t are achieved by combining this local resonance with Bragg
wavelengthps*. In two- (2D) and three-dimensiongBD)  reflection at larger distances. _
conductors anomalously long current relaxation timesn The role of local resonances in producing large values of
open samples are due to the states which are also charactéfor anyd in the interval 2<d<4 can be illustrated by the
ized by anomalously large intensity somewhere in the following simplified version of the direct optimal fluctuation
sample. As a result, asymptotic behavior of the distributionmethod. Let us approximate the shape of the resonance
of 7, has the same form as E¢p) with 7,A in place oft ~ Producing potential asu(r)=U,6(r—a)6f(b—r), where
[Egs.(40) and(58)]. In contrast, in the one-dimensional case 6(r) is the step function, and, and b are optimization
the states responsible for these two effects have differerf@rameters: The constant is determined from the condi-
structures leading to different probability distributions for tion that there is only one resonance in the potential well and
and 7, (see Sec. Ill A below it has a given energie [a~pg*=(2mE:)~2]. The wave

In both two- and three-dimensional cases, our answerBinction of the resonant state in such a potential exponen-
have a differeni dependence compared to the results oblially decays in the intervah<r <b (for Uo>Eg). Assum-
tained in Refs. 4, 9, 10, 12, and 13. In the three-dimensiondhg that the amplitude of the wave function for>b is
case IrP is proportional to thdirst power of pgl, while all  close to its average value W, we can estimate
the results derived from the nonlinearmodel in three di- t=V?(0)~exp2y2m(U,—Eg)(b—a)}. Anticipating the
mensions lead to apgl)? dependence. Sincgel>1, Eq. final resultb~pgllnt, we can neglect in the exponent. We
(59 indicates asubstantially increasefrobability of observ-  then have
ing a rare event as compared to the previous resut.

P(t)~exp( —w2v,D

Similarly, in the two-dimensional case the logarithm in U ~E +i(|”_t)2 @
the denominator contairls/r instead of theL/l established 0" F " 2m\2b)
in Ref. 4, and reproduced with minor modifications in Refs.
9, 10, 12, and 13. This difference leads only to small correcf’md' fora<b,
tions, unlespeL becomes of the order opgl)?. TYgT TgT

These asymptotes correspond to the optimal configura- A= 5 fUz(r)dr: 5 Vduébd, (8
tions of the potential(r), which are essentially Bragg mir-
rors, where Vy=#%T(d/2+1) is the volume of a

. d-dimensional sphere of unit radius. Substituting &g.into
U(r)e S|:12_plpr , ©) Eq. (8) and minimizing with respect tb, we find
4—d 1/2

asr—o, Ther—0 behavior is more complicated. In one- b=pEl(H) Int, 9

and two-dimensional systems the»0 region does not con-
tribute to IrP in the leading in Inorder. In three dimensions and it then follows that)o=4Er/(4—d). The resulting es-
the shape of the optimal fluctuation at small distances is &imate for the asymptotic behavior of the distribution func-
narrow potential well surrounded by a wider potential barriertion reads
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P(t)~exp{ — Kq4(pgl)In%t}, 10
(t) ~exp{ — Kqy(pel) Int} (103 Nw[u]f DY) S(H-E)y(r'))=1. (13
1 1\9°1 ¢ \@-dr2 :
Kdzﬁ(ﬂ (m) V3. (10b  Introducing auxiliary variables¢(r) and N\ associated, re-

spectively, with the first and the secomdfunctions in Eq.

In the three-dimensional case Emo) differs 0n|y by a num- (12) enables us to represent the distribution function as un-
ber from a more rigorous estimate quoted in Ep), sug-  constrained functional integrals

gesting that local resonances indeed play an important role in

the three-d.imensional case. A; it should bg, the coefficient P(t):NuJ DU(r)J\Q,f Dlﬂ(r)f D(&)

K3~0.032 islarger than  since it would be nae to expect 2m

a box-shaped potential to be optimal. ™

In the two-dimensional case, large valuestofre not X | ——e AU (149
optimally produced by local resonances: according to Eq. 2m
(5b) the coefficient in front of IA is proportional to
[In(L/ry)] "%, i.e., it depends on the sample size.

The hypothesis that log-norméh one and two dimen-
siong and expE C4lnt) (in three dimensionsasymptotics of
the distribution functions may be produced by Bragg reflec- .
tion locking the states irfor out of) certain regions of the _'J dr x(r)
sample was put forth by Muzykantskii and Khmelnitskii in
Ref. 13. They explicity demonstrated that in a one-

dimensional sample of lengthL.2an electron of energie The next step is to make a saddle-point approximation in

can be trapped for a timg>1/A by a potential of the form £, (144 " utilizing the fact thatt is large. The stationarity

U(x) =[peIn(rA)/mL]cos(ZexX). Such a configuration ap-  ongition for the action Eq14b) leads to the following set
pears with the probability of equations:

AL N 1= T ar Uz -V

A2

p
ﬁJrU(r)—E) W(r).

(14b

I —ij =
P(Tr)NeXF{_ZInz(TrA)>, (11) 71-VdTU(r) 'X(r)'ﬂ(r) 01 (153)
02
which is the same as the log-normal long-time asymptotics p—JrU(r)—E) Y(r)y=0, (15b)
of the exact solution for the conductart€eOur results are 2m
consistent with this hypothesis in higher dimensions. .
The most unexpected feature of our results is the fact that p _
a single configuration of the potential, i.e., a single compact om U(N—E |x(n=—-2xVta(r), (159

region of the configurations space, seems to be responsible
for the tails of the distribution functions. The alternative V|¢//(O)|2—t=0. (150

would be for a large number of more or less equal-weight

configurations to be able to produce the required wave funcl? deriving the saddle-paint equations we neglect thele-
tion amplitude t/V, and the total probabilityP(t) would ~ Pendence of the normalization constavif. The reasoning
then be given by the sum of the weights of these configural-ead'ng to this approximation is explained in detail in the
tions. An argument against such an alternative is the fact thdtPPendix. . , ,

the results obtained by simply singling out the most probable Be€low we will investigate only those solutions of Egs.
type of configurations can lead to higher probabilitisig- (15 which possess full rotational symmettgr reflection

nificantly higher in the three-dimensional castean the Symmetry in the one-dimensional casgvhile it is likely
o-model resul®®3 which correspond to a sum over all that even for rotationally invariant boundary conditions there

configurationg? exist solutions which break this symmetry, we will assume
that they are not optimal, i.e., that they correspond to extre-

mum points other than the global minimum df The mean

lll. DIRECT OPTIMAL FLUCTUATION METHOD free time enters these equations only throughstlrgr factor

In order to enforce the condition that in Eq. (4) is a in Eq.(153. It can be absorbed into redefinitionsfr) and

solution of the Schidinger equation we rewrite E@4) for- A, and therefore the above assumption does not depend on
mally as the disorder strength.

Eliminating y in favor of U and ¢ and switching to di-

mensionless variables(r) =U(|r|)/Eg, r =pg|r|, we arrive

P(t)=f DU(r)W [U(r)]/\/‘lp[U]f Dy(r) (in the absence of magnetic figldt the following system of
equationgprimes denote differentiation with respectrip

<IT 8(H=E)g(r)s(vw(0)]>~1), (12 y(r)=In"[r@=D2yr)7, (163

where N,[U] is a U-dependent normalization constant de-

1
' 2 —
fined by Y (1) +yA(0)+ 32802+ 1=0(1), (16D
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2y(r)[rd*1u(r)]—[rdflv(r)]’=)\_, (160 Returning to the problem of specifying a set of conditions
for Egs.(16), we see that Eq160¢) is a generalization of Eq.
where (20). \ plays the role of an eigenvalue, so we can formally
2int pe supplement Eq916) with A’ =0, increasing the number of
- F

e, (17) equations to four. The following set of conditions must be
mvyT EESy imposed on this system of equations.

442 is the Kronecker symbol, anfy=dV, is the area of a First, a boundary condition is provided by Hd5d),

d-dimensional sphere of unit radius. 12
Equations(169 and (16b) together are equivalent to the ¢(0)=<—) . (219
Schralinger equation for the radial part of the wave function, v
while Eg. (16¢) provides the connection between the waveThe normalization requirement
function and the potential that is necessary to achieve a given

value oft at a minimal “cost” in terms of the weight func- L eia 12

tion W. \ can be viewed as a parameter effecting a Legendre Sdfo rerdrgt(r)=1 (21b
transformation of4, so (\,t) or, alternatively, {,Int), form

a pair of conjugate variables. provides the second condition.

It follows from Eq. (160 that X must be real, so the Another boundary condition is derived from regularity re-
saddle-point value of is purely imaginary. The saddle-point guirements or(r). Sincev(r) can have at most a square
action A, is expressed in terms of the solutiofr) of Eqs.  integrable singularity as—0, it follows that, in three di-

(16) as mensions,
T EE (L, lim (\ry' (r))=0. (210
O:T Ed'SdJ'O r vo(r)dr. (18) r—0
F

In two dimensions)’ must be finite at =0, and for a one-
The choice of boundary conditions to Eq46) is not  dimensional system the corresponding requirement is
entirely straightforward, and we would like to motivate it by ¢’ (0)=0. Finally, a fourth condition may be provided by
appealing to an analogy with ordinary one-dimensionalanother boundary condition ap, e.g.,
Schralinger equation. In the variational formulation of quan-
tum mechanics the Schiimger equation appears as a sta- P(L)=0. (210
tionarity condition for the functional
However, the problem of minimizingd is not solved

L . N uniquely by the set of equatior46) together with condi-
F=E+ o dx ™ (x)(H=E)¢(x), (19 tions(22). As in the ordinary quantum mechanical case, we
are faced with a family of solutions only one of which actu-

whereH is the Hamiltonian andE is the particle energy. In ally corresponds to the absolute minimu#y of the action

Eqg. (19, ¢ must satisfy two boundary conditior®.g., A. Finding this “ground-state” solution requires a param-
¢(0): lp(L):O] and also the normalization condition etrization of the whole discrete fam”y of solutions which
[5dx|#|2=1 which follows from varyingZ with respect to ~ Presents a difficult task. It can nevertheless be somewhat
E. The overall number of conditions for this second-orderSimPlified by employing the following observation. For large
equation is three, which makes the problem overdefined. A§N0UghL the set of solutions of Eq$16) may be approxi-

a result, solutions exist only for a discrete set of values off@tely considered continuous. It is then possible to replace

E. One of these values would correspond to the ground stafgPndition(21d with a free boundary condition. The result is
and thus to an absolute minimum &f while the rest would that the family of allowed solutions now admits a continuous

simply correspond to its stationary points. In thesc limit parametrization, simplifying the task of determining the

the set of allowedE values becomes infinitely dense, so thatMinimum of the functionald. In practice this parametriza-
E effectively becomes a continuous variable. tion depends on the dimensionaliyof the sample, and we

An alternative way to look at the Schiinger equation Will consider the cases af=1, 2, and 3 separately. Employ-
(often useful in numerical calculatioifs is to considerE as ing a continuous parametrization which effectively corre-

an extra unknown function satisfying a trivial equation sponds to relaxing the boundary condition Ezld means
not enforcing the condition th&g is an eigenvalue of the

Hamiltonian. As was already mention&tsuch an approxi-
&E:O. (20 mation leads only to errors that are beyond the exponential

accuracy of the optimal fluctuation method. Such errors can
One then has effectively three first-order equations with thregherefore be safely neglected.
extra conditions imposed on them. However, now these The general formalism presented above can be easily
equations are nonlinear, and the three conditions do ndnodified to describe the distribution of the current relaxation
specify the solution uniquely. Rather, there exists a family oftimes. A crucial feature of this method is that it is not nec-
solutions corresponding to various quantum states of the sygssary to include the term proportional Xointo the action
tem, one of which minimizes the function&l Again, in the A from the very beginning. Without it, the right-hand side of
L—oo limit the family of solutions becomes continuous. Eqg. (150 is simply equal to zero and reappears in Eq.
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(160 as a constant of integration. The particular require-according to Eq(16a), y is simply the logarithmic derivative
ments on the wave functiogr with respect to which the of the wave function whed=1.

action 4 is minimized are all hidden in the set of conditions  Eliminating v(x) and integrating once, we arrivdor
Egs.(21). To compute the distribution of the current relax- x>0) at

ation timesr, in the saddle-point approximation, one only _

has to modify the conditions set in Eq&1). Their explicit (y)?=(y*+1)*+\y+C. (25

form depends on the geometry of the sample and eXtem%FreC is a constant of integration which parametrizes the
leads, and has to be established separately for samples &ationary points of4 as described at the end of Sec. Il A.

different dimensionality. Its value is fixed by a minimization procedure which is for-

. . ) mally expressed as
A. One-dimensional wire

We consider first a purely one-dimensional disordered AoszinA(C). (26)

wire of length 2.>1. Exact results for this case obtained in
Refs. 15 and 16 make it possible to use it as a "laboratory functions, it is sufficient to make a perturbative expansion in

for testing our method. From the computational point Of)\ andC in order to recover the leading order dependence on
view this case is simpler than those of the two- and three- 9 P

dimensional conductors because the solution of E.can """ Rewriting Eq.(25) as
be written in a closed form. For any typical realization of the dy
random potential all the eigenstates are exponentially local- dx=— ROV
ized in the one-dimensional case with a localization length )
being of the order of the mean free pdthThis fact intro-  we obtain the period of the wave-function oscillations
duces complications which are absent widenl and disor-
der is weak. In the metallic samples in higher dimensions T=2Jm ﬂ
(see below, Secs. Il B and IlI)he same type of “anoma- _»R(Y)
lously localized states” is responsible both for very large ) ) . )
eigenstate intensities in closed samples and very long curreAf'd the logarithm of the ratio of the wave-function ampli-
relaxation times in open ones. In the Anderson insulator refudes atx=0 andx=L:
gime, however, the states responsible for these two effects (0) L= ydy
are rather dissimilar. Ing=In—= =2— 7
(L) TJ-= R(y)

We assume that the length of the sample corresponds to an
An anomalously long relaxation time, is due to the integer number of periods. Therefore, sind®)=0, it also
states whose amplitude is suppressed at the edges of th§llows thaty(—L)=y(L)=0. The relative error introduced
sample beyond the typical vales -/ . With the normal- into Eqg. (29 by neglecting the fractional part df/T is
ization integraIszELll//(x)Fdx set equal to 1, the relax- O(1/L).
ation time in the regime,A>1 is inversely proportional to Expanding the right-hand side of Eq®8) and (29) in

Although Eq.(25) is exactly integrable in terms of elliptic

R(y)=V(y?+1)%+\y+C, (27)

(28)

(29

1. Distribution of current relaxation times

the eigenstate intensity at the edgés, both A\ and C, we obtain —7A/8=(T/2L)In# and
1 T=27+0(C). For actionA we then find from Eq(18) to
the lowest ordefwith Sy=2)
A~ —5—. 22 d= <)
Since exponentially large changes in this intensity lead only A= 7TV17'—F %(FnL 3C?). (30
to algebraic changes in the intensity of the same state at its Pr
maximum, we can choose the ratio It is thus obvious that, at least to the lowest order in, the
minimum of A is achieved wher€=0. Combining the re-
_ ¥(0) (23) sults for the asymptotic tail of the distribution function with
(L) exponential accuracy we obtain

as a parameter of the distribution function instead-ofas- )
suming that the state is peakedxat0). With exponential P( 0)~exp[ — Tlnze}. (32)
accuracy, minimizingd with 7, fixed is equivalent to mini-

mizing with 6 kept fixed, and the Jacobian of the transfor-  From Eq.(169 and the fact that the change in the wave-
mation from¢ to 7, gives only a prefactor. function amplitude over one perioincrease forx<0 or
The system of Eqg16) takes the form decrease fox>0) does not depend ox, we deduce the
5 , exponential form of the wave-function envelope
v(X)=1+y“(x)+y'(x),
l/,(x)ocef(lxllL)lné}‘ (32)
Equation(22) now gives ImA=In¢?, and the distribution in

wherex is the dimensionless coordinate along the wire, ancEq. (31) is seen to coincide with the exact answer of Alt-
primes denote differentiation with respect o Note that shuler and Prigodin®

2y(X)v(X)—v" (X)= X sgrx, (24)
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The applicability of the above formula is restricted to the bution to the normalization integral comes from the central
regionL/l <Inm,A<pgL. Here the first inequality ensures that bump. This assumption is valid & B<¢&/I or B~In(l/¢).

the localization lengti./In@ is smaller thar, while the sec- ReplacingL with B¢ in Eq. (30), for the logarithm of the
ond inequality is necessary for the validity of the expansiondistribution function we obtain IA=— 214%(0)In(l 42(0)).

in A andC. This estimate gives a somewhat faster decayPdhan the
This model calculation can be used to illustrate the fol-exact result 1= —412(0).' This is not surprising since,
lowing points. First, to the lowest order iy we have as was explained at the beginning of this subsection, typical

configurations which lie beyond the scope of the saddle-

A point equations play an important role in the one-
y(x)=cot(x+ <P)+ZSin2(X+ ®), (33 dimensional case.
Note that the configurations which dominate the distribu-
whereg is a phase shift, and tion of relaxation times produce large values of eigenstate
_ intensity with a much smaller probability than the “doubly
v(X) =3\ sin2(x+ @), (34)  localized” structure just described. Indeed, for these con-

so the shape of the optimal configuration of the potential isf;%"g[gfszw iﬁ\i\g)} Ob\t,sr']?ch¢ ((i)s)_lnntiltlj_c,:h Ie%dslgg tr:gn

indeed a Bragg mirror._

Second, the sign of is opposite to that of I, so nega- exp(—21yA(O)Inll /(0)]}
tive values of\ correspond to the wave-function amplitude
decreasing from the center of the sample outwards. The same
will hold true in two and three dimensions. The amplitude of In the absence of localization, even states whose wave
the oscillating potential is constant throughout the sample. Aunction is strongly peaked somewhere in the interior of the
similar observation was made in Ref. 13: in a one-sample have the dominant contribution to the normalization
dimensional wire the gradients of the supersymmetric denintegral come from the bulk of the sample rather than from
sity matrix corresponding to the optimal solution were foundthe vicinity of the peak. This statement ceases to be correct

B. Two-dimensional conductors

to bex independent. only whent reaches the values of the order\6f-L%. Thus,
o _ _ 3 for states witht<<V, the normalization integral is indepen-
2. Distribution of eigenstate intensities dent oft. Such states do not contribute to the\>1 tail of

The amplitude of a typical localized state in its domain ofthe distribution of the relaxation times because their intensity

localization is 1{/1>1/2L. It is not sensitive to the details &t the boundary is close to the typical value 47 _

of the structure of the random potential outside this domain, FOr states which are peaked so strongly at some pgint
Thus, to increase the amplitude of such a state beyond tht_gat the no_rma_llz_a_non |nte_gral_|s d_omlnated t_>y the contribu-
1T value, it is enough to adjust the random potential insigdions from its V|C|n|.ty the slltuatlo_n is reversedis always of
this domain to achieve a “doubly localized” structure of the the order ofV, while the intensity at the boundary can be
state: starting from the center of the domain it would decaya2de smaller than ¥/leading tor,>1/A. In both regimes
first with an exponent &1/, and then revert to a typical "€ quantityf defined similarly to Eq(23) as

1/ decay?® Such a structure in principle cannot be described

by the saddle-point equations alone, because it requires com- ¥(0) #(0)

bining an optimal fluctuation inside the central “bump” with = \/Ezp(L) = L@ D21 ) (36)
typical potentials elsewhere in the sample. Nevertheless an

estimate of the distribution function can be obtained by solvseryes as a convenient parameter of the distribution function.
ing the saddle-point equations in the region corres_pondlng tthdeed, eithery(L) (in the first regime or w(0) (in the

the central “bump” (whose size must be determined self- gecong regime stays constant and becomes a convenient
consistently and matching the solution to the expected typi-« otarance point.” The factol. ~92=1//L is introduced

cal exponential decay outside this region. Note that such % cancel out the overafl(~972 dependence of rotationally
solution redistributes the weight of the wave function inSideinvariant wave functions inl dimensions is always large
the sizel region of the sample around the bump, but Ieaves[n the asymptotic regions 1 '

theT(re]xponetntlfellI)talls outsgje almct)s(tj Ltl)na:‘;‘]ecged. . E In dimensions higher than one the system of equations
€ central bump can be created by Ihe Bragg mirror q(16) cannot be integrated exactly in terms of the standard

(34 Wh'(f\h ?>f<te|;1dstov§r :jhet reg!ondo:‘ ?'28\%} wtr;]erela IS ¢ functions. Nevertheless, numerical methods combined with
a numerical factor to be determined later. We then have 1o, q asymptotic analysis allow us to investigate fully the be-

the rejatwe change of the wave function amplitude over hal avior of its solutions in various regimes. In two dimensions
a period, the solution can be obtained as an asymptotic expansion in
| (%)) =y dy Mr. The values ot for which this expansion breaks down
Inmz W (35 turn out to lie close to the limiting value'L?, and are thus
- not very interesting. The leading terms of the expansion of
This change must be equal to times the inverse localiza- (") are

tion length & This gives|\|=8/£. On the other hand, the =
wave-function amplitude at the origig(0) can be esti- N .
mated as ¥ under the assumption that the dominant contri- v(r) 2rSIn(2I’+2(p)+ rSInz(r+<P)' (37)
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In this expression; is a constant of integration which plays the fact that in order to describe this saddle point exactly one
a role analogous to the role @ in the one-dimensional has to include short-wavelength degrees of freedom which
case—that of a minimization parameter. Just as in the oneare neglected in the derivation leading to themodel.
dimensional case, the minimum ofl is reached when The second difference may turn out to be an indication of
7=0. We will give a perturbative proof of this statement at a deeper problem. Our calculation is performed explicitly for
the end of this subsection. With=0 the asymptotic expan- the case when there are no perturbations breaking the sym-
sion of y(r) has the form metry with respect to time reversal. Nevertheless, the nu-
merical coefficient in the exponent coincides with the answer
. obtained in Ref. 12 for thenitary case 3=2), when the
y(r)~cotr+¢) +Esm2(r te). (38 symmetry with respect to time reversal is completely broken.
In order to see what effect violation of time-reversal invari-
Integratingy(r) in the sense of the principal value, we ance would have in our approach, we explicitly introduce
obtain magnetic field into the system of equatiofi£). Choosing
) |ﬂ L the direction of the fieldH along thez axis(p?rpendicular to
_ M b the two-dimensional sampleand writingA=3HXr, we can
Iné= Pfroy(r)dr+ln01~ 8 Inro Finy, (39 immediately see that under the assumption of circular sym-
. , . metry of the solutiony, only the terms quadratic iA sur-
where the length scalg, at which the asymptotic expansion \ive For weak enough fieldslL?< ¢, (where &, is the
breaks down is defined ag~max(1|\[), and In9, repre-  magnetic flux quantuinthese terms can be neglected be-
sents the contribution to the integral from distancesr,. cause they only lead to exponential decay of the wave func-
This contribution can always be neglected with logarithmiction on a scale larger than the sample size. Thus the set of
accuracy. Inverting Eq(39) we obtain|\|=8Ind/n(L/ry).  equations(16) is unchanged. On the other hand, the fields of
The dimensionless integral in the saddle-point actiorthis magnitude are sufficient to suppress the Cooperon con-
fgvzr dr evaluates to 8 f¢/In(L/ro), and we find tribution in the o-model calculation, leading to a crossover
between the orthogonal and unitary symmetry classes.
, In%(6?) Therefore our calculations reproduexactly the o-model
P(0)~exp — VZDm .
unitary symmetry clags but they predict daster decay of

answer in the case of broken time-reversal invariafthe
The envelope of the wave function corresponding to thehe distribution function at large (or 7,) in the orthogonal

(40)

solution described by Eq37) is case.
It well may be that in contrast with the unitary case the
$(0) Jnalin(Lro) 41 optimal fluctuations in th& -invariant two-dimensional sys-

Pr)~ \/F (rofr tems are not rotationally invariant, and correspond to action
that is one-half of the action for the best rotationally invari-
where we have approximategdr oi(ro)~ #(0). Forry~1 ant fluctuation leading to Eq40). However, before the ex-

the error introduced by this approximation leads only toistence of such solutions of Egl5) is demonstrated, it is

O(1) corrections to the large logarithmtln impossible to exclude a possibility that themodel ap-
The normalization integral proach to the statistics of rare events in two-dimensional sys-
) 2 nglin(Lirg) tems is not completely reliable. We believe that this issue
N=2w¢2(0)f dr(r—°> 42) deserves further consideration. S _
To complete the derivation of the distribution function

o ) ) presented in this subsection, we outline the proof of the state-
has two distinct regimes. Wheff is greater tharlL/ro the  ment that7=0 is the optimal choice. The solutiop of

integral is dominated by small distances, and the dependengguationg15) can be written as
of t on # is weak. In this regimg has a value close to
mL?, and Ing? is identified with In;A, so that Eq.(40) de-
scribes the asymptotic behavior of the distribution of relax- A(r)
ation times. P(r)=—=sinr+e(r)].
In the opposite case we havid=27y?(0)rgLl ¢/ r
(1—a), wherea=Iné’/In(L/ro). Up to irrelevant constants
we then have l=In#?, and the distribution function acquires Unlike the 7»=0 case, the phase does not have a finite

the form of Eq.(5b). limit as r—. The logarithmic derivativg/(r) of the ampli-

These results have essentially the same form as those ofrde functionA(r) can be expanded in an asymptotic Fourier
tained in Refs. 4 and 11-13 using themodel formalism.  geries of the form
This fact suggests that both the approach employed here and
the saddle-point solution of the model representhe same
saddle point of the underlying theory. 1 *

They differ, however, in two important aspects. First, the ~ y(r)~ >, r_”[ Yo+ 2 Y& cosm[r+e(r)]
logarithm in the denominator is cut off at distancesl n=1 m=1
(wavelengthp;1 in conventional unitsrather than at ~1,

as in Ref. 12. We believe that this difference simply reflects +y§ﬁ)’m>sinm[r + @(r)]}] . (43
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Substituting Eq.(43) and a corresponding expansion for Finally, in the third region, where the/r? expansion works,
@'(r) into Egs.(15), we find thaty, )= N/8 is independent v (r) has the asymptotic form
of the constant of integratior. Integratingy(r) overr we
obtainy(; gIn(L/rg), and therefore the relation betweergIn )\_sin(2r+2¢>) SIrA(r + ¢)
and \ established in Eq(39) is also 5 independent to the va(r)~3 2 R
leading order in\. On the other hand, adding the term
(mlr)siré(r+¢) to v can only increase the value of the inte- The constantsy and ¢ in this expression are analogous to
gral [5v?r dr because the cross-term in the expansion of theheir counterparts in the two-dimensional case. The phase
square integrates to zero. It then follows that the minimum ofvariable¢ again has the meaning of the wave-function phase
the integral for a given value of is achieved by setting shift; it is finite due to the rapid decay of the potential at
7=0. Note, however, that, as in the one-dimensional casdarger irrespective of the value of. Constantsy and¢ are
this proof is perturbative: it relies on the possibility to ex- not independent: they both can be regarded as functions of
pand the solutions in powers afr. c. Either 5 or c can be chosen as a minimization parameter.
We have not been able to establish the analytical depen-
dence n(c); however, based on a numerical analysis the
. . . qualitative features of this dependence can be described as
In_the three-dimensional case, it can be demonstrated selfy|ows. For a given there exists a critical valugy(\) such
consistently that large values bfcorrespond to large nega- tha if c>c,, the third (oscillatory region never develops.
tive values of\. As a result, there exists a range of values ofinstead,v(r) exhibits a singularity at some finite value of
r where expansion in/r4~1=\/r? is impossible. A typical r, leading to a divergent integral iy, So the values
solution which was obtained numerically using the so-callecc>c, correspond to unphysical solutions. Exactly at the
relaxation methotf is shown in Fig. 1. One can distinguish critical value c, the oscillations are also absent, and
three asymptotic regimesi) r<r, (i) ry<r<<r*, and(iii) v(r—w)~1+\?(4r?. For slightly smallec, 5(c) is large
r>r*; it will be shown below thatr;=1/A and and positive &|\|), and the oscillations appear only after a
r* = v/|\|/2. The first region corresponds to a potential well,more or less protracted intermediate regime in which
and the second one to a potential barrier. Taken togetheo,(r)~1. An estimate of the point* at which the onset of
these two regions support a resonance instiieave channel the oscillatory behavior occurs can be obtained by noting
at the energyEr. However, besides a potential-well— that the oscillations of (r) are driven[through Eq.(16)] by
potential-barrier combination, resonant scattering can be alsoscillations of the wave function. Therefore the amplitude of
caused by a weak periodic potentidragg reflection and  the oscillations in Eq(47) cannot significantly exceed 1, so
that is what the third region corresponds to. An interestingas to preserve the oscillatory—rather than exponentially
consequence of the solution presented in Fig. 1 is that thdamped—behavior of the wave function. This requirement
optimal way to achieve large values toin three dimensions leads to
is to combine the two effects in the “right” proportion.
Analytically the three regions in Fig. 1 are described by 1 —
the following asymptotic formulas. In the first regidat r*~—(\2+ )V (48)
smallr) v(r) behaves as V2

1

r3)

(47

C. Three-dimensional case

(44) As ¢ decreases further; monotonically decreases as well,
eventually covering the wholet(e, —) interval.

wherec is an arbitrary constant which cannot be determined When % is positive or small negativer= —|\|), the be-
from the boundary conditions E¢R21). Note that the singu- havior ofv(r) andy(r) in the regiongi) and(ii) depends on
larity is weak enough so that it produces only a finite contri-» (or c) only very weakly so that this dependence can be
bution to the saddle-point actiody. The behavior of the ignored in computing the contribution of these regions to
wave function in this regime is given by A. Larger negative values aof start affecting the length of
region(ii), and may lead to an emergence of a hybrid regime

01(1)~Nr+A2Inr + (1+c+ 5\2),

1 — .= in which v oscillates nonharmonically with an™** enve-
y(r)~F+§7\+3)\ r Inr+cr, (45) lope.
In what follows we will assume that similarly to the two-
which corresponds to dimensional case the minimal valug, is achieved by set-
_ ting =0, even though the breakdown of the asymptotic
(r)=~¢(0)[ 1+ \r/2+O(r?Inr)]. expansion in\/r? at small distances makes it impossible to

— construct an analytical argument for this statement analogous
The expansion in E¢44) breaks down for ~1/]A|, which  to the proofs for one- and two-dimensional systems. This
gives the approximate value fog. In the second region the assumption is borne out by numerical analysis. It is certainly
solution can be obtained with the help of the semiclassicapbvious that positive values of can never be optimal be-

approximationy?(r)~wv(r), and the result is cause of a corresponding “costly’~ 1 region. As for large
_ negative values, they are ruled out by the fact that a pro-
IN| 2B nounced “hybrid” regime never appears in numerical solu-
va(r)= 2r2 (46) tions. Settingy=0 reduces Eq(48) to r* ~ y|\|/2.
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With =0, bothuv,(r) andv;(r) reach values-1 at
r=r*. While approximation schemes devised for1 and
v<1 break down around*, we can calculate contributions
0, and, to 6= (0)/L (L) = 6,6, from regionsr <r* [(i)
and (ii)] and r>r* (iii) separately. Similarly to the two- and
dimensional case, the factor in the denominator ob is
introduced to cancel the overallrldependence of the wave
functions, which is an artifact of spherically symmetric
boundary conditions.

(i) and (ii) We combine together the first and the secondthe normalization integral is given by
regions because the wave function amplitude does not
change appreciably in the very short region Region(ii)
corresponds to a stretched exponential decay.dhtegrat-
ing y(r)=—+uv,(r) overr from 1\| to r*~/|\|/2, we

obtain

$(0)

Y(r)~ ——exp{~ 3r 2513 (for r—iz<r<r*
(553

13*

z/;(r)~@exp[r*2/4r (for r>r*).

(55b)

N= mpZ(O) +4Le” (132 (56)
When L> 6#? (with more realistic boundary conditions this

inequality will become.3> #?), the normalization integral is

W )\_ dominated by the contribution from regiofiii). Then
Iy~ f | ? ~3r*_ (490 y?(0)x#?, and with exponential accuracy we finally obtain
3
(iii) Using Eq.(47) with =0, we find (1)~ ex{ — z157(pel)In°t}. (57)
N Of course, the separation into regionsir* andr>r* is
N ; approximate. It is possible that the crossover regior*
y(r)~cotr+ ¢)+W5|n2(r o). (50 makes a contribution of the same order of magnitude as the

. . e e 7
The first term in this expression stems from the oscnlauons:[WO asympto'uc regiongii) and ("').' Thus the numbetsg,
~3.2<10°% can only be considered as an order-of-

of the wave-function, while the second one describes the_
q 0) of th y | ; h magnitude estimate of the coeficieaintroduced in Sec. II.
ecreasef)(ﬁ ) 0 tle wave- gnCtlﬁ? enve O%e rom bt € |t must be mentioned that convergence to the asymptotic
center of the sample outwards e second contri Utlc)[Porm of Eq.(57) is extremely slow because of the stringency
Iné, is given by the principal value of the integrfy dr, of the requirement* = Ing >1
13 .

In the opposite regime < 62, 2(0) is close to its maxi-

L
In@ w—PJ r)ydr=r*/4. 51
2 my() (51

Adding the two contributions, we establish the relation

between\ and 6,

12
: (52)

Ino=—r*=—| =

13 13|\
T4 4\ 2

verifying the self-consistency of the assumptjafs>1 made

at the beginning of this subsection.

The dimensionless integral in the saddle-point action i

also evaluated separately in the combined regioresnd ii)
and in region(iii ):

fr*rzuzdr=3r*3=192|n3a [regions(i) and(ii)]
0 13 '
(539

L 32
Jrzvzdr=r*3/2=—ln30 [region(iii)]. (53b)
* 13

mal value~1, and therefore it®¥ dependence is very weak.
On the other hand, similarly to the one-dimensional case,
6% becomes proportional to the electric response time
leading to the distribution of, having a form identical to
Eq. (57),

P(r)~exp — p,:I)In A}

Both Egs.(57) and (58) differ significantly from the cor-
respondingr-model result$?*We discuss the possible ori-

(58)

5‘gins of this difference in Sec. IV.

IV. DISCUSSION
A. General remarks

The main result of the work presented in this paper is that
statistics of seldom occurring events in disordered conduc-
tors can be successfully studied using the optimal fluctuation
method. Previous approaches to the problem have been
based on various formulations of the nonlineamodel, and
they invariably seem to require an extension of shenodel

Both contributions turn out to be proportional to the sameto, and sometimes beyond, its limits of validity.

power of Ing, indicating that local resonances and Bragg re- The success of the model in describing a wide variety

flection play equally important roles in the formation of of phenomena in chaotic and disordered systems can be

anomalously large wave function intensities. Combining thefraced to the fact that most such phenomena are semiclassical

results, we obtain in nature, and are determined by typical extended quantum
states formed by typical fluctuations of the random potential.

56
M 6)~exp{ - 2197pF| In39]. hand, presents quite a different type of problem. The con-

figurations of the random potential that give rise to such

An investigation of the statistics of rare events, on the other
The envelopes of the wave function in the two regions areevents come from a small subset of all possible configura-

(59
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tions. It follows then that there are certain disadvantages asr-model results by analyzing the corresponding optimal con-
sociated with theo-model approach to the study of rare figurations of the potentidl (r).
events. Before proceeding with this analysis, we would like to
(i) First, the assumption that the motion of electrons caraddress briefly the question of the stability of the saddle
be described entirely in semiclassical terms imposes certaipoint described by Eq€15). In the three-dimensional case
restrictions on the types of the potentials over which averagthe dominant contribution to the saddle-point actighy
ing is performed. As follows from the calculations presentedcomes from small distances where the optimal potential is
here, in three spatial dimensions there exists a regiomuch larger than its typical Gaussian fluctuation, and stabil-
r~r* where the solution of the Schiimger equation cannot ity with respect to fluctuations does not pose a problem. In
be obtained semiclassically. As a result, thenodel fails to  two dimensions, however, the outlying regions of the opti-
recognize the existence of this region, and it also missemal configuration, where the magnitude of the potential van-
entirely the local resonance formedratr*. ishes as 1/, must be taken into account. In order to argue
(ii) Second, even when the-model calculations succeed that fluctuations do not destroy the saddle point we note that,
in correctly—albeit implicitly—identifying the relevant dis- although we find it convenient to write the Gaussian distri-
order configurations(as in one- and two-dimensional bution functionWW [U] for the potential in the coordinate
sampley they do not always produce exact answers becausepresentation, it can be written in any orthonormal basis
contributions from the short-wavelength degrees of freedorif,(r)}. A typical amplitude of a dimensionless basis func-
(massive modegseliminated in the transformation from the tion f,, in a typical configurationJ(r) is 1/\/v,D. Let us
fast to slow variables are miss&t. now choose one of the basis functions, $g§r), to be pro-
portional to the optimal solutiom(r) given by Eg.(37).

_ _ _ Using the normalization conditiofidr f%(r)= 1, we obtain
B. Direct optimal fluctuation method

(593

It is not immediately evident, however, that a relatively ¢ (r)~( 1 )1’25|n2r
nave approach based on the direct search for an optimal 0 ain(L/rq) r
fluctuation should be more reliable. In order for this to work,
the probability of observing a large value tofnust be deter-
mined by a sum over disorder configurations which all come
from a single compact region of the configurations space. v(r)~ fo(r).
The potentials forming this reg_ion differ only slightly from Vin(L/rg) 0
some optimal configuration which corresponds to the saddle
point. Although we have not proved in this work that the Thus the optimal fluctuation has a much larger amplitude
saddle point identified here gives the dominant contributiorthan the typical one as long asé[In(L/ro)}/»,D. This con-
to the functional integraL “the preponderance of evidence”dition, of course, is jUSt a natural requirement for the validity
based on the comparison of our results with those obtaine@f the optimal fluctuation methodn?[>1.
using theo-model would indicate that this is indeed the case. It remains to be shown, however, that other components

The starting point of our qualitative analysis is the obser-of a typical fluctuatiorJ(r) (i.e., those orthogonal th,) do
vation that, apart from the difference in the cutoff scale, ournot destroy the saddle point. A rigorous investigation of the
variant of the optimal fluctuation methdthe “direct’” op-  fluctuations around the saddle point defined by EgS). will
timal fluctuation methodreproduces identically in the two- be the subject of a forthcoming publication. Nevertheless, a
dimensional case the-model results for the unitary en- Plausible argument in favor of the stability of this saddle
semble as well as the one-dimensional result for thd0int can be made based on the following observation. The
distribution of relaxation times. In addition, the shapes of theappearance of anomalously localized states due to Bragg re-
wave function envelopes obtained by our method essentiallffection can be viewed as a phenomenon analogous to the
coincide with the averaged envelopes obtained by Falko anemergence of a band structure in a periodic lattice. Therefore
Efetov in Ref. 12(see below Assuming that more than a suppression of this effect by the fluctuations of the random
chance coincidence is involved, it is reasonable to concludgotential is equivalent to the localization transition which
that the optimal configurations of disorder found in this work destroys the band structure in ordinary periodic lattices.
are the same as the ones that are responsible for the saddiBereforeL<L., whereL is the localization length, seems
point of thes model. This conclusion is also supported by to be a sufficient condition for the stability of the saddle-
the fact that our results are not an artifact of the particulaPoint solution in the two-dimensional case.
model chosen here. For example, the distribution function in
Eq. (5b) is unchanged if the Gaussian fluctuations of the C. Asymptotics of the distribution functions
potential have a finite correlation length. Altering the disper-
sion law in the free Hamiltonian also does not change the
basic features of the results, such as the log-normal form of We will now try to use the physical intuition afforded by
the distribution function or the inverse proportionality of the the optimal fluctuation concept to compare thanodel re-
coefficientC, to the logarithm of the system siZ&In other  sults of Eqgs(1) and(2) with the distribution functions Egs.
words, there must exist a correspondence between the sadd®, (31), (40), and(58) derived in Sec. lll. The first question
points of the theory defined by Eq§l4) and the saddle that can be easily answered is why the distribution function
points of theo model. Assuming the existence of such afor the electric response times in the one-dimensional case is
correspondence we will try to elucidate the origins of thelog-normal instead of a power lajv.e., expCyin7)] ob-

and

(59b)

1. One-dimensional case
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tained by a nate extrapolation of Eqil) tod=1.Inone and some features that are not recognized by the estimates based
two dimensions the optimal configurations found in Sec. lllon the purely one-dimensional model. It should be men-
are “global,” i.e., the integration in the saddle-point action tioned, however, that none of the variants of thenodel can
Jv2dr must be extended over the whole sample. In contrasiprovide an adequate description of the effects associated with
in the three-dimensional case the optimal fluctuation, eveiocal resonances, and it is possible that-enodel estimation
with the oscillating tail included, is local, so that the aboveof the crossover scale may not be entirely reliable.

integral converges at large distances. It is well kntiwh

that distribution function tails of the """ type usually ap- 2. Two-dimensional conductors

pear as probabilities of optimal fluctuations confined to a A discussion of the results obtained by the direct optimal
finite volume. Thus, in order to explain the “anomaly” in fluctuation method in the two-dimensional case and their
the one-dimensional case, we have to understand why a locgbunterparts established using themodel formalism has
fluctuation of the random potential necessary to achieve already been presented in Sec. Ill B. Here it seems appropri-
given value ofr; has a lower probability than the global one ate to reiterate briefly the following two main points of that
proposed in Ref. 13 and rederived in Sec. Ill A. A local discussion. First, it comes as no surprise that when massive
fluctuation of the potential leading to a large value ®f  modes are taken into account, the short-distance cutoff scale
would have to be able either to support a narrow resonancg the logarithm determining the system size dependence of
in the bulk of the sample or to suppress the wave functionnp becomes of the order of the electron wavelenggt

near the edges exponentially. Both scenarios require a larggther than the mean free pdttrhis leads, however, only to
potential barrie—to form a narrow resonance in the firsty small relative change in the-model result when the in-
case or to create a classically inaccessible region near tr@]ua”ty peL>(pel)? is satisfied. On the other hand, the
edges in the second one. Assuming, as in Sec. Il, a rectaBpparent ensemble independence of the distribution function

gular shape for such a potential barrier, we can repeat thgsymptotes obtained by our method is puzzling and requires
calculation presented there almost verbatim except that 5qgitional investigation.

must everywhere be replaced byA. We then obtain
InP~ (2/3y3) (pel)In7A. In order for this behavior to domi- 3. Three-dimensional case

< 2 o . . o
nate we must havpelInA<(l/L)in"7A or Derivation of theo model involves linearization of the

(60) spectrum near the Fermi energy. As a result, there is no
intrinsic scale in the model that would relate the amplitude of
However, from Eq(9) we see that the corresponding valuesthe fluctuating potential to the electron energy. The only
of b—which determine the size of this local fluctuation of Scalé is provided by the dispersion of the fluctuations of the
the potentia—become larger than the length of the sampl@otential lérvq7. This limitation of the model does not af-
2L. This is clearly unphysical. Thus despite a slowgde- fect the computation of prpbabllmes of typical events, or of _
pendence of the probability of local resonances, the sam@® averages that are dominated by such events, because typi-
value of 7, has a much larger probability to be produced bycal potentials are small compared to the Fermi energy. How-

an accidentally formed Bragg mirror for all reasonable val-8Ver: & probl_em arises when rare large-amplitude fluctuations
ues ofr, . of the potentiald(r) become dominant. The model cannot

Note also that ImA~peL corresponds tov~1 (or detect the existence of classical turning points around which
U~Eg), which invalidates the perturbative expansion ofN€ Semiclassical approximation breaks down. Thus a pos-
Sec. Il A. Essentially, the values of 4 of the order of sible explanation of the log-normal distribution obtained in
peL or larger correspond to a trivial case: a sample is insuR€f- 12 for three-dimensional systems is that, within the
lating because the potential is larger tHap almost every- 2-Model approach, the classical turning point rat is
where except for a small island in the center where almost amlssed,_ ar_ld the Bragg mirror is effectively assumed to per-
the weight of an eigenstate & is concentrated. In this sist until distances of the order of the mean free path
regime the distinction between global and local fluctuations

InT, A>peL.

We can introduce afincorrec} cutoff atl into the calcu-
of the potential becomes blurred. lation performed in Sec. Il C in order to see what changes in

It is interesting to note that a calculation based on thdhe result will be induced by it. In the notation of Sec. IIl C,
ballistic o model performed in Ref. 13 foquasione- that would _correspond to|A~IIng, and then A,
dimensional conductors indicates the existence of a cross-/rv?r2drec|\|[%/1«| In?6, leading to IP~—(pel)2In?,
over from log-normal to power-law distribution at which coincides with the answer obtained in Ref. 12. The
InA~L/l. Although we have not investigated the quasi-one-feason that such a cutoff scheme leads to a higher estimate
dimensional case here, it is likely that the physical picture ofor the probability is that it does not correspond to a cor-
the interplay between the global and local fluctuations distect solution of the Schainger equation in the region of
cussed above should not be much different. If that is thdarge potentiald)>Eg . As a result, the rate of growth of the
case, then it is probable that the crossover found in Ref. 1®ave-function amplitude toward the center of the sample is
has as its underlying cause the same mechanism of localverestimated.
fluctuations becoming comparable in size to the length of the Another discrepancy between our results and those ob-
sample. This hypothesis, however, leaves unexplained thigined with the help of nonlineas models in the three-
difference in scales at which the crossover occurs/kin dimensional case is the difference in powers pfl{) in the
Ref. 13 as opposed fo-L in the argument presented above. exponents in Eqg1) and(58). We believe that this discrep-

It is possible that the quasi-one-dimensional case brings iancy has the same origin as the difference betwedd|)n(
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and In(/ry) in the two-dimensional case: the error intro- |, . The contribution to the saddle-point action from the run-
duced by using the mean free patto determine the cutoff out (diffusive) zone leads to the already quoted/9+/3)
scale. It is interesting to note that while the cutoff procedurex(pgl)? value for C5, while the reaction zone produces a
used in the diffusiver-model approach of Ref. 10 is capable contribution that has one less power of the large logarithm
of producing only an order-of-magnitude estimatelné and is thus neglected. In contrast, in the calculation pre-
Cs~(pel)?, the ballistico model*”*3while giving an illu-  sented in Sec. Il C of this paper, the contribution from dis-
sion of computing the coefficient C; exactly tances of the order of ~Iné#<I, dominates the saddle point
[C3=(7/9y/3)(pgl)?], nevertheless leads to the same extraaction and leads to a larger estiméi. (53] for the prob-
power of (pel). To explain this seemingly paradoxical situ- ability of observing anomalously high values bfin the
ation we will first examine the cutoff procedure employed inthree-dimensional case than the one obtained in Ref. 13.
Ref. 10. It is based on the condition, pointed out in Ref. 7,Thus the ballistic generalization of the nonlineamodel is
that in order for the diffusiver model to be applicable, the also not capable of detecting the existence of the sCalat
spatial gradients of th&-matrix components cannot exceed Which the semiclassical approximation breaks down. More-
1/1. Explicitly, for the calculation performed in Ref. 10, this over, since the calculation within the framework of the bal-
condition reads listic o model does not involve any ultraviolet divergencies
that would necessitate a short-distance cutoff as in the case
of the diffusivec model, it appears plausible that the ballis-
tic variant of the model is equivalent in this context to intro-

) ) ducing an ultraviolet regularization into the theory.
where\ ; parametrizes the noncompact bosonic sector of the

Q matriX (not to be confused with the Lagrange multiplier
\ used throughout this wojk The distancd, where this
condition is violated is used in Ref. 10 as a short-distance To complete the comparison of the results obtained by the
cutoff. It was conjectured in Ref. 12 and later confirmed indirect optimal fluctuation method and those found using the
Ref. 27 that the spatial structure of the saddle-point solutiomonlinearoc models, we now turn to the issue of the shape of
for A1 mimics the envelope of anomalously localized stateghe envelope of anomalously localized states that are respon-
described by the saddle point of themodel. Therefore the sible for the largd-tails of the distribution functiorP(t). In
optimal configuration of @/dr)In\4(r) corresponds to the Ref. 12 it was found that in two dimensions such states are
nonoscillating part ofy(r) in the direct optimal fluctuation characterized by amplitudes decaying outwards according to
method. a power law

This correspondence allows us to see directly what effect
an artificial short-distance cutoff df would have in our , (] Int/In(L/T)
approach. From Eq50) we find12 ~I|\|. Introducing such (1) ~(F)

a cutoff atl, into Eq.(51) we obtain|\|~1,Iné, and there-

fore |, is estimated a$, ~1Ing. If then the integral deter- This result has to be compared with E¢1), which can be
mining the saddle-point actiod, is also cut off at, , we  rewritten as

obtain

1
<|—, (61

aln)\l

D. Prelocalized wave functions

(62

. ,7[/2(0) r Int/In(L/rg)
o NP |w(r>|2~—(—°) :
Ao~ voredr~I ~14In°g, r r
I*

.

(63

or (pel)?In3@ in conventional units, leading to the incorrect Apart from the difference in the cutoff scale¥sro) which
ané\?er)that was alreadv quoted ir’1 Sec Ig was discussed at length above, E3) contains an extra
ya T 1/r factor in the denominator. It is simply a consequence of

im ltolr?awtuioer}]\:lr?tfurgot:atzd’!steazzzsdlzr-]o(r)tii; iitscir](;?]ak;ngnthisthe idealized model adopted here with its circularly symmet-
P P ' ric boundary conditions. In a more realistic model the opti-

contribution cannot be accounted for by the diffusive nonlln-maI wave function would become a superposition of differ-

ear o model. It should be emphasized that excluding theent angular momentum eigenstates. Ther Tiehavior of the
short-distance contribution in this way leads to a signifi- 9 g '

cantly smaller estimate for the probability of observing acwcularly Symmetric component would be cancel_ed in such a
) . > superposition. Taking into account the fluctuations around
given (largg value oft or 7,. This can be understood with : .
: . the saddle point would also have the effect of suppressing
the help of the following argument. The wave-function am-,[h 1472 factor in th tial d d f d
plitude grows substantially betwean-|, andr~1. Ne- e (14r)” factor in the spatial dependence o rage

glecting this growth leads to a need for a faster increase iﬁnvelqpe of the optlmal solution. Note also that E62)
the wave-function amplitude betweenand |, which can does indeed describe the averaged envelope of anomalously
*

only be achieved by means of a "costly” boost in the am- Iocﬂlfﬁrisfg}riZnsional samples the states with anomalousl
plitude of the Bragg mirror. As a result, nonoptimal com‘igu-hi h local amolitudes werepfound in Ref. 12 to have they
rations of the random potential are selected. 9 P '

Turning now to the calculation performed with the help of envelope
the ballistic nonlinearo-model for the three-dimensional
case in Ref. 13, we notice that the distamgethat separates |zp(r)|2~exp[ —A( 1— L)} (64)
the “reaction” and “run-out” zones is of the same order as r/|’
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whereA is a constant which in the leading logarithmic ap- always important for small enough<(d/2) values ofn. In
proximation is equal to n Comparing this to Eq(55) we the marginal case=d/2, the weight of the Bragg mirror is
see, in accordance with the discussion above, that thgiven by

a-model result gives the correct functional foef"s" only g

for larger, i.e., in the region of space where the optimal INPoc — _d_ln ! (67)
potential forms a Bragg mirror. The estimdtént for the L\9

constant in the exponential in Ref. 12, however, contains an ('”_)

r
extra factor ofl compared to Eq(55b which is a conse- o ° o
quence of the choice of the cutoff scale made in Ref. 12. Théaking it a much more probable way of achieving a large

function envelope described by E€G5a is missed in the Of the corresponding Bragg mirror has a faster théh de-
o-model calculation entirely. As in the two-dimensional Pendence on In but it is compensated by a power of the
case, the extra powers ofin the denominators of Eq¢s5) ~ System size in the denominator,
are a consequence of the artificial rotational symmetry. In2t

It was conjectured in Ref. 12 that these high-amplitude INPx — —5r—g. (68)
states have a complicated “snakelike” structure at short dis- L
tances. The conjecture was based on the fact that the methemis situation is realized in the Gaussian case whert,

employed in Ref. 12 was applicable to amplitudes as high a§,j it \as already discussed in detail. Therefore the seem-

ingly universal character of the log-normal behavior of the
Vp‘é_l tails of the distribution functions is tied to the assumption,
t= | (65 which is a usual starting point in the derivation of the
model, that the random potential has a Gaussian distribution.

rather than a naive< (V/I¢%) expected from a cutoff d&t We ~ This assumption is believed not to be crucial for the appli-
have found no evidence of such behavior here. Since theability of the diffusivec model. Indeed, the diffusion con-
solutions of the saddle-point equations were assumed to b&ant involves only the second-order correlator of random
rotationally invariant from the outset, this cannot be regardedPotentials. On the other hand, when rare events are consid-
as a conclusive evidence against such a scenario. Howevé#ed, large fluctuations d#(r), and therefore the details of
potentially more important is the fact that we did not encounts distribution, may become important.

ter any limitations on the possible valuestoénalogous to

Eq. (65). Analysis of the fluctuations around the saddle point V. OPEN QUESTIONS AND CONCLUSIONS

defined by Eqgs(15), as well as an investigation of the pos-
sibility for non-rotationally-invariant solutions of these equa-
tions is needed to settle the issue conclusively.

The most important problem arising from the results of
the present study is the need to explain the fact that the
asymptotics of the distribution functions in two dimensions
derived using the direct optimal fluctuation method do not

E. Universality exhibit any dependence on weak magnetic fields. This fea-

Finally, we would like to make a few remarks concerning Uré of our answers must be contrasted vaththe previous
the issue of universality. An important consequence of thé&@lculations performed in the framework of the nonlinear
dominant role played in three dimensions by large local flucM0dels, in which it was quite obvious that when Cooper
tuations of the potential that are responsible for the formatioA0des acquire a mass as a consequence of broken invariance

of local resonances is the nonuniversal character of the didVith respect to time reversal, the number of independent
tribution functions derived in Sec. IIl C. Indeed, such large-components of th& matrices changes, and that has a pro-

amplitude configurations of the potential can only be optimafound impact on the results. Itis possible that our assumption
if they are not too “expensive,” i.e., if their actiod is not that rotationally invariant solutions of the saddle-point equa-
too high, compared to the low-amplitude global fluctuationstons dominate the saddle-point action is not valid in the

of the potential(Bragg mirrors. Generalizing the distribu- aPSence of magnetic field. A more detailed study of the prop-
tion of the random potentials to erties of Egs(15) will be the subject of a future publication.

However, it is impossible to exclude the possibility that the
separation of the low-lying exitations of tkemodel into the
Wn[U]ocexr< _ iJ U2n(r)ddr)’ (66) Cooper gnd diffusion modes may become inexa}ct when the
20 rare configurations of the random potential dominate.
Whether or not the fluctuations around the saddle point
where o is the dispersion, anth=1, we find through a can change the leading-order terms ihimalso one of the
model calculation similar to the one performed in Sec. |l thatquestions that are outside the scope of this work. A peculiar
forming states with large amplitudes at somby means of disagreement in the crossover scale frontt o Int
local resonances always leads t@#—In%. Forn<d/2 the  asymptotics of I between the purely one-dimensional and
“cost” of a corresponding Bragg mirror can be estimated quasi-one-dimensional cases which was noted in Sec. IVC 1
from an appropriate generalization of E¢$6), and it also makes it rather desirable to extend our method to the
leads to a Ift dependence, as was demonstrated by a detaileguasi-1D and quasi-2D geometries.
study of Gaussiann=1) distribution in three dimensions. To conclude, the main results of this work can be sum-
Thus local large-amplitude fluctuations of the potential aremarized as follows. We have demonstrated that the optimal
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fluctuation method is a useful tool for the investigation of thePerforming awr/4 rotation in the §, ) space,

statistical properties of anomalous electronic eigenstates in

disordered two- and three-dimensional conductors. It was

shown that in three dimensions this method is preferable to x=(+ ) IN2, = (g — )2, (A2)
the nonlinearc model because the latter does not include

effects associated with local resonances which can be formed | . . :
by the random potential. In the one-dimensional case ou?nd introducing infinitesimal convergence factors, we obtain
approach is shown to reproduce the results obtained earlier
with the help of the Berezinskii technigtiefor the distribu-

tion of the current relaxation times in open samples. The 1:J' D ! D ﬂ
relevant optimal configurations of the potential coincide with ~ ¥ NI 2

those conjectured in Ref. 13. We have also demonstrated that

these configurations are very different from the ones which 1. A () -

dominate the asymptotics of the distribution function of the Xexp 5 'f dr{gnO" 1 — 0"t |, (A3)
eigenstate intensities in closed samples, thus clarifying the

origins of the difference between these two distributions.

In the two-dimensional case the results obtained by thgyhere &)= (p2/2m)+U(r)—E=i0. Thus, up to a con-
optimal fluctuation method essentially coincide with thestant,/\/, is equal to a symmetrized spectral determinant;
o-model results for the unitary ensemble of random poten-
tials, which we interpret as an indication that the saddle point
of the reduced nonlinear-model found in Refs. 7, 9, 12, 10, N N R TrIN(E—H+i0
and 13 corresponds to the same saddle point of the full N \/del{E H+i0jde{E—H~i0}=e ( (;4)
theory as the one that describes the optimal fluctuation of the
potential.
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APPENDIX
. - ] ] ] The background potentigldr U(r) can be absorbed into a

Introducing an auxiliary fieldy as in the main text, we redefinition of energies, which justifies the approximation
can represeny/,, as made in deriving Eqs(15).

It should also be noted that in themodel formalism the
real part of the Green’s functio@(r,r) is effectively set to
zero under the assumption of an infinite symmetric band.
Therefore any corrections to the distribution function that
may arise due tdV,,# 1 are at any rate beyond the scope of

1_ X
N;—fpzppzw

xexr{if dr x(r)

N2

p
ﬁ+U(r)—E) ¢(r)] (A1)
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