
PHYSICAL REVIEW B 15 APRIL 1997-IIVOLUME 55, NUMBER 16
Statistics of rare events in disordered conductors
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Asymptotic behavior of the distribution functions of eigenstate intensities and current relaxation times in
disordered conductors is studied in the weak disorder limit by means of an optimal fluctuation method. It is
argued that this method is more appropriate for the study of rare events in three-dimensional conductors than
the approaches based on nonlinears models because it is capable of correctly handling fluctuations of the
random potential with large amplitude as well as the short-scale structure of the corresponding solutions of the
Schrödinger equation. It also helps to clarify the physical picture of such events in one and two dimensions.
For two- and three-dimensional conductors, the asymptotics of the distribution functions obtained by this
method differ, in some cases significantly, from previously established results.@S0163-1829~97!00316-0#
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I. INTRODUCTION

It has been well known for at least a decade1,2 that a
complete description of the Anderson localization transit
in disordered mesoscopic conductors must necessarily
formulated in terms of the full distribution functions of con
ductanceg and/or other quantities characterizing the samp
As a consequence, even well into the metallic regime
should be possible to observe the onset of localization
studying deviations of asymptotic tails of the distributio
functions from their behavior in the infinite conductan
limit. Such a study was performed analytically in Refs. 3 a
4 within the framework of the nonlinears model5 based on
the replica technique.6 It was demonstrated in Ref. 4 that i
two spatial dimensions the tails of the distributions of su
quantities as conductance, local density of states, curren
laxation times, etc., are all described by rather similar lo
rithmically normal asymptotes—whereas Gaussian distri
tions would be expected forg→`. Recently, Muzykantskii
and Khmelnitskii7 proposed a more straightforward and e
egant method to obtain these asymptotes which utilizes
optimal fluctuation method in conjunction with the supe
symmetric version of the nonlinears model.8 In a series of
subsequent publications the method was employed to s
the statistics of eigenfunction amplitudes in weakly localiz
two-dimensional conductors9 and the distribution of the loca
density of states.10 An extension of the method to quasi-on
dimensional and three-dimensional systems was achieve
Refs. 10–13.

The common feature of all the results obtained so far w
the use of variouss models is that the large-z asymptotic
behavior of a distribution functionP(z) has the following
form for two-dimensional (d52) and three-dimensiona
(d53) systems:

P~z!;exp~2Cdln
dz!. ~1!

In open samples, the argumentz of the distribution func-
550163-1829/97/55~16!/10451~16!/$10.00
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tion may have the meaning, e.g., of the current relaxat
time t r , or the normalized local density of states at t
Fermi energyr(EF ,r )/nd . In closed samples it can be ass
ciated with the local wave-function intensityt5VucE(r )u2 of
an energyE eigenstate.nd is the averaged-dimensional den-
sity of states andV is the volume of the sample. One exce

tion is thee2 ln2 law obtained in Ref. 12 for the distribution
of wave-function amplitudes inthree-dimensionalsamples.
We will discuss a possible origin of this difference in Se
IV.

The coefficientsCd in general depend on the strength
disorder and, ford<2, on the sample sizeL. In the two-
dimensional case the calculations based ons models give
C25bp2n2D/2 ln(L/l),4,9,10,12,13wherepF is the Fermi mo-
mentum,D5 1

2lvF is the electron diffusion constant,l is the
mean free path~which is assumed to be much larger than t
electron wavelengthpF

21), andvF is the Fermi velocity.b is
a numerical coefficient which, depending on the symmetry
the ensemble of random potentials, takes the following v
ues:b51 in time-reversal-invariant systems~the orthogonal
symmetry class!, andb52 when symmetry with respect t
time reversal is completely broken~the unitary symmetry
class!. In Ref. 13 only the unitary ensemble was consider
We will argue below that there exist corrections to this va
of C2 which may become essential in sufficiently small~or
sufficiently clean! systems when the inequalitypFL
@(pFl )

2 is violated. Such a situation may be easily realize
for example, in the experiments of Ref. 14.

In the one-dimensional case all eigenstates are locali
and the distribution of wave-function amplitudes in a clos
sample has a simple exponential form exp(24lt/V).15 Current
relaxation timet r in an open sample, on the other hand,
characterized by a much broader logarithmically normal d
tribution

P~t r !;exp~2C1ln
2t rD!, ~2!
10 451 © 1997 The American Physical Society
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10 452 55IGOR E. SMOLYARENKO AND BORIS L. ALTSHULER
whereC15 l /2L for a sample of length 2L, andD51/ndV is
the mean level spacing.13,16

In Refs. 10 and 12 saddle-point solutions of the supers
metric nonlinears models were obtained for the thre
dimensional case. However, conventional nonlinears mod-
els used in Refs. 4, 7, 9, 10, and 12 are low-‘‘energ
effective field theories in which the role of energy is play
by the diffusion operatorD¹2. As such they are only appli
cable to describing phenomena that can be characterize
diffusive—the mean free pathl is the smallest relevan
length scale in these theories. Formally this is expressed
requirement that the scale of spatial variations of the fun
mental variables of the theory—theQ matrices—must be
much larger thanl . The optimal fluctuations of theQ matri-
ces computed in Refs. 10 and 12 were found to vary rap
over distances; l in three-dimensional systems, which ma
it impossible to obtain rigorous results. The coefficientC3

was estimated in Ref. 10 to be of the order of (pFl )
2.

In an attempt to overcome the limitations of diffusives
models and account exactly for the spatial variation of
optimal fluctuation in three-dimensional systems on the sc
of the mean free path, a generalized version of the mo
~ballistic nonlinears model! was introduced in Ref. 17 an
used in Ref. 13 to compute the distribution of current rela
ation times. The functional form of Eq.~1! was reproduced
in that calculation and a numerical valuep/9A3(pFl )2 for
C3 was found. We will argue based on the calculations p
sented below that all the results for the three-dimensio
systems quoted above underestimate the probabilityP of oc-
currence of rare events, with a single exception: in the li
lnt.pFl ~which is admissible in the three-dimensional cas!,
Ref. 12 overestimates this probability.

In this paper we propose an alternative method for
investigation of the distribution function asymptotics. Inste
of integrating out the disorder degrees of freedom andthen
looking for a saddle point of the resulting effective fie
theory ~the nonlinears model!, we suggest that large-z be-
havior of the distribution functions is governed by a sad
point of the original theory based on the Schro¨dinger equa-
tion for a particle in a random potential. The distributio
functions are expressed as functional integrals over b
electronic degrees of freedom and realizations of the rand
potential. The saddle points of these functional integrals c
respond to optimal fluctuations, i.e., the highest-probabi
configurations of disorder that let the electronic eigensta
at a given energyE have the desired property—for exampl
an anomalously large intensityVucE(r )u2 at some pointr . In
our view, this approach possesses the advantage of b
applicable to systems of arbitrary dimensionality, as well
being able to take into account nonsemiclassical effects.
also conceptually simpler, and makes the physical origin
the results much more transparent. In many respects ou
proach is similar to the ideas utilized in Refs. 18 and 19
study the tails of the density of states in doped semicond
tors. We were able to reproduce the general lnP;2 lndz be-
havior of the distribution functions ford52 and 3 as well as
the log-normal form of the distribution of the current rela
ation times ford51. In the two- and three-dimensional cas
we obtain values for the coefficientsCd @see Eq.~5!# that
differ from their previously published estimations.
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Our calculations are performed in the limit of the large
possible values of the eigenstate intensitiest, constrained
only by the conditiont,V. To determine the low-t limit of
applicability of the results and investigate their crossover
the universal Porter-Thomas distribution, the study of
fluctuations around the saddle point is necessary. Suc
study is in progress, and will be reported elsewhere.

The rest of the paper is organized as follows. In Sec. II
briefly describe the method and present the main results
detailed derivation of the basic equations and the analysi
the saddle point solutions is deferred until Sec. III. Sect
IV is devoted to the discussion of our results and their re
tion to those obtained previously. A short summary and a
of open questions can be found in Sec. V.

II. ASYMPTOTES OF THE DISTRIBUTION FUNCTIONS

A typical wave function in a metallic sample is sprea
more or less uniformly throughout the sample volum
V;Ld, so that its amplitude does not differ much from th
average value of 1/AV anywhere in the sample. In the me
tallic ~or weakly localized! regime such states account for th
bulk of the distribution of the local density of statesr(r ) or
of the current relaxation timest r in open samples. The
chances of observing anomalously large values of th
quantities are related to the probability of finding a
‘‘anomalously localized state.’’ Such a state would be ch
acterized by an amplitude reaching a value much larger t
the average at some pointr inside the sample. In what fol
lows we will concentrate on the distributions of wav
function amplitudes in closed samples and current relaxa
times in open ones. Other distributions, e.g., that of the lo
density of states, can be more or less straightforwardly
rived within the framework of the same formalism. It is im
portant to note that in the metallic regime the same type
states is responsible for optimally achieving large values
current relaxation times and wave-function amplitudes.
the Anderson insulator regime, typified by purely on
dimensional samples, this is no longer true. While the sta
responsible for long current relaxation times do have a p
in the bulk of the sample, they are not the same states
dominate the distribution function of eigenstate intensit
~see below, Sec. III A!.

The problem can be formulated in the following way. L
us consider a spherical~in three dimensions! or a disk-
shaped~in two dimensions! conductor of radiusL, and com-
pute the probability that an eigenstatec of energyE ~which
we take to be equal to the Fermi energyEF) has an ampli-
tudeAt/V in the center of the sample (r50), with t@1. The
distribution of the disorder potential is assumed to be unc
related Gaussian,

W @U~r !#5NU expS 2
pndt

2 E U2~r !dr D , ~3!

whereNU is the normalization constant andt is the mean
free time. Such a probability is then naturally expressed

P~ t !5^d„Vuc~0!u22t…&U , ~4!

where^ &U denotes the averaging with the weightW over all
possible configurations ofU, andc(r ) is the solution of the
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55 10 453STATISTICS OF RARE EVENTS IN DISORDERED . . .
Schrödinger equation with the HamiltonianH5H01U(r )
and energyE. H05p̂2/(2m) is a Hamiltonian of free par-
ticles with a massm, and p̂ is the canonical momentum
operator.

The requirement thatE must be an eigenvalue ofH was
enforced explicitly in Ref. 9 by introducing the correspon
ing d function into the definition ofP. In the alternative
approach proposed here—the direct optimal fluctuat
method—this requirement is easier to impose, if necess
at a later stage in the calculations through appropriate bou
ary conditions for the saddle point equations.20

Rewriting Eq.~4! as a constrained functional integral an
introducing Lagrange multipliers to enforce the constrai
~see Sec. III for details!, one can demonstrate that the resu
ing ‘‘action’’ A possesses a saddle point, and the lead
contribution to lnP(t) is given by2A0, the value of the
action at that point. With exponential accuracy the results
the distribution function of eigenstate intensities are

P~ t !;exp@2k~pFl !ln
3t# ~3D!, ~5a!

P~ t !;expS 2p2n2D
ln2t

ln~L/r 0!
D ~2D!, ~5b!

wherek is a number which we estimate as 331023. The
length scaler 0 in Eq. ~5b! is of the order of the electron
wavelengthpF

21 . In two- ~2D! and three-dimensional~3D!
conductors anomalously long current relaxation timest r in
open samples are due to the states which are also chara
ized by anomalously large intensityt somewhere in the
sample. As a result, asymptotic behavior of the distribut
of t r has the same form as Eq.~5! with t rD in place of t
@Eqs.~40! and~58!#. In contrast, in the one-dimensional ca
the states responsible for these two effects have diffe
structures leading to different probability distributions fort
andt r ~see Sec. III A below!.

In both two- and three-dimensional cases, our answ
have a differentl dependence compared to the results
tained in Refs. 4, 9, 10, 12, and 13. In the three-dimensio
case lnP is proportional to thefirst power ofpFl , while all
the results derived from the nonlinears model in three di-
mensions lead to a (pFl )

2 dependence. SincepFl@1, Eq.
~5a! indicates asubstantially increasedprobability of observ-
ing a rare event as compared to the previous results.10,13

Similarly, in the two-dimensional case the logarithm
the denominator containsL/r 0 instead of theL/ l established
in Ref. 4, and reproduced with minor modifications in Re
9, 10, 12, and 13. This difference leads only to small corr
tions, unlesspFL becomes of the order of (pFl )

2.
These asymptotes correspond to the optimal config

tions of the potentialU(r ), which are essentially Bragg mir
rors,

U~r !}
sin2pFr

r d21 , ~6!

as r→`. The r→0 behavior is more complicated. In one
and two-dimensional systems ther→0 region does not con
tribute to lnP in the leading in lnt order. In three dimension
the shape of the optimal fluctuation at small distances
narrow potential well surrounded by a wider potential barr
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~Fig. 1! such that the whole structure supports a narrow re
nance in thes-wave channel. Anomalously large values
t are achieved by combining this local resonance with Bra
reflection at larger distances.

The role of local resonances in producing large values
t for anyd in the interval 2<d,4 can be illustrated by the
following simplified version of the direct optimal fluctuatio
method. Let us approximate the shape of the resona
producing potential asU(r )5U0u(r2a)u(b2r ), where
u(r ) is the step function, andU0 and b are optimization
parameters.21 The constanta is determined from the condi
tion that there is only one resonance in the potential well a
it has a given energyEF @a;pF

215(2mEF)
21/2#. The wave

function of the resonant state in such a potential expon
tially decays in the intervala,r,b ~for U0.EF). Assum-
ing that the amplitude of the wave function forr.b is
close to its average value 1/AV, we can estimate
t[Vc2(0);exp$2A2m(U02EF)(b2a)%. Anticipating the
final resultb;pF

21lnt, we can neglecta in the exponent. We
then have

U0'EF1
1

2m S lnt2bD
2

, ~7!

and, fora!b,

A5
pndt

2 E U2~r !dr5
pndt

2
VdU0

2bd, ~8!

where Vd5pd/2/G(d/211) is the volume of a
d-dimensional sphere of unit radius. Substituting Eq.~7! into
Eq. ~8! and minimizing with respect tob, we find

b5pF
21S 42d

4d D 1/2lnt, ~9!

and it then follows thatU054EF /(42d). The resulting es-
timate for the asymptotic behavior of the distribution fun
tion reads

FIG. 1. Profile of an optimal configuration of the potential
three dimensions as a function of the radial coordinate.
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10 454 55IGOR E. SMOLYARENKO AND BORIS L. ALTSHULER
P~ t !;exp$2Kd~pFl !ln
dt%, ~10a!

Kd5
1

2d S 1

4p D d21S d

42dD ~42d!/2

Vd
2 . ~10b!

In the three-dimensional case Eq.~10! differs only by a num-
ber from a more rigorous estimate quoted in Eq.~5b!, sug-
gesting that local resonances indeed play an important ro
the three-dimensional case. As it should be, the coeffic
K3'0.032 islarger thank since it would be naı¨ve to expect
a box-shaped potential to be optimal.

In the two-dimensional case, large values oft are not
optimally produced by local resonances: according to
~5b! the coefficient in front of ln2t is proportional to
@ ln(L/r0)#

21, i.e., it depends on the sample size.
The hypothesis that log-normal~in one and two dimen-

sions! and exp(2C3ln
3t) ~in three dimensions! asymptotics of

the distribution functions may be produced by Bragg refl
tion locking the states in~or out of! certain regions of the
sample was put forth by Muzykantskii and Khmelnitskii
Ref. 13. They explicitly demonstrated that in a on
dimensional sample of length 2L an electron of energyEF
can be trapped for a timet r@1/D by a potential of the form
U(x)5@pFln(trD)/mL#cos(2pFx). Such a configuration ap
pears with the probability

P~t r !;expS 2
l

2L
ln2~t rD! D , ~11!

which is the same as the log-normal long-time asympto
of the exact solution for the conductance.16 Our results are
consistent with this hypothesis in higher dimensions.

The most unexpected feature of our results is the fact
a singleconfiguration of the potential, i.e., a single compa
region of the configurations space, seems to be respon
for the tails of the distribution functions. The alternativ
would be for a large number of more or less equal-wei
configurations to be able to produce the required wave fu
tion amplitudeAt/V, and the total probabilityP(t) would
then be given by the sum of the weights of these configu
tions. An argument against such an alternative is the fact
the results obtained by simply singling out the most proba
type of configurations can lead to higher probabilities~sig-
nificantly higher in the three-dimensional case! than the
s-model results10,13 which correspond to a sum over a
configurations.22

III. DIRECT OPTIMAL FLUCTUATION METHOD

In order to enforce the condition thatc in Eq. ~4! is a
solution of the Schro¨dinger equation we rewrite Eq.~4! for-
mally as

P~ t !5E DU~r !W @U~r !#Nc@U#E Dc~r !

3)
r8

d„~H2E!c~r 8!…d„Vuc~0!u22t…, ~12!

whereNc@U# is a U-dependent normalization constant d
fined by
in
nt

.

-

-

s

at
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le

Nc@U#E Dc~r !)
r8

d„~H2E!c~r 8!…51. ~13!

Introducing auxiliary variablesx(r ) and l associated, re-
spectively, with the first and the secondd functions in Eq.
~12! enables us to represent the distribution function as
constrained functional integrals

P~ t !5NUE DU~r !NcE Dc~r !E DS x~r !

2p D
3E dl

2p
e2A[U,c,x,l] , ~14a!

A@U,c,x,l#5
pndt

2 E dr U2~r !2 il„Vuc~0!u22t…

2 i E dr x~r !S p̂2
2m

1U~r !2EDc~r !.

~14b!

The next step is to make a saddle-point approximation
Eq. ~14a!, utilizing the fact thatt is large. The stationarity
condition for the action Eq.~14b! leads to the following set
of equations:

pndtU~r !2 ix~r !c~r !50, ~15a!

S p̂2
2m

1U~r !2EDc~r !50, ~15b!

S p̂2
2m

1U~r !2ED x~r !522lAVtd~r !, ~15c!

Vuc~0!u22t50. ~15d!

In deriving the saddle-point equations we neglect theU de-
pendence of the normalization constantNc . The reasoning
leading to this approximation is explained in detail in t
Appendix.

Below we will investigate only those solutions of Eq
~15! which possess full rotational symmetry~or reflection
symmetry in the one-dimensional case!. While it is likely
that even for rotationally invariant boundary conditions the
exist solutions which break this symmetry, we will assum
that they are not optimal, i.e., that they correspond to ex
mum points other than the global minimum ofA. The mean
free time enters these equations only through thepndt factor
in Eq. ~15a!. It can be absorbed into redefinitions ofx(r ) and
l, and therefore the above assumption does not depen
the disorder strength.

Eliminating x in favor of U andc and switching to di-
mensionless variablesv(r )5U(ur u)/EF , r5pFur u, we arrive
~in the absence of magnetic field! at the following system of
equations~primes denote differentiation with respect tor ):

y~r !5 ln8@r ~d21!/2c~r !#, ~16a!

y8~r !1y2~r !1
1

4r 2
dd,2115v~r !, ~16b!
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2y~r !@r d21v~r !#2@r d21v~r !#85l̄, ~16c!

where

l̄5
2ilt

pndt

pF
d

EF
2Sd

, ~17!

dd,2 is the Kronecker symbol, andSd5dVd is the area of a
d-dimensional sphere of unit radius.

Equations~16a! and ~16b! together are equivalent to th
Schrödinger equation for the radial part of the wave functio
while Eq. ~16c! provides the connection between the wa
function and the potential that is necessary to achieve a g
value of t at a minimal ‘‘cost’’ in terms of the weight func
tionW. l can be viewed as a parameter effecting a Legen
transformation ofA, so (l,t) or, alternatively, (l̄, lnt), form
a pair of conjugate variables.

It follows from Eq. ~16c! that l̄ must be real, so the
saddle-point value ofl is purely imaginary. The saddle-poin
actionA0 is expressed in terms of the solutionv(r ) of Eqs.
~16! as

A05
pnt

2

EF
2

pF
d SdE

0

L

r d21v2~r !dr. ~18!

The choice of boundary conditions to Eqs.~16! is not
entirely straightforward, and we would like to motivate it b
appealing to an analogy with ordinary one-dimensio
Schrödinger equation. In the variational formulation of qua
tum mechanics the Schro¨dinger equation appears as a s
tionarity condition for the functional

F5E1E
0

L

dx c* ~x!~Ĥ2E!c~x!, ~19!

whereĤ is the Hamiltonian andE is the particle energy. In
Eq. ~19!, c must satisfy two boundary conditions@e.g.,
c(0)5c(L)50# and also the normalization conditio
*0
Ldxucu251 which follows from varyingF with respect to
E. The overall number of conditions for this second-ord
equation is three, which makes the problem overdefined
a result, solutions exist only for a discrete set of values
E. One of these values would correspond to the ground s
and thus to an absolute minimum ofF, while the rest would
simply correspond to its stationary points. In theL→` limit
the set of allowedE values becomes infinitely dense, so th
E effectively becomes a continuous variable.

An alternative way to look at the Schro¨dinger equation
~often useful in numerical calculations26! is to considerE as
an extra unknown function satisfying a trivial equation

d

dx
E50. ~20!

One then has effectively three first-order equations with th
extra conditions imposed on them. However, now th
equations are nonlinear, and the three conditions do
specify the solution uniquely. Rather, there exists a family
solutions corresponding to various quantum states of the
tem, one of which minimizes the functionalF. Again, in the
L→` limit the family of solutions becomes continuous.
,
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Returning to the problem of specifying a set of conditio
for Eqs.~16!, we see that Eq.~16c! is a generalization of Eq
~20!. l̄ plays the role of an eigenvalue, so we can forma
supplement Eqs.~16! with l̄850, increasing the number o
equations to four. The following set of conditions must
imposed on this system of equations.

First, a boundary condition is provided by Eq.~15d!,

c~0!5S tVD 1/2. ~21a!

The normalization requirement

SdE
0

L

r d21drc2~r !51 ~21b!

provides the second condition.
Another boundary condition is derived from regularity r

quirements onv(r ). Sincev(r ) can have at most a squar
integrable singularity asr→0, it follows that, in three di-
mensions,

lim
r→0

„Arc8~r !…50. ~21c!

In two dimensionsc8 must be finite atr50, and for a one-
dimensional system the corresponding requirement
c8(0)50. Finally, a fourth condition may be provided b
another boundary condition onc, e.g.,

c~L !50. ~21d!

However, the problem of minimizingA is not solved
uniquely by the set of equations~16! together with condi-
tions ~21!. As in the ordinary quantum mechanical case,
are faced with a family of solutions only one of which act
ally corresponds to the absolute minimumA0 of the action
A. Finding this ‘‘ground-state’’ solution requires a param
etrization of the whole discrete family of solutions whic
presents a difficult task. It can nevertheless be somew
simplified by employing the following observation. For larg
enoughL the set of solutions of Eqs.~16! may be approxi-
mately considered continuous. It is then possible to repl
condition~21d! with a free boundary condition. The result
that the family of allowed solutions now admits a continuo
parametrization, simplifying the task of determining th
minimum of the functionalA. In practice this parametriza
tion depends on the dimensionalityd of the sample, and we
will consider the cases ofd51, 2, and 3 separately. Employ
ing a continuous parametrization which effectively corr
sponds to relaxing the boundary condition Eq.~21d! means
not enforcing the condition thatEF is an eigenvalue of the
Hamiltonian. As was already mentioned,20 such an approxi-
mation leads only to errors that are beyond the exponen
accuracy of the optimal fluctuation method. Such errors
therefore be safely neglected.

The general formalism presented above can be ea
modified to describe the distribution of the current relaxat
times. A crucial feature of this method is that it is not ne
essary to include the term proportional tol into the action
A from the very beginning. Without it, the right-hand side
Eq. ~15c! is simply equal to zero andl̄ reappears in Eq.
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10 456 55IGOR E. SMOLYARENKO AND BORIS L. ALTSHULER
~16c! as a constant of integration. The particular requi
ments on the wave functionc with respect to which the
actionA is minimized are all hidden in the set of condition
Eqs. ~21!. To compute the distribution of the current rela
ation timest r in the saddle-point approximation, one on
has to modify the conditions set in Eqs.~21!. Their explicit
form depends on the geometry of the sample and exte
leads, and has to be established separately for sample
different dimensionality.

A. One-dimensional wire

We consider first a purely one-dimensional disorde
wire of length 2L@ l . Exact results for this case obtained
Refs. 15 and 16 make it possible to use it as a ‘‘laborato
for testing our method. From the computational point
view this case is simpler than those of the two- and thr
dimensional conductors because the solution of Eqs.~16! can
be written in a closed form. For any typical realization of t
random potential all the eigenstates are exponentially lo
ized in the one-dimensional case with a localization len
being of the order of the mean free pathl . This fact intro-
duces complications which are absent whend.1 and disor-
der is weak. In the metallic samples in higher dimensio
~see below, Secs. III B and III C! the same type of ‘‘anoma
lously localized states’’ is responsible both for very lar
eigenstate intensities in closed samples and very long cu
relaxation times in open ones. In the Anderson insulator
gime, however, the states responsible for these two eff
are rather dissimilar.

1. Distribution of current relaxation times

An anomalously long relaxation timet r is due to the
states whose amplitude is suppressed at the edges o
sample beyond the typical valuee2L/ l /Al . With the normal-
ization integralN5*2L

L uc(x)u2dx set equal to 1, the relax
ation time in the regimet rD@1 is inversely proportional to
the eigenstate intensity at the edges,13

t rD;
1

Lc2~L !
. ~22!

Since exponentially large changes in this intensity lead o
to algebraic changes in the intensity of the same state a
maximum, we can choose the ratio

u5
c~0!

c~L !
~23!

as a parameter of the distribution function instead oft r ~as-
suming that the state is peaked atx50). With exponential
accuracy, minimizingA with t r fixed is equivalent to mini-
mizing with u kept fixed, and the Jacobian of the transfo
mation fromu to t r gives only a prefactor.

The system of Eqs.~16! takes the form

v~x!511y2~x!1y8~x!,

2y~x!v~x!2v8~x!5 1
2 l̄ sgnx, ~24!

wherex is the dimensionless coordinate along the wire, a
primes denote differentiation with respect tox. Note that
-
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according to Eq.~16a!, y is simply the logarithmic derivative
of the wave function whend51.

Eliminating v(x) and integrating once, we arrive~for
x.0) at

~y8!25~y211!21l̄y1C. ~25!

HereC is a constant of integration which parametrizes t
stationary points ofA as described at the end of Sec. III A
Its value is fixed by a minimization procedure which is fo
mally expressed as

A05min
C
A~C!. ~26!

Although Eq.~25! is exactly integrable in terms of elliptic
functions, it is sufficient to make a perturbative expansion
l̄ andC in order to recover the leading order dependence
t r . Rewriting Eq.~25! as

dx52
dy

R~y!
, R~y!5A~y211!21l̄y1C, ~27!

we obtain the periodT of the wave-function oscillations

T52E
2`

` dy

R~y!
~28!

and the logarithm of the ratio of the wave-function amp
tudes atx50 andx5L:

lnu5 ln
c~0!

c~L !
52

L

TE2`

` y dy

R~y!
. ~29!

We assume that the length of the sample corresponds t
integer number of periods. Therefore, sincey(0)50, it also
follows thaty(2L)5y(L)50. The relative error introduced
into Eq. ~29! by neglecting the fractional part ofL/T is
O(1/L).

Expanding the right-hand side of Eqs.~28! and ~29! in
both l̄ and C, we obtain 2pl̄/85(T/2L)lnu and
T52p1O(C). For actionA we then find from Eq.~18! to
the lowest order~with Sd52),

A5pn1t
EF
2

pF

2pL

8T
~ l̄213C2!. ~30!

It is thus obvious that, at least to the lowest order in 1/L, the
minimum ofA is achieved whenC50. Combining the re-
sults for the asymptotic tail of the distribution function wit
exponential accuracy we obtain

P~u!;expH 2
2l

L
ln2uJ . ~31!

From Eq.~16a! and the fact that the change in the wav
function amplitude over one period~increase forx,0 or
decrease forx.0) does not depend onx, we deduce the
exponential form of the wave-function envelope

c~x!}e2~ uxu/L !lnu. ~32!

Equation~22! now gives lntrD5lnu2, and the distribution in
Eq. ~31! is seen to coincide with the exact answer of A
shuler and Prigodin.16
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55 10 457STATISTICS OF RARE EVENTS IN DISORDERED . . .
The applicability of the above formula is restricted to t
regionL/ l, lntrD,pFL. Here the first inequality ensures th
the localization lengthL/ lnu is smaller thanl , while the sec-
ond inequality is necessary for the validity of the expans
in l̄ andC.

This model calculation can be used to illustrate the f
lowing points. First, to the lowest order inl̄, we have

y~x!5cot~x1w!1
l̄

4
sin2~x1w!, ~33!

wherew is a phase shift, and

v~x!5 1
2 l̄ sin2~x1w!, ~34!

so the shape of the optimal configuration of the potentia
indeed a Bragg mirror.

Second, the sign ofl̄ is opposite to that of lnu, so nega-
tive values ofl̄ correspond to the wave-function amplitud
decreasing from the center of the sample outwards. The s
will hold true in two and three dimensions. The amplitude
the oscillating potential is constant throughout the sample
similar observation was made in Ref. 13: in a on
dimensional wire the gradients of the supersymmetric d
sity matrix corresponding to the optimal solution were fou
to bex independent.

2. Distribution of eigenstate intensities

The amplitude of a typical localized state in its domain
localization is 1/Al@1/A2L. It is not sensitive to the detail
of the structure of the random potential outside this doma
Thus, to increase the amplitude of such a state beyond
1/Al value, it is enough to adjust the random potential ins
this domain to achieve a ‘‘doubly localized’’ structure of th
state: starting from the center of the domain it would dec
first with an exponent 1/j@1/l , and then revert to a typica
1/l decay.23 Such a structure in principle cannot be describ
by the saddle-point equations alone, because it requires c
bining an optimal fluctuation inside the central ‘‘bump’’ wit
typical potentials elsewhere in the sample. Nevertheless
estimate of the distribution function can be obtained by so
ing the saddle-point equations in the region correspondin
the central ‘‘bump’’ ~whose size must be determined se
consistently! and matching the solution to the expected ty
cal exponential decay outside this region. Note that suc
solution redistributes the weight of the wave function ins
the sizel region of the sample around the bump, but leav
the exponential tails outside almost unaffected.

The central bump can be created by the Bragg mirror
~34! which extends over the region of size 2Bj, whereB is
a numerical factor to be determined later. We then have
the relative change of the wave function amplitude over h
a period,

ln
uc~x!u

uc~x1p!u
5E

2`

` y dy

R~y!
. ~35!

This change must be equal top times the inverse localiza
tion length j. This givesul̄u58/j. On the other hand, the
wave-function amplitude at the originc2(0) can be esti-
mated as 1/j under the assumption that the dominant con
n
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bution to the normalization integral comes from the cent
bump. This assumption is valid ife2B,j/ l or B; ln(l/j).
ReplacingL with Bj in Eq. ~30!, for the logarithm of the
distribution function we obtain lnP522lc2(0)ln„lc2(0)….
This estimate gives a somewhat faster decay ofP than the
exact result lnP524lc2(0).15 This is not surprising since
as was explained at the beginning of this subsection, typ
configurations which lie beyond the scope of the sadd
point equations play an important role in the on
dimensional case.

Note that the configurations which dominate the distrib
tion of relaxation times produce large values of eigenst
intensity with a much smaller probability than the ‘‘doub
localized’’ structure just described. Indeed, for these c
figurations we obtain c2(0)5 lnu/L, leading to
P;exp$22lLc4(0)%, which is much less than
exp$22lc2(0)ln@lc2(0)#%.

B. Two-dimensional conductors

In the absence of localization, even states whose w
function is strongly peaked somewhere in the interior of
sample have the dominant contribution to the normalizat
integral come from the bulk of the sample rather than fro
the vicinity of the peak. This statement ceases to be cor
only whent reaches the values of the order ofV;Ld. Thus,
for states witht!V, the normalization integral is indepen
dent oft. Such states do not contribute to thet rD@1 tail of
the distribution of the relaxation times because their inten
at the boundary is close to the typical value 1/Ld.24

For states which are peaked so strongly at some poinr0
that the normalization integral is dominated by the contrib
tions from its vicinity the situation is reversed:t is always of
the order ofV, while the intensity at the boundary can b
made smaller than 1/V leading tot r@1/D. In both regimes
the quantityu defined similarly to Eq.~23! as

u5
c~0!

ALc~L !
5

c~0!

L ~d21!/2c~L !
~36!

serves as a convenient parameter of the distribution funct
Indeed, eitherc(L) ~in the first regime! or c(0) ~in the
second regime! stays constant and becomes a conveni
‘‘reference point.’’ The factorL (12d)/251/AL is introduced
to cancel out the overallr (12d)/2 dependence of rotationally
invariant wave functions ind dimensions.u is always large
in the asymptotic regiont@1.

In dimensions higher than one the system of equati
~16! cannot be integrated exactly in terms of the stand
functions. Nevertheless, numerical methods combined w
the asymptotic analysis allow us to investigate fully the b
havior of its solutions in various regimes. In two dimensio
the solution can be obtained as an asymptotic expansio
l̄/r . The values oft for which this expansion breaks dow
turn out to lie close to the limiting valuepL2, and are thus
not very interesting. The leading terms of the expansion
v(r ) are

v~r !'
l̄

2r
sin~2r12w!1

h

r
sin2~r1w!. ~37!
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10 458 55IGOR E. SMOLYARENKO AND BORIS L. ALTSHULER
In this expressionh is a constant of integration which play
a role analogous to the role ofC in the one-dimensiona
case—that of a minimization parameter. Just as in the o
dimensional case, the minimum ofA is reached when
h50. We will give a perturbative proof of this statement
the end of this subsection. Withh50 the asymptotic expan
sion of y(r ) has the form

y~r !'cot~r1w!1
l̄

4r
sin2~r1w!. ~38!

Integratingy(r ) in the sense of the principal value, w
obtain

lnu52PE
r0

L

y~r !dr1 lnu1'
ul̄u
8
ln
L

r 0
1 lnu1 , ~39!

where the length scaler 0 at which the asymptotic expansio
breaks down is defined asr 0;max(1,ul̄u), and lnu1 repre-
sents the contribution to the integral from distancesr&r 0.
This contribution can always be neglected with logarithm
accuracy. Inverting Eq.~39! we obtain ul̄u58lnu/ln(L/r0).
The dimensionless integral in the saddle-point act
*0
Lv2r dr evaluates to 8 ln2u/ln(L/r0), and we find

P~u!;expH 2p2n2D
ln2~u2!

ln~L/r 0!
J . ~40!

The envelope of the wave function corresponding to
solution described by Eq.~37! is

c~r !;
c~0!

Ar
~r 0 /r ! lnu/ ln~L/r0!, ~41!

where we have approximatedAr 0c(r 0)'c(0). For r 0;1
the error introduced by this approximation leads only
O(1) corrections to the large logarithm lnt.

The normalization integral

N52pc2~0!E
r0

L

drS r 0r D 2 lnu/ ln~L/r0!

~42!

has two distinct regimes. Whenu2 is greater thanL/r 0 the
integral is dominated by small distances, and the depend
of t on u is weak. In this regimet has a value close to
pL2, and lnu2 is identified with lntrD, so that Eq.~40! de-
scribes the asymptotic behavior of the distribution of rela
ation times.

In the opposite case we haveN52pc2(0)r 0
aL12a/

(12a), wherea5 lnu2/ln(L/r0). Up to irrelevant constants
we then have lnt'lnu2, and the distribution function acquire
the form of Eq.~5b!.

These results have essentially the same form as those
tained in Refs. 4 and 11–13 using thes-model formalism.
This fact suggests that both the approach employed here
the saddle-point solution of thes model representthe same
saddle point of the underlying theory.

They differ, however, in two important aspects. First, t
logarithm in the denominator is cut off at distances;1
~wavelengthpF

21 in conventional units! rather than atr; l ,
as in Ref. 12. We believe that this difference simply refle
e-
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the fact that in order to describe this saddle point exactly
has to include short-wavelength degrees of freedom wh
are neglected in the derivation leading to thes model.

The second difference may turn out to be an indication
a deeper problem. Our calculation is performed explicitly
the case when there are no perturbations breaking the s
metry with respect to time reversal. Nevertheless, the
merical coefficient in the exponent coincides with the answ
obtained in Ref. 12 for theunitary case (b52), when the
symmetry with respect to time reversal is completely brok
In order to see what effect violation of time-reversal inva
ance would have in our approach, we explicitly introdu
magnetic field into the system of equations~15!. Choosing
the direction of the fieldH along theẑ axis ~perpendicular to
the two-dimensional sample!, and writingA5 1

2H3r , we can
immediately see that under the assumption of circular sy
metry of the solutionc, only the terms quadratic inA sur-
vive. For weak enough fieldsHL2!f0 ~wheref0 is the
magnetic flux quantum! these terms can be neglected b
cause they only lead to exponential decay of the wave fu
tion on a scale larger than the sample size. Thus the se
equations~16! is unchanged. On the other hand, the fields
this magnitude are sufficient to suppress the Cooperon c
tribution in thes-model calculation, leading to a crossov
between the orthogonal and unitary symmetry class
Therefore our calculations reproduceexactly the s-model
answer in the case of broken time-reversal invariance~the
unitary symmetry class!, but they predict afaster decay of
the distribution function at larget ~or t r) in the orthogonal
case.

It well may be that in contrast with the unitary case t
optimal fluctuations in theT-invariant two-dimensional sys
tems are not rotationally invariant, and correspond to act
that is one-half of the action for the best rotationally inva
ant fluctuation leading to Eq.~40!. However, before the ex
istence of such solutions of Eqs.~15! is demonstrated, it is
impossible to exclude a possibility that thes-model ap-
proach to the statistics of rare events in two-dimensional s
tems is not completely reliable. We believe that this iss
deserves further consideration.

To complete the derivation of the distribution functio
presented in this subsection, we outline the proof of the st
ment thath50 is the optimal choice. The solutionc of
equations~15! can be written as

c~r !5
A~r !

Ar
sin@r1w~r !#.

Unlike the h50 case, the phasew does not have a finite
limit as r→`. The logarithmic derivativeỹ(r ) of the ampli-
tude functionA(r ) can be expanded in an asymptotic Four
series of the form

ỹ~r !; (
n51

`
1

r n H y~n,0!1 (
m51

`

$y~n,m!
~c! cosm@r1w~r !#

1y~n,m!
~s! sinm@r1w~r !#%J . ~43!
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55 10 459STATISTICS OF RARE EVENTS IN DISORDERED . . .
Substituting Eq.~43! and a corresponding expansion f
w8(r ) into Eqs.~15!, we find thaty(1,0)5l̄/8 is independent
of the constant of integrationh. Integratingy(r ) over r we
obtain y(1,0)ln(L/r0), and therefore the relation between lnu
and l̄ established in Eq.~39! is alsoh independent to the
leading order inl̄. On the other hand, adding the ter
(h/r )sin2(r1w) to v can only increase the value of the int
gral *0

Lv2r dr because the cross-term in the expansion of
square integrates to zero. It then follows that the minimum
the integral for a given value ofu is achieved by setting
h50. Note, however, that, as in the one-dimensional ca
this proof is perturbative: it relies on the possibility to e
pand the solutions in powers ofl̄/r .

C. Three-dimensional case

In the three-dimensional case, it can be demonstrated
consistently that large values oft correspond to large nega
tive values ofl̄. As a result, there exists a range of values
r where expansion inl̄/r d215l̄/r 2 is impossible. A typical
solution which was obtained numerically using the so-cal
relaxation method26 is shown in Fig. 1. One can distinguis
three asymptotic regimes:~i! r!r 1, ~ii ! r 1!r!r * , and~iii !
r@r * ; it will be shown below that r 151/ul̄u and

r *5Aul̄u/2. The first region corresponds to a potential we
and the second one to a potential barrier. Taken toget
these two regions support a resonance in thes-wave channel
at the energyEF . However, besides a potential-well—
potential-barrier combination, resonant scattering can be
caused by a weak periodic potential~Bragg reflection!, and
that is what the third region corresponds to. An interest
consequence of the solution presented in Fig. 1 is that
optimal way to achieve large values oft in three dimensions
is to combine the two effects in the ‘‘right’’ proportion.

Analytically the three regions in Fig. 1 are described
the following asymptotic formulas. In the first region~at
small r ) v(r ) behaves as

v1~r !;l̄/r1l̄2lnr1~11c1 7
12 l̄2!, ~44!

wherec is an arbitrary constant which cannot be determin
from the boundary conditions Eq.~21!. Note that the singu-
larity is weak enough so that it produces only a finite con
bution to the saddle-point actionA0. The behavior of the
wave function in this regime is given by

y~r !'
1

r
1 1

2 l̄1 1
3 l̄2r lnr1cr, ~45!

which corresponds to

c~r !'c~0!@11l̄r /21O~r 2lnr !#.

The expansion in Eq.~44! breaks down forr;1/ul̄u, which
gives the approximate value forr 1. In the second region the
solution can be obtained with the help of the semiclass
approximation,y2(r )'v(r ), and the result is

v2~r !'S ul̄u
2r 2D

2/3

. ~46!
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Finally, in the third region, where thel̄/r 2 expansion works,
v(r ) has the asymptotic form

v3~r !;
l̄

2

sin~2r12w!

r 2
1h

sin2~r1w!

r 2
1OS 1r 3D . ~47!

The constantsh andw in this expression are analogous
their counterparts in the two-dimensional case. The ph
variablew again has the meaning of the wave-function pha
shift; it is finite due to the rapid decay of the potential
larger irrespective of the value ofh. Constantsh andw are
not independent: they both can be regarded as function
c. Eitherh or c can be chosen as a minimization paramet

We have not been able to establish the analytical dep
denceh(c); however, based on a numerical analysis t
qualitative features of this dependence can be describe
follows. For a givenl̄ there exists a critical valuec0(l̄) such
that if c.c0, the third ~oscillatory! region never develops
Instead,v(r ) exhibits a singularity at some finite value o
r , leading to a divergent integral inA0. So the values
c.c0 correspond to unphysical solutions. Exactly at t
critical value c0 the oscillations are also absent, an
v(r→`)'11l̄2/(4r 4). For slightly smallerc, h(c) is large
and positive (@ul̄u), and the oscillations appear only after
more or less protracted intermediate regime in wh
v(r )'1. An estimate of the pointr * at which the onset of
the oscillatory behavior occurs can be obtained by not
that the oscillations ofv(r ) are driven@through Eq.~16!# by
oscillations of the wave function. Therefore the amplitude
the oscillations in Eq.~47! cannot significantly exceed 1, s
as to preserve the oscillatory—rather than exponenti
damped—behavior of the wave function. This requirem
leads to

r *'
1

A2
~ l̄21h2!1/4. ~48!

As c decreases further,h monotonically decreases as we
eventually covering the whole (1`,2`) interval.

Whenh is positive or small negative (h*2ul̄u), the be-
havior ofv(r ) andy(r ) in the regions~i! and~ii ! depends on
h ~or c) only very weakly so that this dependence can
ignored in computing the contribution of these regions
A. Larger negative values ofh start affecting the length o
region~ii !, and may lead to an emergence of a hybrid regi
in which v oscillates nonharmonically with anr24/3 enve-
lope.

In what follows we will assume that similarly to the two
dimensional case the minimal valueA0 is achieved by set-
ting h50, even though the breakdown of the asympto
expansion inl̄/r 2 at small distances makes it impossible
construct an analytical argument for this statement analog
to the proofs for one- and two-dimensional systems. T
assumption is borne out by numerical analysis. It is certai
obvious that positive values ofh can never be optimal be
cause of a corresponding ‘‘costly’’v;1 region. As for large
negative values, they are ruled out by the fact that a p
nounced ‘‘hybrid’’ regime never appears in numerical so
tions. Settingh50 reduces Eq.~48! to r *'Aul̄u/2.
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10 460 55IGOR E. SMOLYARENKO AND BORIS L. ALTSHULER
With h'0, both v2(r ) and v3(r ) reach values;1 at
r5r * . While approximation schemes devised forv@1 and
v!1 break down aroundr * , we can calculate contribution
u1 andu2 to u5c(0)/Lc(L)5u1u2 from regionsr,r * @~i!
and ~ii !# and r.r * ~iii ! separately. Similarly to the two
dimensional case, theL factor in the denominator ofu is
introduced to cancel the overall 1/r dependence of the wav
functions, which is an artifact of spherically symmetr
boundary conditions.

~i! and ~ii ! We combine together the first and the seco
regions because the wave function amplitude does
change appreciably in the very short region~i!. Region~ii !
corresponds to a stretched exponential decay ofc. Integrat-
ing y(r )52Av2(r ) over r from 1/ul̄u to r *'Aul̄u/2, we
obtain

lnu1'E
1/ul̄u

Aulu/2
drS ul̄u

2r 2D
1/3

'3r * . ~49!

~iii ! Using Eq.~47! with h50, we find

y~r !;cot~r1w!1
l̄

4r 2
sin2~r1w!. ~50!

The first term in this expression stems from the oscillatio
of the wave-function, while the second one describes
decrease (l̄,0) of the wave-function envelope from th
center of the sample outwards. The second contribu
lnu2 is given by the principal value of the integral*y dr,

lnu2'2PE
A ul̄u/2

L
y~r !dr'r * /4. ~51!

Adding the two contributions, we establish the relati
betweenl̄ andu,

lnu5
13

4
r *5

13

4 S ul̄u
2 D 1/2, ~52!

verifying the self-consistency of the assumptionulu@1 made
at the beginning of this subsection.

The dimensionless integral in the saddle-point action
also evaluated separately in the combined regions~i! and~ii !
and in region~iii !:

E
0

r*
r 2v2dr53r * 35

192

133
ln3u @regions~ i! and~ ii !#,

~53a!

E
r*

L

r 2v2dr5r * 3/25
32

133
ln3u @region~ iii !#. ~53b!

Both contributions turn out to be proportional to the sa
power of lnu, indicating that local resonances and Bragg
flection play equally important roles in the formation
anomalously large wave function intensities. Combining
results, we obtain

P~u!;expH 2
56

2197
pFl ln

3uJ . ~54!

The envelopes of the wave function in the two regions
d
ot

s
e

n

s

e
-

e

e

c~r !;
c~0!

r
exp$23r * 2/3r 1/3% S for 1

r * 2
,r,r * D

~55a!

and

c~r !;
c~0!

r
exp$r * 2/4r2 13

4 r * % ~ for r.r * !.

~55b!

The normalization integral is given by

N5pc2~0!H 1

3r * 2
14Le2~13/2!r* J . ~56!

When L@u2 ~with more realistic boundary conditions th
inequality will becomeL3@u2), the normalization integral is
dominated by the contribution from region~iii !. Then
c2(0)}u2, and with exponential accuracy we finally obta

P~ t !;exp$2 7
2197~pFl !ln

3t%. ~57!

Of course, the separation into regionsr,r * and r.r * is
approximate. It is possible that the crossover regionr;r *
makes a contribution of the same order of magnitude as
two asymptotic regions~ii ! and ~iii !. Thus the number 72197
'3.231023 can only be considered as an order-o
magnitude estimate of the coeficientk introduced in Sec. II.
It must be mentioned that convergence to the asympt
form of Eq.~57! is extremely slow because of the stringen
of the requirementr *5 4

13lnu @1.
In the opposite regimeL!u2, c2(0) is close to its maxi-

mal value;1, and therefore itsu dependence is very weak
On the other hand, similarly to the one-dimensional ca
u2 becomes proportional to the electric response timet r ,
leading to the distribution oft r having a form identical to
Eq. ~57!,

P~t r !;exp$2k~pFl !ln
3t rD%. ~58!

Both Eqs.~57! and ~58! differ significantly from the cor-
respondings-model results.12,13We discuss the possible or
gins of this difference in Sec. IV.

IV. DISCUSSION

A. General remarks

The main result of the work presented in this paper is t
statistics of seldom occurring events in disordered cond
tors can be successfully studied using the optimal fluctua
method. Previous approaches to the problem have b
based on various formulations of the nonlinears model, and
they invariably seem to require an extension of thes model
to, and sometimes beyond, its limits of validity.

The success of thes model in describing a wide variety
of phenomena in chaotic and disordered systems can
traced to the fact that most such phenomena are semiclas
in nature, and are determined by typical extended quan
states formed by typical fluctuations of the random potent
An investigation of the statistics of rare events, on the ot
hand, presents quite a different type of problem. The c
figurations of the random potential that give rise to su
events come from a small subset of all possible configu
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tions. It follows then that there are certain disadvantages
sociated with thes-model approach to the study of ra
events.

~i! First, the assumption that the motion of electrons c
be described entirely in semiclassical terms imposes ce
restrictions on the types of the potentials over which aver
ing is performed. As follows from the calculations presen
here, in three spatial dimensions there exists a reg
r;r * where the solution of the Schro¨dinger equation canno
be obtained semiclassically. As a result, thes model fails to
recognize the existence of this region, and it also mis
entirely the local resonance formed atr,r * .

~ii ! Second, even when thes-model calculations succee
in correctly—albeit implicitly—identifying the relevant dis
order configurations~as in one- and two-dimensiona
samples! they do not always produce exact answers beca
contributions from the short-wavelength degrees of freed
~massive modes! eliminated in the transformation from th
fast to slow variables are missed.28

B. Direct optimal fluctuation method

It is not immediately evident, however, that a relative
naı̈ve approach based on the direct search for an opti
fluctuation should be more reliable. In order for this to wo
the probability of observing a large value oft must be deter-
mined by a sum over disorder configurations which all co
from a single compact region of the configurations spa
The potentials forming this region differ only slightly from
some optimal configuration which corresponds to the sad
point. Although we have not proved in this work that th
saddle point identified here gives the dominant contribut
to the functional integral, ‘‘the preponderance of evidenc
based on the comparison of our results with those obta
using thes-model would indicate that this is indeed the ca

The starting point of our qualitative analysis is the obs
vation that, apart from the difference in the cutoff scale, o
variant of the optimal fluctuation method~the ‘‘direct’’ op-
timal fluctuation method! reproduces identically in the two
dimensional case thes-model results for the unitary en
semble as well as the one-dimensional result for
distribution of relaxation times. In addition, the shapes of
wave function envelopes obtained by our method essent
coincide with the averaged envelopes obtained by Falko
Efetov in Ref. 12~see below!. Assuming that more than
chance coincidence is involved, it is reasonable to concl
that the optimal configurations of disorder found in this wo
are the same as the ones that are responsible for the s
point of thes model. This conclusion is also supported
the fact that our results are not an artifact of the particu
model chosen here. For example, the distribution function
Eq. ~5b! is unchanged if the Gaussian fluctuations of t
potential have a finite correlation length. Altering the disp
sion law in the free Hamiltonian also does not change
basic features of the results, such as the log-normal form
the distribution function or the inverse proportionality of th
coefficientC2 to the logarithm of the system size.28 In other
words, there must exist a correspondence between the sa
points of the theory defined by Eqs.~14! and the saddle
points of thes model. Assuming the existence of such
correspondence we will try to elucidate the origins of t
s-
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s-model results by analyzing the corresponding optimal c
figurations of the potentialU(r ).

Before proceeding with this analysis, we would like
address briefly the question of the stability of the sad
point described by Eqs.~15!. In the three-dimensional cas
the dominant contribution to the saddle-point actionA0
comes from small distances where the optimal potentia
much larger than its typical Gaussian fluctuation, and sta
ity with respect to fluctuations does not pose a problem
two dimensions, however, the outlying regions of the op
mal configuration, where the magnitude of the potential v
ishes as 1/r , must be taken into account. In order to arg
that fluctuations do not destroy the saddle point we note t
although we find it convenient to write the Gaussian dis
bution functionW @U# for the potential in the coordinate
representation, it can be written in any orthonormal ba
$ f n(r )%. A typical amplitude of a dimensionless basis fun
tion f n in a typical configurationU(r ) is 1/An2D. Let us
now choose one of the basis functions, sayf 0(r ), to be pro-
portional to the optimal solutionv(r ) given by Eq. ~37!.
Using the normalization condition*dr f 0

2(r )51, we obtain

f 0~r !'S 1

p ln~L/r 0!
D 1/2sin2rr ~59a!

and

v~r !;
lnu

Aln~L/r 0!
f 0~r !. ~59b!

Thus the optimal fluctuation has a much larger amplitu
than the typical one as long as ln2u@@ln(L/r0)#/n2D. This con-
dition, of course, is just a natural requirement for the valid
of the optimal fluctuation methodu lnPu@1.

It remains to be shown, however, that other compone
of a typical fluctuationU(r ) ~i.e., those orthogonal tof 0) do
not destroy the saddle point. A rigorous investigation of t
fluctuations around the saddle point defined by Eqs.~15! will
be the subject of a forthcoming publication. Nevertheless
plausible argument in favor of the stability of this sadd
point can be made based on the following observation. T
appearance of anomalously localized states due to Bragg
flection can be viewed as a phenomenon analogous to
emergence of a band structure in a periodic lattice. There
suppression of this effect by the fluctuations of the rand
potential is equivalent to the localization transition whi
destroys the band structure in ordinary periodic lattic
ThereforeL,Lc , whereLc is the localization length, seem
to be a sufficient condition for the stability of the saddl
point solution in the two-dimensional case.

C. Asymptotics of the distribution functions

1. One-dimensional case

We will now try to use the physical intuition afforded b
the optimal fluctuation concept to compare thes-model re-
sults of Eqs.~1! and ~2! with the distribution functions Eqs
~5!, ~31!, ~40!, and~58! derived in Sec. III. The first question
that can be easily answered is why the distribution funct
for the electric response times in the one-dimensional cas
log-normal instead of a power law@i.e., exp(2C1lntr)# ob-
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tained by a naı¨ve extrapolation of Eq.~1! to d51. In one and
two dimensions the optimal configurations found in Sec.
are ‘‘global,’’ i.e., the integration in the saddle-point actio
*v2dr must be extended over the whole sample. In contr
in the three-dimensional case the optimal fluctuation, e
with the oscillating tail included, is local, so that the abo
integral converges at large distances. It is well known29,30

that distribution function tails of thee2 lndtr type usually ap-
pear as probabilities of optimal fluctuations confined to
finite volume. Thus, in order to explain the ‘‘anomaly’’ i
the one-dimensional case, we have to understand why a
fluctuation of the random potential necessary to achiev
given value oft r has a lower probability than the global on
proposed in Ref. 13 and rederived in Sec. III A. A loc
fluctuation of the potential leading to a large value oft r
would have to be able either to support a narrow resona
in the bulk of the sample or to suppress the wave funct
near the edges exponentially. Both scenarios require a l
potential barrier—to form a narrow resonance in the fi
case or to create a classically inaccessible region near
edges in the second one. Assuming, as in Sec. II, a rec
gular shape for such a potential barrier, we can repeat
calculation presented there almost verbatim except tht
must everywhere be replaced byt rD. We then obtain
lnP'(2/3A3)(pFl )lntrD. In order for this behavior to domi
nate we must havepFl lntrD!(l/L)ln2trD or

lnt rD@pFL. ~60!

However, from Eq.~9! we see that the corresponding valu
of b—which determine the size of this local fluctuation
the potential—become larger than the length of the sam
2L. This is clearly unphysical. Thus despite a slowert r de-
pendence of the probability of local resonances, the sa
value oft r has a much larger probability to be produced
an accidentally formed Bragg mirror for all reasonable v
ues oft r .

Note also that lntrD;pFL corresponds tov;1 ~or
U;EF), which invalidates the perturbative expansion
Sec. III A. Essentially, the values of lntrD of the order of
pFL or larger correspond to a trivial case: a sample is in
lating because the potential is larger thanEF almost every-
where except for a small island in the center where almos
the weight of an eigenstate atEF is concentrated. In this
regime the distinction between global and local fluctuatio
of the potential becomes blurred.

It is interesting to note that a calculation based on
ballistic s model performed in Ref. 13 forquasi-one-
dimensional conductors indicates the existence of a cr
over from log-normal to power-law distribution a
lntrD;L/l. Although we have not investigated the quasi-on
dimensional case here, it is likely that the physical picture
the interplay between the global and local fluctuations d
cussed above should not be much different. If that is
case, then it is probable that the crossover found in Ref
has as its underlying cause the same mechanism of l
fluctuations becoming comparable in size to the length of
sample. This hypothesis, however, leaves unexplained
difference in scales at which the crossover occurs –L/ l in
Ref. 13 as opposed topFL in the argument presented abov
It is possible that the quasi-one-dimensional case bring
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some features that are not recognized by the estimates b
on the purely one-dimensional model. It should be me
tioned, however, that none of the variants of thes model can
provide an adequate description of the effects associated
local resonances, and it is possible that as-model estimation
of the crossover scale may not be entirely reliable.

2. Two-dimensional conductors

A discussion of the results obtained by the direct optim
fluctuation method in the two-dimensional case and th
counterparts established using thes-model formalism has
already been presented in Sec. III B. Here it seems appro
ate to reiterate briefly the following two main points of th
discussion. First, it comes as no surprise that when mas
modes are taken into account, the short-distance cutoff s
in the logarithm determining the system size dependenc
lnP becomes of the order of the electron wavelengthpF

21

rather than the mean free pathl . This leads, however, only to
a small relative change in thes-model result when the in-
equality pFL@(pFl )

2 is satisfied. On the other hand, th
apparent ensemble independence of the distribution func
asymptotes obtained by our method is puzzling and requ
additional investigation.

3. Three-dimensional case

Derivation of thes model involves linearization of the
spectrum near the Fermi energy. As a result, there is
intrinsic scale in the model that would relate the amplitude
the fluctuating potential to the electron energy. The o
scale is provided by the dispersion of the fluctuations of
potential 1/pndt. This limitation of the model does not af
fect the computation of probabilities of typical events, or
the averages that are dominated by such events, because
cal potentials are small compared to the Fermi energy. H
ever, a problem arises when rare large-amplitude fluctuat
of the potentialU(r ) become dominant. Thes model cannot
detect the existence of classical turning points around wh
the semiclassical approximation breaks down. Thus a p
sible explanation of the log-normal distribution obtained
Ref. 12 for three-dimensional systems is that, within t
s-model approach, the classical turning point atr * is
missed, and the Bragg mirror is effectively assumed to p
sist until distances of the order of the mean free pathl .

We can introduce an~incorrect! cutoff at l into the calcu-
lation performed in Sec. III C in order to see what changes
the result will be induced by it. In the notation of Sec. III C
that would correspond to ul̄u; l lnu, and then A0

}* l
Lv2r 2dr}ul̄u2/ l} l ln2u, leading to lnP;2(pFl )

2ln2t,
which coincides with the answer obtained in Ref. 12. T
reason that such a cutoff scheme leads to a higher estim
for the probabilityP is that it does not correspond to a co
rect solution of the Schro¨dinger equation in the region o
large potentialsU.EF . As a result, the rate of growth of th
wave-function amplitude toward the center of the sample
overestimated.

Another discrepancy between our results and those
tained with the help of nonlinears models in the three-
dimensional case is the difference in powers of (pFl ) in the
exponents in Eqs.~1! and~58!. We believe that this discrep
ancy has the same origin as the difference between ln(L/l)
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and ln(L/r0) in the two-dimensional case: the error intr
duced by using the mean free pathl to determine the cutoff
scale. It is interesting to note that while the cutoff proced
used in the diffusives-model approach of Ref. 10 is capab
of producing only an order-of-magnitude estima
C3;(pFl )

2, the ballistics model,17,13 while giving an illu-
sion of computing the coefficient C3 exactly
@C35(p/9A3)(pFl )2#, nevertheless leads to the same ex
power of (pFl ). To explain this seemingly paradoxical situ
ation we will first examine the cutoff procedure employed
Ref. 10. It is based on the condition, pointed out in Ref.
that in order for the diffusives model to be applicable, the
spatial gradients of theQ-matrix components cannot excee
1/l . Explicitly, for the calculation performed in Ref. 10, th
condition reads

U ddr lnl1U,1

l
, ~61!

wherel1 parametrizes the noncompact bosonic sector of
Q matrix8 ~not to be confused with the Lagrange multipli
l used throughout this work!. The distancel * where this
condition is violated is used in Ref. 10 as a short-dista
cutoff. It was conjectured in Ref. 12 and later confirmed
Ref. 27 that the spatial structure of the saddle-point solu
for l1 mimics the envelope of anomalously localized sta
described by the saddle point of thes model. Therefore the
optimal configuration of (d/dr)lnl1(r) corresponds to the
nonoscillating part ofy(r ) in the direct optimal fluctuation
method.

This correspondence allows us to see directly what ef
an artificial short-distance cutoff atl * would have in our
approach. From Eq.~50! we find l

*
2 ; l ulu. Introducing such

a cutoff atl * into Eq. ~51! we obtainul̄u; l * lnu, and there-
fore l * is estimated asl *; l lnu. If then the integral deter-
mining the saddle-point actionA0 is also cut off atl * , we
obtain

A0; l E
l
*

L

v2r 2dr; l
ul̄u2

l *
; l 2ln3u,

or (pFl )
2ln3u in conventional units, leading to the incorre

answer that was already quoted in Sec. I.
It is thus evident that distances shorter thanl * make an

important contribution to the saddle-point action, and t
contribution cannot be accounted for by the diffusive nonl
ear s model. It should be emphasized that excluding
short-distance contribution in this way leads to a sign
cantly smaller estimate for the probability of observing
given ~large! value of t or t r . This can be understood wit
the help of the following argument. The wave-function a
plitude grows substantially betweenr; l * and r;1. Ne-
glecting this growth leads to a need for a faster increas
the wave-function amplitude betweenL and l * which can
only be achieved by means of a ‘‘costly’’ boost in the am
plitude of the Bragg mirror. As a result, nonoptimal config
rations of the random potential are selected.

Turning now to the calculation performed with the help
the ballistic nonlinears-model for the three-dimensiona
case in Ref. 13, we notice that the distancer * that separates
the ‘‘reaction’’ and ‘‘run-out’’ zones is of the same order a
e

a
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l * . The contribution to the saddle-point action from the ru
out ~diffusive! zone leads to the already quoted (p/9A3)
3(pFl )

2 value forC3, while the reaction zone produces
contribution that has one less power of the large logarit
lnu and is thus neglected. In contrast, in the calculation p
sented in Sec. III C of this paper, the contribution from d
tances of the order ofr *; lnu!l* dominates the saddle poin
action and leads to a larger estimate@Eq. ~5a!# for the prob-
ability of observing anomalously high values oft in the
three-dimensional case than the one obtained in Ref.
Thus the ballistic generalization of the nonlinears model is
also not capable of detecting the existence of the scaler * at
which the semiclassical approximation breaks down. Mo
over, since the calculation within the framework of the b
listic s model does not involve any ultraviolet divergenci
that would necessitate a short-distance cutoff as in the c
of the diffusives model, it appears plausible that the balli
tic variant of the model is equivalent in this context to intr
ducing an ultraviolet regularization into the theory.

D. Prelocalized wave functions

To complete the comparison of the results obtained by
direct optimal fluctuation method and those found using
nonlinears models, we now turn to the issue of the shape
the envelope of anomalously localized states that are res
sible for the large-t tails of the distribution functionP(t). In
Ref. 12 it was found that in two dimensions such states
characterized by amplitudes decaying outwards accordin
a power law

uc~r !u2;S lr D
lnt/ ln~L/ l !

. ~62!

This result has to be compared with Eq.~41!, which can be
rewritten as

uc~r !u2;
c2~0!

r S r 0r D lnt/ ln~L/r0!

. ~63!

Apart from the difference in the cutoff scale (l vs r 0) which
was discussed at length above, Eq.~63! contains an extra
1/r factor in the denominator. It is simply a consequence
the idealized model adopted here with its circularly symm
ric boundary conditions. In a more realistic model the op
mal wave function would become a superposition of diffe
ent angular momentum eigenstates. The 1/Ar behavior of the
circularly symmetric component would be canceled in suc
superposition. Taking into account the fluctuations arou
the saddle point would also have the effect of suppress
the (1/Ar )2 factor in the spatial dependence of theaveraged
envelope of the optimal solution. Note also that Eq.~62!
does indeed describe the averaged envelope of anomalo
localized states.

In three-dimensional samples the states with anomalo
high local amplitudes were found in Ref. 12 to have t
envelope

uc~r !u2;expH 2AS 12
l

r D J , ~64!
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whereA is a constant which in the leading logarithmic a
proximation is equal to lnt. Comparing this to Eq.~55! we
see, in accordance with the discussion above, that
s-model result gives the correct functional formeconst/r only
for large r , i.e., in the region of space where the optim
potential forms a Bragg mirror. The estimatel lnt for the
constant in the exponential in Ref. 12, however, contains
extra factor ofl compared to Eq.~55b! which is a conse-
quence of the choice of the cutoff scale made in Ref. 12.
region of the stretched exponential decay of the wa
function envelope described by Eq.~55a! is missed in the
s-model calculation entirely. As in the two-dimension
case, the extra powers ofr in the denominators of Eqs.~55!
are a consequence of the artificial rotational symmetry.

It was conjectured in Ref. 12 that these high-amplitu
states have a complicated ‘‘snakelike’’ structure at short d
tances. The conjecture was based on the fact that the me
employed in Ref. 12 was applicable to amplitudes as high

t&
VpF

d21

l
, ~65!

rather than a naivet&(V/ l d) expected from a cutoff atl . We
have found no evidence of such behavior here. Since
solutions of the saddle-point equations were assumed t
rotationally invariant from the outset, this cannot be regard
as a conclusive evidence against such a scenario. How
potentially more important is the fact that we did not encou
ter any limitations on the possible values oft analogous to
Eq. ~65!. Analysis of the fluctuations around the saddle po
defined by Eqs.~15!, as well as an investigation of the po
sibility for non-rotationally-invariant solutions of these equ
tions is needed to settle the issue conclusively.

E. Universality

Finally, we would like to make a few remarks concerni
the issue of universality. An important consequence of
dominant role played in three dimensions by large local fl
tuations of the potential that are responsible for the forma
of local resonances is the nonuniversal character of the
tribution functions derived in Sec. III C. Indeed, such larg
amplitude configurations of the potential can only be optim
if they are not too ‘‘expensive,’’ i.e., if their actionA is not
too high, compared to the low-amplitude global fluctuatio
of the potential~Bragg mirrors!. Generalizing the distribu-
tion of the random potentials to

Wn@U#}expS 2
1

2sE U2n~r !ddr D , ~66!

where s is the dispersion, andn>1, we find through a
model calculation similar to the one performed in Sec. II th
forming states with large amplitudes at somer by means of
local resonances always leads to lnP}2 lndt. Forn,d/2 the
‘‘cost’’ of a corresponding Bragg mirror can be estimat
from an appropriate generalization of Eqs.~16!, and it also
leads to a lndt dependence, as was demonstrated by a deta
study of Gaussian (n51) distribution in three dimensions
Thus local large-amplitude fluctuations of the potential
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always important for small enough (,d/2) values ofn. In
the marginal casen5d/2, the weight of the Bragg mirror is
given by

lnP}2
lndt

S lnLr 0D
d21 , ~67!

making it a much more probable way of achieving a lar
local wave-function intensityt. Whenn.d/2 the probability
of the corresponding Bragg mirror has a faster than lndt de-
pendence on lnt, but it is compensated by a power of th
system size in the denominator,

lnP}2
ln2nt

L2n2d . ~68!

This situation is realized in the Gaussian case whend51,
and it was already discussed in detail. Therefore the se
ingly universal character of the log-normal behavior of t
tails of the distribution functions is tied to the assumptio
which is a usual starting point in the derivation of thes
model, that the random potential has a Gaussian distribut
This assumption is believed not to be crucial for the app
cability of the diffusives model. Indeed, the diffusion con
stant involves only the second-order correlator of rand
potentials. On the other hand, when rare events are con
ered, large fluctuations ofU(r ), and therefore the details o
its distribution, may become important.

V. OPEN QUESTIONS AND CONCLUSIONS

The most important problem arising from the results
the present study is the need to explain the fact that
asymptotics of the distribution functions in two dimensio
derived using the direct optimal fluctuation method do n
exhibit any dependence on weak magnetic fields. This f
ture of our answers must be contrasted withall the previous
calculations performed in the framework of the nonlinears
models, in which it was quite obvious that when Coop
modes acquire a mass as a consequence of broken invar
with respect to time reversal, the number of independ
components of theQ matrices changes, and that has a p
found impact on the results. It is possible that our assump
that rotationally invariant solutions of the saddle-point equ
tions dominate the saddle-point action is not valid in t
absence of magnetic field. A more detailed study of the pr
erties of Eqs.~15! will be the subject of a future publication
However, it is impossible to exclude the possibility that t
separation of the low-lying exitations of thes model into the
Cooper and diffusion modes may become inexact when
rare configurations of the random potential dominate.

Whether or not the fluctuations around the saddle po
can change the leading-order terms in lnt is also one of the
questions that are outside the scope of this work. A pecu
disagreement in the crossover scale from ln2t to lnt
asymptotics of lnP between the purely one-dimensional a
quasi-one-dimensional cases which was noted in Sec. IV
makes it rather desirable to extend our method to
quasi-1D and quasi-2D geometries.

To conclude, the main results of this work can be su
marized as follows. We have demonstrated that the opti
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fluctuation method is a useful tool for the investigation of t
statistical properties of anomalous electronic eigenstate
disordered two- and three-dimensional conductors. It w
shown that in three dimensions this method is preferable
the nonlinears model because the latter does not inclu
effects associated with local resonances which can be for
by the random potential. In the one-dimensional case
approach is shown to reproduce the results obtained ea
with the help of the Berezinskii technique16 for the distribu-
tion of the current relaxation times in open samples. T
relevant optimal configurations of the potential coincide w
those conjectured in Ref. 13. We have also demonstrated
these configurations are very different from the ones wh
dominate the asymptotics of the distribution function of t
eigenstate intensities in closed samples, thus clarifying
origins of the difference between these two distributions.

In the two-dimensional case the results obtained by
optimal fluctuation method essentially coincide with t
s-model results for the unitary ensemble of random pot
tials, which we interpret as an indication that the saddle po
of the reduced nonlinears-model found in Refs. 7, 9, 12, 10
and 13 corresponds to the same saddle point of the
theory as the one that describes the optimal fluctuation of
potential.
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APPENDIX

Introducing an auxiliary fieldx as in the main text, we
can representNc as

Nc
215E Dc DS x

2p
D

3expF i E dr x~r !S p̂2
2m

1U~r !2EDc~r !G . ~A1!
in
s
to

ed
ur
ier

e

at
h

e

e

-
t

ll
e

.

a-
-

Performing ap/4 rotation in the (x,c) space,

x5~c11c2!/A2, c5~c12c2!/A2, ~A2!

and introducing infinitesimal convergence factors, we obt

Nc
215E DS c1

A2p
DDS c2

A2p
D

3expS 12 i E dr$c1Ô
~1 !c12c2Ô

~2 !c2% D , ~A3!

where Ô(6)5(p̂2/2m)1U(r )2E6 i0. Thus, up to a con-
stant,Nc is equal to a symmetrized spectral determinant:

Nc}Adet$E2Ĥ1 i0%det$E2Ĥ2 i0%5eR Tr ln~E2Ĥ1 i0!.
~A4!

The variation of the logarithm in the exponent with respe
to U(r ) is equal to the real part of the Green’s function
coinciding argumentsRG(r ,r ;U). This quantity probes the
whole band and is not sensitive to small changes inU.
Therefore, it can be treated as a constant~which we denote as
G), so thatNc becomes

Nc}expSGE dr U~r ! D . ~A5!

The background potential*dr U(r ) can be absorbed into
redefinition of energies, which justifies the approximati
made in deriving Eqs.~15!.

It should also be noted that in thes-model formalism the
real part of the Green’s functionG(r ,r ) is effectively set to
zero under the assumption of an infinite symmetric ba
Therefore any corrections to the distribution function th
may arise due toNcÞ1 are at any rate beyond the scope
thes model.
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29I. M. Lifshitz, Zh. Éksp. Teor. Fiz.44, 1723 ~1963! @Sov. Phys.

JETP17, 1159~1963!#.
30B. I. Shklovskii and A. L. Efros,Electronic Properties of Doped

Semiconductors~Springer, Berlin, 1984!.


