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Absolute band gaps and electromagnetic transmission in quasi-one-dimensional comb structures
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We demonstrate the existence of absolute gaps in the band structure of a quasi-one-dimensional electromag-
netic comb composed of a one-dimensional wave guide along which an infinity of side branches are grafted
periodically. We show that the width of the gaps is very sensitive to the length of the side branches, to the
periodicity, as well as to the contrast in dielectric properties of the constituent materials. Nevertheless, rela-
tively wide gaps still remain when the constituent materials are identical. We also present results of the
transmission coefficient of an electromagnetic wave propagating along the wave guide for a finite number of
side branches. For an increasing number of side branches the behavior of the transmission coefficient parallels
the calculated band structure of the infinite comblike structure. The convergence, as concerns the band-gap
limits, can be achieved for most of the gaps for a small number of side brandesl(-20).
[S0163-182697)10916-X

I. INTRODUCTION vising a comblike structure of one-dimensional wave guides
exhibiting stop bands. This structure is composed of a back-
Ten years ago, Yablonovitchinspired by experiments on bone (or substrate wave guide along which finite side
Rydberg atoms and Penning-trapped electfohsyuggested branches are grafted periodically. The analogy between the
that a periodic dielectric structure possessing an electromagdlectromagnetic waves and vibrations in one dimension and
netic band gap could lead to inhibited spontaneous emissiofiecent resulf€ showing vibrational gaps in comblike struc-
The spontaneous emission inhibition in such gaps could bBIres suggest the possibility of opening gaps in the electro-
utilized to enhance the performance of semiconductor lasef®agnetic band structure of wave guide networks with similar
and other quantum devices. Moreover, Jbhighlighted the ~ geometry. . _
relationship between forbidden electromagnetic band gaps This study is conducted within the frame of the interface
and the localization of photons. In addition to these propostesponse theory of continuous media which we recall briefly
aisy the prob'em of propagation of eiectromagnetic waves ”Iﬂ Sec. Il. This theory allows the calculation of the Green's
Composite media has received a great dea| Of attention' dﬂnctions Of a network structure in terms Of the Green’s fUnC'
particu'ar interest iS the existence Of photonic gaps in théions of its elementary constituents. Three network structures
electromagnetic band structure of artificial materials callecBe then considered, namely a single side branch on an infi-
“photonic crystals.” nite one-dimensional wave guide, an infinite periodic comb-
At the outset, theoretical and experimenta| works focuseake structure, and a finite comb with two semi-infinite leads.
on three_dimensiona' photonic Crysta's' By emp'oying theThe fiI’St one iS ShOWﬂ in Sec. lll to giVe rise to We”'deﬁned
full vector Maxwell’s equations, the existence of a Z€ros of transmission due to resonances between the side
pseudogap in the photonic band structure of a face-centere@fanch and the backbone. These resonances are enlarged to
cubic lattice of dielectric spheres has been establidfigt. ~absolute gaps in the limit of an infinite periodic comb. Be-
was proved that spheres arranged in the diamond stricturéause of the periodicity it is also shown in Sec. IV that ad-
as well as nonspherical dielectric inclusions placed on a fcélitional gaps form. Finally, in Sec. V, we calculate the trans-
lattice® possess absolute band gaps. Complete band gaggission coefficient for electromagnetic waves of a finite
were further obtained in two-dimensional photonic crystalscomb. Despite its finite size this device retains most of the
constituted of periodic arrays of dielectric rods embedded if€atures of the infinite periodic one. This work demonstrates
a dielectric background. Squat&’ triangular'*** and the possibility of designing simple homogeneous networks of
hexagondf*® lattices were investigated. The propagation ofone-dimensional wave guides with absolute band gaps. Fur-
e|ectromagnetic waves in One_dimensional systems SUCh élger COﬂClUSiOhS on the extension Of this Work are drawn in
superlattice§ ~2° has also been studied extensively duringSec. VI.
the last two decades.
In all these composite systems the contrast in dielectric Il. INTERFACE RESPONSE THEORY
properties between the constituent materials and the compo- OF CONTINUOUS MEDIA
sition of the inhomogeneous material are emerging as critical
parameters in determining the existence of gapkhese nu-
merous studies open a question regarding the occurrence of In this paper, we study the propagation of electromagnetic
band gaps for electromagnetic waves in homogeneous sysraves in composite systems composed of one-dimensional
tems by tailoring their geometry. continuous segment®r branchesgrafted on different sub-
In this paper, we pursue the appealing possibility of de-strates. This study is performed with the help of the interface

A. Overview
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response theofy of continuous media which permits us to In Eq. (6), U(D), U(M), andu(D) are row vectors. Equa-
calculate the Green’s function of any composite material. Irtion (6) enables one also to calculate all the waves reflected
what follows, we present the basic concepts and the fundaand transmitted by the interfaces as well as the reflection and
mental equations of this theory. the transmission coefficients of the composite system. In this
Let us consider any composite material contained in itxaseU(D) must be replaced by a bulk wave launched in one
space of definitiorD and formed out oN different homo- homogeneous piece of the composite matérial.
geneous pieces situated in their domahs Each piece is
bounded by an interface;, adjacent in general tp (1<j B. Inverse surface Green’s functions
<J) other pieces through subinterface domaMs. The of the elementary constituents
ensemble of all these interface spad&swill be called the
interface spac® of the composite material.
The elements of the Green’s functigiDD) of any com-
posite material can be obtained fréi

We report here the expression of the Green'’s function of a
homogeneous isotropic infinite dielectric medium. For the
sake of simplicity, we restrict ourselves to nonmagnetic me-
dia. We give also the inverse of the surface Green'’s function

_ -1 for the semi-infinite medium with a free surface and for the
9(DD)=G(PD)~G(DM)G(MM)G(MD) slab of thicknessl.
+G(DM)G Y{(MM)g(MM)G Y MM)G(MD),

(1)
_ _ We consider an infinite mediumi' associated to the
where G(DD) is the Green’s function of a reference con- Cartesians coordinates syster®,k;,X,,X3). It has been
tinuous medium ang(MM), the interface elements of the establishetf?’that the Fourier transformed Green’s function

Green’s function of the composite system. The inverseyetween two pointsX (X, ,X,,X3) and X'(x},x5,x3) of this
g~ }(MM) of g(MM) is obtained for any points in the space medium is given as

of the interfaceM ={UM;} as a superposition of the differ-

ent g; '(M;,M;),2?* inverse of theg;(M;,M;) for each e~ ailxa—x3|

constituenti of the composite system. The latter quantities Gi(Kyx3,X3)=— > (7)
are given by the equation :

1. Green’s function of an infinite medium

where K, is a two-dimensional wave vector in the plane

g MM, M) =AM, M) G 1M, M), 2 (x1.0%9).
For electromagnetic waves with which we are dealing in
where this paper,a; andF; are given as
A;(M; ,M)=1(M;,M;) w2 12
I( 1 I) ( 1 | . . . al:l{? SI(w)_kﬁ =iai/, (8a)
+A;(M;,M;) (I is the unit matriy,
3 Fi=a; for the s polarization, (8b)
and wZ si(w) . .
Fi=-— P for the p polarization, (8¢
A(XX") =V (X)Gi(X",X")[xr=x, (4) i
, , wherew is the angular frequency of the wawethe speed of
where{X,X"} e M; and X" e D; . light in vacuum, anc;(w) the relative permittivity for the

In Eq. (4), the cleavage operat®f; acts only in the sur-  homogeneous isotropic dielectric medidm
face domairM; of D; and cuts the finite or semi-infinite size Equation(7) may be generalized to other excitations as
block out of the infinite homogeneous medidi, is called  elastic waves in solids or liquiés and electrond® The

the surface response operator of black Green'’s function for a one-dimensional infinite wave guide
The new interface states can be calculated ffom is obtained by settingk,=0 in Egs. (8). In this one-
dimensional case, the parameterhas the same value for
defg Y(MM)]=0 (5)  thes andp polarizations.

showing that, if one is interested in calculating the interfacey. Inverse surface Green’s functions of the semi-infinite medium
states of a composite, one only needs to know the inverse of

the Green’s function of each individual block in the space of ON€ considers a semi-infinite mediun™with a “free
their respective surfaces and/or interfaces. surface” located at the positioxz=0 in the directionOx3

Moreover, ifU(D) (Ref. 25 represents an eigenvector of Of the Cartesians coordinates syste@iX,,X,,x3) and infi-
the reference system, E€l) enables one to calculate the Nite in the two other directions. In this cake,
eigenvectorai(D) of the composite material

g '(MM)=g; *(00)=—F;. 9
u(D)=U(D)-UM)G }{(MM)G(MD)

-1 -1
FUM)GHMM)g(MM)GH(MM)G(MD). One considers a slab of widith bounded by two free
(6) surfaces located ox;=0 andx;=d; in the directionOx; of

3. Inverse surface Green'’s functions of the slab
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T the expressions of parametersandF; (i=1,2) [Egs.(8a)

Medium 2 and(8b)], k;=0.
o In this case, the interface domain of the composite system
Medium 1 Medium 1 reduces to site 0 and the finite segment contribution to the
<t o 0 T surface Green'’s function of the composite system takes the
@ " form
. C F,S,
1 ~ 2 ~ 1 2
0,00=9g,(0,0=——= and 0,0=— .
Ve 2 92(0,0=9,(0,0 F,S, g,(0,0 c,
- ... (12)
) Mediim 1 0 Medium 1 Superposing these different contributions, one dedd¢eat
% the inverse surface Green'’s function of the composite system
is
FIG. 1. (a) Elementary constituents of the wave guide with a
single grafted segment of lengthh=d. (b) Wave guide with a _ B — F,S,
single grafted segment of length =d. g~%0,0 =29, 1(0,0+9 2 Y(0,0=—2F;— C,
13
the Cartesians coordinates syste@X; ,X,,X3) and infinite 13
in the two other directions. In this ca&Se and
C
FC F. - _ 2
_hi= o 9(0,0 F,5,4 2F.C, (14
giam=| o] i
! Fi FiCi W|th C2: Ch(azd) = COS@éd) and 82: Sh( azd)
S S =i sin(ayd), wherea,=(w/c)[&,(w)]Y2
. . Equation(6) allows us to calculate the transmission coef-
(9 (0,0 g “(0d)) 10 ficient of this composite system. Considé(x;) =e~ %3, a
"o }di,0) g Y(di.d))’ bulk propagating wave coming froms=—o. Using this
] incident wave in Eq(6), one obtains the transmitted wave
whereF; has the same meaning as above and u(x4) with x;=0 as
Ci=Ch(aidi), (11@ 2F1C2 ’
Iy — —aX
u(X3) F,5,+ 2F.C, e 13, (15
Si=Sh(aidi). (11b)

We deduce from Eq.15) that the transmission coefficient is
One can see that in the interface domisircorresponding to
interfacesx;=0 andx;=d;, the surface Green’s function is | 2FGCy
a 2X2 square matrix. To obtain the Green’s function for ~ |F,S,+2F,C,
one-dimensional segments of wave guides, one needs only
take the limit ofk,— 0 in Eq.(10). In order to study elemen-
tary electromagnetic excitations, we calculate the surfack®
Green'’s function for different composite systems composed

2
. (16)

t . -
\;\)/e observe that this coefficient equals zero wi@n=0,

e ; ; - 1\ (7
of finite segments grafted on a one-dimensional wave guide. a,=|m+ 5\ gl (179
I1l. PROPAGATION OF ELECTROMAGNETIC wherem is a positive integer. The variations ofversus the
WAVES IN AN INFINITE LINE dimensionless quantitg,d are reported in Fig. 2 in the case
WITH ONE GRAFTED FINITE SEGMENT of identical media 1 and 2 for the backbone and for the

. . . . . branch. T is equal to zero for;d odd multiple of7/2 and
One considers a quasi-one-dimensional composite system

formed out of a finite segment of length grafted on an regches its maximum value of 1. fard m.“'?i'?'e of . For .
infinite wave guide lindsee Fig. 12)]. In order to calculate this composite system, there exists an infinite set of forbid-

the surface Green’s function in this case, we construct thi§jen frequenciesg such as
system with two semi-infinite lines constituted of the same

c 1
dielectric material 1 and a segment of dielectric material 2 of wg=f | Mt 5 q (17b
finite lengthd. These three blocks are coupled at their ends [e2(@)]

[see Fig. )]. For the two semi-infinite lines and for the corresponding to eigenmodes of the grafted finite segment.
finite segment, the interface domains correspond to site 0 anthijs grafted segment behaves as a resonator and this simple
sites 0 and 1, respectively. composite system filters out the frequencieg. One can

The inverse surface Green’s functiogg’(MM) for the  notice that the existence of transmission zeros has been al-
two semi-infinite lines an@z’l(M M) for the finite segment ready demonstrated in wave guides with a resonantly
are given by Eqgs(9) and (10) with i=1 andi=2, respec- coupled stub for electrofSand phonons!?? This phenom-
tively (d,=d). Media 1 and 2 are one-dimensional and inenon is related to the resonances associated with the finite
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1.0 in the interface domain constituted of all the sites The
diagonal and off-diagonal elements of this matrix are given
respectively, by— (2F,C,/S;+F,S,/C,) andF,/S;.

Taking advantage of the translational periodicity of this
system in the directioms, this matrix can be Fourier trans-
formed as

0.5

[gx(k,MM)]1228—F11[—§+005(kd1)], (18

transmission coefficient

wherek is the modulus of the one-dimensional reciprocal
vectork and é=C,+ (F,/2F()($,S,/C,).

The dispersion relation of the infinite periodic comblike
wave guide is given by Ed5), i.e.,[g..(k,MM)] =0 and
is expressed in the simple form

0.0 T T T T

o',d cogkd;)=¢&. (19

. . . _ P
FIG. 2. Transmission coefficient versus the dimensionless quanThere exists forbidden frequencies f@F,=cosk;d,)=0,

tity a,d for the wave guide with a single grafted segment of IengthWh'Ch.Co.rr.esPond to the ;eros gf transmisgisee Eqs(17)]
d in the case of identical media 1 and(2}=(w/c)[s,]"2 where of an infinite substrate with a single grafted segment. On the

&, is the relative permittivity of medium 2. other hand, in thé space, the surface Green'’s function is
additional path offered to the wave propagation. We can now g..(k, MM) = St ! _ (20)
consider more complex structures of the composite system Fi {—2[£—cogkd))]}

containing a larger number of side branches. After inverse Fourier transformation, E(0) gives'

IV. ONE-DIMENSIONAL INFINITE BACKBONE ) S tin-n'l+1
WITH A PERIODIC ARRAY OF FINITE SEGMENTS: g=(n,n")= F_l 2-1 (21)
INFINITE COMB

_ where the integers andn’ refer to the sites {<n,n’
We treat the case of a comblike structure composed oL 1 o) on the infinite line. The parametéris defined as

finite segmentgmedium 2 of lengthd, grafted periodically
with lattice spacingd; on an infinite substratémedium 1}
(see Fig. 3 Let us first write the surface Green’s function of e—E2-1, &1
this composite system. The infinite line can be modeled as an _ — _
o = : . t=1 £+VE¥-1, £<-1
infinite number of finite segmentene-dimensional slgtof . 7 lefctl
lengthd; in the directionx;, each one being glued to two §Xivl-&, 3
neighbors. The interface domain is constituted of all the con-
nection points between finite segments. In what follows,
these connection points will be called “sites” and each site
on the infinite chain will be defined by the integeisuch as
—o<n<+o. On each siten, a finite segment of length
d, is connected. The respective contributions of media 1 an

follows:

1
Witht+?=2§ and |t|<1. (22

We now focus on the dispersion relation of this composite
aystem. Equatioril9) can be written explicitly as

2 to the inverse surface Green’s function of the composite ; ;

; . VB sinX's VBX
system are given by Eq$10) and (12), respectively. The CcosX— _B I In(yvA )=cos(kdl), (23
inverse surface Green'’s function of the composite system is 2 cog yVBX)

then obtained as an infinite banded magix'(MM) defined

Medium 1 ’ ‘ .
3 2 A

Wherexzaidl, ﬂ:82/81, and 'y:d2/d1
Let us first consider the particular case where media 1 and
2 are identical &;= ;) with d;=d,, i.e., B=y=1. In this
| ‘ ‘ very simple case, the resolution of EQ3) is strictly ana-
1 2 3

Medium 2

lytical. The width Aw of the gaps is given by values of
such that

Medium 1

O [|——

P 3cog X—-1

=+
—_— 2 cosX +1 (24)

FIG. 3. Wave guide with a periodic array of grafted segments ofWe then deduce the gap width

lengthd, distant from each other by a length . Each mediumi

@i =1 for the backb_one an'd_=_2 _for the side branchgss charac- Aw= —Cm ?j_x (25)
terized by the relative permittivity; . [e1(w)] 1
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FIG. 4. Electromagnetic band structure of the infinite periodic FIG. 5. The same as in Fig. 4 witlB=¢,/e,=1 and y
comb withB=y=1 (B=¢,/e; and y=d,/d;). The plot is given =d,/d;=0.3. In this case one observes three absolute gaps be-
in terms of a;d; (aiz(w/c)[sl]l’z) versus the dimensionless tween the first and the second band, the second and the third band,
quantity kd; (— w<kd;<+ ), wherek is the modulus of the and the third and the fourth band.
propagation vector. One observes two absolute gaps of identical

width between the first and the second band and between the third facturi f terials h itted the fabricati f
and the fourth band. manufacturing of materials has permitte e fabrication o

long Co or Cu wires of small diametéirom 50 to 300 A,
suggesting the possibility of designing such one-dimensional

X3=0, Xp=, X3=1.2309, andX,=1.9106 are solutions composite materials. Far;=9 andd;=10 mm, the width

?r: eEgiﬁ(jr‘g n"c1 ethbitlcvfé\)/(al[gﬁz]ﬁ(m E?or(nZSI;qA(;(S)S ti?]is ofgr of the first gap is 1.08 GHz, which is of the same order of
4 3- . ’ - : . . .

serves that the width of the gaps is governed by the quantit .agnltL_Jde as _the gap width optamed in Ref. 33 for a ‘WO'

vJB. Figure 4 represents the band structure of the infinit imensional dielectric composite. Moreover by decreasing

e
G / : d;, one increaseAw.
comb composite in terms af;d; versuskd, in the caseB L .
= y=1 for — m=kd,;=<+ . There exist two gaps of iden- In order to study the influence of the geometry of the

tical width AX between the first and the second band anacOmblike system on its electromagnetic band s:tructure, we
between the third and the fourth band. These gaps appe§PMPute the band structure 81 andy= 1. For instance,
around values o corresponding to odd multiple of/2  Fi9. 5 shows the band structure i6=1 andy=0.3. Inthe
associated with the zeros of transmission of the grafted resd@W frequency domain, one observes gaps between the first
nators. The second and the third bands meetdat= = 7 and the second band, the second and the third band, and the
and there is no gap between these two bands. Along th&ird and the fourth band. Contrary to the second gap, which
a)d; axis, the band structure repeats periodically withma 2 is associated with a zero of transmission of a single resona-
period. tor, the first and the third gaps appearegtl; values differ-

Equation(25) gives the width of the gaps in the electro- ent from an odd multiple ofr/2. Therefore, these gaps must
magnetic band structure of this particular one-dimensionatesult from the *superlattice” nature of our quasi-one-
composite system. These gaps appear around the frequenciimensional wave guide with periodic side branches.

We have investigated the variation of the width of the first

c 1\ (7 three absolute gaps in tHg,y] plane. We report in Figs.
wg:[sl(w)]ﬂ? m+ 2)\d,)" (26) 6(a)—6(c) three-dimensional maps of these widths in the in-

tervals 0. B<2.1 and 0.Xy<2.1l. The locus of the
wherem is a positive integer. This equation shows that ac-maxima of the first gap widthsee Fig. 6a)] is given by the
cording to the value ofl;, the first forbidden bandni=0) conditiony/8~0.5. This condition appears as a ridge in the
exists in different frequency domains of the electromagneti@D map. The maximum value of 1.375 of the first gap width
spectrum. More precisely, if one considers=9, which cor-  is located at the poinB=2.1 andy=0.3578. The width of
responds to a materidhlumina composifeoften used in the second gap attains its minimum value of zero, for the
dielectric composite studi€d,the first forbidden band ap- same conditionyy/8~0.5. These minima correspond to a
pears in the microwaves domain for 0<08,<<25 mm, in  valley in the 3D map of Fig. ®). There exist two valleys
the infrared domain for 0.05d,;<<50 «m and in the range where the third gap width is zefeee Fig. €c)], one corre-
of visible electromagnetic radiations for 338;,<500 A. sponding again to the conditiopy/3~ 0.5 and the other one
Therefore, the one-dimensional nature of our model retainfor y\/B~2. The first condition §3~0.5) is realized
its validity to the microwave and infrared domains. Indeedalong the deepest valley in the 3D map.
the diameter of the finite grafted segments must be small As a general rule, the widest gaps are obtained for small
compared to their length. Recent improvem&ht3in the  values ofg and y. However, it is important to keep in mind
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Medium 2

Medium 1

Medium 1 l
1

N f—

FIG. 7. Wave guide with a finite numbét of grafted branches
arranged periodically.

that even with the two identical constituent materialz (
=1) this composite system exhibits relatively wide gaps.
We have also performed a study of the electromagnetic
band structure of an infinite two-dimensional wave guide.
This “brushlike” structure is composed of finite segments of
identical lengthimedium 2 grafted on each site of a periodic
square array of one-dimensional wave guidesedium J.
We obtained wide absolute band gaps extending throughout
the two-dimensional Brillouin zone. In the particular case of
two identical constituent materials with a network periodicity
equal to the length of the grafted segmefits., 8= y=1),

these gaps are narrower than in the corresponding comblike
structure.

V. TRANSMISSION COEFFICIENT
OF THE FINITE COMB

Infinite electromagnetic combs are not physically realiz-
able. We investigate in this section a finite comb with a
behavior similar to the infinite one.

We consider in this section the gquasi-one-dimensional
electromagnetic comb represented in Fig. 7. This composite
system is constructed out of a finite comb cut out of the
infinite periodic system of Fig. 3, which is subsequently con-
nected at its extremities to two semi-infinite leading lines.
The finite comb is therefore composed Mfsegmentgme-
dium 2 of lengthd, grafted periodically with a lattice spac-
ing d; on a finite line(medium 1. For the sake of simplicity,
the semi-infinite leads are assumed to be constituted of the
same material as medium 1. We calculate analytically the
transmission coefficient of a bulk electromagnetic wave
coming fromxg= —oo,

The system of Fig. 7 is constructed from the infinite comb
of Fig. 3. In a first step, one suppresses the segments linking
sites 0 and 1, and sitedd and N+ 1. For this new system
composed of a finite comb and two semi-infinite combs, the
inverse surface Green’s functiog[l(M M), is an infinite
banded matrix defined in the interface domain of all the sites
n, —o<n<+o. The matrix is similar to the one associated

with the infinite comb. Only a few matrix elements differ,
namely, those associated with the sites0, n=1, n=N,
andn=N+1.

The cleavage  operator Vy(MM)=g, }(MM)
—g.-Y(MM) (Ref. 23 is the following 4x 4 square matrix

=d,/d,). This gap appears in the band structure between the firs‘fleﬁn?d in the interface domain constituted of sites ON.1,

and the second bandee, for instance, Fig.)5(b) The same as in
(a) for the second absolute gap. This gap appears in the band struc-
ture between the second and the third béek, for instance, Fig.

5). (c) The same as ina) for the third absolute gap. This gap
appears in the band structure between the third and the fourth band
(see, for instance, Fig.)5

N+1
w  —v 0 0
-v W 0
vaMm=| o o W | 7
0 0 -v W
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where

(27b

In a second step, two semi-infinite leads constituted of the
same material as medium 1 are connected to the extremities
n=1 andn=N of the finite comb. With the help of the
interface response theory, one deduces that the perturbing
operatoV,(MM) allowing the construction of the system of

Fig. 7 from the infinite comb is then defined as thx 4
square matrifsee Eq(9)]:

w —v 0 0
—U W_Fl 0

Ve MM)=| 5 0 weE, —u| @8
0 0 —v w

On the other hand, using E1), one can write the elements

of the surface Green’s function of the infinite comb for

n,n'=0,1N,N+1 in the form of a 44 square matrix
g,(MM):

1 t tN tN+l
St t 1 NN
gr(MM)_F_ltZ_l tN tN*l 1 t

N1 N t 1

(29
Using EQgs.(28) and (29), one obtains the matrix operator
AMM)=1(MM)+V,(MM)g,(MM) in the spaceM of
sites 0, 1N, andN+ 1. For the calculation of the transmis-
sion coefficient, we only need the matrix elementd,1),
A(1N), A(N,1), andA(N,N), which can be set in the form
of a 2x2 matrix Ag(MM),

(AL A(l,N))_(lJrAt AtN)
AMMI={ AN, ANNY =L AN 1+ A
(30a
with
t—(C,—S
I ((tzil)l)] a0

The surface Green’s functiod,(MM) of the finite comb

transmission coefficient

0.0 T T T T

FIG. 8. Transmission coefficient for the finite comb with
=¢gyle;=1 andy=d,/d;=1 andN=20 grafted branches.

detA(MM)=1+2At+A%%(1-1t2N"2), (33

In Eq. (32), gs(MM) is the matrix constituted of elements of
g, (MM) associated with sites 1 arid. We now calculate
the transmission coefficient with a bulk electromagnetic
wave coming fromxz=—o, U(x3)=e~ “3. Substituting
this incident wave in Eq(6) and considering Eqq7) and
(31), we obtain the transmitted wawgx3) with x;=Nd, as

tN e—al[xé—(N—l)dl]
)= =251 27 ~Geta (MM) (34
One deduces that the transmission coefficient is
2S,(t?— 1)tV 2
. (121 -

T [1=t(Ci—S) =t [t—(C,—-SD 17

One can easily check that fbf= 1, which corresponds to the
single grafted segment on an infinite lifgee Fig. )], Eq.
(35) leads to Eq(16). In what follows, we study the varia-
tion of T versusa;d, for different values ofN in various
finite combs.

Figure 8 represents the variation of the transmission coef-
ficient T versusa;d, for =1, y=1, andN=20. Despite

with two connected semi-infinite leads in the space of sites the finite number of grafted segmenisapproaches zero in

andN is
ds(MM)=go(MM)AS{(MM)

St 1
T F, t?—1 detA(MM)

1+At(1—t2N"2)
X tN-1

thl
1+At(1—t2N‘2)>

(3D
with

9s(MM)= (32

S t 1 tN‘l)
F_ltz 1 tN_l 1

and

regions corresponding to the observed gaps in the electro-
magnetic band structure of Fig. 4. Next we analyze the evo-
lution of T as the number of grafted segmehtsncreases in

the case{f=1, y=0.3}. The first zero of transmission is
situated atr;d, = (7/2)(1/0.3) as shown in Fig.(8). As the
number of grafted segments increases to 4, a gap forms
around the zero of transmission and the coefficient of trans-
mission is strongly reduced aroundd, =, 2, 3,...[see

Fig. 9b)]. This depression forms gaps for larger finite num-
bers of segments. In Fig(®, one can observe faN=20

that nearly absolute gaps have appearedrand 2r. At
a;d;=3m, T has not yet converged to zero fidr=20. One
would need to increase the number of grafted segments to
open a nearly absolute gap in this vicinity. These results
parallel the calculated electromagnetic band structure of the
infinite superlattice shown in Fig. 5. Therefore, the conver-
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gquasi-one-dimensional wave guide with a single grafted side

1.0 branch. These zeros of transmission give rise to absolute
band gaps in the electromagnetic band structure of an infinite
periodic comb. Additional gaps form due to the periodic na-

057 (@) ture of the structure. Moreover, these features are still
present in the transmission spectrum of a simple device con-
structed from a finite comb. In these systems, the gap width

0.0

transmission coefficient

s 8 10 is controlled by geometrical parameters including the length
, of the side branches, the periodicity of the comb, as well as
14 the contrast in dielectric properties of side branch material

T T
2 4
o
1.0 and the backbone. Nevertheless, the electromagnetic band
structure exhibits relatively wide gaps for homogeneous sys-
tems where the branches and the substrate are constituted of
057 (b) the same material. We have also shown that devices com-
T T
2 4

0

posed of finite numbers of grafted side branches exhibit a
behavior similar to that of an infinite periodic comb.

At this stage it is worth pointing out again the conditions
of validity of the model. In all our calculations we have
assumed that the cross section of the wave guide is small
compared to its linear dimension, that is, the wave guide may
be considered as a one-dimensional medium. We have seen
in Sec. IV that this condition can be approached in the infra-
red and microwave regions of the electromagnetic spectrum
as recent manufacturing techniques permit the fabrication of
extremely thin wires*35 However it would be interesting to
verify the extension of the band gaps in the two-dimensional
Brillouin zone of thicker wires. The calculation of the band
structure in this caseK(#0) will be the subject of future
work as well as the study of electromagnetic properties of
more complex structures.

Finally, it is worthwhile mentioning that the Green’'s
function calculation presented in this work assumes the van-
ishing of the electric field derivative at the free end of the

gence, as concerns the limits of the band gaps, can b%rafted segments. The dispersion relation and transmission

achieved in general for a reasonably small number of Sid(goefficients will be different when using another boundary
branches, usuallN less than 10 to 20. However, higher condition, namely, the vanishing of the electric field at the

values ofN may be needed at those frequencies where thgrafte_d segments free enﬁibgn, in Eq(12), C, andsz_ have
two conditions for the existence of gasamelya.d; inte- to be interchanggdThe physical consequence of this bound-

. , . : ary condition will be the possibility of a cutoff frequency
2;3{”232'2:63 of or ad, half-integer multiple ofr) become (i.e., a forbidden band which commences at zero frequency

. - . . . in the spectrum of the periodic comb structure, which will be
The evolution of T for a finite quasi-one-dimensional

comblike structure suggests the possibility of designing elec(_j|scussed in & forthcoming paper.

tromagnetic devices mimicking the behavior of the periodic
infinite comblike wave guide. These devices may serve as
frequency filters with wide stop bands. ACKNOWLEDGMENTS

transmission coefficient

transmission coefficient

FIG. 9. Transmission coefficient for the finite comb with
=g,/e;=1 andy=d,/d;=0.3. (&) N=1 grafted branch(b) N
=4 grafted branchegc) N=20 grafted branches.
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