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Absolute band gaps and electromagnetic transmission in quasi-one-dimensional comb structure

J. O. Vasseur,* P. A. Deymier,† L. Dobrzynski, B. Djafari-Rouhani, and A. Akjouj
Equipe de Dynamique des Interfaces, Laboratoire de Dynamique et Structures des Mate´riaux Moléculaires, U.R.A. C.N.R.S. No. 801,

U.F.R. de Physique, Universite´ de Lille I, 59655 Villeneuve d’Ascq Ce´dex, France
~Received 16 September 1996; revised manuscript received 17 December 1996!

We demonstrate the existence of absolute gaps in the band structure of a quasi-one-dimensional electromag-
netic comb composed of a one-dimensional wave guide along which an infinity of side branches are grafted
periodically. We show that the width of the gaps is very sensitive to the length of the side branches, to the
periodicity, as well as to the contrast in dielectric properties of the constituent materials. Nevertheless, rela-
tively wide gaps still remain when the constituent materials are identical. We also present results of the
transmission coefficient of an electromagnetic wave propagating along the wave guide for a finite number of
side branches. For an increasing number of side branches the behavior of the transmission coefficient parallels
the calculated band structure of the infinite comblike structure. The convergence, as concerns the band-gap
limits, can be achieved for most of the gaps for a small number of side branches (N>10–20).
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I. INTRODUCTION

Ten years ago, Yablonovitch,1 inspired by experiments on
Rydberg atoms and Penning-trapped electrons,2,3 suggested
that a periodic dielectric structure possessing an electrom
netic band gap could lead to inhibited spontaneous emiss
The spontaneous emission inhibition in such gaps could
utilized to enhance the performance of semiconductor la
and other quantum devices. Moreover, John4 highlighted the
relationship between forbidden electromagnetic band g
and the localization of photons. In addition to these prop
als, the problem of propagation of electromagnetic wave
composite media has received a great deal of attention
particular interest is the existence of photonic gaps in
electromagnetic band structure of artificial materials cal
‘‘photonic crystals.’’

At the outset, theoretical and experimental works focu
on three-dimensional photonic crystals. By employing
full vector Maxwell’s equations, the existence of
pseudogap in the photonic band structure of a face-cente
cubic lattice of dielectric spheres has been established.5,6 It
was proved that spheres arranged in the diamond struc7

as well as nonspherical dielectric inclusions placed on a
lattice8 possess absolute band gaps. Complete band
were further obtained in two-dimensional photonic cryst
constituted of periodic arrays of dielectric rods embedded
a dielectric background. Square,9,10 triangular,11–14 and
hexagonal15,16 lattices were investigated. The propagation
electromagnetic waves in one-dimensional systems suc
superlattices17–20 has also been studied extensively duri
the last two decades.

In all these composite systems the contrast in dielec
properties between the constituent materials and the com
sition of the inhomogeneous material are emerging as crit
parameters in determining the existence of gaps.21 These nu-
merous studies open a question regarding the occurrenc
band gaps for electromagnetic waves in homogeneous
tems by tailoring their geometry.

In this paper, we pursue the appealing possibility of d
550163-1829/97/55~16!/10434~9!/$10.00
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vising a comblike structure of one-dimensional wave guid
exhibiting stop bands. This structure is composed of a ba
bone ~or substrate! wave guide along which finite side
branches are grafted periodically. The analogy between
electromagnetic waves and vibrations in one dimension
recent results22 showing vibrational gaps in comblike struc
tures suggest the possibility of opening gaps in the elec
magnetic band structure of wave guide networks with sim
geometry.

This study is conducted within the frame of the interfa
response theory of continuous media which we recall brie
in Sec. II. This theory allows the calculation of the Green
functions of a network structure in terms of the Green’s fun
tions of its elementary constituents. Three network structu
are then considered, namely a single side branch on an
nite one-dimensional wave guide, an infinite periodic com
like structure, and a finite comb with two semi-infinite lead
The first one is shown in Sec. III to give rise to well-define
zeros of transmission due to resonances between the
branch and the backbone. These resonances are enlarg
absolute gaps in the limit of an infinite periodic comb. B
cause of the periodicity it is also shown in Sec. IV that a
ditional gaps form. Finally, in Sec. V, we calculate the tran
mission coefficient for electromagnetic waves of a fin
comb. Despite its finite size this device retains most of
features of the infinite periodic one. This work demonstra
the possibility of designing simple homogeneous networks
one-dimensional wave guides with absolute band gaps.
ther conclusions on the extension of this work are drawn
Sec. VI.

II. INTERFACE RESPONSE THEORY
OF CONTINUOUS MEDIA

A. Overview

In this paper, we study the propagation of electromagn
waves in composite systems composed of one-dimensi
continuous segments~or branches! grafted on different sub-
strates. This study is performed with the help of the interfa
10 434 © 1997 The American Physical Society
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55 10 435ABSOLUTE BAND GAPS AND ELECTROMAGNETIC . . .
response theory23 of continuous media which permits us
calculate the Green’s function of any composite material
what follows, we present the basic concepts and the fun
mental equations of this theory.

Let us consider any composite material contained in
space of definitionD and formed out ofN different homo-
geneous pieces situated in their domainsDi . Each piece is
bounded by an interfaceMi , adjacent in general toj (1< j
<J) other pieces through subinterface domainsMi j . The
ensemble of all these interface spacesMi will be called the
interface spaceM of the composite material.

The elements of the Green’s functiong(DD) of any com-
posite material can be obtained from23

g~DD !5G~DD !2G~DM !G21~MM !G~MD !

1G~DM !G21~MM !g~MM !G21~MM !G~MD !,

~1!

whereG(DD) is the Green’s function of a reference co
tinuous medium andg(MM ), the interface elements of th
Green’s function of the composite system. The inve
g21(MM ) of g(MM ) is obtained for any points in the spac
of the interfacesM5$øMi% as a superposition of the differ
ent gi

21(Mi ,Mi),
23,24 inverse of thegi(Mi ,Mi) for each

constituenti of the composite system. The latter quantiti
are given by the equation

gi
21~Mi ,Mi !5D i~Mi ,Mi !Gi

21~Mi ,Mi !, ~2!

where

D i~Mi ,Mi !5I ~Mi ,Mi !

1Ai~Mi ,Mi ! ~ I is the unit matrix!,

~3!

and

Ai~X,X8!5Vci
~X9!Gi~X9,X8!uX95X , ~4!

where$X,X9%PMi andX8PDi .
In Eq. ~4!, the cleavage operatorVci

acts only in the sur-

face domainMi of Di and cuts the finite or semi-infinite siz
block out of the infinite homogeneous medium.23Ai is called
the surface response operator of blocki .

The new interface states can be calculated from23

det@g21~MM !#50 ~5!

showing that, if one is interested in calculating the interfa
states of a composite, one only needs to know the invers
the Green’s function of each individual block in the space
their respective surfaces and/or interfaces.

Moreover, ifU(D) ~Ref. 25! represents an eigenvector
the reference system, Eq.~1! enables one to calculate th
eigenvectorsu(D) of the composite material

u~D !5U~D !2U~M !G21~MM !G~MD !

1U~M !G21~MM !g~MM !G21~MM !G~MD !.

~6!
n
a-

s

e

e
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In Eq. ~6!, U(D), U(M ), andu(D) are row vectors. Equa
tion ~6! enables one also to calculate all the waves reflec
and transmitted by the interfaces as well as the reflection
the transmission coefficients of the composite system. In
case,U(D) must be replaced by a bulk wave launched in o
homogeneous piece of the composite material.25

B. Inverse surface Green’s functions
of the elementary constituents

We report here the expression of the Green’s function o
homogeneous isotropic infinite dielectric medium. For t
sake of simplicity, we restrict ourselves to nonmagnetic m
dia. We give also the inverse of the surface Green’s funct
for the semi-infinite medium with a free surface and for t
slab of thicknessd.

1. Green’s function of an infinite medium

We consider an infinite medium ‘‘i ’’ associated to the
Cartesians coordinates system (O,x1 ,x2 ,x3). It has been
established26,27that the Fourier transformed Green’s functio
between two pointsX(x1 ,x2 ,x3) andX8(x18 ,x28 ,x38) of this
medium is given as

Gi~kW i x3 ,x38!52
e2a i ux32x38u

2Fi
, ~7!

where kW i is a two-dimensional wave vector in the plan
(x1Ox2).

For electromagnetic waves with which we are dealing
this paper,a i andFi are given as

a i5 i Fv2

c2
« i~v!2ki

2G1/25 ia i8 , ~8a!

Fi5a i for the s polarization, ~8b!

Fi52
v2

c2
« i~v!

a i
for the p polarization, ~8c!

wherev is the angular frequency of the wave,c the speed of
light in vacuum, and« i(v) the relative permittivity for the
homogeneous isotropic dielectric mediumi .

Equation~7! may be generalized to other excitations
elastic waves in solids or liquids25 and electrons.28 The
Green’s function for a one-dimensional infinite wave gui
is obtained by settingkW i50 in Eqs. ~8!. In this one-
dimensional case, the parameterFi has the same value fo
the s andp polarizations.

2. Inverse surface Green’s functions of the semi-infinite medium

One considers a semi-infinite medium ‘‘i ’’ with a ‘‘free
surface’’ located at the positionx350 in the directionOx3
of the Cartesians coordinates system (O,x1 ,x2 ,x3) and infi-
nite in the two other directions. In this case,29

gi
21~MM !5gi

21~00!52Fi . ~9!

3. Inverse surface Green’s functions of the slab

One considers a slab of widthdi bounded by two free
surfaces located onx350 andx35di in the directionOx3 of
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10 436 55J. O. VASSEURet al.
the Cartesians coordinates system (O,x1 ,x2 ,x3) and infinite
in the two other directions. In this case29

gi
21~MM !5S 2

FiCi

Si
Fi

Si

Fi

Si

2
FiCi

Si

D
5S gi21~0,0!

gi
21~di ,0!

gi
21~0,di !

gi
21~di ,di !

D , ~10!

whereFi has the same meaning as above and

Ci5ch~a idi !, ~11a!

Si5sh~a idi !. ~11b!

One can see that in the interface domainM corresponding to
interfacesx350 andx35di , the surface Green’s function i
a 232 square matrix. To obtain the Green’s function f
one-dimensional segments of wave guides, one needs on
take the limit ofkW i→0 in Eq.~10!. In order to study elemen
tary electromagnetic excitations, we calculate the surf
Green’s function for different composite systems compo
of finite segments grafted on a one-dimensional wave gu

III. PROPAGATION OF ELECTROMAGNETIC
WAVES IN AN INFINITE LINE

WITH ONE GRAFTED FINITE SEGMENT

One considers a quasi-one-dimensional composite sys
formed out of a finite segment of lengthd grafted on an
infinite wave guide line@see Fig. 1~a!#. In order to calculate
the surface Green’s function in this case, we construct
system with two semi-infinite lines constituted of the sa
dielectric material 1 and a segment of dielectric material 2
finite lengthd. These three blocks are coupled at their en
@see Fig. 1~b!#. For the two semi-infinite lines and for th
finite segment, the interface domains correspond to site 0
sites 0 and 18, respectively.

The inverse surface Green’s functionsg1
21(MM ) for the

two semi-infinite lines andg2
21(MM ) for the finite segment

are given by Eqs.~9! and ~10! with i51 and i52, respec-
tively (d25d). Media 1 and 2 are one-dimensional and

FIG. 1. ~a! Elementary constituents of the wave guide with
single grafted segment of lengthd25d. ~b! Wave guide with a
single grafted segment of lengthd25d.
to
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the expressions of parametersa i andFi ( i51,2) @Eqs.~8a!
and ~8b!#, kW i50.

In this case, the interface domain of the composite sys
reduces to site 0 and the finite segment contribution to
surface Green’s function of the composite system takes
form

g̃2~0,0!5g2~0,0!52
C2

F2S2
and g̃ 2

21~0,0!52
F2S2
C2

.

~12!

Superposing these different contributions, one deduces24 that
the inverse surface Green’s function of the composite sys
is

g21~0,0!52g1
21~0,0!1g̃ 2

21~0,0!522F12
F2S2
C2

~13!

and

g~0,0!52
C2

F2S212F1C2
~14!

with C25ch(a2d)5cos(a28d) and S25sh(a2d)
5 i sin(a28d), wherea285(v/c)@«2(v)#

1/2.
Equation~6! allows us to calculate the transmission coe

ficient of this composite system. ConsiderU(x3)5e2a1x3, a
bulk propagating wave coming fromx352`. Using this
incident wave in Eq.~6!, one obtains the transmitted wav
u(x38) with x38>0 as

u~x38!5
2F1C2

F2S212F1C2
e2a1x38. ~15!

We deduce from Eq.~15! that the transmission coefficient i

T5U 2F1C2

F2S212F1C2
U2. ~16!

We observe that this coefficient equals zero whenC250,
i.e.,

a285Sm1
1

2D S p

d D , ~17a!

wherem is a positive integer. The variations ofT versus the
dimensionless quantitya28d are reported in Fig. 2 in the cas
of identical media 1 and 2 for the backbone and for t
branch. T is equal to zero fora28d odd multiple ofp/2 and
reaches its maximum value of 1 fora28d multiple of p. For
this composite system, there exists an infinite set of forb
den frequenciesvg such as

vg5
c

@«2~v!#1/2 Sm1
1

2D S p

d D ~17b!

corresponding to eigenmodes of the grafted finite segm
This grafted segment behaves as a resonator and this si
composite system filters out the frequenciesvg . One can
notice that the existence of transmission zeros has bee
ready demonstrated in wave guides with a resona
coupled stub for electrons30 and phonons.31,22 This phenom-
enon is related to the resonances associated with the fi
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55 10 437ABSOLUTE BAND GAPS AND ELECTROMAGNETIC . . .
additional path offered to the wave propagation. We can n
consider more complex structures of the composite sys
containing a larger number of side branches.

IV. ONE-DIMENSIONAL INFINITE BACKBONE
WITH A PERIODIC ARRAY OF FINITE SEGMENTS:

INFINITE COMB

We treat the case of a comblike structure composed
finite segments~medium 2! of lengthd2 grafted periodically
with lattice spacingd1 on an infinite substrate~medium 1!
~see Fig. 3!. Let us first write the surface Green’s function
this composite system. The infinite line can be modeled a
infinite number of finite segments~one-dimensional slab! of
lengthd1 in the directionx3 , each one being glued to tw
neighbors. The interface domain is constituted of all the c
nection points between finite segments. In what follow
these connection points will be called ‘‘sites’’ and each s
on the infinite chain will be defined by the integern such as
2`,n,1`. On each siten, a finite segment of length
d2 is connected. The respective contributions of media 1
2 to the inverse surface Green’s function of the compo
system are given by Eqs.~10! and ~12!, respectively. The
inverse surface Green’s function of the composite system
then obtained as an infinite banded matrixg`

21(MM ) defined

FIG. 2. Transmission coefficient versus the dimensionless qu
tity a28d for the wave guide with a single grafted segment of len
d in the case of identical media 1 and 2.„a285(v/c)@«2#

1/2, where
«2 is the relative permittivity of medium 2.…

FIG. 3. Wave guide with a periodic array of grafted segments
lengthd2 distant from each other by a lengthd1 . Each mediumi
~i51 for the backbone andi52 for the side branches! is charac-
terized by the relative permittivity« i .
w
m
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in the interface domain constituted of all the sitesn. The
diagonal and off-diagonal elements of this matrix are giv
respectively, by2(2F1C1 /S11F2S2 /C2) andF1 /S1 .

Taking advantage of the translational periodicity of th
system in the directionx3 , this matrix can be Fourier trans
formed as

@g`~k,MM !#215
2F1

S1
@2j1cos~kd1!#, ~18!

where k is the modulus of the one-dimensional reciproc
vectork andj5C11(F2/2F1)(S1S2 /C2).

The dispersion relation of the infinite periodic comblik
wave guide is given by Eq.~5!, i.e., @g`(k,MM )#2150 and
is expressed in the simple form

cos~kd1!5j. ~19!

There exists forbidden frequencies forC25cos(a28d2)50,
which correspond to the zeros of transmission@see Eqs.~17!#
of an infinite substrate with a single grafted segment. On
other hand, in thek space, the surface Green’s function is

g`~k,MM !5
S1
F1

1

$22@j2cos~kd1!#%
. ~20!

After inverse Fourier transformation, Eq.~20! gives32

g`~n,n8!5
S1
F1

t un2n8u11

t221
, ~21!

where the integersn and n8 refer to the sites (2`,n,n8
,1`) on the infinite line. The parametert is defined as
follows:

t5H j2Aj221,

j1Aj221,

j6 iA12j2,

j.1
j,21

21,j,11

with t1
1

t
52j and utu,1. ~22!

We now focus on the dispersion relation of this compos
system. Equation~19! can be written explicitly as

cosX2
Ab

2

sin X sin~gAbX!

cos~gAbX!
5cos~kd1!, ~23!

whereX5a18d1 , b5«2 /«1 , andg5d2 /d1.
Let us first consider the particular case where media 1

2 are identical (a285a18) with d15d2 , i.e.,b5g51. In this
very simple case, the resolution of Eq.~23! is strictly ana-
lytical. The widthDv of the gaps is given by values ofX
such that

3 cos2 X21

2 cosX
561. ~24!

We then deduce the gap width

Dv5
c

@«1~v!#1/2
DX

d1
. ~25!

n-

f
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10 438 55J. O. VASSEURet al.
X150, X25p, X351.2309, andX451.9106 are solutions
of Eq. ~24! in the interval@0,p#. In Eq. ~25!, DX stands for
the difference betweenX4 andX3 . From Eq.~23!, one ob-
serves that the width of the gaps is governed by the quan
gAb. Figure 4 represents the band structure of the infin
comb composite in terms ofa18d1 versuskd1 in the caseb
5g51 for 2p<kd1<1p. There exist two gaps of iden
tical width DX between the first and the second band a
between the third and the fourth band. These gaps ap
around values ofX corresponding to odd multiple ofp/2
associated with the zeros of transmission of the grafted r
nators. The second and the third bands meet atkd156p
and there is no gap between these two bands. Along
a18d1 axis, the band structure repeats periodically with ap
period.

Equation~25! gives the width of the gaps in the electr
magnetic band structure of this particular one-dimensio
composite system. These gaps appear around the freque

vg5
c

@«1~v!#1/2 Sm1
1

2D S p

d1
D , ~26!

wherem is a positive integer. This equation shows that a
cording to the value ofd1 , the first forbidden band (m50)
exists in different frequency domains of the electromagn
spectrum. More precisely, if one considers«159, which cor-
responds to a material~alumina composite! often used in
dielectric composite studies,33 the first forbidden band ap
pears in the microwaves domain for 0.05,d1,25 mm, in
the infrared domain for 0.05,d1,50mm and in the range
of visible electromagnetic radiations for 333,d1,500 Å.
Therefore, the one-dimensional nature of our model reta
its validity to the microwave and infrared domains. Inde
the diameter of the finite grafted segments must be sm
compared to their length. Recent improvements34,35 in the

FIG. 4. Electromagnetic band structure of the infinite perio
comb withb5g51 ~b5«2 /«1 andg5d2 /d1!. The plot is given
in terms of a18d1 „a185(v/c)@«1#

1/2
… versus the dimensionles

quantity kd1 (2p<kd1<1p), where k is the modulus of the
propagation vector. One observes two absolute gaps of iden
width between the first and the second band and between the
and the fourth band.
ity
e
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manufacturing of materials has permitted the fabrication
long Co or Cu wires of small diameter~from 50 to 300 Å!,
suggesting the possibility of designing such one-dimensio
composite materials. For«159 andd1510 mm, the width
of the first gap is 1.08 GHz, which is of the same order
magnitude as the gap width obtained in Ref. 33 for a tw
dimensional dielectric composite. Moreover by decreas
d1 , one increasesDv.

In order to study the influence of the geometry of t
comblike system on its electromagnetic band structure,
compute the band structure forb51 andgÞ1. For instance,
Fig. 5 shows the band structure forb51 andg50.3. In the
low frequency domain, one observes gaps between the
and the second band, the second and the third band, an
third and the fourth band. Contrary to the second gap, wh
is associated with a zero of transmission of a single reso
tor, the first and the third gaps appear ata18d1 values differ-
ent from an odd multiple ofp/2. Therefore, these gaps mu
result from the ‘‘superlattice’’ nature of our quasi-on
dimensional wave guide with periodic side branches.

We have investigated the variation of the width of the fi
three absolute gaps in the@b,g# plane. We report in Figs
6~a!–6~c! three-dimensional maps of these widths in the
tervals 0.1,b,2.1 and 0.1,g,2.1. The locus of the
maxima of the first gap width@see Fig. 6~a!# is given by the
conditiongAb;0.5. This condition appears as a ridge in t
3D map. The maximum value of 1.375 of the first gap wid
is located at the pointb52.1 andg50.3578. The width of
the second gap attains its minimum value of zero, for
same conditiongAb;0.5. These minima correspond to
valley in the 3D map of Fig. 6~b!. There exist two valleys
where the third gap width is zero@see Fig. 6~c!#, one corre-
sponding again to the conditiongAb;0.5 and the other one
for gAb;2. The first condition (gAb;0.5) is realized
along the deepest valley in the 3D map.

As a general rule, the widest gaps are obtained for sm
values ofb andg. However, it is important to keep in mind

al
ird

FIG. 5. The same as in Fig. 4 withb5«2 /«151 and g
5d2 /d150.3. In this case one observes three absolute gaps
tween the first and the second band, the second and the third b
and the third and the fourth band.
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FIG. 6. ~a! Variation of the width of the first absolute gap@in
units of a18d15(v/c)A«1d1# in the @b,g# plane ~b5«2 /«1 , g
5d2 /d1!. This gap appears in the band structure between the
and the second band~see, for instance, Fig. 5!. ~b! The same as in
~a! for the second absolute gap. This gap appears in the band s
ture between the second and the third band~see, for instance, Fig
5!. ~c! The same as in~a! for the third absolute gap. This ga
appears in the band structure between the third and the fourth
~see, for instance, Fig. 5!.
that even with the two identical constituent materialsb
51) this composite system exhibits relatively wide gaps.

We have also performed a study of the electromagn
band structure of an infinite two-dimensional wave guid
This ‘‘brushlike’’ structure is composed of finite segments
identical length~medium 2! grafted on each site of a periodi
square array of one-dimensional wave guides~medium 1!.
We obtained wide absolute band gaps extending through
the two-dimensional Brillouin zone. In the particular case
two identical constituent materials with a network periodic
equal to the length of the grafted segments~i.e., b5g51!,
these gaps are narrower than in the corresponding comb
structure.

V. TRANSMISSION COEFFICIENT
OF THE FINITE COMB

Infinite electromagnetic combs are not physically real
able. We investigate in this section a finite comb with
behavior similar to the infinite one.

We consider in this section the quasi-one-dimensio
electromagnetic comb represented in Fig. 7. This compo
system is constructed out of a finite comb cut out of t
infinite periodic system of Fig. 3, which is subsequently co
nected at its extremities to two semi-infinite leading line
The finite comb is therefore composed ofN segments~me-
dium 2! of lengthd2 grafted periodically with a lattice spac
ing d1 on a finite line~medium 1!. For the sake of simplicity,
the semi-infinite leads are assumed to be constituted of
same material as medium 1. We calculate analytically
transmission coefficient of a bulk electromagnetic wa
coming fromx352`.

The system of Fig. 7 is constructed from the infinite com
of Fig. 3. In a first step, one suppresses the segments lin
sites 0 and 1, and sitesN andN11. For this new system
composed of a finite comb and two semi-infinite combs,
inverse surface Green’s function,gt

21(MM ), is an infinite
banded matrix defined in the interface domain of all the s
n, 2`,n,1`. The matrix is similar to the one associate
with the infinite comb. Only a few matrix elements diffe
namely, those associated with the sitesn50, n51, n5N,
andn5N11.

The cleavage operator Vcl(MM )5gt
21(MM )

2g`
21(MM ) ~Ref. 23! is the following 434 square matrix

defined in the interface domain constituted of sites 0, 1,N,
N11:

Vcl~MM !5S w
2v
0
0

2v
w
0
0

0
0
w

2v

0
0

2v
w
D , ~27a!

st

uc-

nd

FIG. 7. Wave guide with a finite numberN of grafted branches
arranged periodically.
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where

w5
F1C1

S1
and v5

F1

S1
. ~27b!

In a second step, two semi-infinite leads constituted of
same material as medium 1 are connected to the extrem
n51 and n5N of the finite comb. With the help of the
interface response theory, one deduces that the pertur
operatorVp(MM ) allowing the construction of the system o
Fig. 7 from the infinite comb is then defined as the 434
square matrix@see Eq.~9!#:

Vp~MM !5S w
2v
0
0

2v
w2F1

0
0

0
0

w2F1

2v

0
0

2v
w
D . ~28!

On the other hand, using Eq.~21!, one can write the element
of the surface Green’s function of the infinite comb f
n,n850,1,N,N11 in the form of a 434 square matrix
gr(MM ):

gr~MM !5
S1
F1

t

t221 S 1
t
tN

tN11

t
1

tN21

tN

tN

tN21

1
t

tN11

tN

t
1
D .

~29!

Using Eqs.~28! and ~29!, one obtains the matrix operato
D(MM )5I (MM )1Vp(MM )gr(MM ) in the spaceM of
sites 0, 1,N, andN11. For the calculation of the transmis
sion coefficient, we only need the matrix elementsD~1,1!,
D(1,N), D(N,1), andD(N,N), which can be set in the form
of a 232 matrixDs(MM ),

Ds~MM !5S D~1,1!
D~N,1!

D~1,N!

D~N,N! D5S 11At
AtN

AtN

11AtD
~30a!

with

A52
@ t2~C12S1!#

~ t221!
. ~30b!

The surface Green’s functionds(MM ) of the finite comb
with two connected semi-infinite leads in the space of site
andN is

ds~MM !5gs~MM !Ds
21~MM !

5
S1
F1

t

t221

1

detDs~MM !

3S 11At~12t2N22!

tN21
tN21

11At~12t2N22! D
~31!

with

gs~MM !5
S1
F1

t

t221 S 1
tN21

tN21

1 D ~32!

and
e
ies

ing

1

detDs~MM !5112At1A2t2~12t2N22!. ~33!

In Eq. ~32!, gs(MM ) is the matrix constituted of elements o
gr(MM ) associated with sites 1 andN. We now calculate
the transmission coefficient with a bulk electromagne
wave coming fromx352`, U(x3)5e2a1x3. Substituting
this incident wave in Eq.~6! and considering Eqs.~7! and
~31!, we obtain the transmitted waveu(x38) with x38>Nd1 as

u~x38!522S1
tN

t221

e2a1@x382~N21!d1#

detDs~MM !
. ~34!

One deduces that the transmission coefficient is

T5U 2S1~ t
221!tN

@12t~C12S1!#
22t2N@ t2~C12S1!#

2U2. ~35!

One can easily check that forN51, which corresponds to the
single grafted segment on an infinite line@see Fig. 1~b!#, Eq.
~35! leads to Eq.~16!. In what follows, we study the varia
tion of T versusa18d1 for different values ofN in various
finite combs.

Figure 8 represents the variation of the transmission co
ficient T versusa18d1 for b51, g51, andN520. Despite
the finite number of grafted segments,T approaches zero in
regions corresponding to the observed gaps in the elec
magnetic band structure of Fig. 4. Next we analyze the e
lution of T as the number of grafted segmentsN increases in
the case$b51, g50.3%. The first zero of transmission i
situated ata18d15(p/2)(1/0.3) as shown in Fig. 9~a!. As the
number of grafted segments increases to 4, a gap fo
around the zero of transmission and the coefficient of tra
mission is strongly reduced arounda18d15p, 2p, 3p,... @see
Fig. 9~b!#. This depression forms gaps for larger finite num
bers of segments. In Fig. 9~c!, one can observe forN520
that nearly absolute gaps have appeared atp and 2p. At
a18d153p, T has not yet converged to zero forN520. One
would need to increase the number of grafted segment
open a nearly absolute gap in this vicinity. These resu
parallel the calculated electromagnetic band structure of
infinite superlattice shown in Fig. 5. Therefore, the conv

FIG. 8. Transmission coefficient for the finite comb withb
5«2 /«151 andg5d2 /d151 andN520 grafted branches.
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gence, as concerns the limits of the band gaps, can
achieved in general for a reasonably small number of s
branches, usuallyN less than 10 to 20. However, highe
values ofN may be needed at those frequencies where
two conditions for the existence of gaps~namelya18d1 inte-
ger multiple ofp or a28d2 half-integer multiple ofp! become
coincident.

The evolution ofT for a finite quasi-one-dimensiona
comblike structure suggests the possibility of designing el
tromagnetic devices mimicking the behavior of the period
infinite comblike wave guide. These devices may serve
frequency filters with wide stop bands.

VI. CONCLUSIONS

We have investigated the propagation of electromagn
waves in simple networked wave guides with a combli
structure. There exist zeros in the transmission spectrum

FIG. 9. Transmission coefficient for the finite comb withb
5«2 /«151 andg5d2 /d150.3. ~a! N51 grafted branch.~b! N
54 grafted branches.~c! N520 grafted branches.
n

be
de
r
he

c-
ic
as

tic
e
f a

quasi-one-dimensional wave guide with a single grafted s
branch. These zeros of transmission give rise to abso
band gaps in the electromagnetic band structure of an infi
periodic comb. Additional gaps form due to the periodic n
ture of the structure. Moreover, these features are
present in the transmission spectrum of a simple device c
structed from a finite comb. In these systems, the gap w
is controlled by geometrical parameters including the len
of the side branches, the periodicity of the comb, as wel
the contrast in dielectric properties of side branch mate
and the backbone. Nevertheless, the electromagnetic b
structure exhibits relatively wide gaps for homogeneous s
tems where the branches and the substrate are constitut
the same material. We have also shown that devices c
posed of finite numbers of grafted side branches exhib
behavior similar to that of an infinite periodic comb.

At this stage it is worth pointing out again the conditio
of validity of the model. In all our calculations we hav
assumed that the cross section of the wave guide is s
compared to its linear dimension, that is, the wave guide m
be considered as a one-dimensional medium. We have
in Sec. IV that this condition can be approached in the inf
red and microwave regions of the electromagnetic spect
as recent manufacturing techniques permit the fabrication
extremely thin wires.34,35However it would be interesting to
verify the extension of the band gaps in the two-dimensio
Brillouin zone of thicker wires. The calculation of the ban
structure in this case (kW iÞ0) will be the subject of future
work as well as the study of electromagnetic properties
more complex structures.

Finally, it is worthwhile mentioning that the Green’
function calculation presented in this work assumes the v
ishing of the electric field derivative at the free end of t
grafted segments. The dispersion relation and transmis
coefficients will be different when using another bounda
condition, namely, the vanishing of the electric field at t
grafted segments free ends@then, in Eq.~12!, C2 andS2 have
to be interchanged#. The physical consequence of this boun
ary condition will be the possibility of a cutoff frequenc
~i.e., a forbidden band which commences at zero frequen!
in the spectrum of the periodic comb structure, which will
discussed in a forthcoming paper.
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