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Momentum distribution of liquid helium
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We have obtained the one-body density matrix and the momentum distributionn(p) of liquid 4He at
T50 K from diffusion Monte Carlo~DMC! simulations, using trial functions optimized via the Euler Monte
Carlo ~EMC! method. We find a condensate fraction smaller than in previous calculations. Though we do not
explicitly include long-range correlations in our calculations, we obtain a momentum distribution at long
wavelength which is compatible with the presence of long-range correlations in the exact wave function. We
have also studied3He, using fixed-node DMC, with nodes and trial functions provided by the EMC. In
particular, we analyze the momentum distributionn(p) with respect to the discontinuityZ as well as the
singular behavior at the Fermi surface. We also show that an approximate factorization of the one-body density
matrix r(r ).r0(r )rB(r ) holds, withr0(r ) andrB(r ), respectively, the density matrix of the ideal Fermi gas
and the density matrix of a Bose3He. @S0163-1829~97!05901-8#
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I. INTRODUCTION

The momentum distributionn(p)5^ap
†ap& is a fundamen-

tal quantity for the study of both the static and the dynami
properties of quantum liquids, as it gives direct informati
about the high-momentum components of the ground-s
wave function.1 Experimentally, access ton(p) is provided
by deep inelastic neutron scattering at a large momen
transfer\Q. The extraction ofn(p) from the measured sca
tered intensity, however, is affected by the the limitatio
imposed by the experimental resolution and the final-s
interactions. Thus the most accurate information on the m
mentum distribution of4He available to date is likely to be
the one obtained through accurate, microscopic calculati
such as those presented in this study.

At T50° K the momentum distributionn(p) of an ideal
Bose gas is given by a delta functiond(p), corresponding to
all particles being in the condensate. Conversely, the con
sate fraction of4He at the equilibrium density is less tha
10%, implying that the effects of the strongly repulsive co
of the interatomic interaction is nonperturbative. Simila
for 3He the discontinuity ofn(p) at the Fermi momentum
\pF , which gives the strength of the quasiparticle pole,
;0.2 at equilibrium instead of 1, as in the ideal Fermi g
In fact, it has been always difficult to carry outab initio
calculations of the momentum distribution for these syste
within the field-theoretical approach.2

Modern, realistic, quantitative calculations only start
with the development of variational Monte Carlo~VMC!
methods3 and the hypernetted-chain~HNC, FHNC!
equations4,5 for Jastrow models of both Bose and Fermi li
uids. FHNC and HNC equations for the momentum distrib
550163-1829/97/55~2!/1040~10!/$10.00
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tion have been numerically solved in variational calculatio
of nuclear matter,6 liquid 4He,7,1 and liquid 3He,8–10 for
which triplet and backflow correlations were also taken in
account. To improve upon the above variational estimate
n(p), nonconventional perturbative techniques, based
correlated basis functions11 ~CBF’s!, have been developed
and applied to liquid4He ~Ref. 7! and nuclear matter.6,1

HNC and FHNC theories have the merit to allow for fin
details of interparticle correlations, such as long-range
havior, spin dependence, and anisotropies in inhomogen
systems. However, not all cluster diagrams resulting fr
the theory and involved in the HNC formalism, can b
summed in closed form, and in FHNC formulation the pr
cedure to estimate the elementary diagrams with excha
bonds is not completely under control. Therefore, appro
mations like scaling,12 interpolation,8 or truncated
summations13–15must be invoked, and, in liquid-helium ca
culations, these result in a non-negligible loss of accur
with respect to a fully variational treatment.16,17

The momentum distribution of liquid4He and 3He has
also been calculated, at zero temperature, by using
Green-function Monte Carlo~GFMC! method.18,1 At finite
temperature, calculations have been performed for4He by
the path integral Monte Carlo~PIMC! method,19,1 and, more
recently, by the VMC method with trial functions of th
Shadow type.20 The available theoretical estimates of th
momentum distribution of liquid4He provided by varia-
tional and GFMC methods are in reasonably good agreem
among themselves, except for low momenta and for the c
densate fraction. For liquid3He the situation is less satisfac
tory.

The GFMC and the diffusion Monte Carlo~DMC!
1040 © 1997 The American Physical Society
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55 1041MOMENTUM DISTRIBUTION OF LIQUID HELIUM
methods,21,22,17afford to date the most precise tools to pe
form ground-state calculations for many-particle system
For bosons they provide energy estimates that are virtu
exact, within statistical accuracy. In fact the same is true
the averages of (R) diagonal operators@not the case for
n(p)#, for which algorithms exist, like the so-called forwa
walking method,23,24 which yield pure estimates. On the
other hand, the estimates of observables that do not comm
with the Hamiltonian are usually obtained frommixed
averages—through an extrapolation procedure whose a
racy depend on the quality of the trial functionC used for
the importance sampling.3 The extrapolation introduces
bias in the estimates which is second order in the differe
betweenC and the ground-state wave functionF0. For fer-
mions there is an additional source of error related to
existence of the so-calledsign problem. To date, to obtain a
numerically stable algorithm it is customary to approxima
the unknown nodes of the sought ground stateF0 with those
of the trial functionC @thefixed-nodeapproximation22#. This
imposes a bias on any average, which for nondiagonal
servables cumulates with the one arising from the extrap
tion procedure. Therefore, to minimize systematic errors,
pecially in the evaluation of properties such as t
momentum distribution, it is necessary to achieve maxim
accuracy in the optimization of the trial function.

Recently, an optimization procedure based on Mo
Carlo calculations and denoted as the Euler Monte C
~EMC! method has been proposed.25,17 This EMC method
has been successfully applied to both liquid4He and
3He.16,17The EMC wave functions have pair and triplet co
relations fully optimized, and provide the lowest availab
energy upper bounds. Moreover, their use in DM
calculations21,22,17has led to results of unprecedented ac
racy for the energy, pair function, and static structure fu
tion.

In this paper we present results for the one-body den
matrix r(r ) and the momentum distributionn(p) of liquid
4He and3He, at various densities, obtained with DMC ca
culations based on EMC wave functions. The plan of
paper is as follows. In Sec. II we summarize the compu
tional details involved in the calculation ofn(p). We then
present the results for liquid4H in Sec. III, and those for
liquid 3He in Sec. IV. We finally offer a summary and co
clusions in Sec. V.

II. COMPUTATIONAL DETAILS

In DMC simulations21,22 the ground-state wave functio
F0 is sampled through a random walk in configurati
space, guided by a trial functionC. In practice one sample
the mixed probabilityf5F0C. We choseC5SF for 4He
andC5D↑D↓F for 3He, with thecorrelation part F sym-
metric in the particle coordinates,S a symmetrized produc
of one-particle orbitals, andD↑ andD↓ Slater determinants
of one-particle orbitals for particles of up- and down-spin.
the homogeneous liquidS5const, andDs is built from plane
waves ~PW’s!, or from plane waves with short-~SBF! or
long- ~LBF! ranged backflow corrections. As a full accou
has already been given elsewhere16,17 of both the EMC
method, which we employ to construct and optimize the t
wave functionC, and of the use of EMC wave functions i
s.
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DMC simulations, here we shall restrict to essential deta
All calculations ~variational and diffusion! presented in

this paper, unless explicitly noted, have been performed
ing EMC wave functions with fully optimized pair and triple
pseudopotentials17 ~OJOT!, and modeling helium with the
HFDHE2 pair potential of Azizet al.26 A cubic simulation
box and periodic boundary conditions were used. For3He,
backflow correlations have been included,17 in the usual
way,27–29 by replacing the plane waves exp(ik i•r j ) in
the Slater determinants with exp(ik i•xj ), where xj
5r j1(kÞ jh(r jk)(r j2r k). The functionh(r ) is taken either
short ranged,27

hS~r !5lBexp„2~r2r B!2/vB
2
…„~2r2L !/L…3, ~1!

or long ranged30

hL~r !5lBexp„2~r2r B!2/vB
2
…1lB8 /r

3, ~2!

wherelB , r B , vB, andlB8 are variational parameters. Th
long-ranged backflow function is smoothly cut off at th
boundary of the simulation box of sizeL by replacing the
expression given in Eq. ~2! with hL8(r )5hL(r )
1hL(L2r )22hL(L/2). In practice, we first simultaneousl
optimize the pair and triplet pseudopotentials with the ba
flow parameters as specified in Refs. 27 and 30, and then
optimizeh(r ) at fixed pseudopotentials.

The 3He results presented below were obtained w
short-ranged backflow, unless otherwise specified. A
DMC simulations were performed within the fixed-node a
proximation, whereby the nodes of the ground stateF0 are
assumed to coincide with those of the EMC trial function

In a uniform liquid in a state described by the wave fun
tion C, the one-body density matrix can be defined as

r~r !

5
V*dr2 . . .drNC!~r1 ,r2 , . . . ,rN!C~r11r ,r2 , . . . ,rN!

*dr1 . . .drNuC~r1 ,r2 , . . . ,rN!u2
,

~3!

so that, having imposed periodic boundary conditions to
N particles in the volumeV,

r~0!51, ~4!

and the independence fromr1 follows from translational in-
variance. For fermions, the integration over the variabler i is
understood also to imply the a over spin projection. If w
denote with R and R8, respectively the configuration
(r1 ,r2 , . . . ,rN) and (r11r ,r2 , . . . ,rN), and we exploit the
translational invariance, we can rewrite Eq.~3! as

r~r !5
*dRC!~R!C~R8!

*dRuC~R!u2
5E dRP~R!

C~R8!

C~R!
, ~5!

with

P~R!5
uC~R!u2

*dRuC~R!u2
, ~6!

the probability induced by the wave functionC. Using Eq.
~5!, the variational density matrix~i.e., the one defined in
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1042 55MORONI, SENATORE, AND FANTONI
term of the trial wave functionC) may be conveniently cal
culated by the Monte Carlo method as

rVMC~r !.
1

N(
i51

N
C~Ri8!

C~Ri !
, ~7!

with the configurationsRi drawn from the probability
P(R). The DMC-extrapolated estimater(r ) is given by

r~r !52rmix~r !2rVMC~r !, ~8!

where the mixed estimatermix(r ) is calculated from an ex
pression identical with that of Eq.~7!, with the configura-
tions Ri drawn, however, from the mixed probabilit
Pmix(R)5 f (R)/*dR f(R) and f (R)5F0(R)C(R). In prac-
tice, the auxiliary configurationsR8 appearing in Eq.~7! are
generated from a givenR by moving a particle either of fixed
increments along a random direction~FM! or to points ran-
domly distributed in the simulation box~RM!. It turns out
that the two methods give more accurate results at small
at larger , respectively.

The momentum distribution is defined asn(p)5^ap
†ap&,

where an average on spin projections is also implied for
polarized 3He. It is simply related to the one-body densi
matrix by a Fourier transform

n~p!5
r

nE dr eip•rr~r !

5
r

n
S n0d~p!1E dr eip•r~r~r !2n0! D , ~9!

wherer5N/V is the density of the system,n is the degen-
eracy factor, which is 1 for4He and the fully polarized
3He, and 2 for normal3He; andn0 is the large-r limit of the
density matrix,n05r(`). In fact, r(r ) vanishes for large
values ofr in 3He, whereas for4He it saturates ton0Þ0,
due to the macroscopic occupation of the state with z
momentum.n0 is the condensate fraction, i.e., the fraction
4He atoms occupying the state withp50.
Evidently, the normalization of the density matrix give

in Eq. ~4! implies, for the momentum distribution, the no
malization sum rule

n

~2p!3rE dp n~p!5r~0!51. ~10!

The momentum distribution has been calculated in t
different manners. Having sampled the density matrix
function of r , one can just take its Fourier transform acco
ing to Eq. ~9!. Alternatively, restricting to the RM method
one can also directly accumulate

n~p!5
r

n

1

N(
i51

N eip•rC~Ri8!

C~Ri !
. ~11!

At first sight it seems that ther integration is missing in Eq
~11! above. However, a little reflection shows that accum
lating the estimator of Eq.~11! correctly implements the in
tegration~average! over r , which appears in definition~9! of
the momentum distribution, sincer is chosen at random fo
each configurationRi , with a uniform distribution in the
nd

-

o
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o
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-

simulation box. This second calculation ofn(p) is imple-
mented forp’s that are reciprocal-lattice vectors of the sim
lation cell. Equation~11! is employed to accumulate varia
tional and mixed estimators, from which the extrapolat
estimator is then obtained, as explained above. From Eqs~3!
it follows that the kinetic energy per particleT can be related
to the curvature of the density matrix at the origin, accord
to

T52F \2

2M
¹2r~r !G

r50

, ~12!

which also implies the kinetic-energy sum rule@see Eq.~9!#

T5
\2

2M

n

~2p!3rE dp p2n~p!. ~13!

III. LIQUID 4He

We have carried out DMC calculations of the one-bo
density matrix and of the momentum distribution of4He at
four densities, using EMC trial functions and 64 atoms in t
simulation box. Selected runs with up to 232 particles ha
been performed to check for finite-size effects. In Fig. 1
show our results for the one-body density matrixr(r ) at the
equilibrium density. The kinetic-energy sum rule~13! is
manifestly satisfied, and the saturation to a finiten0 at large
r is evident, in spite of the fact that with 64 particles on
distances up to about 7 Å are accessible. In the inset we als
give a comparison between estimates obtained with the
and RM methods. The greater accuracy of the latter met
at large distances is apparent. In Fig. 2 we report, also at
equilibrium density, extrapolated estimates of the moment
distributionn(p), obtained using Eq.~11!. Due to the finite

FIG. 1. One-body-density matrix of4He at the equilibrium den-
sity r(Å23

)50.021 86. The full curve is the fit of Eq.~14! to our DMC
results~extrapolated estimates!, with the dashed curve showing th
parabola 12(MT/3\2)r 2, which satisfies the kinetic-energy sum
rule. The solid circles and rectangles respectively give our DM
results obtained with the FM and RM methods. A comparison of
estimates yielded by the two methods in the tail region is given
the inset.
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55 1043MOMENTUM DISTRIBUTION OF LIQUID HELIUM
size of the system only wave vectors larger than;0.4
Å 21 are accessible. We note that a shoulder is discernibl
pn(p) at p*2 Å.

In order to extract the condensate fractionn0 from our
DMC results, as well as to facilitate applications, we ha
fitted our DMC-extrapolated estimates of the density ma
and momentum distribution, obtained with the RM metho
to the following analytic formula:

n~p!5~2p!3rd~p!n01Fn0 p1p 1n1cos
2S pp2D Ge2~p/p3!a

1n2e
2~p2p4!2/p5

2
. ~14!

The first two terms in Eq.~14! account for the existence o
the condensate, while the third suitably models the shou
in pn(p). The fourth and last term accounts for the gro
main structure of the momentum distribution.

We have simultaneously fittedn(p) andr(r ), which must
be obtained numerically by Fourier transforming the funct
of Eq. ~14!, imposing as well the normalization conditio
~10! and the kinetic energy sum rule~13!. Moreover, we set
p15Mc/2\ to satisfy the long-wavelength behavior

lim
p→0

pn~p!5
n0Mc

2\
, ~15!

induced by long-range correlations, as first discussed by
voret and Nozieres.31 AboveM is the mass of the4He atom
andc the sound velocity, which we estimate from the DM
~Ref. 17! equation of state~EOS!. Thus we fit at each densit
six independent parameters to more than 100 MC poi
obtaining a reducedx2 between 0.98 and 1.20. The resultin
fit parameters are recorded in Table I.

In principle one could also takec as unknown, and obtain
an independent estimate of the sound velocity. We have t
this alternative, at the equilibrium density, obtaining an e

FIG. 2. Momentum distribution of4He at T50° K. Long
dashes, full curve, and short dashes are fits to the DMC resul
r(Å23)50.019 64, 0.021 86, and 0.026 22, whereas the r
angles give the DMC extrapolated estimates at the equilibrium d
sity r(Å23)50.021 86. The inset shows the long-wavelength
havior of n(p), with the dotted curve reporting the results of th
GFMC method~Ref. 18!.
in
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mate ofc which is about 10% lower than experimental a
DMC-EOS estimates, and has, however, a very large un
tainty (;50%), reflecting the absence of DMC points f
p&0.4 Å21, where the singular term inn(p) is important.
We may conclude that our data are compatible with the p
ence of singular term inn(p),31 in spite of the lack of long-
range terms in the pseudopotentials that we used.17 In Fig. 3
we show the density matrix at the four densities that
studied, as given by the fit of Eq.~14! with the parameters o
Table I.

The DMC momentum distribution and density matrix a
compared with the fit of Eq.~14! in Figs. 1, 2, and 4, at the
equilibrium density. The fit appears to be very good. A sim
lar conclusion holds at the other densities that we studie

The condensate fractionn0 is mostly constrained by the
large-r behavior ofr(r ), which results in a term proportiona
to d(p) in the momentum distribution. As we already me
tioned, the singular behavior ofn(p) at smallp, implied by
Eq. ~15!, is much less effective in determiningn0, because of
the absence of DMC estimates forp&0.4 Å21. From the

at
t-
n-
-

TABLE I. Parameters of the fit~14! to the DMC momentum
distribution and density matrix of4He atT50° K, at various den-
sities.r is in Å23 andp1-p5 are in Å21.

r 0.019 64 0.021 86 0.024 01 0.026 22

n0 0.111 63 0.071 673 0.046 227 0.027 079
a 1.6941 1.7634 2.2342 1.9976
n1 0.055 274 0.038 282 0.019 157 0.021 497
n2 0.402 85 0.398 93 0.366 95 0.384 83
p1 0.499 57 0.733 94 0.959 34 1.1964
p2 0.389 71 0.385 25 0.404 35 0.405 88
p3 1.4900 1.6744 2.2153 2.1832
p4 0.297 13 0.205 38 0.284 94 0.062 765
p5 0.851 28 1.0016 1.0132 1.2549

FIG. 3. One-body-density matrixr(r ) of 4He. The curves from
the topmost to the lowest, give the analytical fit of Eq.~14! to our
DMC results ~extrapolated estimates!, respectively at
r(Å23)50.019 64, 0.021 86, 0.024 01, and 0.02622. The in
showsr(r ) in the tail region.
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1044 55MORONI, SENATORE, AND FANTONI
inset of Fig. 1 one might conclude that the ranger&7 Å,
accessible with 64 atoms is not large enough to unamb
ously assess the value ofn0. However, simulations with 232
atoms yield, in the extra range 7 Å&r&11, DMC estimates
that are in perfect agreement with the fit to the 64 partic
results, as is clear from Fig. 4. We also illustrate in th
figure the dependence of the large-r limit of the density ma-
trix, i.e.,n0, on the quality of the wave function. In particula
it is apparent that improving the MC description, eith
changing from VMC to DMC methods, for a given tria
function, or changing to a better trial function in the DM
method, results in a decrease ofn0 in the case considered.

In Fig. 5 and Table II we compare our predictions f
n0 with those from other theoretical treatments, as well
with experimental results at low temperature. Consisten
with the observation made above, our use of very accu
trial functions17 yields DMC predictions for the condensa
fraction which are lower than previously obtained by GFM
~Ref. 18! and HNC~Ref. 7! methods. On the theoretical sid
the only prediction that agrees with our own, though it ha
much larger statistical error, is the PIMC one atT51.18°
K.19 We should remind the reader that in fact PIMC meth
has no trial function bias. We find instead a sizable discr
ancy from the experimental estimates of Snow, Wang,
Sokol,32 who determinedn0 by fitting a modeln(p) to the
measured Compton profileJ(Y)—a procedure, however
which appears to be model dependent. Different choices
n(p) produce equivalently good fits ofJ(Y),33 though em-
bodying very different condensate fractions, all the way fro
n050 to n0510%. In fact, our DMC momentum distribu

FIG. 4. Dependence on the quality of the wave function and
the method~VMC vs DMC! of the one-body-density matrix o
4He, at the equilibrium densityr(Å23)50.021 86. The full curve
is the fit to our DMC results~extrapolated estimates! for 64 par-
ticles, using our best trial function~OJOT!, while the dashed curve
gives the fit to the VMC results obtained with this trial functio
Empty rectangles and solid squares, respectively, give VMC
DMC results obtained from a simple OJ trial function, which e
bodies only pair pseudopotentials. Finally, the triangles are
DMC results obtained using the OJOT trial function and 232 p
ticles, and the circles report the finding of PIMC atT51.18° K
~Ref. 19!.
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tion yields prediction for the Compton profile which agre
well with the experiments, as we show below.

The inelastic neutron-scattering cross section at high m
mentum transfer\Q can be approximated by its impuls
approximation~IA ! expression, which is proportional to th
Compton profile33

J~Y!5
1

4p2rEuYu

`

dp pn~p!. ~16!

The scattering in the IA does not depend on the energyv
and the momentum transfer\Q separately, but only through
the scaling variableY, given by

Y5~M /\Q!~v2v r !, ~17!

wherev r5\2Q2/2M is the recoil energy of the scatterin
atom. The dynamical response functionS(Q,v), in the IA, is
given byJ(Y) times the factorM /(\Q). Final-state effects
~FSE’s! of the medium on the scattered atom as well as
perimental resolution~ER!, broaden the Compton profile
particularly its d peak atp50, which is due to the Bose
condensation. In Fig. 6 Compton profiles, calculated with o
DMC momentum distributions, are compared with observ
scattering data34 atT50.35° K, converted toJ(Y). Once ER
and FSE are taken into account,34 good agreement with the
experiment is obtained.

n

d

e
-

FIG. 5. Condensate fraction of liquid4He, as a function of the
density. DMC~solid circles!; EMC ~open circles!; GFMC ~Ref. 18!
~diamonds!; HNC ~Ref. 7! ~crosses!; experimental estimates a
T50.75° K ~Ref. 32! ~solid triangles!; PIMC atT51.18° K ~Ref.
19! ~empty triangle!.

TABLE II. Condensate fractionn0 in
4He. DMC, GFMC~Ref.

18!, and HNC~Ref. 7! predictions are atT50. The PIMC~Ref. 19!
result is atT51.18° K, and the density is in Å23. The figure in
parentheses is the uncertainty on the last figure, whenever avail

r 0.019 64 0.021 86 0.024 01 0.026 22

DMC 0.112~1! 0.0717~5! 0.0462~6! 0.02.71~6!

PIMC 0.069~10!
GFMC 0.092~1! 0.052~1! 0.037~2!

HNC 0.092 0.065 0.043
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55 1045MOMENTUM DISTRIBUTION OF LIQUID HELIUM
IV. LIQUID 3He

For normal3He, DMC simulations using EMC trial func
tions with backflow and the fixed-node approximation ha
been performed at five densities, with 54 atoms in the sim
lation box. We investigated the dependence of the mom
tum distribution on the size of the system and on the rang
the backflow, respectively, with runs for 114 atoms and w
runs using trial functions embodying long-range backflow

FIG. 6. Compton profileJ(Y) of 4He at the equilibrium density
r(Å23)50.021 86 compared with experimental~solid circles! data
atQ523Å21 andT50.35° K ~Ref. 34!. The dashed~solid! curve is
obtained from our fit to the DMCn(p) allowing ~not allowing! for
both the experimental broadening and the final state interaction
Ref. 34. In calculating the dashed curve, a shift of20.1 Å inY has
been also used as in Ref. 34.

FIG. 7. One-body-density matrix of3He at the equilibrium den-
sity r(Å23)50.016 35. The full curve is the fit of Eq.~19! to our
DMC results~extrapolated estimates!, with the dashed curve show
ing the parabola 12(MT/3\2)r 2, which satisfies the kinetic-energ
sum rule. The solid circles and rectangles, respectively, give
DMC results obtained with the FM and RM methods. A comparis
of the estimates yielded by the two methods in the tail region
given in the inset.
e
-
n-
of

In Fig. 7 we give our DMC estimates for the densi
matrix at the equilibrium density. It is clear that the kineti
energy sum rule~13! is satisfied. The size of the syste
allows for a determination ofr(r ) through its first zero and
up to the first minimum. A comparison between results o
tained with FM and RM methods is also given in the ins
The smaller error on the FM results, compared with that
the RM estimates, is due to the much longer runs used
accumulate the FMr(r ) in this case.

In Fig. 8 we report, at three different densities, the m
mentum distributionn(p) obtained using Eq.~11!. Clearly,
the discontinuityZ at the Fermi wave vectorpF is substan-
tially reduced, with respect to its valueZ51 in the noninter-
acting system, and moreover it systematically shrinks, as
system becomes denser and the effects of the interaction
come more important.Z is also slightly reduced when th
nodes of the trial function are improved from PW to SR
and then to LBF. Size effects on the momentum distribut
appear to be negligible, as it is clear from the comparis
between variational results for 54 and 114 particles given
Fig. 9, at the equilibrium density.

In a normal Fermi liquid such as3He the momentum
distribution, in addition to the discontinuity, has infinit
slopes35,36 at pF . To leading order inp2pF ,

n~p→pF
6!.n~pF

6!1A
p2pF
pF

lnU p2pF
pF

U, ~18!

with the coefficientA related to imaginary part of the self
energyS(p,E).

To extractZ from the calculated momentum distributio
and to check that our results are consistent with the prese
of the singular term of Eq.~18!, we fitted our data forr(r )
andn(p) to the real-space form

of

ur
n
s

FIG. 8. Momentum distribution of3He at T50° K and
r(Å23)50.014 13, 0.016 35, and 0.019 46: dots are DMC~fixed-
node! extrapolated estimates; full curves are fits to the DMC resu
Larger densities correspond to lower curves atp50. The inset
shows the behavior around the Fermi momentum at the equilibr
density r(Å23)50.016 35 Å3, using PW (•••), SBF ~—! , and
LBF ~- - -! trial functions.
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r~r !5Zr0~x!1a1
r0~x!

x
1a2

xr0~x!2sin~x!

x3
2a1

e2b1x

x

1~a31a4x1a5x
21a6x

3!e2b2x, ~19!

with x5pFr , and

r0~r !5
3

x3
~sinx2x cosx!, ~20!

the density matrix of the ideal Fermi gas. The first two ter
in Eq. ~19! account, respectively, for the discontinuity an
the infinite slope ofn(p) at pF . The third term allows for
finite discontinuities in the first and second derivatives
n(p) at pF . Finally, the fourth term is needed to elimina
the divergence that the termr0(x)/x produces at the origin
We impose the normalization condition~10! and the kinetic-
energy sum rule~13!, as well as the vanishing of the first an
third derivatives ofr(r ) at r50. Thus we fit at each densit
five independent parameters to more than 100 MC poi
with a reducedx2 between 0.87 and 1.15. The resulting
parameters are recorded in Table III.

FIG. 9. Momentum distribution of3He at equilibrium density
r(Å23)50.016 35 with the VMC method, using OJ trial function
with 54 ~solid circles! and 114~rectangles! particles.

TABLE III. Parameters of the fit~19! to the fixed-node DMC
momentum distribution and density matrix of3He atT50° K, at
various densities.r is in Å23.

r 0.011 98 0.014 13 0.016 35 0.017 97 0.019 4

Z 0.459 77 0.305 98 0.236 16 0.143 28 0.135 6
a1 0.142 48 0.286 12 0.193 76 0.416 99 0.246 1
a2 -0.119 73 -0.219 12 -0.123 81 -0.281 25 -0.239 8
a3 -0.732 00 -0.807 32 -0.643 05 -2.1780 -0.962 7
a4 3.2095 1.9033 3.2723 4.1029 3.9981
a5 -1.5905 0.648 01 -0.098 765 -2.4600 -0.647 2
a6 7.6229 1.5582 4.6639 6.8026 6.2113
b1 9.0415 5.3494 7.3460 7.3676 7.5530
b2 3.5907 2.7487 3.0716 3.3316 3.1652
s

f

s,

We compare fit and DMC estimates forr(r ) and for
n(p), respectively, in Figs. 7 and 8. Evidently, Eq.~19! is
fully consistent with our DMC results. In Fig. 10 we sho
the one-body density matrix at three of the densities that
studied, as given by the fit of Eq.~19!. As for the noninter-
acting case,r(r ) becomes steeper with increasing densi
and its first zero moves toward the origin.

A comparison of our results for the momentum distrib
tion of 3He with those from some other calculations is giv
in Fig. 11 and Table IV. HNC results10 are in close agree
ment with our variationaln(p), for p>pF as well as with the
estimate ofZ, while small differences are present at sm
momenta, which are, however, of little relevance in the d
sity of states}n(p)p2. The evident discrepancies betwee

FIG. 10. One-body-density matricesr of 3He. The curves, from
the least to the most steep, give the analytical fit of Eq.~19! to our
fixed-node DMC results~extrapolated estimates!, respectively at
r(Å23)50.011 98, 0.016 35, and 0.019 46. The inset showsr(r )
in the tail region.

FIG. 11. Momentum distribution of3He at equilibrium density
r(Å23)50.016 35: comparison of the present DMC~—! and
VMC ~- - -! fits with the predictions of GFMC~Ref. 18! ~circles!
and HNC~Ref. 10! ~solid circles!.
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our results and those of the GFMC method37 around the
Fermi surface are probably due to the poorer trial funct
used in the GFMC method,37 as well as to statistical errors

As we already mentioned, the functional form of Eq.~19!
implies forn(p) a singular term atpF of the form Eq.~18!,
with A5a1 /p. For instance, at the equilibrium densi
r(Å 23)50.016 35, we findA50.06(2), being, however,
unable at present to assess the size dependence of such
mate. An independent estimate ofA is given by a perturba-
tion calculation36 for a dilute, hard-sphere, Fermi gas. T
order (pFR)

2,

A052
n21

p2 ~pFR!2, ~21!

with R the radius of the Fermi particle. Evidently3He at
equilibrium is not at all dilute. Nevertheless, takin
R5s/2.1.3 Å, one obtainsA0.0.20, which is of the same
order of magnitude as our DMC estimate. In CBF theory o
obtains,6 instead,

ACBF5
2W0

p
pF

dev~pF!

dp
, ~22!

whereev(p) is the variational energy andW0 is an inverse
energy parameter characterizing the imaginary partW(p,E)
of the self-energyS(p,E), close to the Fermi energy,

W~p,E!.W0~E2eF!2, E→eF . ~23!

If one takesW0.2.5° K21 and dev(pF) /dp5\2pF /M v ,
M v /M50.76 from earlier work38 where a model form of
W(p,E) was fitted to the measured specific heat in3He,
ACBF.21 is obtained, which is two orders of magnitud
larger than both the DMC and the perturbative estimate.

The effective massM* is related to the dispersion atpF
of the quasiparticle energy2

e~p!5
\2p2

2M
1ReS„p,e~p!…, ~24!

according to \2pF /M*5de(pF)/dp. Thus39,6,10 M* /M
5MEMK , with theK mass

MK
21511

M

\2pF

]

]p
ReS~p,E!uE5eF ,p5pF

, ~25!

TABLE IV. Discontinuity of the momentum distribution a
pF , Z, as function of the density, from various calculations. S
and LBF denote the DMC estimates, obtained using the fit of
~19!, and results for EMC wave functions with short- and lon
range backflow, respectively. VMC gives the variational estim
for the SBF wave function.

r 0.011 98 0.014 13 0.016 35 0.017 97 0.019 4

HNCa 0.348 0.275 0.244 0.221
VMC 0.272~2!

GFMCb & 0.2
SBF 0.46~2! 0.31~2! 0.24~1! 0.14~1! 0.14~1!

LBF 0.21~2!

aReference 10.
bReference 18.
n

esti-

e

and theE mass

ME512
]

]E
ReS~p,E!uE5eF ,p5pF

5Z21. ~26!

Thus, theE mass is nothing butZ21, i.e., the strength of the
quasi-particle pole atpF .

40,41However, we lack an estimat
of the K mass to predictM* . Hence we are planning to
perform variational and transient estimate calculations
M* , along the lines of an equivalent calculation for the tw
dimensional electron gas.42,43

At the Fermi wave vectorpF , the momentum distribution
n(p) has a discontinuity and, according to perturbati
theory and to CBF’s, at least the additional singular behav
of Eq. ~18!. It is known44 that singularities dominate th
large distance behavior of the Fourier transform of a gen
alized function, such asn(p). This implies in particular that
asr→` r(r ).Zr0(r ), to leading order. On the other han
using the parameters given in Table III, one can show t
the first zero of the DMC density matrix at the equilibriu
density~see also Fig. 7! is at pFr55.62, which is not very
different from pFr55.72—the location of the first zero o
r0(r ). We therefore consider the approximate decoupling

r~r !5r0~r !rB~r !, ~27!

where the function rB(r ) must satisfy rB(0)51,
limr→`rB(r )5Z, and we further choose it to be non
negative everywhere. It is tempting to takerB(r ) as the den-
sity matrix of a suitable Bose system, with a condens
fractionZ.

We have thus simulated a system of3He with Bose sta-
tistics, at the equilibrium density of real3He. We find a
condensate fraction of 0.208(5), which within error bars
agrees with our best estimate ofZ50.21(2). In Fig. 12 we
compare our fit to the density matrix of3He with the predic-
tion of the approximate formula~27!, using forrB(r ) the fit
to the simulated density matrix of a Bose3He. It is apparent

.

e

FIG. 12. The one-body density matrixr(r ) of 3He atT50° K
andre50.016 35 Å3 ~full curve!. The dashed curve gives the prod
uct r0(r )rB(r ), with r0(r ) and rB(r ), respectively, the density
matrix for the ideal~uncorrelated! Fermi gas and the density matri
of a Bose3He. The inset showsr(r ) in the tail region.
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that the decoupling of Eq.~27! approximately holds. In fac
Eq. ~27! overestimates the kinetic energy by 14%, while u
derestimating the envelope of the tail ofr(r ) by about a
20%. Thus statistics and correlations in3He decouple,
within a reasonable accuracy, into those of an ideal~uncor-
related! Fermi gas and a Bose3He, as far asr(r ) is con-
cerned.

V. CONCLUSIONS

In this paper we have presented DMC calculations of
one-body density matrix and of the momentum distribut
of liquid 4He and liquid 3He based on accurate trial wav
functions with fully optimized pair and triplet pseudopote
tials. For 3He the fermion sign problem has been avoided,
resorting to the fixed-node approximation. In particular,
used backflow nodes, which are more accurate than the
pler plane-wave nodes. We recorded our data in a form s
able for future use, in terms of analytical fits.

Our prediction for the condensate fraction of4He is lower
than in previous microscopic calculations, and we argu
that these seem to be consistently related to the impro
description of 4He afforded by the calculations present
here. We also found that our results are statistically con
tent with the presence of a singular term inn(p), as pre-
dicted earlier by Gavoret and Nozieres, in spite of the
sence of explicit long-range correlations in our tr
functions.

The discontinuityZ of n(p) at pF in
3He is also predicted

from our calculations to be sensibly lower than in previo
variational calculation, and in substantial agreement w
GFMC estimates. We have investigated the presence in
l

,

hy

v

v.
-

e

y

m-
it-

d
ed

s-

-

s
h
he

n(p) of logarithmic singularities, as predicted by approx
mate treatments. We find that our results are compatible w
the presence of such terms. However, the strength of su
term agrees in order of magnitude with perturbation theo
whereas a CBF treatment with empirical parameters for
imaginary part of the optical potential implies a streng
which differs from our prediction by two orders of magn
tude.

We have also demonstrated that an approximate de
pling r(r ).r0(r )rB(r ) holds, with r0(r ) and rB(r ), re-
spectively, the density matrix for the ideal Fermi gas and
density matrix of a Bose3He. Thus statistics and correlatio
effects seem to decouple in3He, as far as the density matri
is concerned. The Bose3He has in fact a condensate fractio
which agrees within error bars with the discontinuityZ found
in the Fermi 3He.

We believe that the estimates given in this paper prov
the most accurate information available to date for this k
on He. This is of particular importance for the condens
fraction in 4He, as its extraction from deep inelastic neutr
scattering seems still not feasible. Using our accurate E
trial functions, we also studied partially polarized3He. We
shall report on this study elsewhere.45
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