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We have obtained the one-body density matrix and the momentum distribugion of liquid “He at
T=0 K from diffusion Monte CarldDMC) simulations, using trial functions optimized via the Euler Monte
Carlo (EMC) method. We find a condensate fraction smaller than in previous calculations. Though we do not
explicitly include long-range correlations in our calculations, we obtain a momentum distribution at long
wavelength which is compatible with the presence of long-range correlations in the exact wave function. We
have also studiedHe, using fixed-node DMC, with nodes and trial functions provided by the EMC. In
particular, we analyze the momentum distributiofp) with respect to the discontinuit¢ as well as the
singular behavior at the Fermi surface. We also show that an approximate factorization of the one-body density
matrix p(r)=pq(r)pg(r) holds, withpy(r) andpg(r), respectively, the density matrix of the ideal Fermi gas
and the density matrix of a Bos#He. [S0163-18207)05901-9

[. INTRODUCTION tion have been numerically solved in variational calculations
of nuclear matte?, liquid *He,/! and liquid 3He® 20 for
The momentum distribution(p) =(a;§ap> is a fundamen-  which triplet and backflow correlations were also taken into
tal quantity for the study of both the static and the dynamicalccount. To improve upon the above variational estimates of
properties of quantum liquids, as it gives direct informationn(p), nonconventional perturbative techniques, based on
about the high-momentum components of the ground-stateorrelated basis functioh's(CBF’s), have been developed,
wave functior: Experimentally, access t(p) is provided and applied to liquid*He (Ref. 7 and nuclear matté*
by deep inelastic neutron scattering at a large momentum HNC and FHNC theories have the merit to allow for fine
transfers Q. The extraction oh(p) from the measured scat- details of interparticle correlations, such as long-range be-
tered intensity, however, is affected by the the limitationshavior, spin dependence, and anisotropies in inhomogeneous
imposed by the experimental resolution and the final-statsystems. However, not all cluster diagrams resulting from
interactions. Thus the most accurate information on the mothe theory and involved in the HNC formalism, can be
mentum distribution of*He available to date is likely to be summed in closed form, and in FHNC formulation the pro-
the one obtained through accurate, microscopic calculationgedure to estimate the elementary diagrams with exchange
such as those presented in this study. bonds is not completely under control. Therefore, approxi-
At T=0° K the momentum distribution(p) of an ideal mations like scaling? interpolation® or truncated
Bose gas is given by a delta functidip), corresponding to summation&~**must be invoked, and, in liquid-helium cal-
all particles being in the condensate. Conversely, the condemulations, these result in a non-negligible loss of accuracy
sate fraction of*He at the equilibrium density is less than with respect to a fully variational treatmetft!’
10%, implying that the effects of the strongly repulsive core  The momentum distribution of liquidHe and *He has
of the interatomic interaction is nonperturbative. Similarly also been calculated, at zero temperature, by using the
for 3He the discontinuity of(p) at the Fermi momentum Green-function Monte CarlGFMC) method'®* At finite
#ipe, which gives the strength of the quasiparticle pole, istemperature, calculations have been performed*de by
~0.2 at equilibrium instead of 1, as in the ideal Fermi gasthe path integral Monte Carl®®IMC) method*** and, more
In fact, it has been always difficult to carry oab initio  recently, by the VMC method with trial functions of the
calculations of the momentum distribution for these systemShadow typé® The available theoretical estimates of the
within the field-theoretical approach. momentum distribution of liquid*He provided by varia-
Modern, realistic, quantitative calculations only startedtional and GFMC methods are in reasonably good agreement
with the development of variational Monte Car(tyMC) among themselves, except for low momenta and for the con-
methodd and the hypernetted-chain(HNC, FHNO densate fraction. For liquidHe the situation is less satisfac-
equation$” for Jastrow models of both Bose and Fermi lig- tory.
uids. FHNC and HNC equations for the momentum distribu- The GFMC and the diffusion Monte Carl¢gDMC)
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55 MOMENTUM DISTRIBUTION OF LIQUID HELIUM 1041

methods’}?21 afford to date the most precise tools to per- DMC simulations, here we shall restrict to essential details.
form ground-state calculations for many-particle systems. All calculations (variational and diffusion presented in
For bosons they provide energy estimates that are virtuallthis paper, unless explicitly noted, have been performed us-
exact, within statistical accuracy. In fact the same is true foing EMC wave functions with fully optimized pair and triplet
the averages ofR) diagonal operator§not the case for pseudopotential$ (OJOT), and modeling helium with the
n(p)], for which algorithms exist, like the so-called forward HFDHE2 pair potential of Azizet al?® A cubic simulation
walking method®>?* which yield pure estimates. On the box and periodic boundary conditions were used. Pide,
other hand, the estimates of observables that do not commubeckflow correlations have been includédin the usual
with the Hamiltonian are usually obtained fromixed way?’~*® by replacing the plane waves e®g(r;) in
averages—through an extrapolation procedure whose accthe Slater determinants with exk( x;), where x;

racy depend on the quality of the trial functidh used for — =r;+Z,.;7(r;)(r;—ry). The functionz(r) is taken either
the importance sampliny.The extrapolation introduces a short ranged’

bias in the estimates which is second order in the difference

between¥ and the ground-state wave functidn,. For fer- 7s(r) =Ngexp(— (r—rg)wg)((2r—L)/L)%, (1)
mions there is an additional source of error related to the 3
existence of the so-callesign problem To date, to obtain a or long range
numerically stable algorithm it is customary to approximate _ 2, 2 1.3
the unknown nodes of the sought ground sthtewith those (1) =NgeXp(— (1 —re)™ @) + Ag/r, @

Of the trial fUQCtion\P [theﬁxed'n()dap.prOXimatiOﬁz.]. This Where)\B, s, ®Wg, and )\{3 are variational parameters. The
imposes a bias on any average, which for nondiagonal ohpng-ranged backflow function is smoothly cut off at the
servables cumulates with the one arising from the extrapolayoundary of the simulation box of size by replacing the
tion procedure. Therefore, to minimize systematic errors, Sexpression given in  Eq. (2) with 7 (r)=.(r)
pecially in the evaluation of properties such as the,, « _y)y_2, (L/2). In practice, we first simultaneously
momentum distribution, it is necessary to achieve maximunystimize the pair and triplet pseudopotentials with the back-

accuracy in the optimization of the trial function. flow parameters as specified in Refs. 27 and 30, and then we
Recently, an optimization procedure based on Momeoptimize 7(r) at fixed pseudopotentials.
Carlo calculations and denoted as the Euler Monte Carlo” 1o 3He results presented below were obtained with

7 .
(EMC) method has been propos€d.” This EMC method short-ranged backflow, unless otherwise specified. Also,

has been successiully applied to both liquithe and  p\c simulations were performed within the fixed-node ap-
He. ™" The EMC wave functions have pair and triplet cor- . imation, whereby the nodes of the ground stiteare
relations fully optimized, and provide the lowest available ;o< med to coincide with those of the EMC trial function.

enlergly - upgeg;ﬂt;]oun:js. Moreolver,f their use in DMC 1, 5 yniform liquid in a state described by the wave func-
calculation as led to results of unprecedented acCujqn | the one-body density matrix can be defined as

racy for the energy, pair function, and static structure func-
tion. p(r
In this paper we present results for the one-body density

matrix p(r) and the momentum distribution(p) of liquid VIdry . ..drgW*(ry,ro, ... r)P(ri+r,ro, ... 0y
“He and3He, at various densities, obtained with DMC cal- = > ,
culations based on EMC wave functions. The plan of the Jdry...dry¥(ryra, ... )l 3)
paper is as follows. In Sec. || we summarize the computa-
tional details involved in the calculation of(p). We then  so that, having imposed periodic boundary conditions to the
present the results for liquidH in Sec. Ill, and those for N particles in the volum&/,

liquid 3He in Sec. IV. We finally offer a summary and con-

clusions in Sec. V. p(0)=1, 4)

and the independence from follows from translational in-
Il. COMPUTATIONAL DETAILS variance. For fermions, the integration over the variabls
understood also to imply the a over spin projection. If we
denote with R and R’, respectively the configurations
(rq,rp, ... ry) and ¢q+r,ry, ... ry), and we exploit the
translational invariance, we can rewrite €g) as

In DMC simulationd?? the ground-state wave function
®, is sampled through a random walk in configuration
space, guided by a trial functiofr. In practice one samples
the mixed probabilityf =®,¥. We chose¥ =SF for *He
and¥=D,D F for 3He, with thecorrelation part F sym- [dR¥*(R)¥(R')
metric in the particle coordinate§, a symmetrized product p(r)=
of one-particle orbitals, an; andD, Slater determinants
of one-particle orbitals for particles of up- and down-spin. Inith
the homogeneous liquii= const, and , is built from plane
waves (PW'’s), or from plane waves with shor{SBF) or |¥(R)|?
long- (LBF) ranged backflow corrections. As a full account P(R)= TARW(R)[%" (6)
has already been given elsewH&¥ of both the EMC
method, which we employ to construct and optimize the trialthe probability induced by the wave functioh. Using Eq.
wave function¥, and of the use of EMC wave functions in (5), the variational density matrigi.e., the one defined in

_de R \P(R,) 5
faRvRp ) IR gRE; ©
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term of the trial wave functiof’) may be conveniently cal-
culated by the Monte Carlo method as —— :

N , 1.0 — — 0.09
15 Y(R) L i
Pvmc(f)zjvg TR’ (7 i ]
=1 ' 0.8 — ~ 0.08
with the configurationsR; drawn from the probability - .
P(R). The DMC-extrapolated estimafgr) is given by 06 - J o007
\S: L -
Q - -

p(r)=2pmix(r)—pymc(r), (8)

where the mixed estimate,,(r) is calculated from an ex-

pression identical with that of Eq7), with the configura-

tions R; drawn, however, from the mixed probability 0.2
Pnix(R) =f(R)/fdR f(R) andf(R)=®y(R)¥(R). In prac-

tice, the auxiliary configurationR’ appearing in Eq(7) are ool vl

generated from a giveR by moving a particle either of fixed 0 2 4 6
increments along a random directi@fAM) or to points ran- r (4)

domly distributed in the simulation bofRM). It turns out

that the two methods give more accurate results at small and FIG. 1. One-body-density matrix dHe at the equilibrium den-
at larger, respectively. sity p(A~3)—0.02186 The full curve is the fit of Eq(14) to our DMC

The momentum distribution is defined B(Sp)=<agap>, results(extrapolated estimatgswith the dashed curve showing the

where an average on spin projections is also implied for unparabola + (MT/322)r?, which satisfies the kinetic-energy sum

. 3 o ) . ‘rule. The solid circles and rectangles respectively give our DMC
polarllzed He. It .'S simply related to the one-body density results obtained with the FM and RM methods. A comparison of the
matrix by a Fourier transform

estimates yielded by the two methods in the tail region is given in
the inset.

T T 0.086

I8 TR B

[e:]

n(p)=£f dr e "p(r)
v simulation box. This second calculation ofp) is imple-
p _ mented forp’s that are reciprocal-lattice vectors of the simu-
= —(noa‘(p)+f dr e (p(r)—ng) |, (9) lation cell. Equation(11) is employed to accumulate varia-
v tional and mixed estimators, from which the extrapolated
wherep=N/V is the density of the systenw, is the degen- ~€stimator is then obtained, as explained above. From(Bps.
eracy factor, which is 1 for*He and the fully polarized it follows that the kinetic energy per particlecan be related
3He, and 2 for normaPHe; andn is the larger limit of the ~ to the curvature of the density matrix at the origin, according
density matrix,no=p(). In fact, p(r) vanishes for large
values ofr in 3He, whereas for*He it saturates tmy#0,
due to the macroscopic occupation of the state with zero T= _[
momentumng is the condensate fraction, i.e., the fraction of
“He atoms occupying the state with=0.
Evidently, the normalization of the density matrix given

-
>V (r)} , (12
am P

which also implies the kinetic-energy sum riikee Eq.(9)]

in Eq. (4) implies, for the momentum distribution, the nor- 2 v )
malization sum rule T= mmf dp p“n(p). (13
14
mf dp n(p)=p(0)=1. (10 Ill. LIQUID “*He

The momentum distribution has been calculated in two We have carried out DMC calculations of the one-body
different manners. Having sampled the density matrix aslensity matrix and of the momentum distribution e at
function ofr, one can just take its Fourier transform accord-four densities, using EMC trial functions and 64 atoms in the
ing to Eq.(9). Alternatively, restricting to the RM method, simulation box. Selected runs with up to 232 particles have

one can also directly accumulate been performed to check for finite-size effects. In Fig. 1 we
N show our results for the one-body density map{x) at the
p 12 e?" I (R/) 11 equilibrium density. The kinetic-energy sum ru{@3) is

manifestly satisfied, and the saturation to a fimigeat large

r is evident, in spite of the fact that with 64 particles only
At first sight it seems that theintegration is missing in Eq. distances up to abod A are accessible. In the inset we also
(11) above. However, a little reflection shows that accumu-give a comparison between estimates obtained with the FM
lating the estimator of Eq11) correctly implements the in- and RM methods. The greater accuracy of the latter method
tegration(averagg overr, which appears in definitio(®) of  at large distances is apparent. In Fig. 2 we report, also at the
the momentum distribution, singeis chosen at random for equilibrium density, extrapolated estimates of the momentum
each configuratiorR;, with a uniform distribution in the distributionn(p), obtained using Eq.11). Due to the finite

n(p)= v N& W(R)
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TABLE |. Parameters of the fi{14) to the DMC momentum

p (A1) distribution and density matrix ofHe atT=0° K, at various den-
0 1 2 sities.p is in A=% and p,-ps are in A°L.
0.30 T T T T ‘ T T T T T T T T I T T T T p pl p5
- o Ly
i o P 0.019 64 0.021 86 0.024 01 0.026 22
~ 020 L Mo 0.11163  0.071673  0.046227  0.027 079
L F a 1.6941 1.7634 2.2342 1.9976
Ing i Ny 0.055274  0.038282  0.019157  0.021497
\;5 i N, 0.402 85 0.398 93 0.366 95 0.384 83
g 0.10 [ 0.499 57 0.73394 0.959 34 1.1964
D, 0.389 71 0.385 25 0.404 35 0.405 88
Ps 1.4900 1.6744 2.2153 2.1832
0.00 e Pa 0.297 13 0.205 38 0.28494  0.062 765
0 1 2 3 4 Ps 0.851 28 1.0016 1.0132 1.2549
p (A1)

FIG. 2. Momentum distribution of'He at T=0° K. Long  mate ofc which is about 10% lower than experimental and
dashes, full curve, and short dashes are fits to the DMC results @ MC-EOS estimates, and has, however, a very large uncer-
p(A~%)=0.019 64, 0.02186, and 0.026 22, whereas the recttainty (~50%), reflecting the absence of DMC points for
angles give the DMC extrapolated estimates at the equilibrium denps 0.4 A% where the singular term in(p) is important.

sity p(A %) =0.02186. The inset shows the long-wavelength be-ye may conclude that our data are compatible with the pres-
havior of n(p), with the dotted curve reporting the results of the ence of singular term in(p) 31ip spite of the lack of long-
GFMC method(Ref. 18. range terms in the pseudopotentials that we d4éad Fig. 3

we show the density matrix at the four densities that we

Siz,el of the system only wave vectors Iarg_er _thar(i).z_l _studied, as given by the fit of E¢L4) with the parameters of
A ~1 are accessible. We note that a shoulder is discernible Raple I.

pn(p) atp=2 A. The DMC momentum distribution and density matrix are

In order to extract the condensate fractiop from our compared with the fit of Eq(14) in Figs. 1, 2, and 4, at the
DMC results, as well as to facilitate applications, we haveequilibrium density. The fit appears to be very good. A simi-
fitted our DMC-extrapolated estimates of the density matrix,r conclusion holds at the other densities that we studied.
and moment_um distripution, obtained with the RM method, The condensate fraction, is mostly constrained by the
to the following analytic formula: large+ behavior ofp(r), which results in a term proportional
to 8(p) in the momentum distribution. As we already men-

n(p)=(2m)3pd(p)ny+ no&+n1co§(£) e~ (p/pa)” tioned, the singular behavior of(p) at smallp, implied by
p P2 Eq. (15), is much less effective in determinimg, because of
22 the absence of DMC estimates fps0.4 A~1. From the

+n2e (p p4) /p5_ (14)

The first two terms in Eq(14) account for the existence of
the condensate, while the third suitably models the shoulder 4 6 8 10

in pn(p). The fourth and last term accounts for the gross L &/g

: e 1.0 0.12
main structure of the momentum distribution.

We have simultaneously fittet{ p) andp(r), which must
be obtained numerically by Fourier transforming the function 0.8

of Eq. (14), imposing as well the normalization condition
(10) and the kinetic energy sum ru(@3). Moreover, we set

0.08

I

p.=Mc/2h to satisfy the long-wavelength behavior = 0.6 - 0.04
Q - . -
. n MC 04 __ AN ISR N R RRI B S i 000
lim pn(p) = —-—, (19 i |
2h L _
p—0 L ]
i . , : 02 - ]
induced by long-range correlations, as first discussed by Ga- C ]
voret and Noziered! Above M is the mass of théHe atom ' ; i
andc the sound velocity, which we estimate from the DMC 0~00 — 5 + 6 8 = '10

(Ref. 17 equation of statéEQS. Thus we fit at each density r (&)
six independent parameters to more than 100 MC points,
obtaining a reduceg? between 0.98 and 1.20. The resulting g 3. One-body-density matrix(r) of “He. The curves from
fit parameters are recorded in Table I. the topmost to the lowest, give the analytical fit of Etg) to our

In principle one could also takeas unknown, and obtain  pMC  results (extrapolated  estimates respectively — at
an independent estimate of the sound velocity. We have tried(A ~2)=0.019 64, 0.021 86, 0.024 01, and 0.02622. The inset
this alternative, at the equilibrium density, obtaining an esti-showsp(r) in the tail region.
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L o ]
0.05 |- - 0.05 | S { -
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0.00 L | L I L I 1 L L ] L L L | 1 L L 0.0o | 1 I 1 1 1 | 1 1 1 | 1 1 1 | 1 i
4 6 8 10 12 0.020 0.022 0.024 0.026

r @ p(A~9)

FIG. 4. Dependence on the quality of the wave function and on  FIG. 5. Condensate fraction of liquitHe, as a function of the
the method(VMC vs DMC) of the one-body-density matrix of density. DMC(solid circleg; EMC (open circley GFMC (Ref. 18
“He, at the equilibrium density(A ~2)=0.021 86. The full curve (diamond$; HNC (Ref. 7) (crossef experimental estimates at
is the fit to our DMC resultgextrapolated estimatg$or 64 par- T=0.75° K (Ref. 32 (solid triangle$;, PIMC at T=1.18° K (Ref.
ticles, using our best trial functiof®JOT), while the dashed curve 19) (empty triangle.
gives the fit to the VMC results obtained with this trial function.

Empty rectangles and solid squares, respectively, give VMC andion yields prediction for the Compton profile which agrees
DMC results obtained from a simple OJ trial function, which em- well with the experiments, as we show below.

bodies only pair pseudopotentials. Finally, the triangles are the The inelastic neutron-scattering cross section at high mo-
DMC results obtained using the OJOT trial function and 232 par-mentum transferiQ can be approximated by its impulse
ticles, and the circles report the finding of PIMC B+1.18° K approximation(lA) expression, which is proportional to the
(Ref. 19. Compton profilé®

[

1
inset of Fig. 1 one might conclude that the range7 A, J(Y)= —zf dp pnip). (16)
accessible with 64 atoms is not large enough to unambigu- 4mp iy

0US|y assess the value 06. However, simulations with 232 The Scattering in the 1A does not depend on the enesgy
atoms yield, in the extra range 7<% <11, DMC estimates and the momentum transféQ separately, but only through
that are in perfect agreement with the fit to the 64 particleshe scaling variabler, given by

results, as is clear from Fig. 4. We also illustrate in this

figure the dependence of the langdimit of the density ma- Y=(M/AQ)(w—w,), (17)

trix, i.e., no, on the quality of the wave function. In particular \where w, =#2Q?/2M is the recoil energy of the scattering
it is apparent that improving the MC description, eitheratom. The dynamical response funct®Q, w), in the A, is
changing from VMC to DMC methods, for a given trial given byJ(Y) times the factoM/(%Q). Final-state effects
function, or changing to a better trial function in the DMC (FSE'S of the medium on the scattered atom as well as ex-
method, results in a decreasergf in the case considered. perimental resolutionfER), broaden the Compton profile,

In Fig. 5 and Table Il we compare our predictions for particularly its § peak atp=0, which is due to the Bose
ne with those from other theoretical treatments, as well asondensation. In Fig. 6 Compton profiles, calculated with our
with experimental results at low temperature. ConsistentyDMC momentum distributions, are compared with observed
with the observation made above, our use of very accuratgcattering dat at T=0.35° K, converted td(Y). Once ER
trial functions’ yields DMC predictions for the condensate and FSE are taken into accouiftgood agreement with the
fraction which are lower than previously obtained by GFMC experiment is obtained.
(Ref. 18 and HNC(Ref. 7) methods. On the theoretical side ] .
the only prediction that agrees with our own, though it has a TABLE Il. Condensate fractiom in *He. DMC, GFMC(Ref.
much larger statistical error, is the PIMC oneTat 1.18° 18 and HNC(Ref. 7 predictions are ar=0. The PIMC(Ref. 19
K.1° We should remind the reader that in fact PIMC method'@SUlt is atT=1.18° K, and the density is in A°. The figure in
has no trial function bias. We find instead a sizable discrepparentheses is the uncertainty on the last figure, whenever available.
ancy from the experimental estimates of Snow, Wang, and
Sokol? who determinech, by fitting a modeln(p) to the

0.019 64 0.021 86 0.024 01 0.026 22

measured Compton profild(Y)—a procedure, however, DMC 0.1121) 0.07175  0.04626)  0.02.716)
which appears to be model dependent. Different choices fopimc 0.06910)

n(p) produce equivalently good fits dY),*® though em- GFmC 0.0921) 0.0521) 0.0372)
bodying very different condensate fractions, all the way fromync 0.092 0.065 0.043

ny=0 to ng=10%. In fact, our DMC momentum distribu-
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: T T ] T T T | T T T T T T ] p/pF
0.5 [ 7 0.9 1.0 1.1
: : 06 T T T T l T T T T T T T T [ T T T T 0.5
0.4 :— _: F\\\ B |
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: 0.3 1 ] 0.4 =
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\ﬁ-{ ; ] __\i\.\j
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C . g |
0.1 :— —: 02 |-
0oL - - !
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0.0 1 1 1 1 l 1 1 1 1 | 1 L 1 1
. o . 0 0.5 1 1.5 2
FIG. 6. Compton profildd(Y) of “He at the equilibrium density p (A1)

p(A~%)=0.021 86 compared with experimentablid circles data
atQ=23A""andT=0.35° K (Ref. 3. The dashedsolid) curve is FIG. 8. Momentum distribution of°He at T=0° K and
obtained from our fit to the DM@ (p) allowing (not allowing for

. ) ; , ! (A~%)=0.014 13, 0.016 35, and 0.019 46: dots are DifiRed-
both the experimental broadening and the final state interactions ‘ﬁode) extrapolated estimates; full curves are fits to the DMC results.
Ref. 34. In calculating the dashed curve, a shiftd.1 AinY has

X Larger densities correspond to lower curvespat0. The inset
been also used as in Ref. 34. shows the behavior around the Fermi momentum at the equilibrium
3 density p(A ~%)=0.016 35 &, using PW (--), SBF (—) , and
IV. LIQUID “He LBF (- - -) trial functions.

For normal®He, DMC simulations using EMC trial func- In Fig. 7 we give our DMC estimates for the density
tions with backflow and the fixed-node approximation havematrix at the equilibrium density. It is clear that the kinetic-
been performed at five densities, with 54 atoms in the siMugnergy sum rulg(13) is satisfied. The size of the system
lation box. We investigated the dependence of the momergjiows for a determination of(r) through its first zero and
tum distribution on the size of the system and on the range qfip to the first minimum. A comparison between results ob-
the backflow, respectively, with runs for 114 atoms and withigined with FM and RM methods is also given in the inset.
runs using trial functions embodying long-range backflow. The smaller error on the FM results, compared with that on
the RM estimates, is due to the much longer runs used to
accumulate the FMy(r) in this case.

In Fig. 8 we report, at three different densities, the mo-
mentum distributiom(p) obtained using Eq(11). Clearly,
the discontinuityZ at the Fermi wave vectqug is substan-

1.0

08 [ - ] tially reduced, with respect to its valie=1 in the noninter-
X C ] acting system, and moreover it systematically shrinks, as the
C i i system becomes denser and the effects of the interaction be-
0.6 |- - - ) . .
™ r r 1 come more importantZ is also slightly reduced when the
X i C ] nodes of the trial function are improved from PW to SRB
0.4 - | — and then to LBF. Size effects on the momentum distribution
r 4 ] appear to be negligible, as it is clear from the comparison
02 \ — between variational results for 54 and 114 particles given in
C J ] Fig. 9, at the equilibrium density.
0.0 ! A In a normal Fermi liquid such asHe the momentum
T S e s distribution, in addition to the discontinuity, has infinite
0 2 4 6 8 slopes®3®at pr. To leading order irp— pe,
r p—p pP—p
+ + F F
FIG. 7. One-body-density matrix dHe at the equilibrium den- N(P—Pr)=n(pe) +A In P | (18

sity p(A ~%)=0.016 35. The full curve is the fit of Eq19) to our ) . ) )

DMC results(extrapolated estimateswith the dashed curve show- With the coefficientA related to imaginary part of the self-
ing the parabola * (MT/3%2)r2, which satisfies the kinetic-energy €Nergy(p.E).

sum rule. The solid circles and rectangles, respectively, give our 10 €xtractZ from the calculated momentum distribution
DMC results obtained with the FM and RM methods. A comparison@nd to check that our results are consistent with the presence
of the estimates yielded by the two methods in the tail region isof the singular term of Eq(18), we fitted our data fop(r)

given in the inset. andn(p) to the real-space form
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FIG. 9. Momentum distribution ofHe at equilibrium density
p(A ~3)=0.016 35 with the VMC method, using OJ trial functions
with 54 (solid circles and 114(rectangles particles.

FIG. 10. One-body-density matricpsof *He. The curves, from
' the least to the most steep, give the analytical fit of @§) to our
fixed-node DMC resultdextrapolated estimatgsrespectively at
p(A~%)=0.011 98, 0.016 35, and 0.019 46. The inset shpy
po(X) Xpo(X) —sin(x) e P in the tail region.

= + +
p(r)=2Zpo(X)+ay X az 3 a X

We compare fit and DMC estimates fei(r) and for
n(p), respectively, in Figs. 7 and 8. Evidently, E4Q.9) is
fully consistent with our DMC results. In Fig. 10 we show
the one-body density matrix at three of the densities that we
studied, as given by the fit of Eq19). As for the noninter-
acting casep(r) becomes steeper with increasing density,
and its first zero moves toward the origin.

A comparison of our results for the momentum distribu-
the density matrix of the ideal Fermi gas. The first two termgtion of *He with those from some other calculations is given
in Eq. (19) account, respectively, for the discontinuity and in Fig. 11 and Table IV. HNC resuf8are in close agree-
the infinite slope ofn(p) at pr. The third term allows for ment with our variationah(p), for p=pr as well as with the
finite discontinuities in the first and second derivatives ofestimate ofZ, while small differences are present at small
n(p) at pg. Finally, the fourth term is needed to eliminate momenta, which are, however, of little relevance in the den-
the divergence that the terpy(x)/x produces at the origin. Sity of statesxn(p)p® The evident discrepancies between
We impose the normalization conditi¢hO) and the kinetic-
energy sum rul€l13), as well as the vanishing of the first and
third derivatives ofpo(r) atr=0. Thus we fit at each density
five independent parameters to more than 100 MC points,
with a reducedy? between 0.87 and 1.15. The resulting fit
parameters are recorded in Table Il

+ (ag+ax+agx®+agx®)e P2, (19

with x=pgr, and

po(r)=;3g(sinx—x COX), (20

0.6|||||||||||||||||

TABLE Ill. Parameters of the fi{19) to the fixed-node DMC
momentum distribution and density matrix dfle atT=0° K, at
various densitiesp is in A~3,

n(p)

0.01198 0.01413 0.016 35 0.01797 0.019 46

4 0.459 77 0.30598 0.236 16 0.14328 0.13566
a, 0.14248 0.28612 0.193 76 0.41699 0.246 13
a, -0.11973 -0.21912 -0.12381 -0.28125 -0.23982 N
a; -073200 -0.80732 -0.64305 -2.1780 -0.96272 00, 05 ) 15 5

ay 3.2095 1.9033 3.2723 4.1029 3.9981 p (A1)

as -1.5905 0.64801 -0.098765 -2.4600 -0.647 25 '

ag 7.6229 1.5582 4.6639 6.8026 6.2113 FIG. 11. Momentum distribution ofHe at equilibrium density
b, 9.0415 5.3494 7.3460 7.3676 7.5530 p(A %) =0.016 35: comparison of the present DMG-) and

b, 3.5907 2.7487 3.0716 3.3316 3.1652 VMC (- - -) fits with the predictions of GFMQRef. 18 (circles
and HNC(Ref. 10 (solid circles.
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TABLE V. Discontinuity of the momentum distribution at

pe, Z, as function of the density, from various calculations. SBF e 5 e 1|0 e 15

and LBF denote the DMC estimates, obtained using the fit of Eq. L - - 0.03
(19), and results for EMC wave functions with short- and long-

range backflow, respectively. VMC gives the variational estimate

for the SBF wave function. 0.00
p 0.01198 0.01413 0.01635 0.01797 0.01946

HNC? 0.348 0275 0244  0.221 —0.03
VMC 0.2722)

GFMCP <02

SBF 0.462) 0.312) 0.241) 0.141) 0.141)

LBF 0.21(2)

aReference 10. i 1 1 1 1 I 1 I 1 1 | 1 1 1 1 |
bReference 18. 0 5 10 15

A
our results and those of the GFMC metRbdround the r@

Fermi surface are probably due to the poorer trial function g 12 The one-body density matrixr) of 3He atT=0° K

used in the GFMC methotf,as well as to statistical errors. andp,=0.016 35 & (full curve). The dashed curve gives the prod-
AS we already mentloned, the funCt'OnaI fOI’m Of E_‘tﬁ) uct po(r)pB(r), with po(r) and pB(r), respective|y’ the density

implies forn(p) a singular term ape of the form Eq.(18),  matrix for the idealuncorrelateyiFermi gas and the density matrix

with A=a,/m. For instance, at the equilibrium density of a Bose®He. The inset showp(r) in the tail region.

p(A~3)=0.016 35, we findA=0.0§2), being, however,

unable at present to assess the size dependence of such eatid theE mass

mate. An independent estimate &fis given by a perturba-

tion calculatiori® for a dilute, hard-sphere, Fermi gas. To

J
— 1 _ — -1
order (peR)%, Me=1-—=Re(P,E)|e=c, p-p.=Z (26)

r—1 Thus, theE mass is nothing bu "1, i.e., the strength of the
AO:27(DFR)21 (21)  quasi-particle pole gbg.*>*' However, we lack an estimate
of the K mass to predicM*. Hence we are planning to
with R the radius of the Fermi particle. EvidentHe at perform variational and transient estimate calculations of
equilibrium is not at all dilute. Nevertheless, taking M*, along the lines of an equivalent calculation for the two-
R=0/2=1.3 A, one obtain#\,=0.20, which is of the same dimensional electron g&d&*
order of magnitude as our DMC estimate. In CBF theory one At the Fermi wave vectopg , the momentum distribution

obtains® instead, n(p) has a discontinuity and, according to perturbation
) theory and to CBF's, at least the additional singular behavior

ACBF:%dee (Pr) (22 Of Eq.(18). Itis knowrf* that singularities dominate the
T dp large distance behavior of the Fourier transform of a gener-

alized function, such as(p). This implies in particular that
asr—x p(r)=Zpy(r), to leading order. On the other hand,
using the parameters given in Table Ill, one can show that
the first zero of the DMC density matrix at the equilibrium
W(p,E)=Wy(E—er)?, E—er. (23)  density(see also Fig. JVis at per =5.62, which is not very
different from per =5.72—the location of the first zero of

If one takesW,=2.5° K~* and de”(pg) /dp=7%2pe/M,,  p(r). We therefore consider the approximate decoupling
M,/M=0.76 from earlier worl where a model form of

W(p,E) was fitted to the measured specific heat e, p(r)=po(r)pg(r), (27

Acer=21 is obtained, which is two orders of magnitude

larger than both the DMC and the perturbative estimate.
The effective mas$/1* is related to the dispersion pi

of the quasiparticle enerdy

wheree’(p) is the variational energy and/, is an inverse
energy parameter characterizing the imaginary P&, E)
of the self-energy.(p,E), close to the Fermi energy,

where the function pg(r) must satisfy pg(0)=1,
lim,_..pg(r)=2, and we further choose it to be non-
negative everywhere. It is tempting to taig(r) as the den-
sity matrix of a suitable Bose system, with a condensate
#2p2 fraction Z.
e(p)= oy +ReX(p,e(p)), (29 We have thus simulated a system %ie with Bose sta-
tistics, at the equilibrium density of realHe. We find a

according to #%pe/M* =de(pg)/dp. Thus®®1® M*/M  condensate fraction of 0.2(8), which within error bars
=MgMy, with theK mass agrees with our best estimate ##0.21(2). In Fig. 12 we
compare our fit to the density matrix He with the predic-
tion of the approximate formulé7), using forpg(r) the fit

M 9
—-1_ 7
My =1+ h2pE ﬁpReE(p,E)|E:eF p=pe 29 {5 the simulated density matrix of a Boskle. It is apparent
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that the decoupling of Eq27) approximately holds. In fact n(p) of logarithmic singularities, as predicted by approxi-
Eq. (27) overestimates the kinetic energy by 14%, while un-mate treatments. We find that our results are compatible with
derestimating the envelope of the tail p{r) by about a the presence of such terms. However, the strength of such a
20%. Thus statistics and correlations itHe decouple, term agrees in order of magnitude with perturbation theory,
within a reasonable accuracy, into those of an ideator-  whereas a CBF treatment with empirical parameters for the
related Fermi gas and a BosHe, as far ag(r) is con-  imaginary part of the optical potential implies a strength
cerned. which differs from our prediction by two orders of magni-
tude.
V. CONCLUSIONS We have also demonstrated that an approximate decou-
: . pling p(r)=po(r)pe(r) holds, with po(r) and pg(r), re-

In this paper we have presented DMC calculations of thespectively, the density matrix for the ideal Fermi gas and the
one-body density matrix and of the momentum distributiongensity matrix of a BoséHe. Thus statistics and correlation
of liquid “He and liquid *He based on accurate trial wave effects seem to decouple fiHe, as far as the density matrix
functions with fully optimized pair and triplet pseudopoten- js concerned. The BostHe has in fact a condensate fraction

tials. Eor3He the fermion sign problem has been avoided, byyhich agrees within error bars with the discontinityound
resorting to the fixed-node approximation. In particular, wej, the Fermi3He.

used backflow nodes, which are more accurate than the sim- \ye pelieve that the estimates given in this paper provide

pler plane-wave nodes. We recorded our data in a form suithe most accurate information available to date for this kind

able for future use, in terms of analytical fits. on He. This is of particular importance for the condensate
Our prediction for the condensate fractionfe is lower  fraction in *He, as its extraction from deep inelastic neutron

than in previous microscopic calculations, and we arguedcattering seems still not feasible. Using our accurate EMC

that these seem to be consistently related to the improveglis| functions, we also studied partially polarizédle. We

description of “He afforded by the calculations presented gnq| report on this study elsewhére.

here. We also found that our results are statistically consis-

tent with the presence of a singular termrigp), as pre-

dicted earlier by _Gavoret and N02|eres,_ in spite of the _ab- ACKNOWLEDGMENTS
sence of explicit long-range correlations in our trial
functions. Most of the work presented in this paper was done when

The discontinuityZ of n(p) atpg in 3He is also predicted S.M. was at the Laboratorio FORUM of the Istituto Nazion-
from our calculations to be sensibly lower than in previousale di Fisica della Materia, Pisa. Access to the computing
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IMomentum Distributionsedited by R. N. Silver and P. E. Sokol Smith, A. Kallio, M. Puoskari, and P. Toropainen, Nucl. Phys.

(Plenum, New York, 1989 328A, 186(1979.
%See, e.g., A. L. Fetter and J. D. Waleckayantum Theory of *E. Krotscheck, Phys. Rev. B3, 3158(1986.
Many-Particle System@cGraw-Hill, New York, 197). 15y Q. G. Wang, S. Fantoni, E. Tosatti, and L. Yu, Phys. Rev. B

3D. M. Ceperley and M. H. Kalos, iMonte Carlo Methods in 49, 10 027(1994.
Statistical Physicsedited by K. Binder(Springer, New York, ®S. Moroni, S. Fantoni, and G. Senatore, Europhys. 136.93

1979. (1995.

43, Fantoni, Nuovo Cimentd4A, 191 (1978. 173, Moroni, S. Fantoni, and G. Senatore, Phys. Re$2B13 547

SM. L. Ristig, in From Particle to Nuclei Proceedings of the In- (1995.
ternational School of Physics “Enrico Fermi,” Course LXXIX, 18p A, Whitlock and R. Panoff, Can. J. Phb, 1409(1987).
edited by A. Molinari(North-Holland, Amsterdam, 1981 19D, M. Ceperley and E. L. Pollock, Phys. Rev. LeBf, 351

6S. Fantoni and V. R. Pandharipande, Nucl. Phys42v, 473 (1986; Can J. Phys65, 1416(1986); E. L. Pollock and D. M.
(19849. Ceperley, Phys. Rev. B6, 8343(1986.

"E. Manousakis, V. R. Pandharipande, and Q. N. Usmani, Physz.OG. L. Masserini, L. Reatto, and S. A. Vitiello, Phys. Rev. Lé8,
Rev. B31, 7022(1985. 2098(1992.

8A. Fabrocini and S. Rosati, Nuovo CimentoI)567(1982; 1,  2'P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J.
615(1982. Chem. Phys77, 5593(1982.

%M. F. Flynn, Phys. Rev. B3, 91 (1986. 22D, M. Ceperley, inRecent Progress in Many-Body Theories-

10A, Fabrocini, V. R. Pandharipande, and Q. N. Usmani, Nuovo ited by J. Zabolitzky(Springer, New York, 1981 J. Stat. Phys.
Cimento14D, 469 (1992. 63, 1237(199).

E. FeenbergTheory of Quantum LiquidéAcademic, New York, 23K. S. Liu, M. H. Kalos, and G. V. Chester, Phys. Rev18, 303
1969. (1974.

12Q. N. Usmani, S. Fantoni, and V. R. Pandharipande, Phys. Rev. B*J. Casulleras and J. Boronat, Phys. Re\623654(1995.
B26, 6123(1982, and references therein. 253, A. Vitiello and K. E. Schmidt, Phys. Rev. 8, 5442(1992.

13R. A. Smith, Phys. Lett63b, 369(1976); 85B, 183(1976; R. A. 26R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T.



55 MOMENTUM DISTRIBUTION OF LIQUID HELIUM 1049

Conville, J. Chem. Phy</0, 4330(1979. 36R. Sartor and C. Mahaux, Phys. Rev2@ 1546(1980.
27K, E. Schmidt, M. A. Lee, M. W. Kalos, and G. V. Chester, Phys. 3P, E. Sokol, K. Skidl, D. L. Price, and R. Kleb, Phys. Rev. Lett.
Rev. Lett.47, 807 (1981). 54, 909 (1985.
?8E. Manousakis, S. Fantoni, V. R. Pandharipande, and Q. N. Us®S_ Fantoni, V. R. Pandharipande, and K. E. Schmidt, Phys. Rev.
mani, Phys. Rev. B8, 3770(1983. Lett. 48, 878(1982.
?%Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev.4B, 393 p_ Jeukenne, A. Lejeunne, and C. Mahaux, Phys. B&[83
12 037(1993. (1986.
30
o, M. Panoff and J. Carlson, Phys. Rev. L& 1130(1989.  40p g Migdal, Zh. Eksp. Teor. Fiz32, 399 (1959 [Sov. Phys.
J. Gavoret and P. Nozies, Ann. Phys(N.Y.) 28, 349(1964.
- JETPS5, 333(1957)].
W. N. Snow, Y. Wang, and P. E. Sokol, Europhys. L&8, 403

413, M. Luttinger, Phys. Rev119, 1153(1960.

(1992. 42y Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev.5®,

33p. E. Sokol, inBose-Einstein Condensatipadited by A. Griffin,

. ) . . ) 1684 (1994).
8émrijngkié§:d S. StringafCambridge University Press, 43y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev.53,
ge, 7376/(1996.

34T, R. Sosnick, W. M. Snow, P. E. Sokol, and R. N. Silver, Euro- ,, el _ _ s ’
phys. Lett.9, 707 (1989, M. J. Lighthill, Introduction to Fourier Analysis and Generalized

%S. Fantoni, B. L. Friman, and V. R. Pandharipande, Nucl. Phys. A, Functiong(Cambridg_e University Press, Cambridge 1959
399 51 (1983. °S. Moroni, S. Fantoni, and G. Senatdtmpublished



