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Dynamical matrices, Born effective charges, dielectric permittivity tensors,
and interatomic force constants from density-functional perturbation theory
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Starting from the knowledge of first-order changes of wave functions and density with respect to small
atomic displacements or infinitesimal homogeneous electric fields within the density-functional theory, we
write the expressions for the diagonal or mixed second-order derivatives of the total energy with respect to
these perturbations: dynamical matrices for different wave vectors, Born effective-charge tensors and elec-
tronic dielectric permittivity tensors. Interatomic force constants and the phonon-band structure are then ob-
tained by computing the Fourier transform of dynamical matrices on a regular mesh of wave vectors, with an
eventual, separate treatment of the long-range dipole-dipole interaction. The same ingredients also allow one to
compute the low-frequency response of the crystal to homogeneous electric fields.@S0163-1829~97!05116-3#
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I. INTRODUCTION

Nowadays, the density-functional theory1,2 ~DFT! is con-
sidered as the method of choice for simulating solids fr
the first principles. The present paper focuses on the com
tation, from perturbation theory within DFT~actually within
the local-density approximation to DFT!, of second deriva-
tives of the total energy of periodic solids with respect to~a!
collective displacements of atoms with different wave ve
tors, either commensurate or incommensurate with the
derlying lattice; and~b! homogeneous static electric fields.
the preceding paper~P1!,3 it was shown how to compute th
corresponding first-order changes in density, wave functio
and self-consistent potentials, thanks to a conjugate-grad
algorithm, with plane waves and pseudopotentials. The
ther second-order derivatives of the energy are dire
linked to the dynamical matrices at any wave vector,
low-frequency ~ion-clamped! dielectric permittivity tensor
e`, and the Born effective-charge tensorsZ* ~mixed second-
order derivative with respect to atomic displacement a
electric field!.

As for the calculation of the first-order responses,
methods used for the second-order derivatives of the en
are of two types: the direct approaches, and the perturba
approaches. In the frozen-phonon method~a direct ap-
proach!, a small, but finite, perturbation is frozen in the sy
tem, allowing us to compute, e.g., interatomic for
constants.4 It is also possible to extract phonon eigenfreque
cies and eigenmodes from molecular dynamic trajectori5

which is another direct method. Recent progress in polar
tion theory has open the way to direct approaches of B
effective charges,6 and dielectric permittivity tensors.7

However, in the frozen-phonon or the molecular dyna
ics methods, one has to deal with supercells, whose size
pends on the commensurability of the perturbation with
unperturbed periodic cell. When the original cell is small~a
few atoms!, the supercells to take into account will be typ
cally four or eight times larger, with a considerable increa
550163-1829/97/55~16!/10355~14!/$10.00
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in computer time. A recently proposed orderN approach to
the computation of phonon bands and interatomic force c
stant could partially waive this drawback.8

By contrast, for wave-vector-characterized perturbatio
perturbation theory allows one to map the computation of
responses onto an equivalent problem presenting the pe
icity of the unperturbed periodic ground state, which is
obvious advantage over direct methods. Baroni, Gianno
and Testa9 ~BGT! have popularized this type of method, a
described in P1.10 Many perturbative implementations of th
computation of the first-order responses have been reali
When the first-order responses have been obtained, the
eration of the diagonal~two derivatives with respect to th
same perturbation! or mixed ~one derivative with respect to
one perturbation, one more derivative with respect to
other! second-order derivatives of the total energy, can
performed. This supplementary step is rather easy, comp
to the computation of the first-order responses. Actua
from the latter, even the mixed third-order derivatives of t
energy can be computed easily.11

There are different formulas connecting the first-order
sponses to second-order derivatives of the energy. Som
them arestationarywith respect to the errors made in th
first-order responses. Others, inherently less accurate, h
in the case of mixed second-order derivatives of the to
energy, the advantage of using the knowledge of the fi
order responses with respect toonly oneof the two pertur-
bations. This property, in a different context, was called
‘‘interchange theorem.’’12 The stationarity of some formulas
as well as the interchange theorem, is a consequence o
existence of the variational principle for the total energy
the system.2 In this paper, the different formulas
nonstationary,13 as well as stationary, will be developed, fo
the above-mentioned perturbations, in the framework o
plane-wave-pseudopotential method. Like in P1, effici
separable pseudopotentials,14 as well as the nonlinea
exchange-correlation core correction,15,16are considered. Re
sults obtained with these formulas were exhibited in Re
10 355 © 1997 The American Physical Society
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10 356 55XAVIER GONZE AND CHANGYOL LEE
17–22, with restricted presentation of the underlying theo
For insulators, once the analytic part of the dynami

matrix at q50 as well ase` and Z* are available, it is
possible to compute the LO-TO splitting of phonon freque
cies atq50, the low-frequency dielectric permittivity tenso
including the effect of ionic motion, and also the infrare
reflectivity. These formulas will be derived in the prese
context, explicitly taking into account the anisotropy ofe`

andZ* .
When the dynamical matrices are known for a sufficien

fine grid of wave vectors in the irreducible Brillouin zon
one can generate easily the interatomic force const
~IFC’s! using a Fourier transformation, as well as dynami
matrices and phonon frequencies interpolated for any w
vectors. The efficiency of these transformations can ben
from a separate, analytic, treatment of the long-ran
dipole-dipole interactions, made possible by the knowled
of e` andZ* . This treatment, in the case of isotropice` and
Z* is rather easy to formulate, while the generalization
anisotropic quantities was only recently proposed.17 It has
been used to compute the phonon band structure of S2
stishovite,18–20,23,24SiO2 quartz,

17,19and to analyze the insta
bilities in cubic and rhombohedral BaTiO3.

21 A comprehen-
sive description of this technique is presented here.

Once the complete phonon-band structure is availa
one can compute the phonon density of states, some the
dynamical properties, and the atomic temperature fact
The corresponding formulas have been recalled in Ref. 1

This paper is organized as follows. In Sec. II, we pres
the different generic formulas~stationary and nonstationary!,
that allow us to compute mixed second derivatives of
total energy from the knowledge of the first-order respons
In Sec. III, the second-order derivatives of the total ene
with respect to atomic displacements are presented, wi
the plane-wave-pseudopotential implementation: they al
us to compute the dynamical matrices and phonon frequ
cies. The derivatives with respect to homogeneous elec
fields, which allow us to compute dielectric permittivity te
sors are developed in Sec. IV. Section V focuses on mi
derivatives with respect to atomic displacements and ho
geneous electric fields: the Born effective charges. Then,
discuss the implementation of these equations~Sec. VI! and
detail the sum rules to be checked for accuracy~Sec. VII!.
The two last sections of the paper build upon the res
obtained in the previous sections: the computation of
low-frequency dielectric permittivity tensor and the asso
ated LO-TO splitting~Sec. VIII!, and the computation o
interatomic force constants and phonon-band structures~Sec.
IX !. Some perspectives are presented in Sec. X. Append
describes briefly the computation of the dielectric permitt
ity tensors using different approximations: the ‘‘local dens
plus scissors’’ approach, the random phase approxima
and the neglect of local fields.

Throughout this paper, we use the atomic~Hartree! units.
The notations and conventions are described in P1~Ref. 3!
and Ref. 25.

II. MIXED DERIVATIVES OF THE TOTAL ENERGY

We consider two or more simultaneous Hermitian pert
bations, combined in a Taylor-like expansion of the follo
ing type:
.
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vext~l!5vext
~0!1(

j 1
l j 1

vext
j 1 1(

j 1 j 2
l j 1

l j 2
vext
j 1 j 21••• ~1!

~the indicesj 1 and j 2 are not exponents, but label the diffe
ent perturbations!. The mixed derivative of the energy of th
electronic system

Eel
j 1 j 25

1

2

]2Eel

]l j 1
]l j 2

~2!

is obtained in the local-density approximation to DF
from25,26

Eel
j 1 j 25

1

2
~Ẽel

j 1 j 21Ẽel
j 2 j 1!, ~3!

with

Ẽel
j 1 j 2$c~0!;c j 1,c j 2%

5(
a

@^ca
j 1uH ~0!2ea

~0!uca
j 2&1~^ca

j 1uvext
j 2 1vHxc0

j 2 uca
~0!&

1^ca
~0!uvext

j 1 1vHxc0
j 1 uca

j 2&!1^ca
~0!uvext

j 1 j 2uca
~0!&#

1
1

2E E d2EHxc

dn~r !dn~r 8! U
n~0!

nj 1~r !nj 2~r 8!dr dr 8

1
1

2

d2EHxc

dl j 1
dl j 2

U
n~0!

. ~4!

The derivatives of the wave functions and density with
spect to one perturbation can be obtained from the techn
explained in P1, or from the BGT technique,27–29applied to
the case of that particular perturbation.

Supposing that the first-order wave functions and den
ties are not exact, then Eqs.~3! and~4! give an estimation of
Eel
j 1 j 2 that has an error proportional to theproductof errors

made in the first-order quantities for the first and seco
perturbations. It is astationaryexpression. If these errors ar
small, their product will be much smaller. However, the si
of the error is undetermined, unlike for the variation
expressions30,31presented in detail in P1@see Eq.~13! of Ref.
3#.

The following expressions do not have these interest
properties~their error is on the order of the errors made
the first-order wave functions or densities, and not th
product!, but allows us to evaluateEel

j 1 j 2 from the knowledge
of the derivative of wave functions with respect toonly one
of the perturbations:
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Eel
j 1 j 25

1

2(a
occ

~^ca
j 2uvext

j 1 1vHxc0
j 1 uca

~0!&

1^ca
~0!uvext

j 1 1vHxc0
j 1 uca

j 2&!1Enon-var
j 1 j 2

5(
a

occ

^ca
j 2uvext

j 1 1vHxc0
j 1 uca

~0!&1Enon-var
j 1 j 2

5(
a

occ

^ca
~0!uvext

j 1 1vHxc0
j 1 uca

j 2&1Enon-var
j 1 j 2 , ~5!

where

Enon-var
j 1 j 2 5(

a

occ

^ca
~0!uvext

j 1 j 2uca
~0!&1

1

2

d2EHxc

dl j 1
dl j 2

U
n~0!

. ~6!

In the expressions Eq.~5!, uca
j 1& is not needed, while the

computation ofvext
j 1 and vHxc0

j 1 takes little time. Similar ex-

pressions that do not involveuca
j 2& but uca

j 1& are also avail-
able.

The time-reversal symmetry allows us to simplify furth
these expressions. For example,

Eel
j 1 j 25(

a

occ

^ca
j 2uvext

j 1 1vHxc0
j 1 uca

~0!&1Enon-var
j 1 j 2 . ~7!

These results Eqs.~5!–~7! are generalizations of the so
called ‘‘interchange theorem,’’12 and will be exploited in the
next three sections.13 We will, moreover, suppose that w
have been able to compute the first-order responses~i.e.,
changes in wave functions and densities! to the basic pertur-
bations described previously.27,28,3,29

III. DYNAMICAL MATRIX AND PHONON FREQUENCIES

The total energy of a periodic crystal with small lattic
distortions from the equilibrium positions can be expres
as

Etot~$Dt%!5Etot
~0!1(

aka
(
bk8b

1

2 S ]2Etot

]tka
a ]tk8b

b DDtka
a Dtk8b

b

1•••, ~8!

whereDtka
a is the displacement along directiona of the

atomk in the cell labeleda ~with vectorR a), from its equi-
librium positiontk .

The matrix of the IFC’s is defined as

Cka,k8b~a,b!5S ]2Etot

]tka
a ]tk8b

b D , ~9!
d

its Fourier transform is

C̃ka,k8b~q!5
1

N(
ab

Cka,k8b~a,b!e2 iq•~Ra2Rb!

5(
b

Cka,k8b~0,b!eiq•Rb , ~10!

whereN is the number of cells of the crystal in the Born
von Karman approach.32 It is connected to the dynamica
matrix D̃ka,k8b(q) by

D̃ka,k8b~q!5C̃ka,k8b~q!/~MkMk8!
1/2 . ~11!

The squares of the phonon frequenciesvmq
2 atq are obtained

as eigenvalues of the dynamical matrixD̃ka,k8b(q), or as
solutions of the following generalized eigenvalue problem

(
k8b

C̃ka,k8b~q!Umq~k8b!5Mkvmq
2 Umq~ka! . ~12!

From Eqs.~8!–~10!, the matrixC̃ka,k8b(q) can be linked
to the second-order derivative of the total energy with
spect to collective atomic displacements of the type
scribed in P1:

C̃ka,k8b~q!52E
tot,2q,q
tka* tk8b . ~13!

Etot is made of a contribution from the electron system an
contribution from the electrostatic energy between io
Similarly, theC̃ matrix is split in two parts:

C̃ka,k8b~q!5C̃el,ka,k8b~q!1C̃Ew,ka,k8b~q!. ~14!

The tools developed in P1 would allow us to build th
diagonal part of theC̃el(q) matrix, in a plane wave basis
with efficient separable pseudopotentials and a nonlin
exchange-correlation core correction. In the following su
sections, these results are generalized to the nondiagona
of this matrix, and the ion-ion term is also computed.

A. The electronic contribution

The use of the mixed derivative formulas, shown in S
II, gives the following stationary expression~see P1 for the
notations!:
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E
el,2q,q
tka* tk8b$u~0!;uq

tka ,uq
tk8b%5

V0

~2p!3
E
BZ

(
m

occ

s ~^umk,q
tka uHk1q,k1q

~0! 2emk
~0!uumk,q

tk8b &1^umk,q
tka uvsep,k1q,k

tk8b uumk
~0!&

1^umk
~0!uvsep,k,k1q

tka uumk,q
tk8b &1^umk

~0!uvsep,k,k
tkatk8buumk

~0!& !dk

1
1

2EV0

$@ n̄q
tka~r !#* @ v̄ loc,q

tk8b~r !1 v̄xc0,q
tk8b ~r !#1n̄q

tk8b~r !@ v̄ loc,q
tka ~r !1 v̄xc0,q

tka ~r !#* %dr

1
1

2EV0

dvxc
dn U

n~0!~r !

@ n̄q
tka~r !#* n̄q

tk8b~r !dr12pV0(
G

@ n̄q
tka~G!#* n̄q

tk8b~G!

uq1Gu2

1E
V0

„n~0!~r !v loc8 tka* tk8b~r !…dr1
1

2

d2Exc

dtka,2qdtk8b,q
U
n~0!

. ~15!

The corresponding nonstationary expressions are

E
el,2q,q
tka* tk8b$u~0!;uq

tka%5
V0

~2p!3
E
BZ

(
m

occ

s ~^umk,q
tka uvsep,k1q,k

tk8b uumk
~0!&1^umk

~0!uvsep,k,k
tkatk8buumk

~0!& !dk

1
1

2EV0

$@ n̄q
tka~r !#* @ v̄ loc,q

tk8b~r !1 v̄xc0,q
tk8b ~r !#%dr

1E
V0

„n~0!~r !v loc8 tka* tk8b~r !…dr1
1

2

d2Exc

dtka,2qdtk8b,q
U
n~0!

~16!

and

E
el,2q,q
tka* tk8b$u~0!;uq

tk8b%5
V0

~2p!3
E
BZ

(
m

occ

s ~^umk
~0!uvsep,k,k1q

tka uumk,q
tk8b &1^umk

~0!uvsep,k,k
tkatk8buumk

~0!& !dk

1
1

2EV0

$n̄q
tk8b~r !@ v̄ loc,q

tka ~r !1 v̄xc0,q
tka ~r !#* %dr

1E
V0

„n~0!~r !v loc8 tka* tk8b~r !…dr1
1

2

d2Exc

dtka,2qdtk8b,q
U
n~0!

. ~17!

Using Eqs.~16! and ~17!, a whole column or a whole row of the dynamical matrixC̃ka,k8b(q) can be obtained from the
knowledge of the first-order wave functions with respect to only one perturbation, eitheruq

tka or uq
tk8b , respectively.

The mixed second derivatives of the local and nonlocal potentials~given here in reciprocal space!, and the second deriva
tives of the exchange-correlation functional are obtained from

v loc8 tka* tk8b~G!52
dkk8
2V0

GaGb e2 iG•tk vk
loc~G! when GÞ0

50 when G50, ~18!

vsep,k,k
tka* tk8b~G,G8!5

dkk8
2V0

(
m

emk

]2

]tka]tk8b
F S (G e2 i ~k1G!•tkzmk~k1G!D S (

G8
ei ~k1G8!•tkzmk* ~k1G8!D G , ~19!

1

2

d2Exc

dtka,2qdtk8b,q
U
n~0!

5dkk8S 12EV0

dvxc
dn U

n~0!~r !

@ n̄c,q
tka~r !#* @ n̄c,q

tk8b~r !#dr1E
V0

vxc„n
~0!~r !…n̄c

tka* tk8b~r !dr D , ~20!
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with

n̄
c,0
tka* tkb~r !5(

a

1

2

]2

]tk,a]tk,b
nc,k~r2tk2Ra!. ~21!

B. The ion-ion contribution

Following the Ewald summation method,2 the ion-ion
contribution to the unperturbed total energy per unit cell~to
which the residue of the cancellation of the divergences m
tioned in Sec. IV B of P1 is added! is obtained as

EEw5
1

2(kk8
ZkZk8F (

GÞ0

4p

V0G
2e

iG•~ tk2 tk8!expS 2
G2

4L2D
2(

a
Leiq•RaH~Lda,kk8!2

2

Ap
Ldkk82

p

V0L
2G

1
1

2(kk8

ZkCk8
V0

, ~22!

with H(y)5erfc(y)/y, da,kk85uda,kk8u, and da,kk8
5Ra1 tk82 tk . The parameterL can assume any value
and is adjusted to obtain the fastest convergence of b
reciprocal- and real-space sums.

The contribution of the second derivative of the ion-i
energy to the matrixC̃Ew(q) can be computed following Ref
33,

C̃Ew,ka,k8b~q!5C̄Ew,ka,k8b~q!2dkk8 (
k9

C̄Ew,ka,k8b~q50!.

~23!

C̄Ew,ka,k8b(q) can be split into three parts: a rapidly co
vergent sum in reciprocal space; a rapidly convergent sum
real space; and a rather simple residual contribution,34
n-

th

in

C̄Ew,ka,k8b~q!

5ZkZk8F (
G with K5G1q

4p

V0

Ka8Kb8
K2 ei K•~ tk2 tk8!

3expS 2
K2

4L2D 2(
a

L3 ei q•Ra Ha8b8
iso

~Lda,kk8!

2
4

3Ap
L3 dkk8G , ~24!

with

Hab
iso~x!5

xaxb

x2 F 3x3erfc~x!1
2

Ap
e2x2 S 3x2 12D G

2dab S erfc~x!

x3
1

2

Ap

e2x2

x2 D . ~25!

The superscript ‘‘iso’’ is used in order to distinguish th
quantity from its anisotropic generalization, needed in S
IX.

C. The q50 case

As mentioned in Sec. VII A of P1, the limitq→0must be
performed carefully. By the separate treatment of the elec
field associated with phonons in this limit, one sees tha
‘‘bare’’ q50 dynamical matrix must be computed, to whic
a ‘‘nonanalytical’’ part will be added, in order to reproduc
correctly theq→0 behavior along different directions~see
Sec. VIII B!. The bare dynamical matrix is obtained from th
following electronic contribution:
E
el,0,0
tka* tk8b$u~0!;uq50

tka ,uq50
tk8b%5

V0

~2p!3
E
BZ

(
m

occ

s ~^umk,q50
tka uHk,k

~0!2emk
~0!uumk,q50

tk8b &1^umk,q50
tka uvsep,k,k

tk8b uumk
~0!&

1^umk
~0!uvsep,k,k

tka uumk,q50
tk8b &1^umk

~0!uvsep,k,k
tkatk8buumk

~0!& !dk

1
1

2EV0

$@ n̄q50
tka ~r !#* @ v̄ loc,q50

8tk8b ~r !1 v̄xc0,q50
tk8b ~r !#1n̄q50

tk8b~r !@ v̄ loc,q50
8 tka ~r !1 v̄xc0,q50

tka ~r !#* %dr

1
1

2EV0

dvxc
dn U

n~0!~r !

@ n̄q50
tka ~r !#* n̄q50

tk8b~r !dr12pV0(
GÞ0

@ n̄q50
tka ~G!#* n̄q50

tk8b~G!

uGu2

1E
V0

@n~0!~r !v loc8tkatk8b~r !#dr1
1

2

d2Exc

dtka,2q50dtk8b,q50
U
n~0!

, ~26!
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10 360 55XAVIER GONZE AND CHANGYOL LEE
combined with the modified ion-ion contribution

C̄Ew,ka,k8b~q50!

5ZkZk8F (GÞ0

4p

V0

Ga8Gb8
G2 ei G•~ tk2 tk8!

3expS 2
G2

4L2D 2(
a

L3Ha8b8
iso

~Lda,kk8!

2
4

3Ap
L3 dkk8G . ~27!

Note the absence of theG50 contributions in the Hartree
contribution to Eq.~26! and in the first term of Eq.~27!.
Equation~26! is a stationary expression. Simpler, nonstatio
ary expressions exist as well, and are similar to Eqs.~16! and
~17!.

IV. ELECTRONIC DIELECTRIC PERMITTIVITY
TENSOR

For insulators, the dielectric permittivity tensor is the c
efficient of proportionality between the macroscopic d
placement field and the macroscopic electric field, in the
ear regime:

Dmac,a5(
b

eabEmac,b . ~28!

It can be obtained as

eab5
]Dmac,a

]Emac,b
5dab14p

]Pmac,a
]Emac,b

. ~29!

In general, the displacementDmac, or the polarization
Pmac, will include contributions from ionic displacements.
the present section, we examine only the contribution to
dielectric permittivity tensor from the electronic polarizatio
and for low frequencies of the applied field. This contrib
tion is usually notedeab

` . In Sec. VIII A, we will take care of
the supplementary contributions from the ionic displa
ments.

We connect the dielectric permittivity tensor to the pola
izability matrix, following Refs. 35 and 36. The polarizabi
ity of a solid describes the density response to an app
potential. In real space, one has

n~1!~r !5E x~r ,r 8!vext
~1!~r 8!dr 8. ~30!

In the reciprocal space, for a periodic solid,

nq
~1!~G!5(

G8
xG,G8~q!vext,q

~1! ~G8!. ~31!

Since the density is the first-order derivative of the total
ergy with respect to a change of potential,

n~r !5
]Etot

]vext~r !
, ~32!
-

-
-
-

e

-

-

-

d

-

the polarizability is related to the second-order derivative
the total energy:

x~r ,r 8!5
]2Etot

]vext~r !]vext~r 8!
. ~33!

The connection with the dielectric permittivity tensor, fo
lowing Ref. 35, proceeds through the definition of the
verse dielectric matrix, with

eG,G8
21

~q!5dG,G81
4p

uq1Gu2
xG,G8~q!, ~34!

and, forq approaching to zero, one finds35

(
ab

q̂aeab
` q̂b 5

1

e0,0
21~q!

, ~35!

whereq̂ is the unit vector in the direction ofq.
These theoretical definitions give the following approa

to the electronic contribution to the dielectric permittivi
tensor:37

eab
` 5dab2

4p

V0
2E

el
Ea* Eb , ~36!

whereE
el
Ea* Eb is the mixed derivative generalization of the E

~76! of the preceding paper:3

E
el
Ea* Eb$u~0!;uEa,uEb%

5
V0

~2p!3
E
BZ

(
m

occ

s~^umk
Ea uHk,k

~0!2emk
~0!uumk

Eb &

1^umk
Ea u iumk

kb &1^ iumk
ka uumk

Eb &!dk

1
1

2EV0

dvxc
dn U

n~0!~r !

@nEa~r !#* nEb~r !dr

12pV0(
GÞ0

@nEa~G!#* nEb~G!

uGu2
. ~37!

A much simpler nonstationary formula also givesE
el
Ea* Eb :

E
el
Ea* Eb$u~0!;uEa%5

V0

~2p!3
E
BZ

(
m

occ

s^umk
Ea u iumk

kb &dk. ~38!

By this last expression, the knowledge ofuEa, the first-order
derivative of the wave functions with respect to an elect
field along directiona, allows us to compute the elements
the dielectric permittivity tensoreab , for any value ofb,
provided that the derivative of the unperturbed wave fun
tion with respect to their wave vector alongb is also known.

V. BORN EFFECTIVE CHARGES

For insulators, the Born effective charge tensorZk,ba*
~Ref. 38! is defined as the proportionality coefficient relatin
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at linear order, the polarization per unit cell, created alo
the directionb, and the displacement along the directiona
of the atoms belonging to the sublatticek, under the condi-
tion of a zero electric field. The same coefficient also d
scribes the linear relation between the force on an atom
the macroscopic electric field, because both can be conne
to the mixed second-order derivative of the energy with
spect to atomic displacements and a macroscopic ele
field:

Zk,ba* 5V0

]Pmac,b
]tka~q50!

5
]Fk,a

]Eb
. ~39!

In the present formalism, this quantity can be obtain
from

Zk,ba* 5Zkdba1DZk,ba , ~40!

whereZk is the charge of the~pseudo-!ion k, and the elec-
tronic screeningDZk,ba is

DZk,ba52F V0

~2p!3
E
BZ

(
m

occ

s~^umk,q50
tka uHk,k

~0!2emk
~0!uumk

Eb &

1^umk,q50
tka u iumk

kb &1^umk
~0!uvsep,k,k

tka uumk
Eb &!dk

1
1

2EV0

$@v loc,q50
8tka ~r !1vxc0,q50

tka ~r !#@ n̄Eb~r !#* %dr

1
1

2EV0

dvxc
dn U

n~0!~r !

@nq50
tka ~r !#* nEb~r !dr

12pV0(
GÞ0

@nq50
tka ~G!#* nEb~G!

uGu2 G . ~41!

In this stationary expression, the basic ingredients are
first-order derivative of the wave functions with respect to
q50 collective displacement, and the first-order derivativ
of the wave functions with respect to an electric field and
their wave vector. By contrast, in the following nonstatio
ary expressions, more sensitive to wave function conv
gence errors, the derivative with respect to an electric fiel
not needed:

DZk,ba52
V0

~2p!3
E
BZ

(
m

occ

s^umk,q50
tka u iumk

kb &dk ~42!

or only its knowledge is required:

DZk,ba52F V0

~2p!3
E
BZ

(
m

occ

s^umk
~0!uvsep,k,k

tka uumk
Eb &dk

1
1

2EV0

$@v loc,q50
8tka ~r !1vxc0,q50

tka ~r !#@ n̄Eb~r !#* %dr G .
~43!

VI. IMPLEMENTATION NOTES

The stationary formulas Eqs.~15!, ~26!, ~37!, ~41!, ~A1!,
~A3!, and~A5!, to be considered for the computation of th
g

-
nd
ted
-
ric

d

e

s
o

r-
is

second-order derivatives of the energy are all similar. T
fact strongly reduces the time needed to implement this
malism. The similarity is also observed for the nonstation
formulas Eqs.~16!, ~17!, ~38!, ~42!, and~43!.

In order to compute the above-mentionedstationaryex-
pressions, one needs to know the first-order derivative of
wave functions with respect to thetwoperturbations defining
the second-order derivative, and eventually the auxiliary
rivative of the wave functions with respect to their wa
vector. By contrast, for thenonstationaryEqs. ~16!, ~17!,
~38!, ~42!, and~43!, the derivative of the wave vections wit
respect to onlyone of these perturbations is needed~and
eventually the derivative with respect to the wave vecto!.
This latter advantage can prove useful if, for example, the
of Born effective charges must be computed, while the
namical matrix atq50 is not needed: even if the number o
atoms on the unit cell is large, all the effective charges c
be easily found from the knowledge of the first-order r
sponses with respect to the electric field only.

The parallelization of these formulas is easily achieved
considering the mixed derivatives one at a time: all theN2

mixed derivatives with respect to theN perturbations can be
computed in parallel, when all the first-order wave functio
and densities have been computed. Also, the evaluatio
the nonstationary expressions could be done at the end o
parallel computation of the first-order wave functions, usi
only one set of the first-order wave functions, since no inf
mation is required from the other processors.

In any case, the amount of computational work to eva
ate these expressions is rather small compared with the w
needed to obtain the first-order derivatives of the wave fu
tions through the conjugate-gradient algorithm described
P1, or from the BGT procedure.27

VII. SUM RULES

A few sum rules are available to monitor whether t
calculation is well converged with respect to numerical p
rameters, like the number of plane waves, the sampling
the Brillouin zone, and the number of points of th
exchange-correlation grid.

The first is the acoustic-sum rule:32 the dynamical matrix
at the zone center should admit the homogeneous tran
tions of the solid as an eigenvector, with a zero eigenf
quency, because of the invariance of the total energy w
respect to translation. From Eq.~12!, this gives

(
k8

C̃ka,k8b~q50!50. ~44!

Since the dynamical matrix is symmetric, the transpose r
tion is also valid. In the implementation of the formalis
explained here, this relation is slightly broken because of
presence of the exchange-correlation grid in the real sp
on which the exchange-correlation potential and energies
evaluated: if all the atoms are translated by a given vec
while the exchange-correlation grid is unchanged, the en
gies will slightly change, and induce the breaking of the s
rule. All of the other terms can be implemented in
translation-invariant way. If needed, this problem can be
passed by the following simple modification:
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C̃ka,k8b
New

~q50!5C̃ka,k8b~q50!2dkk8(
k9

C̃ka,k9b~q50!.

~45!

However, by this operation, the eigenfrequencies atq50will
change, and will not be the limit of the eigenfrequenc
obtained by makingq→0, unless the other dynamical matr
ces, forqÞ0, are also corrected. The generalization of E
~45! for qÞ0 will be discussed in Sec. IX.

The second sum rule guarantees that the charge neut
is also fulfilled at the level of the Born effective charges. F
every directiona andb, one must have39

(
k

Zk,ab* 50, ~46!

i.e., the sum of the Born effective charges of all atoms in o
cell must vanish, element by element. This sum rule will
broken because of the finiteness of the number of pl
waves or special points, or because of the discretization
the real-space integral~needed for the evaluation of th
exchange-correlation energies and potentials!. This problem
could be corrected as follows. We define the mean effec
charge excess per atom

Z̄ab* 5
1

Nat
(
k

Zk,ab* . ~47!

This excess can be redistributed equally among the atom
follows:27

Zk,ab* ,New5Zk,ab* 2Z̄ab* , ~48!

or can be redistributed among them in proportion to th
mean electronic effective charge,

Zk,ab* ,New5Zk,ab* 2
Nat(abDZk,ab

(k,abDZk,ab
Z̄ab* . ~49!

Other weighting schemes for the redistribution of this exc
could be designed. Finally, in the case of the response t
electric field, one can also monitor the fulfillment of th
f -sum rule, as described in Ref. 40.
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VIII. LOW-FREQUENCY DIELECTRIC PERMITTIVITY
TENSOR AND LO-TO SPLITTING

In this section, we discuss two phenomena that arise fr
the same basic mechanism: the coupling between the ma
scopic electric field and the polarization associated with
q→0 atomic displacements. In the computation of the lo
frequency~infrared! dielectric permittivity tensor, one has t
include the response of the ions, whose motion will be tr
gered by the force due to the electric field, and whose po
ization will be created by their displacement. The Born
fective charges are involved in both mechanisms.

Also, in the computation of the long-wavelength limit o
phonons, a macroscopic polarization and electric field will
associated with the atomic displacements. At the simp
level, the eigenfrequencies of phonons will depend on
direction along which the limit is taken as well as on t
polarization of the phonon. This gives birth to the LO-T
splitting, and to the Lyddane-Sachs-Teller relation.32 This
phenomenon is also directly described by the Born effec
charges.

A. Low-frequency dielectric permittivity tensor

The macroscopic low-frequency~static! dielectric permit-
tivity tensoreab(v) is calculated by adding toeab

` the ionic
contribution, following Maradudinet al.33 In our notations,
we obtain

eab~v!5eab
` 1

4p

V0
(
kk8

(
a8b8

Zk,aa8
* @C̃~q50!

2Mv2#ka8,k8b8
21 Zk8,bb8

* . ~50!

Using the knowledge of the eigendisplacementsUmq(kb) of
C̃(q50) from Eq. ~12!, normalized as

(
kb

Mk@Umq~kb!#*Unq~kb!5dmn , ~51!

one derives
eab~v!5eab
` 1

4p

V0
(
m

„(ka8Zk,aa8
* Umq50* ~ka8!…„(k8b8Zk8,bb8

* Umq50~kb8!…

vm
2 2v2 . ~52!
We define the components of the mode-effective charge
tor Zm* as

Zm,a* 5
(kbZk,ab* Umq50~kb!

„(kb@Umq50~kb!#*Umq50~kb!…1/2
. ~53!

Note that with this definition, the mode-effective charge o
pure translation of the solid vanishes, unlike with the defi
tion given in Ref. 41. The mode-oscillator strength ten
Sm,ab is defined as
c-

-
r

Sm,ab5S (
ka8

Zk,aa8
* Umq50* ~ka8!D

3S (
k8b8

Zk8,bb8
* Umq50~k8b8!D , ~54!

so that

eab~v!5eab
` 1

4p

V0
(
m

Sm,ab

vm
2 2v2 . ~55!
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One can also evaluate the value of the dielectric permittiv
constant along the directionq̂, by

e q̂~v!5(
ab

q̂aeab~v!q̂b

5(
ab

q̂aeab
` q̂b1

4p

V0
(
m

(abq̂aSm,abq̂b

vm
2 2v2 ~56!

5(
ab

q̂aeab
` q̂b

1
4p

V0
(
m

uZm* •qu2

vm
2 2v2S (

kb
@Umq50~kb!#*Unq50~kb! D .

~57!

The reflectivity of optical waves normal to the surface, w
their electric field along an optical axis of the crystalq, is
given by

R~v!5U e q̂
1/2

~v!21

e q̂
1/2

~v!11
U2. ~58!

More general expressions for the reflectivity may be found
classical textbooks.42

Equation~56! shows that, if the vectorZm* is perpendicu-
lar to q, the modem does not contribute to the dielectr
permittivity constant alongq. For each modem, there will
thus be one direction along which the mode contributes
the dielectric permittivity constant, in which case it is r
ferred to as longitudinal, while for the perpendicular dire
tions, the mode will be referred to as transverse. We reco
the usual distinction between LO and TO modes, confirm
by the following analysis of theq→0 limit of the dynamical
matrix.

B. LO-TO splitting

The macroscopic electric field that accompanies the
lective atomic displacements atq50 can be treated sepa
rately, as mentioned in Sec. III C and in Sec. VII A of P
After a careful treatment, one is able to recover the import
result,39,27

C̃ka,k8b~q→0!5C̃ka,k8b~q50!1C̃ka,k8b
NA

~q→0!,
~59!

where the nonanalytical, direction-dependent te
C̃ka,k8b
NA (q→0) is given by

C̃ka,k8b
NA

~q→0!5
4p

V0

~(gqgZk,ga* !~(g8qg8Zk8,g8b
* !

(abqaeab
` qb

.

~60!

In general, the eigenvectors of theC̃(q→0) matrix will
not be identical to those of theC̃(q50). However, the
modes that are transverse to the direction ofq are common to
y

n

o

-
er
d

l-

nt

both. Indeed, the NA term in Eq.~59! acts in a space that i
perpendicular to the space spanned by the TO modes~for
which Z*m•q50):

(
k8b

S (
g8

qg8Zk8,g8b
* DUmq50~k8b!50. ~61!

Sometimes, symmetry constraints will be sufficient
guarantee that some LO eigendisplacements ofC̃(q→0) will
be identical to those ofC̃(q50), even if the eigenfrequen
cies are not the same. In this case, the following relations
linking LO and TO modes, holds:

vm
2 ~q→0!5vm

2 ~q50!1S 4p

V0
D (abqaSm,abqb

(abqaeab
` qb

. ~62!

By summing on all modes, and using the orthonormali
tion of eigenvectors Eq.~51!, one gets

(
m

vm
2 ~q→0!2vm

2 ~q50!

5S 4p

V0
D(

k

1

Mk

(abgqaZk,ab* Zk,gb* qg

(abqaeab
` qb

. ~63!

Finally, let us mention an interesting generalization of t
Lyddane-Sachs-Teller relationship, linking dielectric prop
ties and phonon frequencies, in the harmon
approximation:43

(abqaeab~v!qb

(abqaeab
` qb

5)
m

vm
2 ~q→0!2v2

vm
2 ~q50!2v2 . ~64!

IX. INTERATOMIC FORCE CONSTANTS,
PHONON-BAND STRUCTURES

If the dynamical matrices were known everywhere in t
Brillouin zone, the IFC’s could be built by inverting Eq
~10!, which defines the dynamical matrix from the IFC’s:

Cka,k8b~0,b!5
~2p!3

V0
E
BZ
C̃ka,k8b~q!eiq•Rbdq. ~65!

Unfortunately, the dynamical matrices are not known e
erywhere in the Brillouin zone: for computational reaso
they are only obtained for a small set of wave vectors. In t
case, a numerical integration technique must be used to
form the integration appearing in Eq.~65!. For that purpose,
the use of a discrete Fourier transform is tempting: the
namical matrices on a regular grid of (l3m3n) points in
the Brillouin zone44 will generate approximate IFC’s in a
large box, made of (l3m3n) periodic cells. Outside of this
box, the IFC’s, are supposed to vanish:45
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Cka,k8b~0,b!5
1

Nq
(

qPgrid~ l3m3n!
C̃ka,k8b~q!eiq–Rb if Rb1tk2tk8Pbox ~ l3m3n!

50 if Rb1tk2tk8¹box ~ l3m3n!. ~66!
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The vanishing of the IFC’s beyond some distance is intrin
to this discrete Fourier transform technique. If the integra
in Eq. ~65! were infinitely differentiable, then the IFC’
would decrease exponentially fast, and this intrinsic limi
tion would not be a practical concern. However, for insu
tors with nonvanishing effective charges, Eqs.~59! and ~60!
shows that, close toq50, the behavior of the dynamica
matrices is strongly nonanalytical: it depends on the dir
tion along whichq50 is attained. In the real space, it can
seen that this nonanalytical behavior corresponds to lo
ranged IFC’s, with an average 1/d3 decay (d being the dis-
tance between atoms!, corresponding to dipole-dipole inter
actions.

Indeed, a dipole is created when an atom is displa
from its original position, and the proportionality coefficie
between the dipole and the displacement is the Born ef
tive charge. Even if the Born effective charge vanishes~this
may be imposed by symmetry constraints, in elemental c
tals!, the atomic displacement will create a quadrupole or
octupole~the latter cannot be forbidden for symmetry re
sons!, with corresponding quadrupole-quadrupole 1/d5 de-
cay, or octupole-octupole 1/d7 decay. However, the non
analyticity corresponding to the dipole-dipole interaction
the strongest, and in the context of the present paper, e
the dipole-quadrupole interaction, with 1/d4 decay, will be
neglected. Thus, if the Born effective charges of all atoms
a crystal vanish, we consider that Eq.~66! will give an ad-
equate description of the IFC’s.

For metals, the electrostatic interactions are screened
sufficiently large distances. On the other hand, Friedel os
lations, due to the abrupt change of the occupation numb
the Fermi level, cause a long-ranged decay of the IFC’s.
simple isotropic model, the decay of the IFC’s is given
cos2kFd/kF

3d3, wherekF is the Fermi wave vector.
46 In more

realistic situations, the decay will still be inversely propo
tional to the cube of the distance, but the oscillatory behav
will be more complex, and determined by the shape of
Fermi surface. In many practical applications, this lon
range decay of metallic interatomic force constants in
real space, and the associated singularity in the recipr
space are of little importance.

For insulators with nonvanishing Born effective charg
the nonanalytical behavior of the dynamical matrices clos
q50 is perfectly defined from the knowledge of the Bo
effective charges and the electronic dielectric permittiv
tensor, as shown in Eq.~60!. This term cannot be neglecte
in practical applications. In ahomogeneousmaterial with an
isotropic dielectric permittivity tensoredab ~the superscript
` of the e` tensor will be omitted in the remainder of th
paper, for brevity!, the dipole-dipole interaction created b
the displacement of atoms with~isotropic! chargesZk and
Zk8 will be described by the following force constants:27
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Cka,k8b~0,a!5
ZkZk8

e S dab

d3
23

dadb

d5 D , ~67!

where

d5Ra1tk82tk . ~68!

The Fourier transform of these force constants exhibits
following nonanalytical behavior:

C̃ka,k8b
NA

~q→0!5
4p

V0

ZkZk8

e

qaqb

q2
. ~69!

Comparing the nonanalytical behaviors of Eqs.~60! and
~69!, it appears that, in the former, thee tensor is present a
a metric in the reciprocal space. In order to reproduce
nonanalytical behavior of the dynamical matrix in the case
a material with anisotropic dielectric permittivity tensor an
anisotropic effective-charge tensor, the following generali
tion of the dipole-dipole force constants Eq.~67! can be
used, where the (e)21 tensor is used as a metric in the re
space:

Cka,k8b
DD

~0,a!5 (
a8b8

Zk,aa8
* Zk8,bb8

* S ~e21!a8b8
D3 23

Da8Db8
D5 D

3~dete!21/2, ~70!

whereDa5(b(e
21)ab db is the conjugate of the vectord

relating nuclei, while the norm of the latter in this metrics
D5A D•d. The supplementary factor (dete)21/2 is needed
to get Eq.~60!, and is connected to the Jacobian of the tra
formation between real and reciprocal space. Thea50 and
k5k8 case is obtained by imposing the acoustic-sum rule
the first or the second indices. The contributionC̃Ew

DD of these
dipole-dipole IFC’s to the dynamical matrix can b
calculated17 using the Ewald summation technique
follows.47

~1! C̃Ew,ka,k8b
DD

~q!5ĈEw,ka,k8b
DD

~q!

2dkk8 (
k9

ĈEw,ka,k8b
DD

~q50!.

~71!

~2! The effective charge tensors can be factored out fr
ĈEw
DD ,

ĈEw,ka,k8b
DD

~q!5 (
a8b8

Zk,a8a
* Zk8,b8b

* C̄Ew,ka,k8b
DD

~q!.

~72!
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~3! C̄Ew
DD , the remaining quantity, is split into three parts

rapidly convergent sum in the reciprocal space; a rap
convergent sum in the real space; and the limiting contri
tion ~as usual in Ewald summation techniques!,

C̄Ew,ka,k8b
DD

~q!5 (
G with K5G1q

4p

V0

Ka8Kb8
(gg8Kgegg8Kg8

3ei K•~ tk2 tk8! expS 2(
gg8

Kgegg8Kg8
4L2 D

2(
a

L3 ei q•Ra Ha8b8~LD,LD !

3~dete!21/2

2
4

3Ap
L3 dkk8 ~e21!a8b8 ~dete!21/2,

~73!

with
y
th
tio
te
o

a
rs

e

x

y
-

Hab~x,y!5
xaxb

y2 F 3y3 erfc~y!1
2

Ap
e2y2 S 3y2 12D G

2~e21!ab Ferfc~y!

y3
1

2

Ap

e2y2

y2 G . ~74!

This expression is invariant under the change of the par
eterL, which can be adjusted to obtain the fastest conv
gence of both the reciprocal- and real-space sums.

If L is made equal to 0, the reciprocal-space sum in
~73! vanishes, as well as the limiting contribution. Th
complementary error functions in Eq.~74! will have the
value 1, while the contributions from the Gaussians in
same equation will vanish. Altogether, one finds that the
namical matrices described by Eqs.~71!–~74! are indeed the
Fourier transform of the IFC’s, Eq.~70!.

Alternatively, puttingL to infinity allows us to make the
real-space sum vanish. The limiting behavior is suppres
due to Eq.~71!, and finally one finds
C̃Ew,ka,k8b
DD

~q!5 (
G with K5G1q

4p

V0

~(a8Ka8Zk,a8a
* !~(b8Kb8Zk8,b8b

* !

(gg8Kgegg8Kg8
ei K•~ tk2 tk8!

2dkk8 (
k9

(
GÞ0

4p

V0

~(a8Ga8Zk,a8a
* !~(b8Gb8Zk9,b8b

* !

(gg8Ggegg8Gg8
ei G•~ tk2 tk9!. ~75!
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The nonanalytical behavior of this expression, forq→0, is
found to be Eq.~60!, as expected.48

With the help of the dipole-dipole expressions for the d
namical matrix and the IFC’s, we are now able to bypass
problems mentioned at the beginning of the present sec
Indeed, the long-range behavior of the IFC’s for real ma
rials should not be different from the long-range behavior
the dipole-dipole IFC’s characterized by the sameZ* and
e. So, we remove, from the dynamical matrices of real m
terials, determined on a homogeneous set of wave vecto
the Brillouin zone with the grid (l3m3n), the dynamical
matrices of the dipole-dipole system for the same wave v
tors, shown in Eq.~75!:

C̃ka,k8b
SR

~q!5C̃ka,k8b~q!2C̃Ew,ka,k8b
DD

~q!. ~76!

It is expected that their inverse Fourier transform, appro
mated by

Cka,k8b
SR

~0,b!5
1

Nq
(

qPgrid ~ l3m3n!
C̃ka,k8b
SR

~q!e2 iq•Rb

if Rb1tk2tk8Pbox ~ l3m3n!

50 if Rb1tk2tk8¹box ~ l3m3n!
~77!
-
e
n.
-
f

-
in

c-

i-

decays like 1/d4 or faster. The total IFC’s, following this
technique, is given by

Cka,k8b~0,b!5Cka,k8b
SR

~0,b!1CEw,ka,k8b
DD

~0,b!, ~78!

where the short-ranged part is given by Eq.~77!, and the
dipole-dipole part is given by Eq.~70!.

This technique not only allows us to get the IFC’s, b
also allows an easy interpolation of the dynamical mat
across the full Brillouin zone, with

C̃ka,k8b~q!5 (
dbPbox ~ l3m3n!

Cka,k8b
SR

~0,b!eiq•Rb

1C̃Ew,ka,k8b
DD

~q!. ~79!

Thus, it is possible to build the IFC’s, and the full phono
spectrum, from the knowledge of the Born effective char
tensor, the dielectric permittivity tensor, and a few dynam
cal matrices, which sample adequately the whole Brillou
zone. Moreover, the use of the symmetries of the mate
~spatial operations of symmetries, as well as the tim
reversal symmetry!, allows us to sample the dynamical m
trices only in the irreducible part of the Brillouin zone, wit
a considerable reduction of computing time~see Sec. VI!.

As mentioned previously, the dynamical matrix atq50
computed from the formulas of Sec. IIIC does not satis
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exactly the acoustic-sum rule. In term of the IFC’s, the f
lowing relationship@Fourier transform of Eq.~44!#, is not
satisfied:

(
k8b

Cka,k8b~a,b!50. ~80!

This problem can be bypassed by generalizing, to everq
wave vector, the recipe of Eq.~45! for q50:39,27

C̃ka,k8b
New

~q!5C̃ka,k8b~q!2dkk8(
k9

C̃ka,k9b~q50!.

~81!

In this case, a wave-vector-independent, site-diago
(dkk8) correction is applied to the dynamical matrices. In t
real space, only the ‘‘on-site’’ IFC’s are affected. For eve
a andk,

Cka,kb
New ~a,a!52 (

~k9,b!Þ~k,a!

Cka,k9b~a,b!. ~82!

Other correction schemes are possible. At this stage, on
able to compute the full phonon-band structure, and use
predict thermodynamical properties by occupying the p
non modes following the Bose-Einstein statistics.

X. PERSPECTIVES

In the present paper, different equations that allow one
investigate the dynamical matrices, interatomic force c
stants, Born effective charge and dielectric permittivity te
sor, have been presented in detail. Papers mentioned in
Introduction give examples of the application of this tec
nique.

At the level of the second-order derivatives of the ener
these equations can be extended to cover more perturbat
especially those derived from the consideration of modifi
tions of the unit cell, like the elastic constants, and the c
nected mixed derivatives, like the internal strain or the
ezoelectricity. The extension to nonlinear properties is a
possible, following the ideas contained in Refs. 25,11. T
number of properties covered by such generalizations is v
large: mode-Gru¨neisen parameters, nonlinear optical coe
cients, phonon-phonon interaction, Raman scattering c
section, nonlinear piezoelectricity, nonlinear elasticity, et

The technique of Fourier interpolation of dynamical m
trices takes advantage of the known asymptotic behavio
the IFC’s. This technical point, combined with the advanc
described in P1,3 have allowed us to obtain full phonon-ban
structures for moderately complex materials such as S2
a quartz and stishovite.18,17

A few thermodynamical properties, like constant-volum
specific heats and entropy, have been derived from
knowledge, based upon the Bose-Einstein occupation of
phonon degrees of freedom. Other properties, like the t
mal expansion or thermal conductivity, are also in the re
of this method.
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APPENDIX A: THE COMPUTATION
OF THE DIELECTRIC PERMITTIVITY TENSOR

IN DIFFERENT APPROXIMATIONS

In Sec. IV, the computation of the dielectric permittivit
tensor in the local-density approximation~LDA ! was pre-
sented. Other approximate schemes are amenable to si
formulas.

1. Electronic dielectric permittivity tensor
in the ‘‘local-density plus scissor’’ approximation

Because the agreement between the LDA dielectric p
mittivity tensor and the experiment was not satisfactory, L
vine and Allan have introduced the scissor operator corr
tion to the LDA.40 This correction leads to an improve
agreement between theory and experiment for many se
conductors, although some cases of negative results h
been reported. The reasons of the partial failure of LDA ha
been discussed in Ref. 49.

The modifications of the equations appearing in Sec. V
of the preceding paper,3 needed to incorporate a scissor co
rection, are rather simple. Supposing that the gap betw
the valence and conduction states must be increased
Eg
LDA to Eg

LDA1D, then Eq.~37! is slightly modified and
becomes

E
SCI
Ea* Eb$u~0!;uSCI,Ea,uSCI,Eb%

5
V0

~2p!3
E
BZ

(
m

occ

s~^umk
SCI,EauHk,k

~0!2emk
~0!1Duumk

SCI,Eb&

1^umk
SCI,Eau iumk

kb &1^ iumk
ka uumk

SCI,Eb&!dk

1
1

2EV0

dvxc
dn U

n~0!~r !

@nSCI
Ea ~r !#* nSCI

Eb ~r !dr

12pV0(
GÞ0

@nSCI
Ea ~G!#* nSCI

Eb ~G!

uGu2
. ~A1!

The minimization problem appearing in Sec. VI B of th
preceding paper3 is to be replaced by Eq.~A1!, where
b5a. The associated Euler-Lagrange equation is

Pc,k ~Hk,k
~0!2em,k

~0! 1D! Pc,k uum,k
SCI,Ea&

52Pc,k S i ]

]ka
1vH8

SCI,Ea1vxc
SCI,EaD uum,k

~0! &. ~A2!
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The other equations are unchanged, except for the repl
ment of uum,k

Ea & by uum,k
SCI,Ea&, nEa by nSCI

Ea , vH8
Ea by vH8

SCI,Ea ,

andvxc
Ea by vxc

SCI,Ea .
Because of the positive definiteness of the term gover

by D in the quadratic form underlyingE
el
Ea* Ea , it is straight-

forward that ifD is positive, the dielectric permittivity con
stant along any direction isalways smaller in the ‘‘local-
density plus scissor’’ approximation than in the local-dens
approximation.

2. Electronic dielectric permittivity tensor
in the random phase approximation

In the random phase approximation~RPA!, described in
the classical papers by Adler and Wiser,50 one neglects the
exchange and correlation effects. In the present variatio
approach, the RPA dielectric permittivity tensor is obtain
by the following modifications to the LDA expressions E
~37!:

E
RPA
Ea* Eb$u~0!;uRPA,Ea,uRPA,Eb%

5
V0

~2p!3
E
BZ

(
m

occ

s~^umk
RPA,EauHk,k

~0!2emk
~0!uumk

RPA,Eb&

1^umk
RPA,Eau iumk

kb &1^ iumk
ka uumk

RPA,Eb&!dk

12pV0(
GÞ0

@nRPA
Ea ~G!#* nRPA

Eb ~G!

uGu2
, ~A3!

where the first-orderuRPA,Ea are to be obtained from th
minimization of the same expression, forb5a, and the as-
sociated Euler-Lagrange equation is

Pc,k ~Hk,k
~0!2em,k

~0! ! Pc,k uum,k
SCI,Ea&

52Pc,k S i ]

]ka
1vH8

RPA,EaD uum,k
~0! &. ~A4!

The other equations are unchanged, except for the repl
ment of uum,k

Ea & by uum,k
RPA,Ea&, nEa by nRPA

Ea , and vH8
Ea by

vH8
RPA,Ea , respectively.
e
-

e-

d

y

al
d

e-

Because the contribution of the LDA exchang

correlation term to the quadratic form underlyingE
el
Ea* Ea is

negative definite, it is straightforward that the dielectric p
mittivity constant along any direction isalways smaller in
the RPA than in the LDA.

3. Electronic dielectric permittivity tensor without local fields

It is also possible to neglect the effect of all local field
not only those connected to the exchange-correlation effe
This approach51 has been also heavily used. In the variation
density-functional perturbation theory~DFPT!, the computa-
tions performed in this approximation rely on the followin
modifications to the LDA expressions Eq.~37!:

E
00
Ea* Eb$u~0!;u00,Ea,u00,Eb%

5
V0

~2p!3
E
BZ

(
m

occ

s~^umk
00,EauHk,k

~0!2emk
~0!uumk

00,Eb&

1^umk
00,Eau iumk

kb &1^ iumk
ka uumk

00,Eb&!dk, ~A5!

where the first-order wave functionsu00,Ea are to be obtained
from the minimization of the same expression, forb5a, and
the associated Euler-Lagrange equation is

Pc,k ~Hk,k
~0!2em,k

~0! ! Pc,k uum,k
00,Ea&52Pc,k S i ]

]ka
D uum,k

~0! &.

~A6!

The other equations are unchanged, except for the repl
ment of uum,k

Ea & by uum,k
00,Ea&.

Because the contribution of the Hartree term to the q

dratic form underlyingE
el
Ea* Ea is positive definite and usually

larger than the negative-definite exchange-correlation con
bution ~this is not always true, see Ref. 52!, it is expected
that the dielectric permittivity constant along any direction
larger in the approximation without local fields than in th
LDA.
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and M. Fähnle, Phys. Rev. Lett.74, 1791~1995!; Y. Miyamoto,
M. L. Cohen, and S. G. Louie, Phys. Rev. B52, 14 971~1995!;
G. Kresse, J. Furthmu¨ller, and J. Hafner, Europhys. Lett.32, 729
~1995!.

5T. A. Arias, M. C. Payne, and J. D. Joannopoulos, Phys. R
Lett. 69, 1077 ~1992!; J. Kohanoff, W. Andreoni, and M. Par
v.

rinello, Phys. Rev. B46, 4371 ~1992!; J. Kohanoff, Comput.
Mater. Sci.2, 221 ~1994!; G. Onida, W. Andreoni, J. Kohanoff
and M. Parrinello, Chem. Phys. Lett.219, 1 ~1994!; I. Stich, J.
Kohanoff, and K. Terakura, Phys. Rev. B54, 2642~1996!.

6R. D. King-Smith and D. Vanderbilt, Phys. Rev. B47, 1651
~1993!; R. Resta, Rev. Mod. Phys.66, 899 ~1994!.

7R. W. Nunes and D. Vanderbilt, Phys. Rev. Lett.73, 712 ~1994!.
8P. Ordejón, D. A. Drabold, R. M. Martin, and S. Itoh, Phys. Re
Lett. 75, 1324~1995!.

9S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett.58, 1861
~1987!.

10See Refs. 16–40,46–62 in Ref. 3.
11See Refs. 33–38 in Ref. 3.
12A. Dalgarno and A. L. Stewart, Proc. R. Soc. London Ser. A247,



n,
,

,2

ys

ev

.

hy

s

a,
on

ne

om
v. B

tt.

-

nd

al

er-
ym-
d
ly

10 368 55XAVIER GONZE AND CHANGYOL LEE
245 ~1958!; J. O. Hirschfelder, W. B. Brown, and S. T. Epstei
Advances in Quantum Chemistry~Academic Press, New York
1964!, Vol. 1, p. 289.

13Nonstationary expressions have been mentioned in Refs. 27
14L. Kleinman and D. M. Bylander, Phys. Rev. Lett.48, 1425

~1982!.
15S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B26, 1738

~1982!.
16A. Dal Corso, S. Baroni, R. Resta, and S. de Gironcoli, Ph

Rev. B47, 3588~1993!.
17X. Gonze, J.-C. Charlier, D. C. Allan, and M. P. Teter, Phys. R

B 50, 13 035~1994!.
18C. Lee and X. Gonze, Phys. Rev. Lett.72, 1686~1994!.
19C. Lee and X. Gonze, Phys. Rev. B51, 8610~1995!.
20C. Lee and X. Gonze, J. Phys. Condens. Matter7, 3693~1995!.
21Ph. Ghosez, X. Gonze, and J.-P. Michenaud, Europhys. Lett33,

713 ~1996!.
22See Refs. 12,46–62 in Ref. 3.
23C. Lee and X. Gonze~unpublished!.
24C. Lee and X. Gonze~unpublished!.
25X. Gonze and J.-P. Vigneron, Phys. Rev. B49, 13 120~1989!.
26X. Gonze, Phys. Rev. A52, 1096~1995!.
27P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, P

Rev. B43, 7231~1991!.
28R. Yu and H. Krakauer, Phys. Rev. B49, 4467~1994!.
29S. Yu. Savrasov, Phys. Rev. B54, 16 470~1996!.
30X. Gonze, D. C. Allan, and M. P. Teter, Phys. Rev. Lett.68, 3603

~1992!.
31S. Yu. Savrasov, Phys. Rev. Lett.69, 2819~1992!.
32M. Born and K. Huang,Dynamical Theory of Crystal Lattice

~Oxford University Press, Oxford, 1954!.
33A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatov

in Solid State Physics: Advances in Research and Applicati,
edited by H. E. Ehrenreich, F. Seitz, and D. Turnbull~Aca-
demic, New York, 1971!, Suppl. 3, Chap. 4.

34Only the reciprocal-space part of this expression was mentio
in Eq. ~A6! of Ref. 27. However, taking the limita→` of the
latter formula allows us to recover the correct Eq.~75!.

35R. Car, E. Tossatti, S. Baroni, and S. Leelaprute, Phys. Rev. B24,
985 ~1981!.
8.

.

.

s.

s

d

36M. S. Hybertsen and S. G. Louie, Phys. Rev. B35, 5585~1987!.
37Because of different conventions, these equations differ fr

those given in C. Lee, Ph. Ghosez, and X. Gonze, Phys. Re
50, 13 379~1994!.

38The star superscript ofZk,ab* is not the symbol for the complex
conjugation operation:Zk,ab* is always a real quantity.

39R. M. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev. B1, 910
~1970!.

40Z. H. Levine and D. C. Allan, Phys. Rev. Lett.63, 1719~1989!.
41W. Zhong, R.D. King-Smith, and D. Vanderbilt, Phys. Rev. Le

72, 3618~1994!.
42L. Landau and E. Lifschits,Electrodynamics of Continuous Me

dia ~Pergamon Press, New York, 1960!.
43This result is an extension of a formula given by W. Cochran a

R. A. Cowley, J. Phys. Chem. Solids23, 447 ~1962!, to the
frequency-dependent case. It is validonly within the harmonic
approximation.

44H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188~1976!.
45Equation ~66! is to be modified in the case of the hexagon

symmetry~in order for the grid not to break this symmetry!, or
whend is just on the border of the box.

46See, for example, E. G. Brovman and Yu. M. Kagan, inDynami-
cal Properties of Solids, edited by G. K. Horton and A. A.
Maradudin~North-Holland, Amsterdam, 1974!, Vol. 1, p. 247.

47The nonanalytical term~for G50) from the reciprocal-space
summation in Eq.~73! should not be included through Eq.~72!
in the latter part (q50) of this formula Eq.~71!.

48In Ref. 17, an error of notation is present: the dipole-dipole int
action and its nonanalytical part are described by the same s
bol. The equation before Eq.~4! in that paper is to be change
into Eq. ~60! of the present one, the latter being obviously on
a part of Eq.~75!.

49X. Gonze, Ph. Ghosez, and R. W. Godby, Phys. Rev. Lett.74,
4035 ~1995!.

50S. L. Adler, Phys. Rev.126, 413 ~1962!; N. Wiser, ibid. 129, 62
~1963!.

51H. Ehrenreich and M. H. Cohen, Phys. Rev.115, 786 ~1959!.
52I.J. Robertson and B. Farid, Phys. Rev. Lett.66, 3265~1991!.


