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Starting from the knowledge of first-order changes of wave functions and density with respect to small
atomic displacements or infinitesimal homogeneous electric fields within the density-functional theory, we
write the expressions for the diagonal or mixed second-order derivatives of the total energy with respect to
these perturbations: dynamical matrices for different wave vectors, Born effective-charge tensors and elec-
tronic dielectric permittivity tensors. Interatomic force constants and the phonon-band structure are then ob-
tained by computing the Fourier transform of dynamical matrices on a regular mesh of wave vectors, with an
eventual, separate treatment of the long-range dipole-dipole interaction. The same ingredients also allow one to
compute the low-frequency response of the crystal to homogeneous electric[f£63-182807)05116-3

[. INTRODUCTION in computer time. A recently proposed ordérapproach to
the computation of phonon bands and interatomic force con-

Nowadays, the density-functional thebA(DFT) is con-  stant could partially waive this drawbagk.
sidered as the method of choice for simulating solids from By contrast, for wave-vector-characterized perturbations,
the first principles. The present paper focuses on the compyperturbation theory allows one to map the computation of the
tation, from perturbation theory within DF{&ctually within ~ responses onto an equivalent problem presenting the period-
the local-density approximation to DF;Tof second deriva- icity of the unperturbed periodic ground state, which is an
tives of the total energy of periodic solids with respectdb  obvious advantage over direct methods. Baroni, Giannozzi
collective displacements of atoms with different wave vec-and Testd (BGT) have popularized this type of method, as
tors, either commensurate or incommensurate with the urdescribed in P1° Many perturbative implementations of the
derlying lattice; andb) homogeneous static electric fields. In computation of the first-order responses have been realized.
the preceding papéP1),® it was shown how to compute the When the first-order responses have been obtained, the gen-
corresponding first-order changes in density, wave functionsration of the diagonaltwo derivatives with respect to the
and self-consistent potentials, thanks to a conjugate-gradiesame perturbationor mixed (one derivative with respect to
algorithm, with plane waves and pseudopotentials. The furene perturbation, one more derivative with respect to an-
ther second-order derivatives of the energy are directlpthep second-order derivatives of the total energy, can be
linked to the dynamical matrices at any wave vector, theperformed. This supplementary step is rather easy, compared
low-frequency (ion-clamped dielectric permittivity tensor to the computation of the first-order responses. Actually,
€”, and the Born effective-charge tensa@rs (mixed second- from the latter, even the mixed third-order derivatives of the
order derivative with respect to atomic displacement andenergy can be computed easily.
electric field. There are different formulas connecting the first-order re-

As for the calculation of the first-order responses, thesponses to second-order derivatives of the energy. Some of
methods used for the second-order derivatives of the energhem arestationary with respect to the errors made in the
are of two types: the direct approaches, and the perturbativiirst-order responses. Others, inherently less accurate, have,
approaches. In the frozen-phonon meth@ direct ap- in the case of mixed second-order derivatives of the total
proach, a small, but finite, perturbation is frozen in the sys-energy, the advantage of using the knowledge of the first-
tem, allowing us to compute, e.g., interatomic forceorder responses with respectdaly oneof the two pertur-
constantd.It is also possible to extract phonon eigenfrequen-ations. This property, in a different context, was called the
cies and eigenmodes from molecular dynamic trajectdries,“interchange theorem.*? The stationarity of some formulas,
which is another direct method. Recent progress in polarizaas well as the interchange theorem, is a consequence of the
tion theory has open the way to direct approaches of Bormexistence of the variational principle for the total energy of
effective charge8,and dielectric permittivity tensors. the systenf. In this paper, the different formulas,

However, in the frozen-phonon or the molecular dynam-nonstationary?® as well as stationary, will be developed, for
ics methods, one has to deal with supercells, whose size déie above-mentioned perturbations, in the framework of a
pends on the commensurability of the perturbation with theplane-wave-pseudopotential method. Like in P1, efficient
unperturbed periodic cell. When the original cell is snfall separable pseudopotentidfs,as well as the nonlinear
few atoms, the supercells to take into account will be typi- exchange-correlation core correctitri®are considered. Re-
cally four or eight times larger, with a considerable increasesults obtained with these formulas were exhibited in Refs.
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17-22, with restricted presentation of the underlying theory. . o

For insulators, once the analytic part of the dynamical  Uexd(A)=vin+ > Nj vlit 2 Nj A vlkZ+-- (D)
matrix at q=0 as well ase” and Z* are available, it is 1 Jul2
possible to compute the LO-TO splitting of phonon frequen-
cies atq=0, the low-frequency dielectric permittivity tensor,
including the effect of ionic motion, and also the infrared
reflectivity. These formulas will be derived in the present
context, explicitly taking into account the anisotropy &f

(the indicesj; andj, are not exponents, but label the differ-
ent perturbations The mixed derivative of the energy of the
electronic system

andZ*.

When the dynamical matrices are known for a sufficiently 1 2
fine grid of wave vectors in the irreducible Brillouin zone, ple_—_ 7 —e 2
one can generate easily the interatomic force constants e 2 9Nj 0N,

(IFC’s) using a Fourier transformation, as well as dynamical
matrices and phonon frequencies interpolated for any wave
vectors. The efficiency of these transformations can benefis obtained in the local-density approximation to DFT
from a separate, analytic, treatment of the long-rangedrom?>%®
dipole-dipole interactions, made possible by the knowledge
of € andZ*. This treatment, in the case of isotrogit and
Z* is rather easy to formulate, while the generalization to Jul2 =i1is L Siais
anisotropic quantities was only recently propo$édt has Ee :§(Ee| +EG ), ©)
been used to compute the phonon band structure of, SiO
stishovite!®2923245i0, quartz!”*°and to analyze the insta-
bilities in cubic and rhombohedral BaTi3* A comprehen-  with
sive description of this technique is presented here.
Once the complete phonon-band structure is available,
one can compute the phonon density of states, some thermpgi jz{lp(O).lpjl ¥z}
dynamical properties, and the atomic temperature factors.® T
The corresponding formulas have been recalled in Ref. 19.
This paper is organized as follows. In Sec. Il, we present
the different generic formulastationary and nonstationary _ J11q(0) _ _(0)],/d2 Jap. 02 4 d2 (0)
that allow us to compute mixed second derivatives of the _g [W“'H €a |¢“>+(<¢“|U6XI+UHX°°| Va')
total energy from the knowledge of the first-order responses. : . : o
In Sec. Ill, the second-order derivatives of the total energy ~ + (¥ O[v!t +vlk J'2) + (o124 (P)]
with respect to atomic displacements are presented, within )
the plane-wave-pseudopotential implementation: they allow n }f f " Etixe
us to compute the dynamical matrices and phonon frequen- 2 on(ryon(r’)
cies. The derivatives with respect to homogeneous electric
fields, which allow us to compute dielectric permittivity ten- 1 d®Epye
sors are developed in Sec. IV. Section V focuses on mixed +§ d\j d\;
derivatives with respect to atomic displacements and homo- v
geneous electric fields: the Born effective charges. Then, we

discuss the implementation of these equatiBec. V) and The derivatives of the wave functions and density with re-

detail the sum “"?S to be checked for gccur@gc. vi. spect to one perturbation can be obtained from the technique
The two last sections of the paper build upon the results

. . : 529 H
obtained in the previous sections: the computation of th Explained in P1, or from the BGT techniqtie,” applied to

low-frequency dielectric permittivity tensor and the associ—e{he case O.f that partlcul_ar perturbation. . .
Supposing that the first-order wave functions and densi-

ated LO-TO splitting(Sec. VIIl), and the computation of ) A :
interatomic force constants and phonon-band struci@es.  ti€S are not exact, then Eq8) and(4) give an estimation of

IX). Some perspectives are presented in Sec. X. Appendix &. 2 that has an error proportional to tipeoductof errors
describes briefly the computation of the dielectric permittiv-made in the first-order quantities for the first and second
ity tensors using different approximations: the “local density perturbations. It is atationaryexpression. If these errors are
plus scissors” approach, the random phase approximatiosmall, their product will be much smaller. However, the sign
and the neglect of local fields. of the error is undetermined, unlike for the variational

Throughout this paper, we use the atorfttartree units.  expression®3' presented in detail in Fsee Eq(13) of Ref.
The notations and conventions are described inRdf. 3 3].

ni1(ryni2(r")dr dr’

n(0)

4

n(0)

and Ref. 25. The following expressions do not have these interesting
properties(their error is on the order of the errors made on
IIl. MIXED DERIVATIVES OF THE TOTAL ENERGY the first-order wave functions or densities, and not their

We consider two or more simultaneous Hermitian pertur-producj, but allows us to evaluaté}}'? from the knowledge
bations, combined in a Taylor-like expansion of the follow- of the derivative of wave functions with respectdoly one
ing type: of the perturbations:
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g0 _ its Fourier transform is
Jao__ " j21.. 01 J1 (0)
EeI - 2% (<lflja |Uext+ UchO| Pa >
0)[,.J1 i1 i2 ii2
+ < "Da |v ext+ v ch0| wa >) + Enon—var

occ
o . o .
= ; ( ‘#Jazl v ga*' v :—iLxcol wsz )> + Ejngnz-var

Cranrp(A) = Ng Crar g(a,b)e 1 (Ra~Ro)

= % Corawrp(0D)ETR (10)

occ

=2 (U g vied YD Eroaer 9
@ whereN is the number of cells of the crystal in the Born—
where von Karman approact?. It is connected to the dynamical
matrix D ., ./ 5(Q) by
o occ o 1 d2E
ENZ e 2 (WS | - (©) _ -
* 172 o DKa,K’B(q):CKa,K’B(q)/(MKMK’)llz . (11)

In the expressions Eq5), |4!) is not needed, while the The squares of the phonon frequenaigs, atq are obtained

computation ofv!l andvlt takes little time. Similar ex- 55 ejgenvalues of the dynamical mati,,, . 5(q), or as
pressions that do not invoMah'j) but |z,bjal> are also avail- solutions of the following generalized eigenvalue problem:
able.

The time-reversal symmetry allows us to simplify further

these expressions. For example,
> Craw f(DUmg(k’' B)=M 07 Umg(xa) . (12
«'B

occ
ENe=S (Wt v ) B (D)
From Egs.(8)—(10), the matrixC,, . 5(q) can be linked
to the second-order derivative of the total energy with re-
These results Eq$5)—(7) are generalizations of the so- spect to collective atomic displacements of the type de-
called “interchange theorem*? and will be exploited in the  scribed in P1:
next three sectionS. We will, moreover, suppose that we
have been able to compute the first-order respoitses
changes in wave functions and densitiesthe basic pertur-
bations described previoust)832° c (q)zzET:aTK’B _ (13
ka,k'B tot,—q.,q

Ill. DYNAMICAL MATRIX AND PHONON FREQUENCIES ) o
Eot is made of a contribution from the electron system and a

~The total energy of a periodic crystal with small lattice contribution from the electrostatic energy between ions.
distortions from the equilibrium positions can be expressedSim”a”y theC matrix is split in two parts:
as

EKa,K’B(q) = Eel,xa,K’B(Q) + EEW,K&,K’,B(q) . (14)

1[ 0*Ey
Etot({AT}):Egc?t)_'—Z 2 E(a—ob_ ATiaATi’,B
aka py'g l?’TKaO”TK,'B
4+ (8) The tools developed in P1 would allow us to build the

diagonal part of theEe,(q) matrix, in a plane wave basis,
with efficient separable pseudopotentials and a nonlinear
atom « in the cell labeleda (with vectorR ,), from its equi- sections, these results are generalized to the nondiagonal part
librium position = of this matrix, and the ion-ion term is also computed.
-
The matrix of the IFC’s is defined as
A. The electronic contribution

2E The use of the mixed derivative formulas, shown in Sec.
CWVK,B(a,b):(a—tO‘;—) , (90 I, gives the following stationary expressig¢see P1 for the
ITeadT,r g notations:
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occ

Ka Tk Tra Tk 0 0 ! 0
E B{U(O) Ug ™ Ug* P} = (277 s ((ugicl HI g kcrq ™ emil U &+ (U q|v;epf<+q,k|u§m2>
O K, 0 Ka K, O
+<u( )|vsepk k+q|ur:1qu>+<u( )|vsepl: kﬁlu( )>)dk

f {Ing= (D1 [ e o) +v (N 1+ A [ e (1) +v e (1)]* hdr

1 duy [ng*(G)]*n<'A(G)
- Nk (1) ¥ N7 B(r)dr + 27 Q d J
2 Qo dn n(o)(r)[ q ()] 4 () T O% |q+G|2
+j (n(o)(r)v, TﬁaTK,ﬂ(r))dr_Fl L (15)
QO loc 2d KO(—dT qun(O) '
The corresponding nonstationary expressions are
occ
Efre b U ule) = (277)3 f 20 s ((Ugieglogifs g d ume +(uimilo G lutmen dk
1 A Tka *[5,7«'B
5 QO{[nq (DT [Vigeh(N+v (N 1hdr
x 1 d’E
+ [ (nO(r)v, k™ E(r))dr+= = 16)
J O 5 g o (
and
occ
ETKHTK,B{U(O) u B} _gf 2 S ((U(O) segk,k+q|umk q>+<u(0)| Sggkkkﬁlu(o)>)dk
1
+§f {n «'B( r)[z;lo';f‘q(r)JrvxCoq r)]*}dr
r 1 dzExc
+f (NO(ryp, <™ B(r))dr+= ) (17
Q% loc 2 d7,0,—qd7r gql 0)

Using Egs.(16) and (17), a whole column or a whole row of the dynamical matﬁ),ga’,(,ﬁ(q) can be obtained from the
knowledge of the first-order wave functions with respect to only one perturbation, egl’n’eor u;K'B, respectively.

The mixed second derivatives of the local and nonlocal poter(tiglen here in reciprocal spagcend the second deriva-
tives of the exchange-correlation functional are obtained from

v/ Tk B(G)=— =G «Gp e ¢ yl%%G) when G#0

loc 29
=0 when G=0, (18)
02
o e = — ~i(k+G) 7, i(K+G') 7, % )
U sepk.k (G,G")= ZQo G e (% e Cun(k+G) g e {(k+G) } (19
1 P 1f dve .
2 oz RO I ldrs | o O anar|, @)
2dr Ka, dT 8,91 n(0) 2 Q dn n(O)(r)[ c’q( ] [ c.q ] 0q XC ( c (
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with CEW,Ka,K’,B(q)
1 4
W=D S e (T TRy (2D 2.7, A
a Tk, 9Ty B x G with K=G+q QO
B. The ion-ion contribution X ex ;{ A2 2 A% e 9 Ra H'S?ﬁ,(AdaYKK,)
Following the Ewald summation methddthe ion-ion
contribution to the unperturbed total energy per unit ¢all 4
which the residue of the cancellation of the divergences men- —— (24)
tioned in Sec. IV B of P1 is addgds obtained as 3Jm e
1 T G2 with
[ ’ iIG-( 7= 7) o
Eew 2% z.Z. (;0 0.67° exp( 4A2)
3 2 3
. 2 T HiSO () = —x2
— iq-Ry J p— S apg(X)= 2 3erfc(x)Jr—e —+2
; Ae H(Ada,KK ) \/;A(SKK QOAZ \E X
erfa(x) N 2 e 25
ZKK’ , (22 ap v \/; 2 |

with H (y) = erfC(y)/y, da|KK’ = |da,K/<’ |! and da,KK’
=R,+ 7.— .. The parameteA can assume any value,
and is adjusted to obtain the fastest convergence of bot
reciprocal- and real-space sums.

The contribution of the second derivative of the ion-ion
energy to the matriCg,(q) can be computed following Ref.
33, C. The g=0 case

As mentioned in Sec. VII A of P1, the limg— 0 must be
~ — — performed carefully. By the separate treatment of the electric
Cew,xax’ 8(8) = Cewia,n’ g(A) = S 2 Cewranp(A=0)-  field associated with phonons in this limit, one sees that a
“ (23) “bare” q=0 dynamical matrix must be computed, to which
a “nonanalytical” part will be added, in order to reproduce
CEW ca, k! B(q) can be split into three parts: a rapidly con- correctly theq— 0 behavior along different directionsee
vergent sum in reciprocal space; a rapidly convergent sum iec. VIII B). The bare dynamical matrix is obtained from the
real space; and a rather simple residual contributfon, following electronic contribution:

The superscript “iso” is used in order to distinguish this
uantity from its anisotropic generalization, needed in Sec.

occ

Ka 'K a — 0 _ 0 ’
Ee|00 B{U(O) quO!u i } (ZW)SJ 2 S (<umkq 0 |<(|l E§n|2|ur7*|-1Kkg O>+<umkq O|v5epk k|umk>
aTk! 0
+< |vsepk k|umkq 0>+<umk|v;ep;:k'3|u( )>)dk

f () T ot 1)+ ol (14N B[ e (1) +orse . o(1)]* hdr

— NG K E(G)
[n (D1 Kﬂ(r)dr+2¢rQoE >
n()(r |G|

d’E,,

Tra,—q=047x ,q=0 n(0)

+f [n<°>(r)u’TWTK’ﬁ(r)]errE (26)
Q loc 2d
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combined with the modified ion-ion contribution the polarizability is related to the second-order derivative of
_ the total energy:
CEW,KO[,K/B(q: 0)

9’E
4w G, Gy B rrl)y=——"° 33
_ZKZK’ :#OQ_O e B el G- (71— 7o) X( ) &Uex[(r)ﬂvex[(r/) ( )
G2 The connection with the dielectric permittivity tensor, fol-
lowing Ref. 35, proceeds through the definition of the in-
_ 31yiso
><exp( 4A2) 2 ATHgrp (Ada, ) verse dielectric matrix, with
4 4
—_— A3 5 ’ 2 -1 == ’ T <19 !
3Vn KK (27) €c (=g e+ |q+G|2XG,G (a), (34

Note the absence of th&=0 contributions in the Hartree and, forq approaching to zero, one firtls
contribution to Eq.(26) and in the first term of Eq(27).

Equation(26) is a stationary expression. Simpler, nonstation- . . 1
ary expressions exist as well, and are similar to Ef8). and 2 qafzg% =T 5 (35
17). ap €0,0(Q)
where& is the unit vector in the direction af.
IV. ELECTRONIC DIELECTRIC PERMITTIVITY These theoretical definitions give the following approach
TENSOR to the electronic contribution to the dielectric permittivity
tensor’’

For insulators, the dielectric permittivity tensor is the co-
efficient of proportionality between the macroscopic dis-
placement field and the macroscopic electric field, in the lin- 4 susﬁ
, €ap=0up— 5 2B ", (36)
ear regime: Q

WhereEirgﬁ is the mixed derivative generalization of the Eq.

Dmacazzﬁ €apmacs - 28 (76) of the preceding papér:
It can be obtained as EZZEB{U(O);UQ,UE/;}
aDmanz 7)r'f'lac,&[ occ
€ap= =8 ptam (29)
5 Temacs O s —oas S sul - e

In general, the displacemem®,,., or the polarization

Prac: Will include contributions from ionic displacements. In +<umk||u >+<Iumk|u )d
the present section, we examine only the contribution to the

. ) o . L 1( douy
dielectric permittivity tensor from the electronic polarization, — [nf(r)]*ns(r)dr
and for low frequencies of the applied field. This contribu- 0, dn n(O)(r)
tion is usually noted,, . In Sec. VIII A, we will take care of £ £
the supplementar Cfontributions from the ionic displace- [n*«(G)]*n"A(G)

PP y P +2m00 >, o (37)

ments. &0 |G|

We connect the dielectric permittivity tensor to the polar-
izability matrix, following Refs. 35 and 36. The polarizabil- A much simpler nonstationary formula also QIVE‘%’
ity of a solid describes the density response to an applied
potential. In real space, one has occ

Eﬁ{u(o) u a}—(zw)gj 2 s(ufaliufeydk. (38)

D(ry= (1)
n (r)—f)((r r)veg(r’)dr’. (30
e By this last expression, the knowledgewt, the first-order
In the reciprocal space, for a periodic solid, Qerlvatlve of_ the.wave functions with respect to an electric
field along directiony, allows us to compute the elements of
the dielectric permittivity tensok,gz, for any value ofg,
ngl)(G):Z XG,G’(q)Uextq(G ). (30) prowd.ed that the derlvgtlve of the unpertulrbed wave func-
] tion with respect to their wave vector aloggis also known.

Since the density is the first-order derivative of the total en-
ergy with respect to a change of potential,
V. BORN EFFECTIVE CHARGES

B0t 32) For insulators, the Born effective charge tenst ,,
A exr)’ (Ref. 38 is defined as the proportionality coefficient relating,

n(r)=
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at linear order, the polarization per unit cell, created alongsecond-order derivatives of the energy are all similar. This
the directiong, and the displacement along the directien fact strongly reduces the time needed to implement this for-
of the atoms belonging to the sublattiee under the condi- malism. The similarity is also observed for the nonstationary
tion of a zero electric field. The same coefficient also deformulas Eqs(16), (17), (38), (42), and(43).
scribes the linear relation between the force on an atom and In order to compute the above-mentionstdtionary ex-
the macroscopic electric field, because both can be connect@dessions, one needs to know the first-order derivative of the
to the mixed second-order derivative of the energy with rewave functions with respect to theo perturbations defining
spect to atomic displacements and a macroscopic electritie second-order derivative, and eventually the auxiliary de-
field: rivative of the wave functions with respect to their wave
vector. By contrast, for theonstationaryEgs. (16), (17),
IPracs OF o (398), (42), and(43), the derivative of the_ wave vections with
Zi,5a=90 —— = —. (39 respect to onlyone of these perturbations is needéand
IT(q=0) 94 eventually the derivative with respect to the wave vector
In the present formalism, this quantity can be obtained' his latter adv_antage can prove useful if, for example, the set
from of Born effective charges must be computed, while the dy-
namical matrix agg=0 is not needed: even if the number of
2% _7 5 LAZ (40) atoms on the unit cell is large, all the effectivg charges can
x,Ba~ “xk9Ba K,Ba be easily found from the knowledge of the first-order re-

whereZ, is the charge of thépseudoyion «, and the elec- Sponses with respect to the electric field only.

tronic screening\Z, g, is The parallelization of these formulas is easily achieved by
’ considering the mixed derivatives one at a time: all Nfe
0, oce i o o mixed derivatives with respect to tixe perturbations can be
AZ, pa=2 (ZTPJ > 5(<Ukaqu:o|Hf<,ﬁ_ fﬁnﬂum’f( computed in parallel, when all the first-order wave functions
Bz m and densities have been computed. Also, the evaluation of
Tea  1iiK (0). Tra & the nonstationary expressions could be done at the end of the
+<umkiq:0|lu"ﬁ<>+<umk|vsepkvk|um€<>)dk parallel computation of the first-order wave functions, using

1 only one set of the first-order wave functions, since no infor-
+ Ef {[vlofcfgzo(r)ﬂLv;gg’qzo(r)][ﬁgﬁ(r)]*}dr mation is required from the other processors.
2o In any case, the amount of computational work to evalu-

1 doy . ate these expressions is rather small compared with the work
310 dn [nquo(r)]* n®s(r)dr needed to obtain the first-order derivatives of the wave func-
Qo n(O(r) tions through the conjugate-gradient algorithm described in
[0 G)]*nK(G) P1, or from the BGT proceduré.
+2700 2, P (41)
G#0 Gl VIl. SUM RULES

In this stationary expression, the basic ingredients are the A few sum rules are available to monitor whether the
first-order derivative of the wave functions with respect to acalculation is well converged with respect to numerical pa-
g=0 collective displacement, and the first-order derivativesrameters, like the number of plane waves, the sampling of
of the wave functions with respect to an electric field and tothe Brillouin zone, and the number of points of the
their wave vector. By contrast, in the following nonstation- exchange-correlation grid.
ary expressions, more sensitive to wave function conver- The first is the acoustic-sum ruféthe dynamical matrix
gence errors, the derivative with respect to an electric field isit the zone center should admit the homogeneous transla-
not needed: tions of the solid as an eigenvector, with a zero eigenfre-
quency, because of the invariance of the total energy with
respect to translation. From E(l2), this gives

occ

Qo )
= Tra Y
AZypea=205 53 JBZE s(upse._dliuggydk (42

or only its knowledge is required: E EKQVK,B(q=O)=O. (44
Q occ «
0 T . . - .
AZ, po=2 (ZT)SJBZE s(umelv &5 JucEydk Since the dynamical matrix is symmetric, the transpose rela-
< ,

tion is also valid. In the implementation of the formalism
1 explained here, this relation is slightly broken because of the
+ EL} {[Ulocfgzo(r)+Ux§6',q:o(r)][ﬁgﬁ(r)]*}dr . presence of the exchange—corrt_alatmn gnq in the real space,
0 on which the exchange-correlation potential and energies are
(43) evaluated: if all the atoms are translated by a given vector,
while the exchange-correlation grid is unchanged, the ener-
gies will slightly change, and induce the breaking of the sum
rule. All of the other terms can be implemented in a
The stationary formulas Eq§l5), (26), (37), (41), (Al), translation-invariant way. If needed, this problem can be by-
(A3), and(A5), to be considered for the computation of the passed by the following simple modification:

VI. IMPLEMENTATION NOTES



10 362 XAVIER GONZE AND CHANGYOL LEE 55

~New - _ VIIl. LOW-FREQUENCY DIELECTRIC PERMITTIVITY
Cra ' pd=0=Cy s 5(q=0)— S’ > Crarrp(A=0). TENSOR AND LO-TO SPLITTING
K”

(45 In this section, we discuss two phenomena that arise from
the same basic mechanism: the coupling between the macro-

However, by this operation, the eigenfrequencieg=ad will ! o o ; .
change, and will not be the limit of the eigenfrequenciesSCOPIC electric field and the polarization associated with the

obtained by making|— 0, unless the other dynamical matri- q-0 atomlic displacgmentg In th? pqmputation of the low-
ces, forq+0, are also corrected. The generalization of Eq'frequency(mfrarec» dielectric permittivity tensor, one has to
(45) for g0 will be discussed in Sec. IX. include the response of the ions, whose motion will be trig-

The second sum rule guarantees that the charge neutrali red by the force due to the electric field, and whose polar-

is also fulfilled at the level of the Born effective charges. ForiZation will be creatgd by th9|r dlsplacement_. The Bom ef-
every directione and 8, one must havi fective charges are involved in both mechanisms.

Also, in the computation of the long-wavelength limit of
phonons, a macroscopic polarization and electric field will be
E Z:,aﬁ=0, (46) associated with the atomic displacements. At the simplest
“ level, the eigenfrequencies of phonons will depend on the
i.e., the sum of the Born effective charges of all atoms in onalirection along which the limit is taken as well as on the
cell must vanish, element by element. This sum rule will bepolarization of the phonon. This gives birth to the LO-TO
broken because of the finiteness of the number of planeplitting, and to the Lyddane-Sachs-Teller relaftériThis
waves or special points, or because of the discretization gghenomenon is also directly described by the Born effective
the real-space integralneeded for the evaluation of the charges.
exchange-correlation energies and potentidltis problem
could be corrected as follows. We define the mean effective

A. Low-frequency dielectric permittivity tensor
charge excess per atom

The macroscopic low-frequendgtatio dielectric permit-

1 tivity tensor e, z(w) is calculated by adding te,; the ionic

% _ *
Zaﬁ_Natg Zap (47 contribution, following Maradudiret al*® In our notations,
i o we obtain
This excess can be redistributed equally among the atoms as
follows:?’ 47T2 s _
o0 *
— €up(@)= €515 Z, ..[C(q=0)

Z:,'c’v\lﬁevv: Z:,aﬂ_zzﬁ , (48) QOKK' a'p’

or can be redistributed among them in proportion to their —sz];i, K',ng:/ 8B - (50

mean electronic effective charge,
Using the knowledge of the eigendisplacemeg (« ) of
7% New_ _NatzaﬁAZK,aB? (49) C(g=0) from Eq.(12), normalized as
K,aB K,af EKQ,BAZK B aB’

Other weighting schemes for the redistribution of this excess * _
could be designed. Finally, in the case of the response to an ,Zﬁ ML Umq(xB)]* Ung(B) = Srun, (5
electric field, one can also monitor the fulfilment of the

f-sum rule, as described in Ref. 40. one derives
|
. 477 (EKQJZ: aa’U:nq:O(Ka,))(zK’,B’Z:’ ﬁB,UmqZO(KB’))
€aﬂ(w):6aﬁ+Q_O% . wz_wz . . (52)
m

We define the components of the mode-effective charge vec-
tor Z% as Sin,ap=

2 Z:,aa’uaq=O(Ka’)>

* 2 cpZ,apYma=o(kB)
m’a_(ZKB[UmqZO(K,B)]*Uquo(K,B))llz' (53

KIBI

Z:',ﬁﬁ'Umq=0(K,,3,)), (54)

Note that with this definition, the mode-effective charge of aSO that

pure translation of the solid vanishes, unlike with the defini-
tion given in Ref. 41. The mode-oscillator strength tensor €, 5(0)=€ +4_772 Em,aﬁ ' (55)
Si.ap is defined as h B 0T 0i— 0
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One can also evaluate the value of the dielectric permittivityboth. Indeed, the NA term in E@59) acts in a space that is
constant along the directiog, by perpendicular to the space spanned by the TO mdides
which Z* ,-q=0):

ea<w>=aEB Uu€ap(®)0p

4 S .0 0 2 (2 A, Zs ) mg=o( k' B)=0. (61)
—E Ga€plpt g WZ —z—“ﬁqaa“'“fqﬁ (56) py Ve
m U)m_(l)
Sometimes, symmetry constraints will be sufficient to
:E Qo€ 0 guarantee that some LO eigendisplacement(gf— 0) will
R be identical to those o€(g=0), even if the eigenfrequen-
4 2 cies are not the same. In this case, the following relationship,
m ma linking LO and TO modes, holds:
+90§ e (E [Unng-o( kB)]* Ung-ol ) . J
(57) 0 0)+ anaSm aﬂqﬁ 62
The reflectivity of optical waves normal to the surface, with 0H(0—0)=whH(q=0)+ Qo —Bq 0 (62
. . g . . . aBMa aﬁ B
their electric field along an optical axis of the crystglis
given by By summing on all modes, and using the orthonormaliza-
1 tion of eigenvectors Eq51), one gets
€ (w)— 1
R(w T 58
(w)= 1,2( 1 (58)

2 204
More general expressions for the reflectivity may be found in ; Om(d—0)~wr(a=0)

classical textbook&
Equation(56) shows that, if the vectaZ}, is perpendicu- (47T> PO 1 2upy8aZy apZr, vy 63
lar to q, the modem does not contribute to the dielectric Qg '
permittivity constant alongj. For each moden, there will
thus be one direction along which the mode contributes to
the dielectric permittivity constant, in which case it is re-
ferred to as longitudinal, while for the perpendicular direc-

K K ana aﬁq,B

Finally, let us mention an interesting generalization of the
Lyddane-Sachs-Teller relationship, linking dielectric proper-
ties and phonon frequencies, in the harmonic

tions, the mode will be referred to as transverse. We recov 3
the usual distinction between LO and TO modes, confirm ?pproxma‘uon“
by the following analysis of thg— 0 limit of the dynamical
matrix. 2 5
Eanaeaﬁ(w)qE wm(qﬂo)_w
= = 2 (64)
B. LO-TO splitting 2 ap%a€apdp m on(q=0)—
The macroscopic electric field that accompanies the col-
lective atomic displacements gt=0 can be treated sepa- IX. INTERATOMIC FORCE CONSTANTS,
rately, as mentioned in Sec. Il C and in Sec. VII A of P1. PHONON-BAND STRUCTURES
rAe“;irlt";‘gf;é}ref“' treatment, one is able to recover the important If the dynamical matrices were known everywhere in the

Brillouin zone, the IFC’s could be built by inverting Eq.
(10), which defines the dynamical matrix from the IFC'’s:

CKa,K’B(q*)O):CKa,K’B(q:O)+C':i,(fg(qﬁo)r
Ka k' B(O b)_ f Ka, K’,B(q)elq Rbdq (65)
where the nonanalytical, direction-dependent term Qo Jez
Cra, K,ﬁ(q—>0) is given by
Unfortunately, the dynamical matrices are not known ev-
erywhere in the Brillouin zone: for computational reasons

~NA 47 (2,9,Z% ,.)(2, 'Qy/ZK Ly B) they are only o_btained for a small set of wave vectors. In this
Cran’ ﬁ(q—>0)— case, a numerical integration technique must be used to per-
2 0pa€ aﬁqﬁ (60) form the integration appearing in E@5). For that purpose,

the use of a discrete Fourier transform is tempting: the dy-
_ namical matrices on a regular grid df{mxn) points in

In general, the eigenvectors of tl&{q—0) matrix will  the Brillouin zoné* will generate approximate IFC’s in a
not be identical to those of th€(q=0). However, the large box, made ofl(x mxn) periodic cells. Outside of this
modes that are transverse to the direction afe commonto  box, the IFC'’s, are supposed to vanfSh:
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1 ~ .
Corawrp(OD) =5 > Coraw p(@€TR if Ry+7,— 7. ebox (IXxmxn)
g gegrid(l Xmxn)

=0 if Rp+7.—7.¢box (IXmxn). (66)
|
The vanishing of the IFC’s beyond some distance is intrinsic L[ ap . dadg
to this discrete Fourier transform technique. If the integrand CKa,Kfﬁ(O,a)=T<?— T) (67)

in Eq. (65 were infinitely differentiable, then the IFC’s

would decrease exponentially fast, and this intrinsic limita-where

tion would not be a practical concern. However, for insula-

tors with nonvanishing effective charges, E(g9) and (60) d=Ra+ 70— 7. (68)
shows that, close t@=0, the behavior of the dynamical

matrices is strongly nonanalytical: it depends on the direcThe Fourier transform of these force constants exhibits the
tion along whichq=0 is attained. In the real space, it can be following nonanalytical behavior:

seen that this nonanalytical behavior corresponds to long-
ranged IFC’s, with an averagedf/decay @ being the dis-
tance between atomscorresponding to dipole-dipole inter-
actions.

Indeed, a dipole is created when an atom is displace@;omparing the nonanalytical behaviors of E¢€0) and
from its original position, and the proportionality coefficient (gg), it appears that, in the former, tleetensor is present as
between the dipole and the displacement is the Born effeca metric in the reciprocal space. In order to reproduce the
tive charge. Even if the Born effective charge vanisite®  nonanalytical behavior of the dynamical matrix in the case of
may be imposed by symmetry constraints, in elemental crysa material with anisotropic dielectric permittivity tensor and
tals), the atomic displacement will create a quadrupole or aranisotropic effective-charge tensor, the following generaliza-
octupole(the latter cannot be forbidden for symmetry rea-tion of the dipole-dipole force constants E@7) can be
song, with corresponding quadrupole-quadrupolel®1tle-  used, where thee) ~! tensor is used as a metric in the real
cay, or octupole-octupole df decay. However, the non- space:
analyticity corresponding to the dipole-dipole interaction is
the strongest, and in the context of the present paper, evep.op _ * * (E_l)a’ﬁ’ _QAa’AB’

: . . . : BoC (0a)=> Z* Z* . 5 33—
the dipole-quadrupole interaction, withdf/decay, will be Kak' B e BB D D
neglected. Thus, if the Born effective charges of all atoms in
a crystal vanish, we consider that E6) will give an ad-
equate description of the IFC's.

For metals, the electrostatic interactions are screened fo¥here A =3 (e ') ,5 dg is the conjugate of the vectat
sufficiently large distances. On the other hand, Friedel oscilfelating nuclei, while the norm of the latter in this metrics is
lations, due to the abrupt change of the occupation number &=\ A-d. The supplementary factor (dgt ¥ is needed
the Fermi level, cause a long-ranged decay of the IFC’s. In & get Eq.(60), and is connected to the Jacobian of the trans-
simple isotropic model, the decay of the IFC'’s is given byforma}tion between real and reciprocal space. &ke) and
cosZ<Fd/k,§d3, wherek; is the Fermi wave vectdf In more ~ K=K’ caseis obtained by imposing the acoustic-sum rule on

realistic situations, the decay will still be inversely propor- the first or the second indices. The contributiog, of these
tional to the cube of the distance, but the oscillatory behaviofiPole-dipdle IFC’s to the dynamical matrix can be
will be more complex, and determined by the shape of thé:alculat4e7€1 using the Ewald summation technique as
Fermi surface. In many practical applications, this long-follows:
range decay of metallic interatomic force constants in the ~bD DD
real space, and the associated singularity in the reciprocal (1) Cgy cp cr g(D=Cgy 7 5(A)
space are of little importance.

For insulators with nonvanishing Born effective charges, —5.0 > CP2 | (g=0).
the nonanalytical behavior of the dynamical matrices close to e T EWra kB
g=0 is perfectly defined from the knowledge of the Born (71)
effective charges and the electronic dielectric permittivity
tensor, as shown in E@60). This term cannot be neglected
in practical applications. In homogeneoumaterial with an
isotropic dielectric permittivity tensoed,; (the superscript Cew:
o of the € tensor will be omitted in the remainder of this
paper, for brevity, the dipole-dipole interaction created by ¢DD (q)= E 7* 7* cbp (q)
the displacement of atoms wittisotropig chargeszZ, and Bw.ka,x'f gy rale TRLBE RN Kk B
Z! will be described by the following force constafs: (72

~ 47 Z2,Z.. q,9
NA _ K=k YaHp
CKa,K’ﬁ(qHO)_QO € qz . (69)

X (dete) "2, (70

(2) The effective charge tensors can be factored out from
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(3) Egv'a, the remaining _quantity, i§ split into three parts_: a XXz | 3 2 ,[3
rapidly convergent sum in the reciprocal space; a rapidly Haﬁ(X,y)=7 Ve effC(y)Jr\/—— e’ )7+2
convergent sum in the real space; and the limiting contribu- m

tion (as usual in Ewald summation technigyes - erf(y) . 5 e*yz -
—(e Y 4| + =
CE sl 4m KoKy YT E Y
Bw e’ B Guith K=G+q Qo 2, K €,/ K,
e Km0 exf =S Ky€yy Ky This expre.ssion is invarignt under the _change of the param-
=~ AAN? eter A, which can be adjusted to obtain the fastest conver-

gence of both the reciprocal- and real-space sums.

If A is made equal to O, the reciprocal-space sum in Eq.
(73) vanishes, as well as the limiting contribution. The
complementary error functions in E¢74) will have the

—> A% e 9RaH, 5 (AAAD)
a

X (dete) ~ 2 value 1, while the contributions from the Gaussians in the
same equation will vanish. Altogether, one finds that the dy-
_i A3 6. (e Y), 5 (dete) 12 namical matrices described by E@81)—(74) are indeed the
3T e a'p ' Fourier transform of the IFC’s, Eq70).

73 Alternatively, puttingA to infinity allows us to make the
(73 real-space sum vanish. The limiting behavior is suppressed,
with due to Eq.(71), and finally one finds

4 (S0 Ko ZE (e KpZt

~ 'V rg)
CDD | _ Am B'B g K-( 7= 7r)
EW,ka, k B(Q) G With o= G-+q QO Eyy’Kyeyy’K}/'
* *
s AT BB )y Cr Tl o 79
7 670 Qg 25y Gyeyy Gy

The nonanalytical behavior of this expression, @pr0, is  decays like 1d* or faster. The total IFC’s, following this

found to be Eq(60), as expectetf technique, is given by
With the help of the dipole-dipole expressions for the dy-
namical matrix and the IFC’s, we are now able to bypass the Creanrp(0D) = CSR 40 b)+CED ,0D), (79
Ka, K ’ Kka, k' ’ W,ka, Kk’ ™~

problems mentioned at the beginning of the present section.
Indeed, the long-range behavior of the IFC'’s for real matey here the short-ranged part is given by Eg7), and the
rials should not be different from the long-range behavior Ofdipole—dipole part is given by Ed70). ’

the dipole-dipole IFC's characterized by the saife and This technique not only allows us to get the IFC’s, but

€. So, we remove, from the dynamical matrices of real ma;iso allows an easy interpolation of the dynamical matrix
terials, determined on a homogeneous set of wave vectors Uy.rqss the full Brillouin zone. with

the Brillouin zone with the grid I(x mXxn), the dynamical
matrices of the dipole-dipole system for the same wave vec-

tors, shown in Eq(75): Cea o p(0)= > cSR | (0p)eldRo
' dyebox (Ixmxn) <% B
CR o @D=Crap(@—Clo o s(@. (76 goo
Kka,k'B ka,k'B Ew,xa,k' B ' +CEW,Ka,K’B(q)' (79)

It is expected that their inverse Fourier transform, approxi

Thus, it is possible to build the IFC'’s, and the full phonon
mated by

spectrum, from the knowledge of the Born effective charge
tensor, the dielectric permittivity tensor, and a few dynami-
cal matrices, which sample adequately the whole Brillouin
zone. Moreover, the use of the symmetries of the material
(spatial operations of symmetries, as well as the time-
reversal symmetpy allows us to sample the dynamical ma-
trices only in the irreducible part of the Brillouin zone, with
a considerable reduction of computing tirfse=e Sec. VL
=0 if Ry+7,— 7. ¢ box (IXmXxn) As mentioned previously, the dynamical matrix gat 0

(77) computed from the formulas of Sec. 1lIC does not satisfy

1 ~ )
Conep0b)=1 > CoR (e %R

!
e, K Nq gegrid (IxXmxn) Ka,k' B

if Ry+ 7.~ 7. ebox (I Xmxn)
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exactly the acoustic-sum rule. In term of the IFC’s, the fol-as with participants to the '96 CECAM workshop on Ab
lowing relationship[Fourier transform of Eq(44)], is not Initio Phonons, especially P. Giannozzi, H. Krakauer, and S.

satisfied: Baroni. We also thanks Ph. Ghosez and G.-M. Rignanese for
a careful reading of the manuscript. X.G. thanks S. Savrasov
_ for a copy of Ref. 29 prior to publication. X.G. acknowl-
% Cranrp(@,0)=0. (80) edges financial support from FNRS-Belgium and C.L. ac-

. . knowledges support from Korea Science and Engineering
This problem can be bypassed by ge_ne.rgl}zz;ng, t0 €1y Foundation Grant No. 961-0207-043-2, Ministry of Educa-
wave vector, the recipe of E¢4S) for q=0: tion Grant No. BSRI-96-2428, Center for Theoretical Phys-

ics in Seoul National University.

EEEY\:(,B(Q) = EKQ,K’,B(q) - 6;(:(’ Z; EK&,K”ﬁ(q: 0) .

(81 APPENDIX A: THE COMPUTATION
OF THE DIELECTRIC PERMITTIVITY TENSOR

In this case, a wave-vector-independent, site-diagonal IN DIEFERENT APPROXIMATIONS

(6,,) correction is applied to the dynamical matrices. In the
real space, only the “on-site” IFC’s are affected. For every In Sec. IV, the computation of the dielectric permittivity

a andk, tensor in the local-density approximatighDA) was pre-

sented. Other approximate schemes are amenable to similar
cev (aa)=— X Cepab). (g fomulas.
(«",b)# (k,a)

Other correction schemes are possible. At this stage, one is 1. Electronic dielectric permittivity tensor

able to compute the full phonon-band structure, and use it to in the “local-density plus scissor” approximation

predict thermodynamical properties by occupying the pho- Because the agreement between the LDA dielectric per-

non modes following the Bose-Einstein statistics. mittivity tensor and the experiment was not satisfactory, Le-
vine and Allan have introduced the scissor operator correc-

X. PERSPECTIVES tion to the LDA® This correction leads to an improved

agreement between theory and experiment for many semi-

. In t_he present paper, d|fferen_t equations thaf( allow one t%onductors, although some cases of negative results have
investigate the dy_nam|cal matrices, interatomic _fo_r(;e CONpeen reported. The reasons of the partial failure of LDA have
stants, Born effective charge and dielectric permittivity ten- X

sor, have been presented in detail. Papers mentioned in tf?eeen discussed in Ref. 49,
' P - map The modifications of the equations appearing in Sec. VI B

Introductlon give examples of the application of this tech—Of the preceding papérmeeded to incorporate a Scissor cor-
nique. rection, are rather simple. Supposing that the gap between

Atthe Ieyel of the second-order derivatives of the eNer9Yhe valence and conduction states must be increased from
these equations can be extended to cover more perturbauorEhDA to E'g'DA+A, then Eq.(37) is slightly modified and

especially those derived from the consideration of mOdiﬁcabgcomes

tions of the unit cell, like the elastic constants, and the con-
nected mixed derivatives, like the internal strain or the pi-

ezoelectricity. The extension to nonlinear properties is also EEZSB{UW)-USCL% uSCEsy

possible, following the ideas contained in Refs. 25,11. The SCl ' ’

number of properties covered by such generalizations is very Qo occ

large: mode-Gimeisen parameters, nonlinear optical coeffi- = 3f > s((uSSEa HO) — €0 4 A|uSC ey
8 . . . 2) mk ) mk

cients, phonon-phonon interaction, Raman scattering cross ( Bz m

section, nonlinear piezoelectricity, nonlinear elasticity, etc.

+ (U jule )+ (juke | uSC 4By ) dk

The technique of Fourier interpolation of dynamical ma- mk mk
trices takes advantage of the known asymptotic behavior of 1 duy ¢ p
the IFC’s. This technical point, combined with the advances + EJ an [Nse (N1 ng(r)dr
described in P£ have allowed us to obtain full phonon-band %o n(©)(r)
structures for moderately complex materials such as,SiO [nga (G)]*ngﬁ (G)
a quartz and stishovité’ 1270, sci (A1)
. . . 0 2
A few thermodynamical properties, like constant-volume G#0 |G|

specific heats and entropy, have been derived from this

knowledge, based upon the Bose-Einstein occupation of th€he minimization problem appearing in Sec. VI B of the
phonon degrees of freedom. Other properties, like the thempreceding papéris to be replaced by Eq(Al), where
mal expansion or thermal conductivity, are also in the reactB=a. The associated Euler-Lagrange equation is

of this method.

Pex (HOQ— e +A) Pg |uS
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The other equations are unchanged except for the replace- Because the contribution of the LDA exchange-

A SClEW &, Ea 1SCIE, . _ e
ment of|u k>C|2y Ui ), noe by nscw vy, by vy » correlation term to the quadratic form underlyi 5;15" is
ando s dbyv . negative definite, it is straightforward that the dielectric per-

Because of the positive definiteness of the term governerhittivity constant along any direction ialways smaller in

* .
by A in the quadratic form underlying.e*, it is straight- the RPA than in the LDA.
forward that ifA is positive, the dielectric permittivity con-
stant along any direction ialways smaller in the “local- 3. Electronic dielectric permittivity tensor without local fields
density plus scissor” approximation than in the local-density

HTHS It is also possible to neglect the effect of all local fields,
approximation.

not only those connected to the exchange-correlation effects.
This approach has been also heavily used. In the variational
2. Electronic dielectric permittivity tensor density-functional perturbation theof@FPT), the computa-
in the random phase approximation tions performed in this approximation rely on the following
In the random phase approximatiéRPA), described in ~Modifications to the LDA expressions E@7):
the classical papers by Adler and WisBipne neglects the
exchange and correlation effects. In the present variational

approach, the RPA dielectric permittivity tensor is obtained Egggﬁ{u(o);uoofa,uooﬁﬁ}
by the following modifications to the LDA expressions Eq.
(37) occ

00 00
(27T)3f E S(<U £a|H(kk (0)|U £B>

£
B{U(O); URPAL, uRPA,Sﬁ}

oce +<u00’g ||u )+(|umk|uoo'gﬁ>)dk (A5)

RPAE RPAE
(2’77)3J' E S((U a|H(k?|1 mk|u B>

+(uRPA5“||u )+ (iu k|uRpA‘€B>)dk

where the first-order wave function§®“« are to be obtained
from the minimization of the same expression, B¢ «, and
the associated Euler-Lagrange equation is

[nR%A(G)]* RPA(G)
+27Q) , A3 d
% [oF P b M 0l P =P 10 it
where the first-ordeu®PA%« are to be obtained from the (AB)
minimization of the same expression, 8~ «, and the as-
sociated Euler-Lagrange equation is The other equations are unchanged, except for the replace-
ooz
B\ (HIO) (0)) . |uSCl5a> ment of|u @0 by [u L
ek W Tkk c.k Because the contrlbutlon of the Hartree term to the qua-
d ,RPAg <o> dratic form underlyingiif'g“ is positive definite and usually
~Pek | Kk, to |Um i (A4) larger than the negative-definite exchange-correlation contri-

bution (this is not always true, see Ref. )52t is expected

The other equations are unchanged, except for the replacgy,; the dielectric permittivity constant along any direction is

ment of |U k) DY |URPA£ ), na by anAa and Uﬁf" by larger in the approximation without local fields than in the

v e respectively. LDA.
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