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First-principles responses of solids to atomic displacements and homogeneous electric fields:
Implementation of a conjugate-gradient algorithm
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The changes in density, wave functions, and self-consistent potentials of solids, in response to small atomic
displacements or infinitesimal homogeneous electric fields, are considered in the framework of the density-
functional theory. A variational principle for second-order derivatives of the energy provides a basis for
efficient algorithmic approaches to these linear responses, such as the state-by-state conjugate-gradient algo-
rithm presented here in detail. The phase of incommensurate perturbations of periodic systems, that are, like
phonons, characterized by some wave vector, can be factorized: the incommensurate problem is mapped on an
equivalent one presenting the periodicity of the unperturbed ground state. The singularity of the potential
change associated with an homogeneous field is treated by the long-wave method. The efficient implementa-
tion of these theoretical ideas using plane waves, separable pseudopotentials, and a nonlinear exchange-
correlation core correction is described in detail, as well as other technical i§S0863-182€07)05016-9

[. INTRODUCTION time. Still, its simplicity has attracted many research
groups'® The recent appearance of(N) algorithms for

The accurate prediction of material properties is one ophonqné“ as well as Wannier function approach to the di-
the pivotal goals of computational condensed matter physicglectric constantt could reduce the above-mentioned disad-
Current efforts aim at increasing the accuracy of the predicvantages. _ _ _ _ _
tions, the complexity of the systems studied, and the number There is also a dielectric-matrix approach in which one
of properties predicted, altogether for a decreasing computg:alculates dielectric matrices from the unperturbed ground-
tional cost. | will focus on the efficient prediction é- state wave function%:® Incommensurability is not a problem
sponsef periodic systems to different perturbations, using' Ith's techglque.d Ho_wevber, dthe Wth>|e spectrum  of 'th?j
the local-density approximatioft. DA) to density-functional valence- and conduction-band wave functions Is required,
theory' (DFT) as a basic underlying tool. With this tech- which can be computationally demanding, and responses to

nigue, changes in total energy due to adiabatic perturbation%ton.ﬁlIC dlsplacgments cannot be obtained when the electr_on—
. L ; Ion interaction is represented by a nonlocal pseudopotential.
are obtained within a few percent of experimental dfax-

: ; oI . Baroni, Giannozzi, and Testa'® (BGT) demonstrated the
ceptions to this gratifying picture are well characterized andpower of a perturbative approach, appearing also in Ref. 9, in
discussed in the literatufe’ ’ ’

_ i ) which the linear responses are calculated self-consistently. It
The perturbations that will be considered belong to the;qmpines the advantages of the two previous methods, with-
following two classes(a) collective displacements of atoms ot their drawbacks. Baroni and coworkers, as well as other
characterized by a wave vector, either commensurate or inggearch groupd ™ used this formalism with plane waves
commensurate with the underlying lattice, that altogethend pseudopotentials. Linear muffin tin orb#faf? (LMTO)
generate a basis for the description of phonons, @hd#o-  and linear augmented plane-waY4_APW) versions of this
mogeneous static electric fields. The present paper describifear-response approach have also been proposed and
the computation of the first-order derivatives of the waveimplemented. Applications have been numerous, and in-
functions, density, and self-consistent potential with respectluded computations of dynamical matrices, Born effective
to these perturbations. The subsequent computation of vargharge tensors and dielectric permittivity tensors for bulk
ous second-order derivatives of the total energy is describeghaterials, surfaces or large molecules, as well as computa-
in an accompanying papéP2).* tion of elastic constants, piezoelectric tensors, photoelastic
The responses of crystalline solids to external perturbatensors, internal strain, deformation potential, electron-
tions, like electric fields or atomic displacements, have beephonon coupling, thermodynamical properties, atomic tem-
calculated within the DFT using various method®’ The  perature factors, and phase transitiéhigt~3°
simplest is a direct approatin which one freezes a finite- It was also realized that the BGT approach was derived
amplitude perturbation into the system and compares the pefrom an interesting merging of DFT and perturbation theory,
turbed system with the corresponding unperturbed(erg, and that it could be extended very efficiently to nonlinear
the frozen-phonon techniqueHowever, in this approach, it responses, thanks to the 21 theorent®~*From the same
is was impossible to handle perturbations incommensuratpoint of view, often referred to as density-functional pertur-
with the periodic lattice, or potentials linear in spacerre-  bation theory(DFPT), one can infer the existence of a varia-
sponding to homogeneous electric figldshile commensu- tional principle for the second-order derivatives of the total
rate perturbations were handled through the use of supeenergy*??°This variational principle, its higher-order gener-
cells, sometimes with a considerable increase of computinglizations, and ther2+1 theorem for DPFT, are thoroughly
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discussed in Ref. 42. Thanks to the second-order variational occ
principle, efficient minimization techniques, like the Ee{tr}= 2>, (ol THvexd o) + Enxd N1, @
conjugate-gradient algorithf§;**4® can be used for the @

evaluation of the first-order changes of the wave functionsyhere they,’s are the Kohn-Sham orbitaléo be varied
charge densities, and self-consistent potentials. Moreovegntil the minimum is founy T is the kinetic energy operator,
second-order derivatives of the total energy converge morg,, is the potential external to the electronic system that
rapidly to the correct answers than in the BGT approachincludes the one created by nucler ions, E,, is the Har-
Like the BGT technique, the variational approach has beelree and exchange-correlation energy functional of the elec-
widely used for studies of dynamical and dielectric proper-tronic densityn(r), and the summation runs over the occu-
ties of various materials [SiO,-quartzl?%6=®  pied statesr. The occupied Kohn-Sham orbitals are subject
SiO,-stishovite®®°2  Sj  Ti0,%*%® BaTi0;,°6% to the orthonormalization constraints,
PbTiO3,%! PbZr0,,%2 Al ,Ru® and PbTeRef. 64]. The use
of a variational principle was also instrumental in the LMTO
implementation of the linear-response appro@c.

Since the presentation of the technique that was used for

the computation of dielectric and dynamical properties Ofwherea and § label occupied states. The density is gener-

f P () p(r)dr = (o | p)=up, 2

. NS . ated from
solids was rather limited in these previous papers, an exten-
sive description of the method will be given in the present occ
paper and in P3,from the basic determination of the re- n(r)=2 ¢&(r)ga(r). Q)

sponses, to the computation of phonon band structures. In
common with BGT,” the implementation of this scheme is The minimization ofE{#} under the orthonormality con-

done using plane waves and pseudopotentials, but, at vailyaints Eq.(2) can be achieved using the Lagrange multi-
ance, fast Fourier transforms are us@u the spirit of the jier method. The problem tumns into the minimization of
Car-Parrinello techniq® as well as elaborate separable

pseudopotential® in order to enhance the efficiency of the occ

calculation. Since nonlinear exchange-correlation core E;{z//}zz (o THvexd o) + Enxd N]
correction§’3! have been used in the above-mentioned @

application$?46-°053-60%he consequences of this technical occ

feature will also be described. Specific aspects related to -> €sa((Val Vp) — Bap), (4)
metals that cannot sustain static electric fields, and for which @B

a Fermi surface is present, will be briefly mentioned Wher\Nhereealg are the Lagrange multipliers corresponding to the

appropriate. By definition, all nonadiabatic as well as noNet of constraints Eq(2). The canonical Euler-Lagrange
harmonic effects are ignored. equations are

This paper is organized as follows. In Sec. Il, some basic

results of DFPT are recalled. In Sec. lll, | describe the pre- occ
conditioned conjugate-gradient gradient algorithm that can H|I//a>:2 €50l Ug), (5)
be used to find the first-order changes in wave functions, B

charge densities, and the self-consistent potential with re- here the Hamiltoni tor i

spect to a generic perturbation. Section IV contains a generé{Y ere the Hamiltonian operator 1

analysis of response to perturbations that are characterized SE

by a wave vector incommensurate with the periodicity of the H=T+0 oyt e T4 Vet U bixce - (6)

underlying lattice. The factorization of the incommensurabil- ol

ity is shown. I.n Sec. V, one fmds the developments needeg}inceH is Hermitian, it is always possible to make a unitary

t_o obtz_;un the first-order cha_nge in W_ave_funcnons and _dens'fransformation of Eq(5) in such a way that

ties with respect to collective atomic displacements, in the

plane-wave implementation with separable pseudopotentials Hlg.) = €. t.). @)

and a nonlinear exchange-correlation core correction. Sec- * ara

tion VI describes the treatment of homogeneous electric ) )

fields, using the long-wave method, then its implementation. B. Perturbation expansion

In Sec. VII, I mention some technical considerations, and Having defined the DFT equations for the possible exter-

present perspectives in Sec. VIII. Atorlidartreg units are  nal potentiale ., we now choose a referengenperturbey

used throughout this paper. external potentiab %) and expand the perturbed potential
Ueyt IN terms of a small parametar, as follows:

Il. BASICS OF DENSITY-FUNCTIONAL PERTURBATION Ved M) =0+ 0B+ A2+ ... (8)
THEORY
We are interested in the change of physical quantities, due to
the perturbation of the external potenfiSo, we expand all
In the DFT, the ground-state energy of the electronic sysef the exact perturbed quantitiég\) in the same form as
tem is derived from the following minimum principfe: Vexd(N),

A. DFT equations
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X(N)=XO 4 A\ XD 4 \2X2 4. .. (9) n (2n)
' EGV=min [ ES{ = Nydb] (1D
whereX can beEg, ,(r), n(r), €,5, or H. For example, i=0 *

the lowest-order expansion of E) is simply
HO| 0y = 0] {0y, (10)

n
BecauseE,, satisfies a variational principle under con- E ¢<.>> 0 (12
straints, it is possible to derive a constrained variational prin- =

ciple for the 2hth order derivative oE with respect to the

nth order derivative off,, :57%*?when the expansion of the for all occupied states and 8. The explicit expressions for
wave function of up to an order of—1 is known, the varia- E&" can be worked out by introducing E@f) into Eq.(11).
tional (minimum) principle for the Zith order derivative of For the second order, we obtain th#f is the minimum

Ee is as follows: of the following expression?2042

under constraintéin the parallel transport gautfe

occ

B0 =2 [ IO = e2lue )+ (o o o) + (0 osal v )+ (0 o gl i)

5 Ech d 5Ech 1 dZEch
(1) Dy 4 7 n® _
fJﬁn(r yan(r) (On (r)yn'*(r")dr dr’+ ax an(n o (r)dr+ | (13
|
where the first-order changes in wave functiaffg’ (these e d S6Eny
guantities will be referred to as the first-order wave func- Uhxc0™ gn on(r) (0) (18

tions, for brevity are varied under the constraints
not to be confused with %), that contains one more term,
(W lyy=0 (14 see Eq(17). v’} andv{t)., do not depend on the first-order
wave functions. Equatiofil6) can be solved by algorithms
for all occupied states and 8, while the first-order density pased on Green’s functions or, within some basis set, by
is given by standard algorithms for dealing with inhomogeneous systems
of equations®
In Eq. (13), the contributions

occ

nBr)= P Q)+ QD). 19
a occC d E
(0)]..(2) (0) Hxc
; <l/la |UeX'[|l/l > 2 d7\2 (0)! (19)

By virtue of Eq.(14), the first-order wave functions are or- N

thogonal to the unperturbed wave functions of the occupied

states, This is a specific advantage of the parallel- -transpotbat will be denoted bE) ,, also do not depend on the
gauge’t first-order wave functions, and will not change in the course

Since E(Z){{/,(O) yMY is variational with respect to of the minimization procedure or in the self-consistent pro-

#M,72 we deduce the Euler-Lagrange equati¢aiso called ~cedure. _ _
self-consistent Sternheimer equations in this particular For the first-order wave functions that satisfy E¢s})—

casg,’342 (17), orzequivalently minimize Eq13) under constraints Eq.
(14), E( ) can also be computed from
Po(HO— )Py =—PH|yY), (18

(2)_ D)), 4 (D) (0)
where P, is the projector upon the unoccupied statesn- 2 (e loex+ Ve Ve )

duction bands H®, €2, and 4(®) are obtained from Eq.

: o I (0)],,(1) 4 (1) §.(1) (2)
(10), and the first-order HamiltoniaH®) is given by (o Vet Vel Yo )+ Enonvan - (20)
52 instead from Eq(13). Taking into account the time-reversal
Erixe Nelr ! symmetry, other expressions fBf>) can be found:
H(I)ZUEQJFUHQC_%XHIW n®(r")dr y Y. P 6
n(O) occ
4 e . EG' =2 (v lvbd+ viied ¥ ) + Bl (2D)
d)\ 5n(r)

or its Hermitian conjugate. However, if the wave functions
One defines also are not exactly the ones that minimize E§3) and satisfy
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Eqgs.(14)—(17), the error in Eqs(20) and(21) is larger than designed a band-by-bandor state-by-staje conjugate-

the error in Eq(13), since Eq(13) is variational, while Eqs. gradient algorithm. Other global minimization algorithms

(20) and(21) are not. were proposed in Refs. 75—-78. The Car-Parrinello and the
band-by-band conjugate-gradient algorithms have been pre-
sented in considerable detail in a review article by Payne

IIl. A CONJUGATE-GRADIENT ALGORITHM EOR THE et al** All these techniques are particularly effective with

COMPUTATION OF THE FIRST-ORDER RESPONSES plane-wave basis sets, since the corresponding Hamiltonian

) ) 016 is sparse when fast Fourier transforms and separable pseudo-
Equations(14)—(17) are used in the BGT approatf® potentials are usel,

They can be solved self-consistently: one fixes first a basis gjpce Eq.(13) is also a minimum principle, it is possible
set, then, supposing‘®) to be kn?\)/vn, Eq(16) is treated as o yse the same global minimization techniques for the
a linear system of equations fgi*), whose solution can be gecond-order derivative of the ener{? as for the ground-

obtained by different standard numerical techniques; oncg;,a energy. Moreover, the expressionmﬁ) Eq.(13), is
(1) . . . l) . X 1 - 1 i . 1
y!is found, it can be used to build a ne#") through Egs. an exact quadratic form in the space of the first-order wave

(15) and (17). . o _ functions, unlike the ground-state energy functional €.
In a different spirit, direct minimization of EQ13) iS  Tphjs feature leads to an easier implementation of the state-

performed in the variational approach described here. Thesg, qiate conjugate-gradient algorithm for response functions
two possible approaches are directly connected to the tw an for ground-state energy, that we will now describe.
approaches that have been used to computegritiend-state

properties of materials. Indeed, until 1985, the DFT ground-
state wave functions were usually computed using a two-
level procedure: at the lower level, Eg) was solved using
standard diagonalization procedures, while at the upper level, In a state-by-state conjugate-gradient algorithm, each
a loop used the output of this diagonalization to generate avave function is considered successively, and the energy
new density through Ed3), and a new Hamiltonian through functional is minimized with respect to variations of this
Eqg. (6), thus a new Eq(7). Self-consistency was enforced, if wave function, in the potential created by the density of the
needed, by the use of some convergence acceléfaiis  others, the latter being temporarily frozen. Let us suppose
is, in spirit, similar to the BGT technique. that the statg8, with first-order wave functions}?, is var-

By contrast, Car and Parrineffosuggested the insertion jed. One writes the minimum principle E(L3) as
of the quantity defined in Eg4) in a fictitious Lagrangian
(that also included the classical kinetic energy of nyclei
giving a unified approach to molecular dynamics and DFT. EQ) = E(ﬁ2)+E<n%>B+ EQ
As a further step, the direct minimization of the functional
Eqg. (4) under the orthonormalization constraints E2.was  where the terrrE(ﬁZ) is the only one that depends qﬁgl).
proposed. For this purpose, Teter, Payne and All&RPA)  This first term is

A. State-by-state decomposition of the energy functional

(22

£ = (U I~ 210+ (U oS+ ol ) + (U oG+ i )
. f f 5 Epiye
on(r)on(r’)

wheren§, the density change due to the first-order wave funciigh, is

l occ
(znkl)(r)nf,gl)(r’)+ngl)(r) ;ﬁ n'Y(r’) |dr dr’, (23
n(0) a

N (N =y PP+ O e, (29)

The second term of Eq22),

occ

2 1 0 1 1 1 1 0 0 1 1 1
Eros= 2, ( (W THO = e 1p) + (W lo Gt visted wi) + (9 oG+ vlied ¥ )

1 52Ech
+§ff5n(r)5n(r’)

(2 n&”(r)) (E n;”(r')) dr dr’, (25)
n(0) #

a# 3 a#+p
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does not depend o!”, but on all the first-order wave
functions for the states other thgh The third term of Eq.
(22), E®) ... is given by Eq.(19) and does not depend on
first-order wave functions. Thus, only the first term must be
considered in the minimization procedure with respect tayhere

¢ . Once the first-order wave functiopy” is sufficiently

convergedvia the conjugate-gradient algorithm described in

the next paragraphanother first-order wave function is var-

ied, and so on. As soon as the last wave function has been

varied, the algorithm goes on with varying the first wave

function again, and then the others as well. Indeed, the wave d2EM@
functions were minimized in the potential created by the oth- “de?
ers while these were not yet converged. Thus, there is still a =0
self-consistency loop, although the second-order electronic

energy is always decreased. Because of the latter property,

the algorithm is unconditionally stable.

EM(2)

(2) —e(2) B
E(0)=EF(0)+ —

1 d2Em<2>
t3 d02

(2)
dE]
dé

(29

——2 Re (4|25
6=0

=2 (¢p|H®

| | s

X Ang(r')dr dr’,

— €| pF)

52Ech
on r)&n r’)

Ang(r)
n(0)

(30)
B. Optimization of one state

0 * (0 m

A basic description of the conjugate-gradient algorithms with AnB(r) ¢ (rW( )(r)+ wﬁ( )(r)¢ﬁ(r). The expres-
can be found in Ref. 80. The procedure of minimization ofS on Eq.(28) is minimal when
Eq. (23) follows closely Eqs(5.10—(5.38 of Ref. 44, valid 2) 1
for the minimization of the ground-state functioriiie TPA
algorithm). Except for a few details, the flow diagram of this 00( 00) '
update of a single state is very similar to the flow diagram of
the TPA algorithm, shown in Fig. 17 of Ref. 44. a value that allows one to genera&%'Jrl(l)_

In the initial step (=1), a trial y3*) is used, which is In step 3, unlike for the ground-state minimization algo-
either the null vectolfit obviously satisfies the constraints rithm, no further orthonormalization or orthogonalization is
Eq. (14)], or the vector determined from the previous self-needed[compare with Egs(5.21) and (5.22) of Ref. 44,
consistency loop. since the constraint E414) is linear iny4” and fulfilled by

Then, an improveds "V is determined by the follow- ¢ . In step 4, the search for the minimum of the second-
ing operations(iterated overm, which runs from 1 to order energy is simplified with respect to the ground-state
Mmay) - minimization algorithm, because E@J) is a quadratic form

(1) The steepest-descent vectd? [minus half the gradi- n ‘ﬂfel)-

(2)
dED
deé

2Em(
d2ET

b=~ d6?

(31)

relative merits of both methods in terms of computational

a#*p ..
efficiency.

ent of Eq.(23) with respect to changes aﬁm‘l’, projected Usually, m,,,, is on the order of 4—6, while the error in
on the conduction banglss the second derivative of the energy decreases by a factor of 3
or more after each set of all-state optimizations. Figure 2 of
{F=—PL(HO— e[y M)+ H™|y2)],  (26)  Ref. 42 shows a typical convergence of this algorithm.
_ In this state-by-state conjugate-gradient algorithm, only
with one wave function is varied at a time. Giannozzi and
5 Baron?® have recently proposed to treat the minimization of
HMD = (D) 4 (D) +f O°Enxe A7) Eq. (13) by simultaneous variation of all the first-order wave
ext = THxco on(ryon(r’) (0 B functions. No supplementary self-consistency loop is then
needed. The latter approach requires more disk space, and a
> n(al)(r’)}dr’, 27 comparative study would be useful in order to assert the

wheren§™(r) is inferred from Eq.(24), updated for each
m.

(2) The preconditioned steepest-descent vee}@ris as
follows: nB P Kg’B, where the preconditioning operator
K is similar to the one defined in E¢5.16) of Ref. 44.

(3) The conjugate-gradienfor search direction ¢7
¢f nﬁwg ¢p . with Y3=(ugldp)(ng gp ') and

IV. RESPONSE TO INCOMMENSURATE
PERTURBATIONS OF PERIODIC SYSTEMS

The conventions for the treatment of the unperturbed pe-
riodic system(e.g., normalization of Bloch’s wave functions
are presented in Appendix A.

(4) An improved trial first-orderym 1) will be obtained
by mixing ¢ with ¢F: yftP=yFH+ 0 ¢, where
the parametelﬁ is to be determined by the minimization
requirement, as follows. The energy E83), as a function
of 6, becomes

A. Incommensurate perturbations

One considers perturbations of the system that are incom-
mensurate with the unperturbed periodic lattice, and charac-

terized by a wave vectay. In order to be able to treat non-
local pseudopotentials, the general form of a perturbat@on
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linear operator and not simply a local function in spase and

taken into account. Thground-state potentiabperator is ” 0Re (1)

periodic, with NG (r+Ry)=e€9Tan(r). (36)

An expansion similar to Eq34) applies also to the en-

vO(r+R,, I +R)=00(r,r"), .
ergy, with

ext

(32

whereR, is a vector of the real space lattice, while {her-
turbing potentialoperator is such that E(N=EQ+\E+NER) + (NEG+20FEP
(33 (37)

Actually, wheng is not equal to half a vector of the recip-  pye to the requirement of invariance under translation of

rocal lattice, such a perturbing potential is non-Hermitian,ihe whole system, one derives, wheiis not a vector of the
and should be always used in conjunction with its Hermitianyeciprocal lattice’

conjugate counterpart. However, at the level of the linear
response, there is no consequence of working only with the
non-Hermitian v&{q, since the response to the sum of
vgi{q and its Hermitian conjugate is simply the sum of the
response to each perturbation separately. Nevertheless we are
also interested in the variational property of the second-order
change in energy, for which we cannot afford a non-Thanks to these equations, it can be shown Efat, is a
Hermitian external potential. This difficulty is solved as fol- real quantity, variational with respect to change in the first-

Ving(r TRa I +Ry) =€ Rap (v r). FNFZER) )+

H_p()_
EL=E%=0, (39)

while for 2g which is not a vector of the reciprocal lattitk,

EZ=E? ,=0.

q.9 s (39)

lows. One considers boti,;, and its Hermitian conjugate,
written ve, —q (Since its wave vector is-q), as well as a
complex expansion parameter such that

_ (0 1 1 2.(2
Vexd\) _Uéx{_k ()\Uéx{,q'i_ A* Ufex{fq) + (A Ufax{,q,q

_’_)\* 2U(2) )

2
+A*N 02 & g

2
+AN*p ) o aq

ext,g,—q
TR (34)

This definition is a generalization of Eq8). Since both

vex(M) andv'®) are Hermitian, the Hermitian conjugates of 9

vidq and @, arevl)  andv$)_, .. respectively.

One also has the freedom to impose tb\&q’_q is Hermit-

ian and equal tw$)_,, (sometimes they will be noted

vgi{o in what follows.

Applying a translation to the first-order wave functions

and densities, one observes the following behaviors:

winl,)k,q(r + Ra) = ei(k+q)-Ra ‘/"ﬁnl,)k,q(r)

occ
Qo

2 . —
Egl’)iqu{u(o),u(l)} =

order wave functions. This property will allow one to apply
the above-mentioned minimization algorithm to the case of
incommensurate perturbations.

B. Factorization of the phase

The factorization of the phase, in order to map the incom-
mensurate problem to an equivalent one presenting the peri-
odicity of the unperturbed problem is the crucial point in the
treatment of perturbations characterized by a wave vector
like v}, . For this purpose, inspired by EqE5) and
(36), one defines thperiodic functions(see Appendix A for

the notations

(277)3.[BZ% S (<u§r}|2,q|H(qu)q,k+q_ fﬁlsk)|ugr}lz,q>+<u§nllz,q|vg<)t,k+q,k+U=-|1><)co,k+q,k|u£r?k)>

Ultha(1) = (NQg) Y2 k0 yih (1) (40)
and
nP(ry=e " nib(r), (41)
(39 in which case Eq(13) becomes
+<U51?|2|U$<i,k,k+q+Uf41><)co,k+q,k|UEnlk),q>+<U51?|2|Ue(§<i,k,k|uﬁx?lz )dk
_ , 1 d%E
n* () gt (r)e 1T dr dr + 5 Aixe (42)

1fj 5’Epixe
3 o) dn(ryan(r’)

satisfying a minimum principle with respect to variations of

the first-order wave functionsﬁf&’q under constraints

<UST(1),)I<+q|U(n%I)<,q>:01 (43

where the indexh runs over the occupied states, while the

first-order change in density is given®y

n(0)

2N dhF |

occ

2
() — (0)x (1)
ng (r)—(zw)s,J'BZ% SU* (Ui ((Ndk. (44

The Euler-Lagrange equations associated with the mini-
mization of Eq.(42) under constraints Eq43) are
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i (2) ’ ;
Peca(Hi g™ €mi) Pokerg [Uik.g) \(’Zh?')lei;hgssf%(ﬁgr\;\g_ordefext,o(r'r ), needed in Eqs42) and
== Pc,k+qHE<l+)q,k|U$no,)k , (45
with @ 1
v@(rr=>, 557 Ur— T Ra I = 7—Ra).
a TK,a

52EHXC

| | | (49)
H(k+)q,k: v(ex%,k+q,k+ UE")()CO’k+q'k+ f W

n(© Their evaluation, based on Eq#&15) and(A19), leads to

xﬁgb(r')efiq«r—r’) dr’. (46) the foIIowing expressions o
(1) The first-order change of the local potential is
Finally, there are simpler, but nonvariational, expressions

for E§) 4. in the spirit of Eq.(21):% —1) (G):i
QO (97',“,

Vioeg (e (G 7y %G +q)

2 .
EG qdu@u®y

1 .
Q occ =—(—i)(G+q)aefl(G+q)'T"Ul,?C(G+q)y (50
s | 3 s (Ul quctofbons i) %
, wherev'°(G+q) can be found from Eq(A16), and where
E d“Epixe the definition of the phase-factorized, periodic potential

Ut i Ui dk + , (47
m| extk, ml Zd)\ d)\* O

~) ()= amidr (D)
: L . : . Vige,g(M) =€ vjoeq(r), (51
its Hermitian conjugate, or their mean. All the quantities that loc.q loc.q

appear in Eqs(42)—(47) have the periodicity of the unper- has been useftompare with Eq(41)]. Note that, unlike in
turbed lattice. Note that the ground-state wave functions atgs.(A15) and(A27),?|(;lc)q includes theG=0 contribution:

k and atk+q are needed to determingy, .: uly) appear in  there is no associated divergence since we have supppsed
Egs.(42), (44), and(45), while the orthonormalization con- to be nonzero.

straint Eq.(43) makes use ofi{y) . (2) The second-order change of the local potenti¥ti3
V. RESPONSE TO COLLECTIVE ATOMIC , 11 e |
DISPLACEMENTS Vi (G)=— Q—OEGi(e %) v((G)  when G#0
We now focus on a first class of perturbations, directly =0 when G=0. (52)

connected to phonons. In this section and the next ones, the
responses are treated in view of the implementation of the (3) The first-order change of the nonlocal potential is
formalism with a plane-wave basis set, separable pseudopo-

tentials, and taking into account the nonlinear exchange- 1 P

correlation core correction. The notatiofgefinitions of lo- U(s%z)pkm (G.GH=—2>, €T

cal and separable potentials, exchange-correlation ' Qo 7
functiona)) are described in Appendix A. The different quan-

tities will be given either in the real space or in the reciprocal X
space, whichever is the most approprfte.

Ka

% e*i(k+q+G)~7K§#K(k+q+G)

A. First- and second-order changes in potential operators X 2 ei(k+G’).TK§:€LK(k+G,)
GI

. (53
One considers unit displacements of atoms in sublattice }
«, along thea axis, multiplied by the infinitesimal (even-
tually, a complex quantifyand by a phase varying with the
cell to which the atoms belong: the component of their
vector position is changed fromr, ,+R,, to @ (G G’)=i2 e
Te.atRa o+ A6 Ra Atoms in the other sublattices are not = >~ Qo
displaced. Note that all of these collective displacements can
be generated fromy wave vectors restricted inside the Bril- %
louin zone, the only ones that will be considered. Also, for
reasons given in Sec. VIIA and in the next pagep), we
consider nonzerg wave vectors.

The first-order change in the potential operator &dL2)
(see Appendix Ais

(4) The second-order change of the nonlocal potential is

1 4
207,

Ka

% e—i(k+G)»7K§MK(k+ G)

X

> ey (k+G)
G!

} . (54

The efficient use ob{E), .« as well asv), , is accom-

v (r—7.—R, ' —7.—R,) plished thanks to a further manipulation, an example of
ITea o oo which is given here for the first-order separable part:(&8)
(48 becomes

vg&q(r,r’):é g9 Ra
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Usepk+q W(G,G')= o E S 2 ei(k+G’)'TK§;K(k+G’)
G’

(E (=D)(k+q+G) e KT C g, (k+qtG)

2 e 0y (k+q+G) || X i(k+q+G),e e X (k+G) } (55)
G o
|
In this way, the sums on the reciprocal vect@or G’ are dv
. ) -1 __xe el
well separated. The same manipulation can be performed on Vxe0a(N ="gn Neg(r) (58
Eq. (54). n(O)(r)
B. First- and second-order changes in the exchange and
and correlation energy functional
The phase-factorized first-order change of pseudocore 1 d%E
XC

charge density is given by = - [nC(r)|2dr
q
2 d\ d\ ,

(r

_1j dvye
w0 2Jag dn | o
Nc K(r_TK_Ra)i (56)

e +Lz 0 (M@(N)NP(rydr. (59

while the second-order change is

nlh(r)=e e > el R
a

2
&)= Z 2972 nc (= 7—Ry). (57) C. Variational principle
Having obtained the first and second derivatives of the

These expressions allow us to buiIdTSég)yq and potentials and exchange-correlation energy functional, we
H(d?E/dN dN*) |03t are able to write the second-order electronic energy:

occ
f E S (<umk q|H(k9¢—)q k+q el(’r?lz|u5r%lz,q>+<u(mll2 q|vsepk+q k|u(0)>+<u(0)|vsepk k+q|umk q

(2) (0). (I —
E el,—q,q {U u } (2 )3

+<umk|vsepkk|umk>)dk+ f ([_('1([-)] [Ulocq(r)+vxc0q(r)]+[_ﬂ)(r)][vlocq(r)+vxc0q(r)]*)dr

1( doge , [nM(G)|? f 1 d2E,,
+ = N|2dr+ 270>, ———m+ | (NOr)v 2 (r))dr+ = :
5) o, dn n«»m' ') 0% Tarap ), MWL+ 5 g
(60)
|
In this expression, as far. |oc in Eq. (50), the G=0 contri- ﬁgD(G)
bution is included in the Hartree term: there is no associated FEG(G):MTW (62

divergence since we have supposgtb be nonzero.
Equation(60) is to be minimized under the constraints Eq.

(43), with the first-order change in density given by E4¢). and

The associated Euler-Lagrange equation is still Etp),

with a more explicit first-order Hamiltonian operator:

N | +oighe(r). (63

UXCq(r) ( dnc

chOq
n(O) r)
1 1
H(k+)q k™ U(se)[)k+q k+gl(;)lg,q+gl(:|1)q+;§jé,)q d (61)
Finally, there exists simpler, but nonvariational expres-
where sions forE(z) a.q- derived from Eq(47): for example,
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occ whereq is in the direction of the homogeneous field. This
ES g (zw)gf E S ((Uleol v Sebics g U method has its drawback: the homogeneous field and the
wave vector are always parallel. In other words, the electric

+<u(°)|v(2) |u(0>))dk field is longitudinal. The treatment of transverse fields should
micl™ sepk ] Zmk be done by considering not only a scalar potential, but a

vector potential. However, for our purpose, the scalar theory
f (ING (N T* [vioeq(N) +0iebq(NDdr will be sufficient?®
The detailed theoretical treatment of the response to an
o ‘2 1 d%E,. electric field, using the long-wave method, and treating the
f (v (r)dr+ 5 > dx d)\* : screening adequateljn order to solve the above-mentioned

second problemis given in Appendix B. It is found that an
(64) auxiliary quantity is needed: the derivative of the ground-
state wave functions with respect to their wave vector. Once
At this stage, we have written all the theoretical ingredi-this quantity has been obtained, the computation of the re-
ents needed for the computation of the response to a collesponse to an homogeneous electric fipdt secan be per-
tive displacement of atoms on one sublattice, in which thgormed.
vector position 7, ,+R,, is changed into 7,
+Ry .t Ne'9Ra_|n further sections, in order not to confuse
them with the response to other perturbations, the first-order
guantities related to this perturbation will be wnttehg”‘

instead ofx(l) while the correspondmg second-order quan-
tities will be denoted by<’x« '« instead ofX?) ;.

A. Derivative of the wave functions with respect
to their wave vector

We will use the shorthand notation

. du<°>
umak_ dk (69)
VI. RESPONSE TO AN HOMOGENEOUS, STATIC @

ELECTRIC FIELD In the parallel-transport gaud@ the ukm“k at eachk can be

Two important problems arise when one attempts to deatletermined by the minimization of the following expression:
with the response to an homogeneous, static electric field.

The first problem comes from the fact that the potential en- Eka a=(y H(O) eOykey (ke | THa — u<0>
ergy of the electron, placed in such a field, is linear in space, < i mil U+ (Ul T se"k d
J P . ) p
and breaks the periodicity of the crystalline lattfe: +<umk|Tk k_vsepk Jure) (70)
V(D)= Emaca e (65) with the constraints
Second, this macroscopic electric field corresponds to a (Umiugiy=0. (71

screened potential: the change of macroscopic electric field is

the sum of an external change of field and an internal change T, andvse «« are the first derivative of kinetic energy
of field, the latter being induced by the response of the eleoeperator and external potential with respect to the wave vec-
trons (the polarization of the materjalln order to indicate tor k,:

this fact, the subscript “scr” has been used in EG5). In

the theory of classical electromagneti&fthe connection Tka(G G')=(G,+k,)Saar (72)
between the macroscopic displacement, electric, and polar- Kkt e

ization fields is

and
Dinad 1) =Emad 1N + 47 Ppadr), (66)
ka !
whereP,,.{r) is related to the macroscopic charge densityvsepk,k(G'G )= O% e/uc
by
—i(k+G) 7,
Ninad 1) ==V Prnad 1). (67 X ey, (k+G)

It is important to emphasize that these fields macroscopic
fields: the microscopic fluctuation$ocal fields have been
averaged out in this descripti&h.

The long-wave method is commonly used to deal with the
first problem: a potential linear in space is obtained as the The Euler-Lagrange equation associated with the minimi-

E e k+G)‘r§ K(k‘f’G,)

} . (73

limit for q tending toO of zation procedure Eq70) is
2sing-r glar eiar Ka
o(0)= lima 23 _ Iimk(_——-—): 68 PeiHik— emPe [upn )= =Pl Tea v et ) U
T I N TR 2
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B. Derivative of the wave functions with respect occ

to an electric field Eaba
eI (277

s <|umk|umk)dk (82

Having obtained the derivative of the wave functions with

respect to their wave vector, one is able to compute the re- | Egs. (76) and (79), the operatoii(9/Jk,) acts on the
sponse of the system with respect to the change of the longy,ye functlonsu(o) to replace the operator,, which

wave screened potential
ei q-r e ig-r

b Iql —i)[al/’

lim
q—0

Avge(r)= (79

In the parallel-transport gaud@,the derivative of the

wave functions with respect t6, is obtained through the

minimization of the following expressioffor which, as at

the end of Sec. V, we rationalize our notation in view of the

multiplicity of perturbations that are examined

occ

e, . &y
E. {u(°>,u5a}— s((u “o[HQ— eSelure)

ik C KLy E
+(u-aliuge)+(iugalu e))dk

1 dv
- XC |nga(r)|2
2 Qg dn n(o)(r)
née(G)|?
+2700 >, # (76)
& |G
with
occ
néa(r) = <27T>3f > supt (Nugg(ndk, (77
under the constraints
(U Juisy=o0, (78)

where the indicesn and n run over occupied states, and

.k . k
(iugel =(=i)(upel ®
The associated Euler-Lagrange equations are

Pe(HG— e Pe i Jure,)
J
—Peyli oK +vH“+ s |umk> (79
With84,85
£ ta(G
H“(G)=47TW when G#0
=0 when G=0 (80
and
Ea Uxe £
v a(r)= nee(r). (81

dn nO)(r)

o . e .
The nonvariational expressions ff* * can be obtained
as well: for example,

should have been considered if there was no problem of
compatibility between the linear potential E@5) and the
periodicity of the crystal. This result had been also obtained
by other mathematical transformatidits.

VII. TECHNICALITIES
A. Linear combination of perturbations

In Secs. V and VI, we have examined the responses with
respect to two important classes of perturbations: wave-
vector-characterized collective atomic displacements, and
homogeneous electric fields. We were also lead to consider
derivatives of the wave functions with respect to their wave
vector. These perturbations will be considered as basic per-
turbations. Since we are at the level of the linear response,
the response of the system to a linear combination of these
perturbations will be the linear combination of the responses
of the system to each perturbation: for example, if a first-
order change of potential is described by

vy)=Coume+ Cu e, (83)
then the density response will be
ngY'=Cingee+ Conge' . (84)

This rule also applies to a linear combination of perturba-
tions incommensurate with each other, or of different types.

As such, it gives a powerful approach to the treatment of
the g— 0 limit of the response to collective atomic displace-
ments. Indeed, the singularities observed in E§S) and
(62) in theg— 0 limit can be treated separately, as an homo-
geneous electric field associated with the collective atomic
displacements. Thus, fay—0, we will first compute the
response to a collective atomic displacement without associ-
ated electric field[by considering Eqg.(60) without the
G=0 contribution in the local potential and the Hartree
term|, and then combines it with the response to an electric
field, as elaborated on in Ref. 16 and P2.

As a complementary advantage of working with linear
combination of perturbations, in the case where one does not
want to compute the response to these basic perturbations,
but would like to compute directly the response to one, spe-
cific perturbation not contained in this set of basic perturba-
tions, one can tailor a variational expression by inserting the
correct first-order change of potential into the expression Eg.
(42), the latter being eventually worked out along the lines
developed in Sec. VI.

Interestingly, the computations of the responses to a dif-
ferent set of perturbations are completely independent of
each other, and offer a trivial way to parallelize the code.
The amount of computation to be done to get the response to
one perturbation is rather large compared to the time needed
to initialize or gather the results of the different response
computations, and there is no communication during the
computation of responses. Thus the parallelization will be
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rather efficient, as soon as the number of perturbations to b@ppear when this rule is not follow&@although likely not
treated is sufficiently large compared to the number of indefarger than the error associated with the replacement of the
pendent processofS.This part of the overall process of integral over the Brillouin zone by a summation on a discrete
computing dynamical and dielectric properties is by far theset of points.

most computing intensive. The steps explained in the P2 In the ground-state calculations, one is able to reduce the
(Ref. 4 are at least one order of magnitude less time connumber ofk points by folding the Brillouin zone to its irre-

suming, and can be easily parallelized as well. ducible part, using the spatial symmetries and the time-
reversal symmetry, with a considerable reduction in comput-
B. Method of solution ing time. In general, it will not be possible to achieve the

Althouah the atomic displ t and electric field t same gain in response calculations with respect to a pertur-
ougn the atomic displacement and €ectric eld yPeS,4iq 1 of the atomic displacement or electric field type, be-

of per_turbatlo_ns are different, we arrive at strikingly similar cause some symmetries will usually be broken by the pertur-
variational principleqEgs. (60) and (76)] under the same bation. The collective atomic displacements are

type of con.strainthqs.(43) _and(78)], and the same rule f_or characterized by theiy wave vector, the sublattice that is
the formation of the density change from wave fl.mCt'onSdispIaced, and the direction of the displacementOnly
chac?gei{EIqs. .(314) and (.77)]'| T(Te stat)te-by—sltlate cogjugate— when all of these elements are left invariant by some sym-
gradient algorithm previously describégec. Il can be ap- metry operation, will it be possible to reduce the humber of

plied straightforwardly to all of these r_ninimization prob- k wave vectors for the summation on the Brillouin zone, for
lems. Most of the routines of the code will be common fo a."this perturbation. Nevertheless, all the other symmetry opera-

the perturbations, because of the common form of the variag o can be used to deduce the response with respect to

tional principle.
. another, symmetry-related one.
The computation of the steepest-descent vector (i), By the time-reversal symmetry, the wave vectpris

will be the most time-consuming step in the State'by'Stat(?*napped to- q. So, the response to-aq perturbation can be

iterations. As already mentioned, the use of the fast Fourleae duced from the response togaperturbation. Also, the

transform allows us to make it tractable. In particular, when ;
the zero-order HamiltoniarH(®) is to be applied to the number ofk points can be decreased by a factor of two,
when 27 is equal to a reciprocal-spa€ vector.

change_ in first-order wave fu_nctlofa) the latter, available in . The electric field perturbation is characterized by its di-
the reciprocal space, is Fourier transformed to the real space

; . . . rection a. It is left invariant by the time-reversal symmetry,
(b) the local potential part oH(® is applied to it;(c) the .
remaining of the right-hand side of E@6) is addedd) the so that the nhumber df wave vectors for the summation on

sum is backtransformed to the reciprocal spaegfinally, the Brillouin zone can usually be halved. If, moreover, point-

one adds the result of applying the kinetic operator and Sepog_roup symmetries leave thedirection invariant, the number

; . . . of k wave vectors can be further decreased. If not, the other
rable potentials to the first-order wave function, since these

operations are less time consumifag the level of a few Symmetries can be used to relate the response with respect to

atoms per unit cell Fast Fourier transforms are also needed®” electric field along some direction with the response with

to evaluate and update the Hartree potential E88) and res_lp_)r? cttoan eIeptnc ff'ild j\lopg gnotr:cer dlre]cc:t|on.' ith
(30). e computation of the derivative of wave functions wit

The computation of the derivative of the wave functionsresp(:"ct o their wave vectér can also benefit from symme-

with respect to their wave vector can also be done using thg.y operaﬂon;. However, th.'s computatlo_n IS rathef fast,
same methodology. The quantity to be minimized, &), since there_: is no self-consistency step in the conjugate-
is even simpler than those contained in E@) and (76). gradient minimization.
The routines will be also similar.

VIIl. PERSPECTIVES

C. Sampling of the Brillouin zone and symmetries The aim of the present paper was to present a formalism

In view of the practical implementation of Eg&0) and  (theory and algorithm based on a variational principle
(76), other comments must still be made. First, the integralwithin the DFPT, which allows one to obtain responses to
over the Brillouin zone must be replaced by a summationatomic displacements and homogeneous electric fields. P2
through discretization of thke space. For insulators, one can (Ref. 4 describes the further manipulations needed to deter-
use the specidk point technique of Ref. 91. This replace- mine the dynamical matrices, interatomic force constant,
ment is well-known in ground-state calculations. Its use inBorn effective charges, and dielectric permittivity tensors.
perturbed situations does not lead to technical problems. FdDther papers mentioned in the Introduction give examples of
metals, the existence of the Fermi surface, and occupied dhe application of this technique.
unoccupied states below or above it, raises interesting ques- The technical advantages that are characteristics of the
tions. The techniques described by de Girorféotaind  perturbative approaches, like the one developed by Baroni,
Savrasof’ can be adapted to the present variational ap-Giannozzi, and Test®:*® have been shown to be also valid
proach. in the present variational approach: a periodic problem to

Although it is a usual practice to fix the grid &fpoints,  which an incommensurable perturbation is imposed can be
and then perform the computation of phonons only for themapped on an unperturbed unit-cell problem, amounting to a
g-wave vectors that are differences between kypoints in considerable reduction of computing time; an homogeneous
this grid, this attitude is not mandatory, as shown by theelectric field, whose potential breaks the periodicity of the
present theory. Though, some additional small error mightattice, can be treated by the long-wave method; because the
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formalism is very similar for the different perturbations, the  Equation(Al) is such that the orthonormalization condi-

implementation of codes for all these properties requires reaion of theu(%)(r) functions is

sonable human work. The state-by-state conjugate-gradient

algorithm has the nice property of being unconditionally WOy =6, (A4)

convergent, since the trial second-order derivative of the en- - . .

ergy is always decreased, and its convergence is easy Yy)here the scalar produqt @b”.Od'C functlonsqther'repre-

monitor, the right value being approached from above. sented in real space or in reciprocal space, is defined as
The present technique can be extended to cover more per- 1

turbations, especially those derived from modifications of the (flg)= —f f*(r)g(r)dr=2, f*(G)g(G). (A5)

unit-cell size and shap&,or from alchemical transformation QoJay, G

of atoms™***A variational principle for second-order deriva- This definition of scalar product for periodic functions is

tives of the total energy will be equally valid for these other yitferent from Eq.(2) which was valid for nonextended wave

perturbations, and the same conjugate-gradient algorithm ca{}ctions. EquatiorfA4) must be fulfilled only between pe-

be used efficiently for these. riodic functions characterized by the same wave vektor
The density of the electronic system is obtained by per-
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Baroni. | thank S. Savrasov for sending me the preprint Ref'.Dlecj bands is independent of the wave vedtowhich sim-

22 prior to publication. | also acknowledae financial su Ortplifies the practical implementation of these calculations.
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the wave vectok. Instead of making a sharp transition from

the occupied states and the unoccupied ones, a convenient

APPENDIX A: CONVENTIONS FOR THE UNPERTURBED  practice involves introducing a smeared occupation
PERIODIC SYSTEM function®” An alternative approach invokes the linear tetra-

The present appendix describes the conventions on whidfedron method” The present formalism could be modified
the perturbed expressions developed in this paper are basd:0rder to incorporate the effect of these modifications, fol-
Fourier transform, the relation between real and reciprocaPWing de Gironcoff® or SanaSQ‘?- _
space, the local and separable parts of pseudopotentials, 1€ ground-state wave functions can be obtained from the
exchange-correlation functional in the LDA with nonlinear Minimization of the electronic energy per unit cell; @)
core correction. becomes

occ
Qo

iodi : i on— 0)|T(0 0 0
1. Periodic system: Real and reciprocal space Eefu )}_(277)3f3z§m: s <u$nI2|Tf<,ll+U(ex{,k,k|u£nlz>dk

By Bloch’s theorem, each wave function can be decom-
posed in a product of a phase factor by a periodic function. + Ech[n(o)]- (A7)

Explicitly, we write the ground-state unperturbed wave func- ) o
tions as In order to keep the amount of different symbols sufficiently

low, in Eq. (A7) and in Secs. IV-VIIIl, we redefing, and
PO(r)=(NQg) Y2k ruQ)(r), (A1)  Eux to be energiegper unit cell unlike in Eq.(1) where
these quantities were definéat the whole systenWe have
whereN is the number of unit cells repeated in the Born—also redefined the kinetic and potential operators that act now
von Karman periodic box, anfl, the volume of the unper- on the periodic part of the Bloch functions, according to the
turbed unit cellm andk label the number of the band and following rule, valid for a generic operat@® [this definition
the wave vector of the wave function, respectively. The peis coherent with Eq(A1)]:
riodic function can be expanded in terms of plane waves as

follows:*® Oyp=ekro ek (A8)
__ For example, we obtain the following expression for the ki-
Uﬁ?k)(r):%: e®uR(G), (A2)  netic operator in reciprocal space, fork':
where the coefficients,/(G) are the Fourier transform of Tff,l(G,G’)= E(GJrk)z%G,_ (A9)

uﬁ?@(r), defined for each vectd® of the reciprocal lattice,

1 The Euler-Lagrange equations associated with the minimiza-
UE‘?‘Q(G):_J e " rul%(rydr. (A3)  tion of Eq. (A7) under constraint Eq(A4), followed by a
QoJa, unitary transformation, as to get E), give
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HOQIUO) = e, lu), (A10)  In this expression,
where [ i [
fo(K):J e K% r)dr, (A16)
oE
(0) _1(0) 4 . (0) Hixc
Hick= Tkt Vet ™ on | o (AL1) where the latter integral is performed throughout all the

space. The limiting behavior of °(K) for K tending to zero
diverges

2. Description of the potential operator

In applications based on plane waves, the bare nuclear
potential operator is replaced by a pseudopotential made of
local and nonlocal contributions from all atoms inside each
repeated cell with lattice vectdR,: with

loc 47TZK 2
0i(K—0)=~ — 5" +C,+0(K?), (A17)

Z
vext(r,r’)=z v (r—7.—Ryr'—7.— Ry, (Al2) CK:f v[fc(r)+TK

ak

dr. (A18)

where 7, is the vector position of the atoms inside the cell, g4, the separable part, one obtains
and each atom contribution is ’

| ’ ' ’ 1 —ij .
v (rr)=vX(Ns(r—r")+v3rr’).  (A13) v (GG ):Q_o;m € 261 e kG (k+G)

| consider here only nonlocal parts of the separable
typ666'96'44

X . (A19)

S ¢S (4 6)
G/

VIR =2 e dud (), (A14)
m where

where only a few separable terms, labeledyyare present.

The functions{,, are short ranged, and should not overlap fw(K):j efiK-rglu‘K(r)dr. (A20)

for adjacent atoms. Because of their different mathematical

expressions, the local and nonlocal parts are treated in difrhe gpecial form of the matrix of separable potential, Eq.

ferent ways. A local potential is naturally applied on the a19) allows for its efficient application to any wave func-
wave functions in the real space, since it is a diagonal operg;gp,.

tor in that representation. A separable potential could be

treated efficiently either in reciprocal space or in real space

For small systemsgon the order of ten atoms, or lgs# is

more efficient to apply the separable potential in the recipro- In the LDA, the exact exchange-correlation energy, a

cal space. The transformations of the wave functions befunctional of the density everywhere, is replaced by the in-

tween the real and reciprocal space are carried out by meamagral of the densityn(r) times the mean exchange-

of fast Fourier transform®. correlation energy per particle,(r) of the homogeneous
Let us first treat the local part. For each atom, this localelectron gas at the poimt However, when combined with

part is long ranged, with asymptotic behavieZ, /r, where  pseudopotentials, this simple definition is to be modified, in

Z,. is the charge of thépseudoion. It is well known that, in  order to take into account that only valence states are used to

a periodic geometry, this long-ranged part creates a divebuild the density: the contribution of the core electrons

gence in the ionic potential that must be treated together witlshould be included, because of the nonlinear character of the

a similar divergence in the Hartree potentidie divergences exchange-correlation energy functiofial.The functional

cancel each other, but give also a residue, usually incorpdhen is

rated in the ion-ion energy In the reciprocal space, these

divergences are associated with term<sat 0, constant in

real space. Thus in any case these compensating divergences Exdn(n]= Llo[n(rH Ne(N)]&d n(r)+ne(r)dr,

are of no importance for the generation of the wave functions (A21)

and the density, since only the mean of the potential is af-

fected. Although the local potential operator as well as itsvhere the pseudocore density is made of nonoverlapping

derivatives are applied to the wave function in the real space&ontributions from each atom,

we will give their (simplep expression in the reciprocal

space. Their expression in the real space can be obtained b _ o

a Fourier transform, similar to EajAZ)?We definé*# g nc(r)—;:, Mool =7 Ra). (A22)

3. Exchange and correlation energy and potential in the LDA

. 1 ~iG 7, , loc The pseudocore density from each atog, is built at the
Vioc k k(G) = 9_02 e "™y, (G) when G#0 same time as the pseudopotenifal® It has spherical sym-
metry, and is specified by a one-dimensional function. The
=0 when G=0. (A15) corresponding exchange-correlation potential is
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dl(n+n¢)ex(n+ne)] dvy(n(r)) dz[(n+n )€xd(N+ne)]
Oxe(N(r)= dn ' dn dn?

n=n(r);n.=n.(r) n=n(r);n,=n(r)

(A23) (A24)

4. Unperturbed energy and Hamiltonian in the LDA
and its derivative with respect to the density With these definitions, the electronic energy is

occ

Eefu'®}= (27r)3f E S <u§'f?lg|Tf<oll+Usepk k|U(0)>dk+f N (r)dr

Qo

In9(G)[?
- fQ [n<°>(r)+ng°>(r)](exc[n<°>(r)+ng°>(r)])dr+2wQOG§O o (A25)
0
|
The Hartree energjlast term of Eq.(A25)] can also be E@ . fu@;u®
computed as -
occ
Ey= J;z n(o)(r)vﬁ(o)(l’)dr, (A26) (277 f 2 S <umk q|H(kO+)q k+q_6§1?k)|u5nllz,q>dk
0
with the Hartree potential being defineds®
P ’ R (6=0 +(G=0]
n(G
i 9(G)=2704 >, # when G#0 10 d
¢7o |G| +—f el @2 dr
2 dn 4
=0 when G=0. (A27) Qo =1 In©)(r)
. . . . (1) G) 2
The Hamiltonian is given by +27TQOE | . +(G| | (B3)
HO=TO+0v2, + +u/9+0Q).  (A28)
k.k— Tk,k™ Usepk,k (U|oc v ch)
The local, Hartree, and exchange-correlaii¥) potentials where we have taken advantage of
are operators local in the real space which are independent of
k. f nM(r)dr=0Q,nY(G=0). (B4)
Qo

APPENDIX B: RESPONSE TO AN HOMOGENEOUS,
STATIC ELECTRIC FIELD BY THE
LONG-WAVE METHOD: DETAILED TREATMENT

The corresponding nonvariational expressions are simple:

Q Q
(2) it e 6 ) W Pl ey o ) P2
1. Small-wave-vector limit of the response Eel ~ 2 Ng (G=0)= 2 Ng (G=0). (B5)

to an incommensurate perturbation
The associated first-order Hamiltonian operator is a local po-

Inspired by Eq.(68), we write the following first-order tential operator, here written in the reciprocal space,

potential operator change:

vextq(r r'y=ed"sr—r"), (B1) H(l)(G) e o+4wﬁm(6)2+vxcq(e) (B6)
which corresponds to the simple change of phase-factorized G+l
local potential The exchange-correlation contributiar}.) '(G) is obtained
T 82 from the knowledge of|" through Eq.(63). This local po-
ocq tential operator mcludes a long-wave pégitr G=0), but
The supplementary constani|ty|, present in Eq(68), will also local fieldgfor G#0), the latters being of electrostatic

be taken into account afterwards. No second-order potentialrigin (the Hartree paytas well as exchange-correlation ori-
change, first-order separable potential change, or nonlinegin.

exchange-correlation core correction is present. This leads to From Eq.(B6) one can infer that the long-wavenacro-
important simplifications of the variational principleom-  scopig potential, forG=0 in the limit of q—0, is made of
pare with Eq.(60), which was obtained for collective atomic the bare applied potential and the electronic screening, due to
displacements the Hartree term:
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That is, the screening by the Hartree term has been removed
whenG=0.
By the Sherman-Morrison formula, at the minimum of

In the derivation of this equation, we have neglected thedoth Eq.(B8) and Eq.(B3) one gets the following relation-
exchange-correlation contribution in comparison to the Harships:

tree term in the limit oj— 0, because of the @f divergence

of the latter while in the LDA, the exchange-correlation en-

ergy functional is well behaved in this limit°

2. Analytical treatment of the Hartree divergence

The divergence of the Hartree term in E&@3) can be

treated analytically, thanks to the Sherman-Morrison formula

for connecting two inversiolor minimization problems:®:
The following auxiliary variational expression is first mini-
mized|this expression would be equal to E&3) if it were
not for the removal of the diverge@=0 Hartree contribu-
tion]:

=2 e
Q) g u®T )

occ

Qg
2 S <U mk q|Hk+q k+q Eﬁr?k)|u

- &)

Qo
A X G A e =1~
+ 5[0 5N (G=0+7 (M(G=0)]

7 (G)?
|Q+G|2 ’

(B8)

A ()2 +sz02
n(o)(r)

with

occ

(Zw)gj E su%* (ru

under constraints

(= hg(ndk  (B9)

(U g[U =0, (B10)

where the indicesn and n runs over occupied states. The
associated nonvariational expressions give

Qo

E(|2) 2

= 2°ﬁ W(G=0=—"1 P(G=0). (B1D

The quantityn{"(G=0) has the following expression in

n(G=0
i (G=0)= jT( i (B14)
1+a2—n (G=0)
n{(G=0
ng(G=0)= 1679 ey
4’7T~(l)
1-—n M(G=0)
q
<2> <2> 4
E@ . =EC 1+?nq (G=0)|, (B16)
U =10 Wl 1+ —ngH(G= 0>) (B17)

These equations are especially important in that, when
compared with Eq(B7), they show that the rate of change of
E) ., with respect to an electric fielthe long-wave part
_%%(G 0)], is the same as the rate of change of
E(2) o With respect to a bare applied fieh"(G=0).

3. The limit g—0

We now chose a particular directianalong which the
limit q—0 is taken. Let it be thex direction. We have
g=qe,, wheree, is a unit vector along directioa, andq is
the norm of theq vector, tending to zero. We expand the
zeroth-order and first-order wave functions in powers of the
small parameteq:

terms of the scalar products of zeroth- and first-order wave

functions:

occ

(n o dk.

(B12)

n gl>(G=0)—

s <u(0)

du®
Uk = Ui+ 0 g +0(0?) (B19)
and
~ (1) _~@ U fnk,o
u mk,q:u mk 0+q dq +O(q ) (Blg)

At the lowest order ing, the Euler-Lagrange equation
derived from Eq.(B8), with the Hamiltonian Eq(B13), is

The associated first-order Hamiltonian operator, in the limitsatisfied by taking

q~>0iS
nw )
HY(G)=4m mf&(e) when G#0
=1 when G=0. (B13)

U 0=0, (B20)
which constitutes the unique solution of them, because the
whole quadratic form in EqB8) is definite positivgsee the
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discussion in Sec. IV B of Ref. 42This means that the 1 422 du @
- 7w AW el —a.q u(:

expansion ofn q xcq» O Hg’ in powers ofg only be- 2 d& "dq

gins with the Iinear term Qe g0 “

From Eq.(B20), at the first order i, the constraints Eq.

B10) give
(B10) g 0, occ du (1k) ag @ k
:_gf > s mkd g0 (o) 2 mk.a
(2m)° ez m dg, | Krakeas TmkTqq,
~ (1 0 0 1
o i <du£nk>,q du<mk>>_ <du§nk> dﬁﬁnz,q>
<um M> o ®20 dq, |dk, | \dk, | da,
da, (1) 2
n 1f dUXC n q (r)
2)a,dn O () dag,

where the indicesn andn run over occupied states. Because
of Egs. (B9), (B20), and (B21), the expansion of

(l)
n ;(G=0) will even begin at thez)second order only. The +2on2 a ' (B23)
same is true for the expansion EE G#0 |G|

Finally, taking into account the second—order expansion ofyith
Eqg. (B10),

1 occ 1
dn( G f z 0)* ﬁnk)o(r)
= su —F——dk
dqa ~(2m) da,
2~ (1 0 1 (B24)
(0) d<u I(’lk),O dﬁ’( ) f’]k)O _ .
Um k| g2 dk d =0, (B22) under constraints EqB21).
A @ o The connection with the equations presented in Secs. VIA
and VIB is now possible, thanks to the identification
. . . L. q du (1) (I‘)

as well as its complex conjugate, we obtain a variational Yo = @ 7 mkO (B25)
expression with respect to the quantitis () /dq,, : mkilql  dqq
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