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First-principles responses of solids to atomic displacements and homogeneous electric fields:
Implementation of a conjugate-gradient algorithm

Xavier Gonze
Unité de Physico-Chimie et de Physique des Mate´riaux, UniversitéCatholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

~Received 7 November 1996!

The changes in density, wave functions, and self-consistent potentials of solids, in response to small atomic
displacements or infinitesimal homogeneous electric fields, are considered in the framework of the density-
functional theory. A variational principle for second-order derivatives of the energy provides a basis for
efficient algorithmic approaches to these linear responses, such as the state-by-state conjugate-gradient algo-
rithm presented here in detail. The phase of incommensurate perturbations of periodic systems, that are, like
phonons, characterized by some wave vector, can be factorized: the incommensurate problem is mapped on an
equivalent one presenting the periodicity of the unperturbed ground state. The singularity of the potential
change associated with an homogeneous field is treated by the long-wave method. The efficient implementa-
tion of these theoretical ideas using plane waves, separable pseudopotentials, and a nonlinear exchange-
correlation core correction is described in detail, as well as other technical issues.@S0163-1829~97!05016-9#
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I. INTRODUCTION

The accurate prediction of material properties is one
the pivotal goals of computational condensed matter phys
Current efforts aim at increasing the accuracy of the pre
tions, the complexity of the systems studied, and the num
of properties predicted, altogether for a decreasing comp
tional cost. I will focus on the efficient prediction ofre-
sponsesof periodic systems to different perturbations, usi
the local-density approximation~LDA ! to density-functional
theory1 ~DFT! as a basic underlying tool. With this tech
nique, changes in total energy due to adiabatic perturbat
are obtained within a few percent of experimental data.2 Ex-
ceptions to this gratifying picture are well characterized a
discussed in the literature.2,3

The perturbations that will be considered belong to
following two classes:~a! collective displacements of atom
characterized by a wave vector, either commensurate o
commensurate with the underlying lattice, that altoget
generate a basis for the description of phonons, and~b! ho-
mogeneous static electric fields. The present paper desc
the computation of the first-order derivatives of the wa
functions, density, and self-consistent potential with resp
to these perturbations. The subsequent computation of v
ous second-order derivatives of the total energy is descr
in an accompanying paper~P2!.4

The responses of crystalline solids to external pertur
tions, like electric fields or atomic displacements, have b
calculated within the DFT using various methods.5–12 The
simplest is a direct approach5 in which one freezes a finite
amplitude perturbation into the system and compares the
turbed system with the corresponding unperturbed one~e.g.,
the frozen-phonon technique!. However, in this approach, i
is was impossible to handle perturbations incommensu
with the periodic lattice, or potentials linear in space~corre-
sponding to homogeneous electric fields!, while commensu-
rate perturbations were handled through the use of su
cells, sometimes with a considerable increase of compu
550163-1829/97/55~16!/10337~18!/$10.00
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time. Still, its simplicity has attracted many resear
groups.13 The recent appearance of O~N! algorithms for
phonons14 as well as Wannier function approach to the d
electric constant15 could reduce the above-mentioned disa
vantages.

There is also a dielectric-matrix approach in which o
calculates dielectric matrices from the unperturbed grou
state wave functions.6–8 Incommensurability is not a problem
in this technique. However, the whole spectrum of t
valence- and conduction-band wave functions is requir
which can be computationally demanding, and response
atomic displacements cannot be obtained when the elect
ion interaction is represented by a nonlocal pseudopoten

Baroni, Giannozzi, and Testa10,16~BGT! demonstrated the
power of a perturbative approach, appearing also in Ref. 9
which the linear responses are calculated self-consistentl
combines the advantages of the two previous methods, w
out their drawbacks. Baroni and coworkers, as well as ot
research groups17–19 used this formalism with plane wave
and pseudopotentials. Linear muffin tin orbital20–22 ~LMTO!
and linear augmented plane-wave23 ~LAPW! versions of this
linear-response approach have also been proposed
implemented. Applications have been numerous, and
cluded computations of dynamical matrices, Born effect
charge tensors and dielectric permittivity tensors for b
materials, surfaces or large molecules, as well as comp
tion of elastic constants, piezoelectric tensors, photoela
tensors, internal strain, deformation potential, electro
phonon coupling, thermodynamical properties, atomic te
perature factors, and phase transitions.18,24–35

It was also realized that the BGT approach was deriv
from an interesting merging of DFT and perturbation theo
and that it could be extended very efficiently to nonline
responses, thanks to the 2n11 theorem.36–43From the same
point of view, often referred to as density-functional pertu
bation theory~DFPT!, one can infer the existence of a vari
tional principle for the second-order derivatives of the to
energy.12,20This variational principle, its higher-order gene
alizations, and the 2n11 theorem for DPFT, are thoroughl
10 337 © 1997 The American Physical Society
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10 338 55XAVIER GONZE
discussed in Ref. 42. Thanks to the second-order variati
principle, efficient minimization techniques, like th
conjugate-gradient algorithm,12,44,45 can be used for the
evaluation of the first-order changes of the wave functio
charge densities, and self-consistent potentials. Moreo
second-order derivatives of the total energy converge m
rapidly to the correct answers than in the BGT approa
Like the BGT technique, the variational approach has b
widely used for studies of dynamical and dielectric prop
ties of various materials @SiO2-quartz,

12,46–48

SiO2-stishovite,
48–52 Si,53 TiO2,

54,55 BaTiO3,
56–60

PbTiO3,
61 PbZrO3,

62 Al 2Ru,
63 and PbTe~Ref. 64!#. The use

of a variational principle was also instrumental in the LMT
implementation of the linear-response approach.20,22

Since the presentation of the technique that was used
the computation of dielectric and dynamical properties
solids was rather limited in these previous papers, an ex
sive description of the method will be given in the prese
paper and in P2,4 from the basic determination of the re
sponses, to the computation of phonon band structures
common with BGT,16 the implementation of this scheme
done using plane waves and pseudopotentials, but, at
ance, fast Fourier transforms are used~in the spirit of the
Car-Parrinello technique65! as well as elaborate separab
pseudopotentials,66 in order to enhance the efficiency of th
calculation. Since nonlinear exchange-correlation c
corrections67,31 have been used in the above-mention
applications12,46–50,53–60the consequences of this technic
feature will also be described. Specific aspects related
metals that cannot sustain static electric fields, and for wh
a Fermi surface is present, will be briefly mentioned wh
appropriate. By definition, all nonadiabatic as well as no
harmonic effects are ignored.

This paper is organized as follows. In Sec. II, some ba
results of DFPT are recalled. In Sec. III, I describe the p
conditioned conjugate-gradient gradient algorithm that
be used to find the first-order changes in wave functio
charge densities, and the self-consistent potential with
spect to a generic perturbation. Section IV contains a gen
analysis of response to perturbations that are characte
by a wave vector incommensurate with the periodicity of
underlying lattice. The factorization of the incommensurab
ity is shown. In Sec. V, one finds the developments nee
to obtain the first-order change in wave functions and de
ties with respect to collective atomic displacements, in
plane-wave implementation with separable pseudopoten
and a nonlinear exchange-correlation core correction. S
tion VI describes the treatment of homogeneous elec
fields, using the long-wave method, then its implementati
In Sec. VII, I mention some technical considerations, a
present perspectives in Sec. VIII. Atomic~Hartree! units are
used throughout this paper.

II. BASICS OF DENSITY-FUNCTIONAL PERTURBATION
THEORY

A. DFT equations

In the DFT, the ground-state energy of the electronic s
tem is derived from the following minimum principle:2
al
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Eel$ca%5(
a

occ

^cauT1vextuca&1EHxc@n#, ~1!

where theca’s are the Kohn-Sham orbitals~to be varied
until the minimum is found!, T is the kinetic energy operator
vext is the potential external to the electronic system t
includes the one created by nuclei~or ions!, EHxc is the Har-
tree and exchange-correlation energy functional of the e
tronic densityn(r ), and the summation runs over the occ
pied statesa. The occupied Kohn-Sham orbitals are subje
to the orthonormalization constraints,

E ca* ~r !cb~r !dr5^caucb&5dab , ~2!

wherea andb label occupied states. The density is gen
ated from

n~r !5(
a

occ

ca* ~r !ca~r !. ~3!

The minimization ofEel$c% under the orthonormality con
straints Eq.~2! can be achieved using the Lagrange mu
plier method. The problem turns into the minimization of

Eel
1$c%5(

a

occ

^cauT1vextuca&1EHxc@n#

2(
ab

occ

eba~^caucb&2dab!, ~4!

whereeab are the Lagrange multipliers corresponding to t
set of constraints Eq.~2!. The canonical Euler-Lagrang
equations are

Huca&5(
b

occ

ebaucb&, ~5!

where the Hamiltonian operator is

H5T1vext1
dEHxc

dn
5T1vext1vHxc . ~6!

SinceH is Hermitian, it is always possible to make a unita
transformation of Eq.~5! in such a way that

Huca&5eauca&. ~7!

B. Perturbation expansion

Having defined the DFT equations for the possible ext
nal potentialsvext, we now choose a reference~unperturbed!
external potentialvext

(0) and expand the perturbed potenti
vext in terms of a small parameterl, as follows:

vext~l!5vext
~0!1lvext

~1!1l2vext
~2!1•••. ~8!

We are interested in the change of physical quantities, du
the perturbation of the external potential.68 So, we expand all
of the exact perturbed quantitiesX(l) in the same form as
vext(l),
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X~l!5X~0!1lX~1!1l2X~2!1•••, ~9!

whereX can beEel , ca(r ), n(r ), eab , or H. For example,
the lowest-order expansion of Eq.~7! is simply

H ~0!uca
~0!&5ea

~0!uca
~0!&. ~10!

BecauseEel satisfies a variational principle under co
straints, it is possible to derive a constrained variational p
ciple for the 2nth order derivative ofEel with respect to the
nth order derivative ofca :

69,70,42when the expansion of th
wave function of up to an order ofn21 is known, the varia-
tional ~minimum! principle for the 2nth order derivative of
Eel is as follows:
c

r-
ie
po

la

.

-

Eel
~2n!5min

ca
~n!

S Eel
1H (

i50

n

l ica
~ i !J D ~2n!

, ~11!

under constraints~in the parallel transport gauge42!

(
i50

n

^ca
~n2 i !ucb

~ i !&50 ~12!

for all occupied statesa andb. The explicit expressions fo
Eel
(2n) can be worked out by introducing Eq.~4! into Eq.~11!.
For the second order, we obtain thatEel

(2) is the minimum
of the following expression:12,20,42
Eel
~2!$c~0!;c~1!%5(

a

occ

@^ca
~1!uH ~0!2ea

~0!uca
~1!&1~^ca

~1!uvext
~1!uca

~0!&1^ca
~0!uvext

~1!uca
~1!& !1^ca

~0!uvext
~2!uca

~0!&#

1
1

2E E d2EHxc

dn~r !dn~r 8! U
n~0!

n~1!~r !n~1!~r 8!dr dr 81E d

dl

dEHxc

dn~r ! U
n~0!

n~1!~r !dr1
1

2

d2EHxc

dl2 U
n~0!

, ~13!
,
r
s
by
ms

e
rse
ro-

.

l

ns
where the first-order changes in wave functionsca
(1) ~these

quantities will be referred to as the first-order wave fun
tions, for brevity! are varied under the constraints

^ca
~0!ucb

~1!&50 ~14!

for all occupied statesa andb, while the first-order density
is given by

n~1!~r !5(
a

occ

ca*
~1!~r !ca

~0!~r !1ca*
~0!~r !ca

~1!~r !. ~15!

By virtue of Eq. ~14!, the first-order wave functions are o
thogonal to the unperturbed wave functions of the occup
states. This is a specific advantage of the parallel-trans
gauge.71

Since Eel
(2)$c (0);c (1)% is variational with respect to

c (1),72 we deduce the Euler-Lagrange equations~also called
self-consistent Sternheimer equations in this particu
case!,73,42

Pc~H
~0!2ea

~0!!Pcuca
~1!&52PcH

~1!uca
~0!&, ~16!

wherePc is the projector upon the unoccupied states~con-
duction bands!, H (0), ea

(0) , andc (0) are obtained from Eq
~10!, and the first-order HamiltonianH (1) is given by

H ~1!5vext
~1!1vHxc

~1! 5vext
~1!1E d2EHxc

dn~r !dn~r 8! U
n~0!

n~1!~r 8!dr 8

1
d

dl

dEHxc

dn~r ! U
n~0!

. ~17!

One defines also
-

d
rt

r

vHxc0
~1! 5

d

dl

dEHxc

dn~r ! U
n~0!

, ~18!

not to be confused withvHxc
(1) , that contains one more term

see Eq.~17!. vext
(1) andvHxc0

(1) do not depend on the first-orde
wave functions. Equation~16! can be solved by algorithm
based on Green’s functions or, within some basis set,
standard algorithms for dealing with inhomogeneous syste
of equations.16

In Eq. ~13!, the contributions

(
a

occ

^ca
~0!uvext

~2!uca
~0!&1

1

2

d2EHxc

dl2 U
n~0!

, ~19!

that will be denoted byEnon-var
(2) , also do not depend on th

first-order wave functions, and will not change in the cou
of the minimization procedure or in the self-consistent p
cedure.

For the first-order wave functions that satisfy Eqs.~14!–
~17!, or equivalently minimize Eq.~13! under constraints Eq
~14!, Eel

(2) can also be computed from

Eel
~2!5

1

2(a
occ

~^ca
~1!uvext

~1!1vHxc0
~1! uca

~0!&

1^ca
~0!uvext

~1!1vHxc0
~1! uca

~1!& !1Enon-var
~2! , ~20!

instead from Eq.~13!. Taking into account the time-reversa
symmetry, other expressions forEel

(2) can be found:

Eel
~2!5(

a

occ

^ca
~0!uvext

~1!1vHxc0
~1! uca

~1!&1Enon-var
~2! , ~21!

or its Hermitian conjugate. However, if the wave functio
are not exactly the ones that minimize Eq.~13! and satisfy
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10 340 55XAVIER GONZE
Eqs.~14!–~17!, the error in Eqs.~20! and~21! is larger than
the error in Eq.~13!, since Eq.~13! is variational, while Eqs.
~20! and ~21! are not.

III. A CONJUGATE-GRADIENT ALGORITHM FOR THE
COMPUTATION OF THE FIRST-ORDER RESPONSES

Equations~14!–~17! are used in the BGT approach.9,10,16

They can be solved self-consistently: one fixes first a b
set, then, supposingH (1) to be known, Eq.~16! is treated as
a linear system of equations forc (1), whose solution can be
obtained by different standard numerical techniques; o
c (1) is found, it can be used to build a newH (1) through Eqs.
~15! and ~17!.

In a different spirit, direct minimization of Eq.~13! is
performed in the variational approach described here. Th
two possible approaches are directly connected to the
approaches that have been used to compute theground-state
properties of materials. Indeed, until 1985, the DFT grou
state wave functions were usually computed using a t
level procedure: at the lower level, Eq.~7! was solved using
standard diagonalization procedures, while at the upper le
a loop used the output of this diagonalization to genera
new density through Eq.~3!, and a new Hamiltonian throug
Eq. ~6!, thus a new Eq.~7!. Self-consistency was enforced,
needed, by the use of some convergence accelerator.74 This
is, in spirit, similar to the BGT technique.

By contrast, Car and Parrinello65 suggested the insertio
of the quantity defined in Eq.~4! in a fictitious Lagrangian
~that also included the classical kinetic energy of nucle!,
giving a unified approach to molecular dynamics and DF
As a further step, the direct minimization of the function
Eq. ~4! under the orthonormalization constraints Eq.~2! was
proposed. For this purpose, Teter, Payne and Allan45 ~TPA!
is

e

se
o

-
-

el,
a

.
l

designed a band-by-band~or state-by-state! conjugate-
gradient algorithm. Other global minimization algorithm
were proposed in Refs. 75–78. The Car-Parrinello and
band-by-band conjugate-gradient algorithms have been
sented in considerable detail in a review article by Pay
et al.44 All these techniques are particularly effective wi
plane-wave basis sets, since the corresponding Hamilto
is sparse when fast Fourier transforms and separable pse
potentials are used.79

Since Eq.~13! is also a minimum principle, it is possibl
to use the same global minimization techniques for
second-order derivative of the energyEel

(2) as for the ground-
state energy. Moreover, the expression forEel

(2) , Eq. ~13!, is
an exact quadratic form in the space of the first-order w
functions, unlike the ground-state energy functional Eq.~4!.
This feature leads to an easier implementation of the st
by-state conjugate-gradient algorithm for response functi
than for ground-state energy, that we will now describe.

A. State-by-state decomposition of the energy functional

In a state-by-state conjugate-gradient algorithm, e
wave function is considered successively, and the ene
functional is minimized with respect to variations of th
wave function, in the potential created by the density of
others, the latter being temporarily frozen. Let us supp
that the stateb, with first-order wave functioncb

(1) , is var-
ied. One writes the minimum principle Eq.~13! as

Eel
~2!5Eb

~2!1Eno b
~2! 1Enon-var

~2! , ~22!

where the termEb
(2) is the only one that depends oncb

(1) .
This first term is
Eb
~2!5^cb

~1!uH ~0!2eb
~0!ucb

~1!&1~^cb
~1!uvext

~1!1vHxc0
~1! ucb

~0!&1^cb
~0!uvext

~1!1vHxc0
~1! ucb

~1!& !

1E E d2EHxc

dn~r !dn~r 8! U
n~0!

S 12 nb
~1!~r !nb

~1!~r 8!1nb
~1!~r ! (

aÞb

occ

na
~1!~r 8!D dr dr 8 , ~23!

wherenb
(1) , the density change due to the first-order wave functioncb

(1) , is

nb
~1!~r !5cb*

~1!~r !cb
~0!~r !1cb*

~0!~r !cb
~1!~r !. ~24!

The second term of Eq.~22!,

Eno b
~2! 5 (

aÞb

occ S ^ca
~1!uH ~0!2ea

~0!uca
~1!&1~^ca

~1!uvext
~1!1vHxc0

~1! uca
~0!&1^ca

~0!uvext
~1!1vHxc0

~1! uca
~1!& !D

1
1

2E E d2EHxc

dn~r !dn~r 8! U
n~0!

S (
aÞb

occ

na
~1!~r !D S (

aÞb

occ

na
~1!~r 8!D dr dr 8, ~25!
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does not depend oncb
(1) , but on all the first-order wave

functions for the states other thanb. The third term of Eq.
~22!, Enon-var

(2) , is given by Eq.~19! and does not depend o
first-order wave functions. Thus, only the first term must
considered in the minimization procedure with respect
cb
(1) . Once the first-order wave functioncb

(1) is sufficiently
converged~via the conjugate-gradient algorithm described
the next paragraph!, another first-order wave function is va
ied, and so on. As soon as the last wave function has b
varied, the algorithm goes on with varying the first wa
function again, and then the others as well. Indeed, the w
functions were minimized in the potential created by the o
ers while these were not yet converged. Thus, there is st
self-consistency loop, although the second-order electro
energy is always decreased. Because of the latter prop
the algorithm is unconditionally stable.

B. Optimization of one state

A basic description of the conjugate-gradient algorith
can be found in Ref. 80. The procedure of minimization
Eq. ~23! follows closely Eqs.~5.10!–~5.38! of Ref. 44, valid
for the minimization of the ground-state functional~the TPA
algorithm!. Except for a few details, the flow diagram of th
update of a single state is very similar to the flow diagram
the TPA algorithm, shown in Fig. 17 of Ref. 44.

In the initial step (m51), a trialcb
m(1) is used, which is

either the null vector@it obviously satisfies the constrain
Eq. ~14!#, or the vector determined from the previous se
consistency loop.

Then, an improvedcb
m11(1) is determined by the follow-

ing operations~iterated overm, which runs from 1 to
mmax).

~1! The steepest-descent vectorzb
m @minus half the gradi-

ent of Eq.~23! with respect to changes ofcb
m(1) , projected

on the conduction bands# is

zb
m52Pc@~H

~0!2eb
~0!!ucb

m~1!&1Hm~1!ucb
~0!&], ~26!

with

Hm~1!5vext
~1!1vHxc0

~1! 1E d2EHxc

dn~r !dn~r 8! U
n~0!

Fnb
m~1!~r 8!

1 (
aÞb

na
~1!~r 8!Gdr 8, ~27!

wherenb
m(1)(r ) is inferred from Eq.~24!, updated for each

m.
~2! The preconditioned steepest-descent vectorhb

m is as
follows: hb

m5PcKzb
m , where the preconditioning operato

K is similar to the one defined in Eq.~5.16! of Ref. 44.
~3! The conjugate-gradient~or search! direction fb

m is
fb
m5hb

m1gb
m fb

m21 , with gb
m5^hb

mufb
m&/^hb

m21ufb
m21& and

gb
150.

~4! An improved trial first-ordercb
m11(1) will be obtained

by mixing cb
m(1) with fb

m : cb
m11(1)5cb

m(1)1u fb
m , where

the parameteru is to be determined by the minimizatio
requirement, as follows. The energy Eq.~23!, as a function
of u, becomes
e
o

en

ve
-
a
ic
ty,

s
f

f

-

Eb
~2!~u!5Eb

~2!~0!1
dEb

m~2!

du
U

u50

u1
1

2

d2Eb
m~2!

du2
U

u50

u2,

~28!

where

dEb
m~2!

du
U

u50

522 Re ^fb
muzb

m&, ~29!

d2Eb
m~2!

du2
U

u50

52 ^fb
muH ~0!2eb

~0!ufb
m&

1E E d2EHxc

dn~r !dn~r 8! U
n~0!

Dnb
m~r !

3Dnb
m~r 8!dr dr 8 , ~30!

with Dnb
m(r )5fb

m* (r )cb
(0)(r )1cb*

(0)(r )fb
m(r ). The expres-

sion Eq.~28! is minimal when

u52
dEb

m~2!

du
U

u50
S d2Eb

m~2!

du2
U

u50
D 21

, ~31!

a value that allows one to generatecb
m11(1) .

In step 3, unlike for the ground-state minimization alg
rithm, no further orthonormalization or orthogonalization
needed@compare with Eqs.~5.21! and ~5.22! of Ref. 44#,
since the constraint Eq.~14! is linear incb

(1) and fulfilled by
fb
m . In step 4, the search for the minimum of the secon

order energy is simplified with respect to the ground-st
minimization algorithm, because Eq.~23! is a quadratic form
in cb

(1) .
Usually,mmax is on the order of 4–6, while the error i

the second derivative of the energy decreases by a factor
or more after each set of all-state optimizations. Figure 2
Ref. 42 shows a typical convergence of this algorithm.

In this state-by-state conjugate-gradient algorithm, o
one wave function is varied at a time. Giannozzi a
Baroni33 have recently proposed to treat the minimization
Eq. ~13! by simultaneous variation of all the first-order wav
functions. No supplementary self-consistency loop is th
needed. The latter approach requires more disk space, a
comparative study would be useful in order to assert
relative merits of both methods in terms of computation
efficiency.

IV. RESPONSE TO INCOMMENSURATE
PERTURBATIONS OF PERIODIC SYSTEMS

The conventions for the treatment of the unperturbed
riodic system~e.g., normalization of Bloch’s wave functions!
are presented in Appendix A.

A. Incommensurate perturbations

One considers perturbations of the system that are inc
mensurate with the unperturbed periodic lattice, and cha
terized by a wave vectorq. In order to be able to treat non
local pseudopotentials, the general form of a perturbation~a
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linear operator and not simply a local function in space! is
taken into account. Theground-state potentialoperator is
periodic, with

vext
~0!~r1Ra ,r 81Ra!5vext

~0!~r ,r 8!, ~32!

whereRa is a vector of the real space lattice, while theper-
turbing potentialoperator is such that

vext,q
~1! ~r1Ra ,r 81Ra!5eiq•Ra vext,q

~1! ~r ,r 8!. ~33!

Actually, whenq is not equal to half a vector of the recip
rocal lattice, such a perturbing potential is non-Hermitia
and should be always used in conjunction with its Hermit
conjugate counterpart. However, at the level of the lin
response, there is no consequence of working only with
non-Hermitian vext,q

(1) , since the response to the sum
vext,q
(1) and its Hermitian conjugate is simply the sum of t

response to each perturbation separately. Nevertheless w
also interested in the variational property of the second-o
change in energy, for which we cannot afford a no
Hermitian external potential. This difficulty is solved as fo
lows. One considers bothvext,q and its Hermitian conjugate
written vext,2q ~since its wave vector is2q), as well as a
complex expansion parameterl, such that

vext~l!5vext
~0!1~lvext,q

~1! 1l* vext,2q
~1! !1 ~l2vext,q,q

~2!

1ll* vext,q,2q
~2! 1l* l vext,2q,q

~2! 1l* 2vext,2q,2q
~2! !

1•••. ~34!

This definition is a generalization of Eq.~8!. Since both
vext(l) andvext

(0) are Hermitian, the Hermitian conjugates
vext,q
(1) and vext,q,q

(2) are vext,2q
(1) and vext,2q,2q

(2) , respectively.
One also has the freedom to impose thatvext,q,2q

(2) is Hermit-
ian and equal tovext,2q,q

(2) ~sometimes they will be noted
vext,0
(2) in what follows!.
Applying a translation to the first-order wave functio

and densities, one observes the following behaviors:

cm,k,q
~1! ~r1Ra!5ei ~k1q!•Ra cm,k,q

~1! ~r ! ~35!
of

he
,
n
r
e

are
er
-

and

nq
~1!~r1Ra!5eiq•Ra nq

~1!~r !. ~36!

An expansion similar to Eq.~34! applies also to the en
ergy, with

E~l!5E~0!1~lEq
~1!1l*E2q

~1! !1~l2Eq,q
~2!12ll*Eq,2q

~2!

1l* 2E2q,2q
~2! !1•••. ~37!

Due to the requirement of invariance under translation
the whole system, one derives, whenq is not a vector of the
reciprocal lattice,81

Eq
~1!5E2q

~1!50, ~38!

while for 2q which is not a vector of the reciprocal lattice,81

Eq,q
~2!5E2q,2q

~2! 50. ~39!

Thanks to these equations, it can be shown thatEq,2q
(2) is a

real quantity, variational with respect to change in the fir
order wave functions. This property will allow one to app
the above-mentioned minimization algorithm to the case
incommensurate perturbations.

B. Factorization of the phase

The factorization of the phase, in order to map the inco
mensurate problem to an equivalent one presenting the p
odicity of the unperturbed problem is the crucial point in t
treatment of perturbations characterized by a wave ve
q, like vext,q

(1) . For this purpose, inspired by Eqs.~35! and
~36!, one defines theperiodic functions~see Appendix A for
the notations!

um,k,q
~1! ~r !5~NV0!

1/2e2 i ~k1q!•r cm,k,q
~1! ~r ! ~40!

and

n̄q
~1!~r !5e2 iq•r nq

~1!~r !, ~41!

in which case Eq.~13! becomes
Eel,2q,q
~2! $u~0!;u~1!%5

V0

~2p!3
E
BZ

(
m

occ

s ~^umk,q
~1! uHk1q,k1q

~0! 2emk
~0!uumk,q

~1! &1^umk,q
~1! uvext,k1q,k

~1! 1vHxc0,k1q,k
~1! uumk

~0!&

1^umk
~0!uvext,k,k1q

~1! 1vHxc0,k1q,k
~1! uumk,q

~1! &1^umk
~0!uvext,k,k

~2! uumk
~0!&)dk

1
1

2EV0

E d2EHxc

dn~r !dn~r 8!
U
n~0!

n̄q
~1!* ~r ! n̄q

~1!~r 8!e2 iq•~r2r8!dr dr 81
1

2

d2EHxc

dl dl* U
n~0!

, ~42!
ini-
satisfying a minimum principle with respect to variations
the first-order wave functionsun,k,q

(1) under constraints

^um,k1q
~0! uun,k,q

~1! &50, ~43!

where the indexn runs over the occupied states, while t
first-order change in density is given by82
n̄q
~1!~r !5

2

~2p!3
E
BZ

(
m

occ

sumk
~0!* ~r !umk,q

~1! ~r !dk. ~44!

The Euler-Lagrange equations associated with the m
mization of Eq.~42! under constraints Eq.~43! are
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Pc,k1q~Hk1q,k1q
~0! 2em,k

~0! !Pc,k1q uum,k,q
~1! &

52Pc,k1qHk1q,k
~1! uum,k

~0! &, ~45!

with

Hk1q,k
~1! 5vext,k1q,k

~1! 1vHxc0,k1q,k
~1! 1E d2EHxc

dn~r !dn~r 8!
U
n~0!

3n̄q
~1!~r 8!e2 iq•~r2r8! dr 8. ~46!

Finally, there are simpler, but nonvariational, expressio
for Eel,2q,q

(2) , in the spirit of Eq.~21!:82

Eel,2q,q
~2! $u~0!;u~1!%

5
V0

~2p!3
E
BZ

(
m

occ

s ~^umk,q
~1! uvext,k1q,k

~1! 1vHxc0,k1q,k
~1! uumk

~0!&

1^umk
~0!uvext,k,k

~2! uumk
~0!& !dk1

1

2

d2EHxc

dl dl* U
n~0!

, ~47!

its Hermitian conjugate, or their mean. All the quantities th
appear in Eqs.~42!–~47! have the periodicity of the unper
turbed lattice. Note that the ground-state wave functions
k and atk1q are needed to determineumk,q

(1) : umk
(0) appear in

Eqs.~42!, ~44!, and~45!, while the orthonormalization con
straint Eq.~43! makes use ofumk1q

(0) .

V. RESPONSE TO COLLECTIVE ATOMIC
DISPLACEMENTS

We now focus on a first class of perturbations, direc
connected to phonons. In this section and the next ones
responses are treated in view of the implementation of
formalism with a plane-wave basis set, separable pseud
tentials, and taking into account the nonlinear exchan
correlation core correction. The notations~definitions of lo-
cal and separable potentials, exchange-correla
functional! are described in Appendix A. The different qua
tities will be given either in the real space or in the recipro
space, whichever is the most appropriate.83

A. First- and second-order changes in potential operators

One considers unit displacements of atoms in sublat
k, along thea axis, multiplied by the infinitesimall ~even-
tually, a complex quantity! and by a phase varying with th
cell to which the atoms belong: thea component of their
vector position is changed from tk,a1Ra,a to
tk,a1Ra,a1leiq•Ra. Atoms in the other sublattices are n
displaced. Note that all of these collective displacements
be generated fromq wave vectors restricted inside the Bri
louin zone, the only ones that will be considered. Also,
reasons given in Sec. VIIA and in the next paper~P2!, we
consider nonzeroq wave vectors.

The first-order change in the potential operator Eq.~A12!
~see Appendix A! is

vext,q
~1! ~r ,r 8!5(

a
eiq•Ra

]

]tk,a
vk~r2tk2Ra ,r 82tk2Ra!,

~48!
s

t

at

he
e
o-
e-

n

l

e

n

r

while the second-ordervext,0
(2) (r ,r 8), needed in Eqs.~42! and

~47!, is as follows:

vext
~2!~r ,r 8!5(

a

1

2

]2

]tk,a
2 vk~r2tk2Ra ,r 82tk2Ra!.

~49!

Their evaluation, based on Eqs.~A15! and~A19!, leads to
the following expressions

~1! The first-order change of the local potential is

v̄ loc,q
~1! ~G!5

1

V0

]

]tka
~e2 i ~G1q!•tk! vk

loc~G1q!

5
1

V0
~2 i !~G1q!ae

2 i ~G1q!•tk vk
loc~G1q!, ~50!

wherevk
loc(G1q) can be found from Eq.~A16!, and where

the definition of the phase-factorized, periodic potential

v̄ loc,q
~1! ~r !5e2 iq•r v loc,q

~1! ~r !, ~51!

has been used@compare with Eq.~41!#. Note that, unlike in
Eqs.~A15! and~A27!, v̄ loc,q

(1) includes theG50 contribution:
there is no associated divergence since we have supposq
to be nonzero.

~2! The second-order change of the local potential is84,85

v loc8~2!~G!52
1

V0

1

2
Ga
2~e2 iG•tk! vk

loc~G! when GÞ0

50 when G50. ~52!

~3! The first-order change of the nonlocal potential is

vsep,k1q,k
~1! ~G,G8!5

1

V0
(
m

emk

]

]tka

3F S (G e2 i ~k1q1G!•tkzmk~k1q1G!D
3S (

G8
ei ~k1G8!•tkzmk* ~k1G8!D G . ~53!

~4! The second-order change of the nonlocal potential

vsep,k,k
~2! ~G,G8!5

1

V0
(
m

emk

1

2

]2

]tka
2

3F S (G e2 i ~k1G!•tkzmk~k1G!D
3S (

G8
ei ~k1G8!•tkzmk* ~k1G8!D G . ~54!

The efficient use ofvsep,k1q,k
(1) as well asvsep,k,k

(2) is accom-
plished thanks to a further manipulation, an example
which is given here for the first-order separable part: Eq.~53!
becomes
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vsep,k1q,k
~1! ~G,G8!5

1

V0
(
m

emkF S (G ~2 i !~k1q1G!ae
2 i ~k1q1G!•tkzmk~k1q1G!D S (

G8
ei ~k1G8!•tkzmk* ~k1G8!D

1S (G e2 i ~k1G!•tkzmk~k1q1G!D S (
G8

i ~k1q1G8!ae
i ~k1G8!•tkzmk* ~k1G8!D G . ~55!
d

o

the
we
In this way, the sums on the reciprocal vectorsG or G8 are
well separated. The same manipulation can be performe
Eq. ~54!.

B. First- and second-order changes in the exchange
and correlation energy functional

The phase-factorized first-order change of pseudoc
charge density is given by

n̄c,q
~1!~r !5e2 iq•r (

a
eiq•Ra

]

]tk,a
nc,k~r2tk2Ra!, ~56!

while the second-order change is

nc
~2!~r !5(

a

1

2

]2

]tk,a
2 nc,k~r2tk2Ra!. ~57!

These expressions allow us to buildv̄xc0,q
(1) and

1
2(d

2Exc /dl dl* )un(0):
31
te

q

on

re

v̄xc0,q
~1! ~r !5

dvxc
dn U

n~0!~r !

n̄c,q
~1!~r ! ~58!

and

1

2

d2Exc

dl dl* U
n~0!

5
1

2EV0

dvxc
dn U

n~0!~r !

un̄c,q
~1!~r !u2dr

1E
V0

vxc„n
~0!~r !…nc

~2!~r !dr . ~59!

C. Variational principle

Having obtained the first and second derivatives of
potentials and exchange-correlation energy functional,
are able to write the second-order electronic energy:
Eel,2q,q
~2! $u~0!;u~1!%5

V0

~2p!3
E
BZ

(
m

occ

s ~^umk,q
~1! uHk1q,k1q

~0! 2emk
~0!uumk,q

~1! &1^umk,q
~1! uvsep,k1q,k

~1! uumk
~0!&1^umk

~0!uvsep,k,k1q
~1! uumk,q

~1! &

1^umk
~0!uvsep,k,k

~2! uumk
~0!& !dk1

1

2EV0

~@ n̄q
~1!~r !#* @ v̄ loc,q

~1! ~r !1 v̄xc0,q
~1! ~r !#1@ n̄q

~1!~r !#@ v̄ loc,q
~1! ~r !1 v̄xc0,q

~1! ~r !#* !dr

1
1

2EV0

dvxc
dn U

n~0!~r !

un̄q
~1!~r !u2dr12pV0(

G

un̄q
~1!~G!u2

uq1Gu2
1E

V0

~n~0!~r !v loc8~2!~r !!dr1
1

2

d2Exc

dl dl* U
n~0!

.

~60!
s-
In this expression, as forv̄ loc,q
(1) in Eq. ~50!, theG50 contri-

bution is included in the Hartree term: there is no associa
divergence since we have supposedq to be nonzero.

Equation~60! is to be minimized under the constraints E
~43!, with the first-order change in density given by Eq.~44!.
The associated Euler-Lagrange equation is still Eq.~45!,
with a more explicit first-order Hamiltonian operator:

Hk1q,k
~1! 5vsep,k1q,k

~1! 1 v̄ loc,q
~1! 1 v̄H,q

~1! 1 v̄xc,q
~1! , ~61!

where
d

.

v̄H,q
~1! ~G!54p

n̄q
~1!~G!

uG1qu2
~62!

and

v̄xc,q
~1! ~r !5S dvxcdn U

n~0!~r !

n̄q
~1!~r ! D 1 v̄xc0,q

~1! ~r !. ~63!

Finally, there exists simpler, but nonvariational expre
sions forEel,2q,q

(2) , derived from Eq.~47!: for example,
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Eel,2q,q
~2! 5

V0

~2p!3
E
BZ

(
m

occ

s ~^umk,q
~1! uvsep,k1q,k

~1! uumk
~0!&

1^umk
~0!uvsep,k,k

~2! uumk
~0!& !dk

1
1

2EV0

~@ n̄q
~1!~r !#* @ v̄ loc,q

~1! ~r !1 v̄xc0,q
~1! ~r !# !dr

1E
V0

~n~0!~r !v loc8~2!~r !!dr1
1

2

d2Exc

dl dl* U
n~0!

.

~64!

At this stage, we have written all the theoretical ingre
ents needed for the computation of the response to a co
tive displacement of atoms on one sublattice, in which
vector position tk,a1Ra,a is changed into tk,a
1Ra,a1leiq•Ra. In further sections, in order not to confus
them with the response to other perturbations, the first-o
quantities related to this perturbation will be writtenXq

tka

instead ofXq
(1) , while the corresponding second-order qua

tities will be denoted byX
2q,q
tka* tka instead ofX2q,q

(2) .

VI. RESPONSE TO AN HOMOGENEOUS, STATIC
ELECTRIC FIELD

Two important problems arise when one attempts to d
with the response to an homogeneous, static electric fi
The first problem comes from the fact that the potential
ergy of the electron, placed in such a field, is linear in spa
and breaks the periodicity of the crystalline lattice:86

vscr~r !5(
a
Emac,a r a . ~65!

Second, this macroscopic electric field corresponds t
screened potential: the change of macroscopic electric fie
the sum of an external change of field and an internal cha
of field, the latter being induced by the response of the e
trons ~the polarization of the material!. In order to indicate
this fact, the subscript ‘‘scr’’ has been used in Eq.~65!. In
the theory of classical electromagnetism,87 the connection
between the macroscopic displacement, electric, and po
ization fields is

Dmac~r !5Emac~r !14pPmac~r !, ~66!

wherePmac(r ) is related to the macroscopic charge dens
by

nmac~r !52¹Pmac~r !. ~67!

It is important to emphasize that these fields aremacroscopic
fields: the microscopic fluctuations~local fields! have been
averaged out in this description.87

The long-wave method is commonly used to deal with
first problem: a potential linear in space is obtained as
limit for q tending to0 of

v~r !5 lim
q→0

l
2sinq•r

uqu
5 lim

q→0
lS eiq•ri uqu

2
e2 iq•r

i uqu D , ~68!
-
c-
e

er

-

al
d.
-
e,

a
is
ge
c-

r-

y

e
e

whereq is in the direction of the homogeneous field. Th
method has its drawback: the homogeneous field and
wave vector are always parallel. In other words, the elec
field is longitudinal. The treatment of transverse fields sho
be done by considering not only a scalar potential, bu
vector potential. However, for our purpose, the scalar the
will be sufficient.26

The detailed theoretical treatment of the response to
electric field, using the long-wave method, and treating
screening adequately~in order to solve the above-mentione
second problem! is given in Appendix B. It is found that an
auxiliary quantity is needed: the derivative of the groun
state wave functions with respect to their wave vector. O
this quantity has been obtained, the computation of the
sponse to an homogeneous electric fieldper secan be per-
formed.

A. Derivative of the wave functions with respect
to their wave vector

We will use the shorthand notation

umk
ka 5

dumk
~0!

dka
. ~69!

In the parallel-transport gauge,42 the umk
ka at eachk can be

determined by the minimization of the following expressio

Em,k
kaka5^umk

ka uHk,k
~0!2emk

~0!uumk
ka &1^umk

ka uTk,k
ka 2vsep,k,k

ka uumk
~0!&

1^umk
~0!uTk,k

ka 2vsep,k,k
ka uumk

ka &, ~70!

with the constraints

^umk
~0!uunk

ka&50. ~71!

Tk,k
ka andvsep,k,k

ka are the first derivative of kinetic energ
operator and external potential with respect to the wave v
tor ka :

Tk,k
ka ~G,G8!5~Ga1ka!dGG8 ~72!

and

vsep,k,k
ka ~G,G8!5

1

V0
(
mk

emk

]

]ka

3F S (G e2 i ~k1G!•tkzmk~k1G!D
3S (

G8
ei ~k1G8!•tkzmk* ~k1G8!D G . ~73!

The Euler-Lagrange equation associated with the mini
zation procedure Eq.~70! is

Pc,k~Hk,k
~0!2em,k

~0! !Pc,k uum,k
ka &52Pc,k~Tk,k

ka 1vsep,k,k
ka !uum,k

~0! &.
~74!
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B. Derivative of the wave functions with respect
to an electric field

Having obtained the derivative of the wave functions w
respect to their wave vector, one is able to compute the
sponse of the system with respect to the change of the lo
wave screened potential

Dvscr~r !5 lim
q→0

S Ea

eiq•r

i uqu
1Ea*

e2 iq•r

~2 i !uqu D . ~75!

In the parallel-transport gauge,42 the derivative of the
wave functions with respect toEa is obtained through the
minimization of the following expression~for which, as at
the end of Sec. V, we rationalize our notation in view of t
multiplicity of perturbations that are examined!:

E
el
Ea* Ea$u~0!;uEa%5

V0

~2p!3
E
BZ

(
m

occ

s~^umk
Ea uHk,k

~0!2emk
~0!uumk

Ea &

1^umk
Ea u iumk

ka &1^ iumk
ka uumk

Ea &!dk

1
1

2EV0

dvxc
dn U

n~0!~r !

unEa~r !u2

12pV0(
GÞ0

unEa~G!u2

uGu2
, ~76!

with

nEa~r !5
2

~2p!3
E
BZ

(
m

occ

sumk
~0!* ~r !umk

Ea ~r !dk, ~77!

under the constraints

^um,k
~0! uunk

Ea&50, ~78!

where the indicesm and n run over occupied states, an
^ iumk

ka u5(2 i )^umk
ka u.88

The associated Euler-Lagrange equations are

Pc,k~Hk,k
~0!2em,k

~0! !Pc,k uum,k
ka &

52Pc,kS i ]

]ka
1vH8

Ea1vxc
EaD uum,k

~0! & ~79!

with84,85

vH8
Ea~G!54p

nEa~G!

uGu2
when GÞ0

50 when G50 ~80!

and

vxc
Ea~r !5

dvxc
dn U

n~0!~r !

nEa~r !. ~81!

The nonvariational expressions forE
el
Ea* Ea can be obtained

as well: for example,
e-
g-

E
el
Ea* Ea5

V0

~2p!3
E
BZ

(
m

occ

s ^ iumk
ka uumk

Ea &dk. ~82!

In Eqs. ~76! and ~79!, the operatori (]/]ka) acts on the
wave functionsum,k

(0) to replace the operatorr a , which
should have been considered if there was no problem
compatibility between the linear potential Eq.~65! and the
periodicity of the crystal. This result had been also obtain
by other mathematical transformations.89

VII. TECHNICALITIES

A. Linear combination of perturbations

In Secs. V and VI, we have examined the responses w
respect to two important classes of perturbations: wa
vector-characterized collective atomic displacements,
homogeneous electric fields. We were also lead to cons
derivatives of the wave functions with respect to their wa
vector. These perturbations will be considered as basic
turbations. Since we are at the level of the linear respon
the response of the system to a linear combination of th
perturbations will be the linear combination of the respon
of the system to each perturbation: for example, if a fir
order change of potential is described by

vq
~1!5C1vq

tk,a1C2vq
tk8,b , ~83!

then the density response will be

nq
~1!5C1nq

tk,a1C2nq
tk8,b . ~84!

This rule also applies to a linear combination of perturb
tions incommensurate with each other, or of different typ

As such, it gives a powerful approach to the treatment
theq→0 limit of the response to collective atomic displac
ments. Indeed, the singularities observed in Eqs.~60! and
~62! in theq→0 limit can be treated separately, as an hom
geneous electric field associated with the collective ato
displacements. Thus, forq→0, we will first compute the
response to a collective atomic displacement without ass
ated electric field@by considering Eq.~60! without the
G50 contribution in the local potential and the Hartre
term#, and then combines it with the response to an elec
field, as elaborated on in Ref. 16 and P2.4

As a complementary advantage of working with line
combination of perturbations, in the case where one does
want to compute the response to these basic perturbat
but would like to compute directly the response to one, s
cific perturbation not contained in this set of basic pertur
tions, one can tailor a variational expression by inserting
correct first-order change of potential into the expression
~42!, the latter being eventually worked out along the lin
developed in Sec. VI.

Interestingly, the computations of the responses to a
ferent set of perturbations are completely independent
each other, and offer a trivial way to parallelize the cod
The amount of computation to be done to get the respons
one perturbation is rather large compared to the time nee
to initialize or gather the results of the different respon
computations, and there is no communication during
computation of responses. Thus the parallelization will
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rather efficient, as soon as the number of perturbations t
treated is sufficiently large compared to the number of in
pendent processors.90 This part of the overall process o
computing dynamical and dielectric properties is by far
most computing intensive. The steps explained in the
~Ref. 4! are at least one order of magnitude less time c
suming, and can be easily parallelized as well.

B. Method of solution

Although the atomic displacement and electric field typ
of perturbations are different, we arrive at strikingly simil
variational principles@Eqs. ~60! and ~76!# under the same
type of constraints@Eqs.~43! and~78!#, and the same rule fo
the formation of the density change from wave functio
changes@Eqs. ~44! and ~77!#. The state-by-state conjugate
gradient algorithm previously described~Sec. III! can be ap-
plied straightforwardly to all of these minimization prob
lems. Most of the routines of the code will be common to
the perturbations, because of the common form of the va
tional principle.

The computation of the steepest-descent vector, Eq.~26!,
will be the most time-consuming step in the state-by-st
iterations. As already mentioned, the use of the fast Fou
transform allows us to make it tractable. In particular, wh
the zero-order HamiltonianH (0) is to be applied to the
change in first-order wave function,~a! the latter, available in
the reciprocal space, is Fourier transformed to the real sp
~b! the local potential part ofH (0) is applied to it;~c! the
remaining of the right-hand side of Eq.~26! is added;~d! the
sum is backtransformed to the reciprocal space;~e! finally,
one adds the result of applying the kinetic operator and se
rable potentials to the first-order wave function, since th
operations are less time consuming~at the level of a few
atoms per unit cell!. Fast Fourier transforms are also need
to evaluate and update the Hartree potential Eqs.~27! and
~30!.

The computation of the derivative of the wave functio
with respect to their wave vector can also be done using
same methodology. The quantity to be minimized, Eq.~70!,
is even simpler than those contained in Eqs.~60! and ~76!.
The routines will be also similar.

C. Sampling of the Brillouin zone and symmetries

In view of the practical implementation of Eqs.~60! and
~76!, other comments must still be made. First, the integ
over the Brillouin zone must be replaced by a summati
through discretization of thek space. For insulators, one ca
use the specialk point technique of Ref. 91. This replace
ment is well-known in ground-state calculations. Its use
perturbed situations does not lead to technical problems.
metals, the existence of the Fermi surface, and occupie
unoccupied states below or above it, raises interesting q
tions. The techniques described by de Gironcoli32 and
Savrasov22 can be adapted to the present variational
proach.

Although it is a usual practice to fix the grid ofk points,
and then perform the computation of phonons only for
q-wave vectors that are differences between twok points in
this grid, this attitude is not mandatory, as shown by
present theory. Though, some additional small error mi
be
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appear when this rule is not followed,92 although likely not
larger than the error associated with the replacement of
integral over the Brillouin zone by a summation on a discr
set of points.

In the ground-state calculations, one is able to reduce
number ofk points by folding the Brillouin zone to its irre
ducible part, using the spatial symmetries and the tim
reversal symmetry, with a considerable reduction in comp
ing time. In general, it will not be possible to achieve t
same gain in response calculations with respect to a pe
bation of the atomic displacement or electric field type, b
cause some symmetries will usually be broken by the per
bation. The collective atomic displacements a
characterized by theirq wave vector, the sublatticek that is
displaced, and the direction of the displacementa. Only
when all of these elements are left invariant by some sy
metry operation, will it be possible to reduce the number
k wave vectors for the summation on the Brillouin zone, f
this perturbation. Nevertheless, all the other symmetry op
tions can be used to deduce the response with respe
another, symmetry-related one.

By the time-reversal symmetry, the wave vectorq is
mapped to2q. So, the response to a2q perturbation can be
deduced from the response to aq perturbation. Also, the
number ofk points can be decreased by a factor of tw
when 2q is equal to a reciprocal-spaceG vector.

The electric field perturbation is characterized by its
rectiona. It is left invariant by the time-reversal symmetr
so that the number ofk wave vectors for the summation o
the Brillouin zone can usually be halved. If, moreover, poi
group symmetries leave thea direction invariant, the numbe
of k wave vectors can be further decreased. If not, the o
symmetries can be used to relate the response with respe
an electric field along some direction with the response w
respect to an electric field along another direction.

The computation of the derivative of wave functions wi
respect to their wave vectork can also benefit from symme
try operations. However, this computation is rather fa
since there is no self-consistency step in the conjug
gradient minimization.

VIII. PERSPECTIVES

The aim of the present paper was to present a formal
~theory and algorithm! based on a variational principl
within the DFPT, which allows one to obtain responses
atomic displacements and homogeneous electric fields
~Ref. 4! describes the further manipulations needed to de
mine the dynamical matrices, interatomic force consta
Born effective charges, and dielectric permittivity tenso
Other papers mentioned in the Introduction give example
the application of this technique.

The technical advantages that are characteristics of
perturbative approaches, like the one developed by Bar
Giannozzi, and Testa,10,16 have been shown to be also val
in the present variational approach: a periodic problem
which an incommensurable perturbation is imposed can
mapped on an unperturbed unit-cell problem, amounting
considerable reduction of computing time; an homogene
electric field, whose potential breaks the periodicity of t
lattice, can be treated by the long-wave method; because



e
re
ie
lly
e
y

p
th

-
e
c

.
ll a
K
.
pa

S
e
or

hi
s
c
tia
ar

m
on
c

–
-
d
pe
a

f

i-

is
e
-

er-
-

pin
-

on
m
nient
ion
a-
d
ol-

the

tly

now
he

ki-

iza-

10 348 55XAVIER GONZE
formalism is very similar for the different perturbations, th
implementation of codes for all these properties requires
sonable human work. The state-by-state conjugate-grad
algorithm has the nice property of being unconditiona
convergent, since the trial second-order derivative of the
ergy is always decreased, and its convergence is eas
monitor, the right value being approached from above.

The present technique can be extended to cover more
turbations, especially those derived from modifications of
unit-cell size and shape,93 or from alchemical transformation
of atoms.94,28A variational principle for second-order deriva
tives of the total energy will be equally valid for these oth
perturbations, and the same conjugate-gradient algorithm
be used efficiently for these.

ACKNOWLEDGMENTS

I would like to thank C. Lee, Ph. Ghosez, and G.-M
Rignanese for a careful reading of the manuscript as we
interesting discussions, and D. C. Allan, M. P. Teter,
Rabe, and U. Waghmare for their interest in this work
acknowledge numerous interesting discussions with the
ticipants of the ’96 CECAM workshop on Ab Initio
Phonons, especially P. Giannozzi, H. Krakauer, and
Baroni. I thank S. Savrasov for sending me the preprint R
22 prior to publication. I also acknowledge financial supp
from FNRS-Belgium.

APPENDIX A: CONVENTIONS FOR THE UNPERTURBED
PERIODIC SYSTEM

The present appendix describes the conventions on w
the perturbed expressions developed in this paper are ba
Fourier transform, the relation between real and recipro
space, the local and separable parts of pseudopoten
exchange-correlation functional in the LDA with nonline
core correction.

1. Periodic system: Real and reciprocal space

By Bloch’s theorem, each wave function can be deco
posed in a product of a phase factor by a periodic functi
Explicitly, we write the ground-state unperturbed wave fun
tions as

cmk
~0!~r !5~NV0!

21/2eik•rumk
~0!~r !, ~A1!

whereN is the number of unit cells repeated in the Born
von Karman periodic box, andV0 the volume of the unper
turbed unit cell.m andk label the number of the band an
the wave vector of the wave function, respectively. The
riodic function can be expanded in terms of plane waves
follows:95

umk
~0!~r !5(

G
eiG•rumk

~0!~G!, ~A2!

where the coefficientsumk
(0)(G) are the Fourier transform o

umk
(0)(r ), defined for each vectorG of the reciprocal lattice,

umk
~0!~G!5

1

V0
E

V0

e2 iG•rumk
~0!~r !dr . ~A3!
a-
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Equation~A1! is such that the orthonormalization cond
tion of theumk

(0)(r ) functions is

^umk
~0!uunk

~0!&5dmn , ~A4!

where the scalar product ofperiodic functions, either repre-
sented in real space or in reciprocal space, is defined as

^ f ug&5
1

V0
E

V0

f * ~r !g~r !dr5(
G

f * ~G!g~G!. ~A5!

This definition of scalar product for periodic functions
different from Eq.~2! which was valid for nonextended wav
functions. Equation~A4! must be fulfilled only between pe
riodic functions characterized by the same wave vectork.

The density of the electronic system is obtained by p
forming an integral over the whole Brillouin zone, and sum
ming on all the occupied bands:

n~0!~r !5
1

~2p!3
E
BZ

(
m

occ

sumk
~0!* ~r !umk

~0!~r !dk. ~A6!

Since we will consider only nonmagnetic materials, the s
degeneracy factors is 2. For insulators, the number of occu
pied bands is independent of the wave vectork, which sim-
plifies the practical implementation of these calculations.

For metals, the number of occupied bands will depend
the wave vectork. Instead of making a sharp transition fro
the occupied states and the unoccupied ones, a conve
practice involves introducing a smeared occupat
function.97 An alternative approach invokes the linear tetr
hedron method.98 The present formalism could be modifie
in order to incorporate the effect of these modifications, f
lowing de Gironcoli32 or Savrasov.22

The ground-state wave functions can be obtained from
minimization of the electronic energy per unit cell; Eq.~1!
becomes

Eel$u
~0!%5

V0

~2p!3
E
BZ

(
m

occ

s ^umk
~0!uTk,k

~0!1vext,k,k
~0! uumk

~0!&dk

1EHxc@n
~0!#. ~A7!

In order to keep the amount of different symbols sufficien
low, in Eq. ~A7! and in Secs. IV–VIII, we redefineEel and
EHxc to be energiesper unit cell, unlike in Eq. ~1! where
these quantities were definedfor the whole system. We have
also redefined the kinetic and potential operators that act
on the periodic part of the Bloch functions, according to t
following rule, valid for a generic operatorO @this definition
is coherent with Eq.~A1!#:

Ok,k85e2 ik•r O eik8•r8. ~A8!

For example, we obtain the following expression for the
netic operator in reciprocal space, fork5k8:

Tk,k
~0!~G,G8!5

1

2
~G1k!2dGG8 . ~A9!

The Euler-Lagrange equations associated with the minim
tion of Eq. ~A7! under constraint Eq.~A4!, followed by a
unitary transformation, as to get Eq.~7!, give
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Hk,k
~0!uum,k

~0! &5em,k
~0! uum,k

~0! &, ~A10!

where

Hk,k
~0!5Tk,k

~0!1vext,k,k
~0! 1

dEHxc

dn U
n~0!

. ~A11!

2. Description of the potential operator

In applications based on plane waves, the bare nuc
potential operator is replaced by a pseudopotential mad
local and nonlocal contributions from all atoms inside ea
repeated cell with lattice vectorRa :

vext~r ,r 8!5(
ak

vk~r2tk2Ra ,r 82tk2Ra!, ~A12!

wheretk is the vector position of the atoms inside the ce
and each atom contribution is

vk~r ,r 8!5vk
loc~r !d~r2r 8!1vk

sep~r ,r 8!. ~A13!

I consider here only nonlocal parts of the separa
type,66,96,44

vk
sep~r ,r 8!5(

m
emkzmk~r !zmk* ~r 8!, ~A14!

where only a few separable terms, labeled bym, are present.
The functionszmk are short ranged, and should not overl
for adjacent atoms. Because of their different mathemat
expressions, the local and nonlocal parts are treated in
ferent ways. A local potential is naturally applied on t
wave functions in the real space, since it is a diagonal op
tor in that representation. A separable potential could
treated efficiently either in reciprocal space or in real spa
For small systems~on the order of ten atoms, or less!, it is
more efficient to apply the separable potential in the recip
cal space. The transformations of the wave functions
tween the real and reciprocal space are carried out by m
of fast Fourier transforms.65

Let us first treat the local part. For each atom, this lo
part is long ranged, with asymptotic behavior2Zk /r , where
Zk is the charge of the~pseudo! ion. It is well known that, in
a periodic geometry, this long-ranged part creates a di
gence in the ionic potential that must be treated together w
a similar divergence in the Hartree potential~the divergences
cancel each other, but give also a residue, usually inco
rated in the ion-ion energy!.2 In the reciprocal space, thes
divergences are associated with terms atG50, constant in
real space. Thus in any case these compensating diverge
are of no importance for the generation of the wave functi
and the density, since only the mean of the potential is
fected. Although the local potential operator as well as
derivatives are applied to the wave function in the real spa
we will give their ~simpler! expression in the reciproca
space. Their expression in the real space can be obtaine
a Fourier transform, similar to Eq.~A2!. We define84,85

v loc,k,k8 ~G!5
1

V0
(
k

e2 iG•tk vk
loc~G! when GÞ0

50 when G50. ~A15!
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In this expression,

vk
loc~K !5E e2 iK•rvk

loc~r !dr , ~A16!

where the latter integral is performed throughout all t
space. The limiting behavior ofvk

loc(K ) for K tending to zero
diverges

vk
loc~K→0!52

4pZk

K2 1Ck1O~K2!, ~A17!

with

Ck5E S vk
loc~r !1

Zk

r Ddr . ~A18!

For the separable part, one obtains

vsep,k,k
~0! ~G,G8!5

1

V0
(
mk

emkS (G e2 i ~k1G!•tkzmk~k1G!D
3S (

G8
ei ~k1G8!•tkzmk* ~k1G8!D , ~A19!

where

zmk~K !5E e2 iK•rzmk~r !dr . ~A20!

The special form of the matrix of separable potential, E
~A19!, allows for its efficient application to any wave func
tion.

3. Exchange and correlation energy and potential in the LDA

In the LDA, the exact exchange-correlation energy,
functional of the density everywhere, is replaced by the
tegral of the densityn(r ) times the mean exchange
correlation energy per particleexc(r ) of the homogeneous
electron gas at the pointr . However, when combined with
pseudopotentials, this simple definition is to be modified,
order to take into account that only valence states are use
build the density: the contribution of the core electro
should be included, because of the nonlinear character o
exchange-correlation energy functional.67 The functional
then is

Exc@n~r !#5E
V0

@n~r !1nc~r !#exc@n~r !1nc~r !#dr ,

~A21!

where the pseudocore densitync is made of nonoverlapping
contributions from each atom,

nc~r !5(
ak

nc,k~r2tk2Ra!. ~A22!

The pseudocore density from each atomnc,k is built at the
same time as the pseudopotential.67,99 It has spherical sym-
metry, and is specified by a one-dimensional function. T
corresponding exchange-correlation potential is
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vxc„n~r !…5
d@~n1nc!exc~n1nc!#

dn U
n5n~r !;nc5nc~r !

,

~A23!

and its derivative with respect to the density
nt

iz

nt
ne
s

c

dvxc„n~r !…

dn
5
d2@~n1nc!exc~n1nc!#

dn2 U
n5n~r !;nc5nc~r !

.

~A24!

4. Unperturbed energy and Hamiltonian in the LDA

With these definitions, the electronic energy is
Eel$u
~0!%5

V0

~2p!3
E
BZ

(
m

occ

s ^umk
~0!uTk,k

~0!1vsep,k,k
~0! uumk

~0!&dk1E
V0

n~0!~r !v loc8~0!~r !dr

1E
V0

@n~0!~r !1nc
~0!~r !#„exc@n

~0!~r !1nc
~0!~r !#…dr12pV0(

GÞ0

un~0!~G!u2

uGu2
. ~A25!
:

po-

c
i-

e to
The Hartree energy@last term of Eq.~A25!# can also be
computed as

EH5E
V0

n~0!~r !vH8
~0!~r !dr , ~A26!

with the Hartree potential being defined as84,85

vH8
~0!~G!52pV0(

GÞ0

n~0!~G!

uGu2
when GÞ0

50 when G50. ~A27!

The Hamiltonian is given by

Hk,k
~0!5Tk,k

~0!1vsep,k,k
~0! 1~v loc8~0!1vH8

~0!1vxc
~0!!. ~A28!

The local, Hartree, and exchange-correlation~XC! potentials
are operators local in the real space which are independe
k.

APPENDIX B: RESPONSE TO AN HOMOGENEOUS,
STATIC ELECTRIC FIELD BY THE

LONG-WAVE METHOD: DETAILED TREATMENT

1. Small-wave-vector limit of the response
to an incommensurate perturbation

Inspired by Eq.~68!, we write the following first-order
potential operator change:

vext,q
~1! ~r ,r 8!5eiq•rd~r2r 8!, ~B1!

which corresponds to the simple change of phase-factor
local potential

v̄ loc,q
~1! 51. ~B2!

The supplementary constant 1/i uqu, present in Eq.~68!, will
be taken into account afterwards. No second-order pote
change, first-order separable potential change, or nonli
exchange-correlation core correction is present. This lead
important simplifications of the variational principle@com-
pare with Eq.~60!, which was obtained for collective atomi
displacements#:
of

ed

ial
ar
to

Eel,2q,q
~2! $u~0!;u~1!%

5
V0

~2p!3
E
BZ

(
m

occ

s ^umk,q
~1! uHk1q,k1q

~0! 2emk
~0!uumk,q

~1! &dk

1
V0

2
@ n̄q*

~1!~G50!1n̄q
~1!~G50!#

1
1

2EV0

dvxc
dn U

n~0!~r !

un̄q
~1!~r !u2 dr

12pV0(
G

un̄q
~1!~G!u2

uq1Gu2
, ~B3!

where we have taken advantage of

E
V0

n̄q
~1!~r !dr5V0n̄q

~1!~G50!. ~B4!

The corresponding nonvariational expressions are simple

Eel,2q,q
~2! 5

V0

2
n̄q*

~1!~G50!5
V0

2
n̄q

~1!~G50!. ~B5!

The associated first-order Hamiltonian operator is a local
tential operator, here written in the reciprocal space,

H̄q
~1!~G!5dG,014p

n̄q
~1!~G!

uG1qu2
1 v̄xc,q

~1! ~G!. ~B6!

The exchange-correlation contributionv̄xc,q
(1) (G) is obtained

from the knowledge ofn̄q
(1) through Eq.~63!. This local po-

tential operator includes a long-wave part~for G50), but
also local fields~for GÞ0), the latters being of electrostati
origin ~the Hartree part! as well as exchange-correlation or
gin.

From Eq.~B6! one can infer that the long-wave~macro-
scopic! potential, forG50 in the limit of q→0, is made of
the bare applied potential and the electronic screening, du
the Hartree term:
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H̄q
~1!~G50!5114p

n̄q
~1!~G50!

uqu2
. ~B7!

In the derivation of this equation, we have neglected
exchange-correlation contribution in comparison to the H
tree term in the limit ofq→0, because of the 1/q2 divergence
of the latter while in the LDA, the exchange-correlation e
ergy functional is well behaved in this limit.100

2. Analytical treatment of the Hartree divergence

The divergence of the Hartree term in Eq.~B3! can be
treated analytically, thanks to the Sherman-Morrison form
for connecting two inversion~or minimization! problems.101

The following auxiliary variational expression is first min
mized@this expression would be equal to Eq.~B3! if it were
not for the removal of the divergentG50 Hartree contribu-
tion#:

Ẽel,2q,q
~2! $u~0!;ũ ~1!%

5
V0

~2p!3
E
BZ

(
m

occ

s ^ũ mk,q
~1! uHk1q,k1q

~0! 2emk
~0!uũ mk,q

~1! &dk

1
V0

2
@ ñ q*

~1!~G50!1ñ q
~1!~G50!#

1
1

2EV0

dvxc
dn U

n~0!~r !

uñ q
~1!~r !u212pV0(

GÞ0

uñ q
~1!~G!u2

uq1Gu2
,

~B8!

with

ñ q
~1!~r !5

2

~2p!3
E
BZ

(
m

occ

sumk
~0!* ~r !ũ mk,q

~1! ~r !dk ~B9!

under constraints

^um,k1q
~0! uũ n,k,q

~1! &50, ~B10!

where the indicesm and n runs over occupied states. Th
associated nonvariational expressions give

Ẽel,2q,q
~2! 5

V0

2
ñ q*

~1!~G50!5
V0

2
ñ q

~1!~G50!. ~B11!

The quantity ñq
(1)(G50) has the following expression in

terms of the scalar products of zeroth- and first-order w
functions:

ñ q
~1!~G50!5

2

~2p!3
E
BZ

(
m

occ

s ^umk
~0!uũ mk,q

~1! &dk.

~B12!

The associated first-order Hamiltonian operator, in the li
q→0 is

H̃q
~1!~G!54p

ñ q
~1!~G!

uG1qu2
1 ṽ xc,q

~1! ~G! when GÞ0

51 when G50. ~B13!
e
r-

-

a

e

it

That is, the screening by the Hartree term has been remo
whenG50.

By the Sherman-Morrison formula, at the minimum
both Eq.~B8! and Eq.~B3! one gets the following relation
ships:

ñ q
~1!~G50!5

n̄q
~1!~G50!

11
4p

q2
n̄q

~1!~G50!

, ~B14!

n̄q
~1!~G50!5

ñ q
~1!~G50!

12
4p

q2
ñ q

~1!~G50!

, ~B15!

Eel,2q,q
~2! 5Ẽel,2q,q

~2! S 11
4p

q2
n̄q

~1!~G50! D , ~B16!

uumk,q
~1! &5uũ mk,q

~1! &S 11
4p

q2
n̄q

~1!~G50! D . ~B17!

These equations are especially important in that, wh
compared with Eq.~B7!, they show that the rate of change
Eel,2q,q
(2) with respect to an electric field@the long-wave part

of H̄q
(1)(G50)], is the same as the rate of change

Ẽel,2q,q
(2) with respect to a bare applied fieldH̃q

(1)(G50).

3. The limit q˜0

We now chose a particular directionq along which the
limit q→0 is taken. Let it be thea direction. We have
q5qea , whereea is a unit vector along directiona, andq is
the norm of theq vector, tending to zero. We expand th
zeroth-order and first-order wave functions in powers of
small parameterq:

umk1q
~0! 5umk

~0!1q
dumk

~0!

dka
1O~q2! ~B18!

and

ũ mk,q
~1! 5ũ mk,0

~1! 1q
dũ mk,0

~1!

dqa
1O~q2!. ~B19!

At the lowest order inq, the Euler-Lagrange equatio
derived from Eq.~B8!, with the Hamiltonian Eq.~B13!, is
satisfied by taking

ũ mk,0
~1! 50, ~B20!

which constitutes the unique solution of them, because
whole quadratic form in Eq.~B8! is definite positive~see the
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discussion in Sec. IV B of Ref. 42!. This means that the
expansion ofñ q

(1) , ṽ xc,q
(1) , or H̃q

(1) in powers ofq only be-
gins with the linear term.

From Eq.~B20!, at the first order inq, the constraints Eq
~B10! give

K um,k~0! Udũ nk,0
~1!

dqa
L 50, ~B21!

where the indicesm andn run over occupied states. Becau
of Eqs. ~B9!, ~B20!, and ~B21!, the expansion of
ñ q

(1)(G50) will even begin at the second order only. Th
same is true for the expansion ofẼel,2q,q

(2) .
Finally, taking into account the second-order expansion

Eq. ~B10!,

K um,k~0! Ud2ũ nk,0
~1!

dqa
2 L 1K dũ m,k

~0!

dka
Udũ nk,0

~1!

dqa
L 50, ~B22!

as well as its complex conjugate, we obtain a variatio
expression with respect to the quantitiesdũ nk,0

(1) /dqa :
e

s-

n

.
an
e

f

l

1

2

d2Ẽel,2q,q
~2!

dqa
2 U

q→0

H u~0!;
dũ ~1!

dqa
J

5
V0

~2p!3
E
BZ

(
m

occ

sS K dũ mk,q
~1!

dqa
UHk1q,k1q

~0! 2emk
~0!Udũ mk,q

~1!

dqa
L

2K dũ mk,q
~1!

dqa
Udumk~0!

dka
L 2K dumk~0!

dka
Udũ mk,q

~1!

dqa
L dk

1
1

2EV0

dvxc
dn U

n~0!~r !

U dñ q
~1!~r !

dqa
U2

12pV0(
GÞ0

U dñ q
~1!~G!

dqa
U2

uGu2
, ~B23!

with

dñ q
~1!~r !

dqa
5

2

~2p!3
E
BZ

(
m

occ

sumk
~0!* ~r !

dũ mk,0
~1! ~r !

dqa
dk

~B24!

under constraints Eq.~B21!.
The connection with the equations presented in Secs. V

and VIB is now possible, thanks to the identification

umk
Ea 5

qa

i uqu
dũ mk,0

~1! ~r !

dqa
. ~B25!
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