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Local-field effects in nonlinear dielectrics
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In a system of identical nonlinear dielectric inclusions immersed in a uniform linear dielectric medium the
mean polarization on a macroscopic length scale is related to the Maxwell field by a nonlocal and nonlinear
constitutive equation. The method of statistical averaging and cluster expansion is used to derive a formally
exact expression for the constitutive equation. The resulting cluster integrals are shown to be absolutely
convergent, i.e., independent of the shape of the macroscopic sample in the thermodynamic limit. For a
suspension of spherical inclusions a selection of terms leads to a nonlinear Clausius-Mossotti relation. Expres-
sions are derived for the correlation corrections to this mean-field r¢S0L63-18207)05216-9

[. INTRODUCTION ity or to wave propagation in a system with nonlinear scat-
terers. Harmonic generation can be taken into account. This
The theory of the effective dielectric constant of a suspenopens the way to the study of local-field effects in nonlinear
sion of identical dielectric inclusions immersed in a mediumoptics*®~*?We have considered continuous systems in three
with a linear dielectric constant has a long and distinguishedlimensions, but the formal expressions of the cluster expan-
history 2 going back to contributions by Maxwell and Lor- Sion can be applied in other dimensions and in systems with
entz. An intrinsic difficulty of the theory is that the relation- lattice structure.
ship between the electric polarization and the applied electric
field is quite nonlocal. On the other hand, the existence of an
effective dielectric constant implies that the relation between ll. FORMULATION OF THE PROBLEM
the pOlarization a.nd the aVerage eleCtriC f|e|d iS |0ca|. It iS the Our aim is to determine the effective properties of a non-

task of a statistical theory to show how the effective dielecqinear disordered dielectric system on a macroscopic length
tric constant can be calculated from the microstructure of th&cale. On the microscopic length scale a particular configu-
suspension. Some years ago it was shown b)g Felderhghtion of the system consists of a large numbeof identi-
etal,’ following earlier work by Finkelber§® and cal, nonoverlapping inclusions distributed approximately
Jeffrey;”" how this task can be accomplished, in principle, by niformly in a large volume. The configuration is charac-
the method of cluster expansion. In the following we developerized by the positions of centef®;,...,Ry} and, if the
a similar formalism for the TgCFOSCODiC constitutive equa-inclusions are not spherical, by a set of orientational vari-
tion of a nonlinear dlelectrléf _ _ o ables{Q,...,.Q\}. The inclusions are immersed in an infi-

~ We allow arbitrary nonlinearity of the dielectric inclu- pjte uniform background with dielectric constaat. The
sions. In earlier work the case of weak nonlinearity wasgjelectric response of a single inclusion, immersed in the
cpn&dgreﬂjlz and compared with the results of computerpackground, to an applied electric field is assumed known. It
simulation”® It turned out that for a system of spherical in- ig specified as a nonlinear and nonlocal dependence of the
clusions the correlation corrections to the mean-field resulf,qyced polarizatiorP at the pointr on the applied field
were larger than in the linear case. For strong nonIinearit;EO(r/). By definition the induced polarizatio®(1;Eo)
the effect of local fluctuations in the microstructure will be =P(1:r;Eq(r')) is nonvanishing only within the inclusion

even more enhanced. It is known from computer simulationg;pejed 1. The dependence on positiep and orientation
on fractal aggregates that the electric response is charactem—l is summarized in the symbol 1.

ized by hot spots on the microscopic schlélence the study The basic equations for the electric fidtdand the dielec-

of correlation corrections is particularly relevant for strongly e displacemen are Maxwell's electrostatic equations
nonlinear systems. The cluster expansion developed in the

following, in principle, provides the necessary tool. For a
system of spherical inclusions we derive a nonlinear V.-D=4mp,, VXE=0, (2.1
Clausius-Mossotti relatioH'® Explicit expressions are

found for the_ first few terms of the cluster e>_<pansion,_ inVOlV'Wherep():pO(r) is a fixed charge distribution, independent
ing two-particle and three-particle correlation functions. A ¢ ihe inclusions. Maxwell’s equation@.1) are assumed to

study of these terms would yield valuable insight into thepq /ajig on the microscopic level for each fixed configuration
nature of the correlation corrections to the mean-field result(l ...N) of inclusions. The dielectric displacement is given

As is well known, the problem of electrical or thermal by
conduction in a composite is mathematically identical to the
dielectric one. However, our study has relevance beyond this
particular class of problems. The theory can be applied to D(1,...N;Eg)=¢€,E(1,... N;Eg) +47P(1,... N;Ep),
other transport phenomena, for example, to nonlinear elastic- (2.2
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whereP(1,... N;Eyp) is the induced polarization, to be deter- (D)= €(E)+4m(P). (2.10
mined from the incident electric field on each of the inclu- ) , )
sions. The applied fiel&y(r) is assumed to be a solution of The averages satisfy Maxwell's equations

the equations V-(D)=4mp,, VX(E)=0. (2.11)

V-eiBo=4mpy, VXE=0. 23 The problem is to find the constitutive equation relating the
The electric fieldE(1,...N;Eo) is the sum of the applied average polarizatiofP) to the Maxwell field(E). The rela-
field and the induced field, tion will be nonlinear and nonlocal. We write it in the abbre-
viated form
E(1,...N:Eg)=Eo+Gy-P(1,...N;Eg), (2.4

: , . o (Py=X(E)). (2.12
whereGy is the Green'’s function for the electric field due to _ _ _
a given polarization in a uniform medium with a dielectric In the following we d_enve a formally exact cluster expansion
constante;. The explicit form for G, acting on a given for the vector functionaX({E)). The terms of the cluster

vector fieldV(r) is expansion are expressed in terms of the partial distribution
functions corresponding to the probability distribution
4 , W(1,...N).
[Go-VI(r)=- 3e; V(n+ L dr The partial distribution function

3(r=r")-V(r")(r=r")y—(r—r")2V(r")
X
elr—r'|?

N!
, ﬂ(l,...,S)—m f f d(s+1)---dN W(1,...N)
2.5 (2.13

where the subscripf on the integral indicates that the inte- g_ives the probability of finding a configuratio.n efinc]u-
gral is carried out with an infinitesimally small sphere cen->10Ns whatever the configuration of the remainhg s in-

tered atr excluded. The polarizatioR(1,... N:E,) is the clusions. The integrations in Eq2.13 are over positions

sum of the polarizations induced in each of the spheres, {Rj} and_ orientational vanablemj.}. We assume that the
system in volume() on average is spatially uniform and

N possesses a well-defined thermodynamic It oo, ()—o0
P(1,...N;Eq) = E P(j;E{(1,...N;Eo)), (2.69  with uniform densityn(1) and translationally invariant par-
= tial distribution functions(1,... ).

The constitutive equation EQR.12) is derived in the ther-
modynamic limitN—oo, (J—o at constant ration=N/(}.
Because in this limit the system becomes translationally in-
variant, the equation has the property that the average polar-
ization(P(r)) at pointr depends on the mean fig{l(r’)) at
E{(1,...N;Eg) =Eo+Go- 2, P(K;E((L,... N;Ep)). pointr’ only via the difference vectar—r’. Only pointsr’

k#] 2.7 in the neighborhood of contribute, and we shall show that
' the dependence on the differencer’ is short ranged. A
Since the single-particle respond®(1;E;) is assumed uniform mean fieldE) gives rise to a particular value of the
known, Eq.(2.7) for j=1,... N provides a set of equations average polarizatiofP). The dependence dP) on (E) for
from which the incident field$E; (1,...N;Eo)} can, in prin-  uniform(E) is the constitutive relation of prime interest. It is
ciple, be found. Hence, for any configuration.(1,N) and  determined by the nonlinear response of the individual inclu-
applied fieldE, the induced polarizatioR(1,... N;E,) and  sions and by the microstructure of the suspension, as given

where Ej’(l,...,N;EO) is the field incident on inclusion,
that is, the sum of the applied fiele, and the fields gener-
ated by the other inclusions,

electric fieldE(1,... N;Ep) are, in principle, determined. by the partial distribution functions.
The macroscopic response of the system is obtained by a
statistical averaging procedui®?! We assume that the dis- Ill. CLUSTER EXPANSION

order of the system is described by a known probability dis- ) .
tribution W(1,... N). The distribution is assumed normal- It is evident from Eqs(2.8) and(2.9) that both the aver-
ized to unity and symmetric in the labels.1,N. The @ge polarization(P(r)) and the average electric fiel&(r))
average electric field is are functionals of the applied fiely(r"). It is known from
Maxwell theory that for a finite macroscopic sample these
relations are highly nonlocal. We shall show that a relation
<E>:f f dl---dN W(1,... N)E(L,... N;Eo) of the form Eq.(2.12, which is independent of the shape of
(2.9 the sample, can be established by eliminating the applied
field E, in favor of the average fiel¢E) and then taking the
thermodynamic limit. We perform the elimination by the
method of cluster expansion.
(p):f f di---dN W(1,... N)P(1,...N;Eo). The polarizationP(1,... N;Eg) is found on the micro-
2.9 scopic level as the solution of tHé-inclusion problem for
' the given configuration, placed in the applied fi€g(r’).
These fields are related by the average of P The effect of adding a single inclusion is expressed conve-

and the average polarization is
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niently in terms of cluster functions. These are defined suc- Noq
cessively as Y=—G0~E o f dl---ds n(1,...s)M(1,... s;(E))
s=1 S

P(1;Eq) =M(1;Ey),

N1
~Go- X, o | dldsni,...
P(1,2;Eq) =M(1,2;Eq) + M(1;Eq) +M(2;Ey), Go 521 S| fd ds n(1,...5)

P(1,2,30) =M(1,2,3Eq) + M(1,2;E) + M(1,3;Eo) xi MD(1,... s;(E)): YD (3.8
+M(2,3:Ey)+ M(1:Ey) + M(2:E,) =t

+M(3Ey), (3.)  and solve this equation by iteration. This yieMsexpressed
formally in terms of(E). The result is substituted into Eq.
(3.7), and this yieldsM(1,...s;Ey) expressed in terms of
(E). Substituting this into Eq(3.4), we finally find the aver-
P(N;Eg) = 2 M(M;Eyp), (3.2 age polarizationP) expressed in terms dE). In the ther-
modynamic limit this provides a formally exact expression
where\is a set of inclusion labels and the sum is over allf0r the constitutive equatiof@.12. Practical results are de-
subsets ofV. The inverse of this rule is rived by selection of terms involving particle correlation
functions of low order, in the expectation that higher-order
correlation functions make only small corrections.
M(NVEg)= > (—1)N"MP(M;E), (3.3 In the iteration of Eq.(3.8) we use the fact that the
MCN Ith-order derivativeM(!) is | linear, i.e., it is linear in each of

whereN andM are, respectively, the number of labelstfi  its | legs. Consequently, the integration over particle coordi-
andM. Inserting Eq(3.2) in Eq.(2.9), remembering that the hates and the summation over number of particles can be
number of subsets of objects out ofN objects isN!/[(N interchanged with the contraction over spatial coordinates

—s)Is!], and using the definition Eq2.13 of the partial and field components. The final expression XdE)) is a
distribution functions, we obtain sum of many terms involving integrals over products of the

partial distribution functions. The sum can be rearranged and

etc. The general rule is

1 ordered into classes of terms corresponding to the number of
(Py= 2 o f f dl---ds n(1,...5)M(1,... 5;Ep). inclusion labels involved. This yields the cluster expansion
s=1 S
(3.9
From Eq.(2.4) we find for the average electric field X((E))= 2 = 1)' Xs((E)), (3.9

N
1
(E)=Eo+Go: El sl where the subscrips indicates the number of inclusion la-
bels.
. In order to see the structure of terms in the cluster expan-
f f di---ds n(l,...s)M(L,... S;Eo). (3.5 sion (3.9, it is instructive to consider first the terms of low

: - . . order. The first term of the cluster expansion is simpl
We obtain the constitutive equatid@.12 by formally in- P Py

verting Eq. (3.5, substituting the resulting expression for

E, in terms of (E) into Eq. (3.4), and taking the thermody-

namic limit. X1(<E>):f di n(l)M(1;<E>)- (3.10
In order to invert Eq(3.5) we perform a Taylor expansion

of M(1,...s;Ep) abouE). Thus we introduce the difference

field It can be evaluated from the response of a single inclusion.

The second term involves integration over the coordinates of
Y=Ey—(E) 3.6 WO inclusions. It reads

and find the expansiéh
x2(<E>):%f dlf d2[n(1,2M(1,2{E))

M(1,...5,Eq)=M(1 E)+ 2> MD(1,...s(E)): YD,
(L SE) =ML 5(E) 2 &) ~2n(1)n(2)MY(L(E)) GoM (23 (E))].
(3.7 (3.11
whereM() is thelth-order functional derivative divided by
I and YV stands for the direct product bfvector fieldsY.  Its explicit calculation involves the solution of the two-

The double dot : indicateslJold integration over spatial inclusion response problem. In the second term we have used
coordinates and I3fold summation over vector indices. We the symmetry in labels to simplify the expression. The third
write Eq. (3.5 in the form term in the cluster expansion reads explicitly
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X3((E>)=%J J J d1d2d3{n(1,2,3M(1,2,3(E))
—3n(1,2n(3)MV(1,2;(E)) GoM (3;(E)) FIG. 2. Rooted loaded treds with two labels.

—3n(1)n(2,3MI(1;(E))GoM(2,34E))
+6n(1)n(2)n(3)MI(1;(E))Gy

X MY (2(E))GoM(3;(E))+6n(1)n(2)n(3
(2{E))GoM(3;(E)) +6n(1)n(2)n(3) etc., wheref(1) is the characteristic function of inclusion 1.
XMP(1,(E)):[GoM(2(E))][GoM(3;{E))]}.  The average polarization can be written as

(3.12

N
. : L . . 1
To discuss the higher-order terms it is convenient to intro- (Py= > — f f dil---ds n(1,...5)
duce a diagrammatic representation. &1 (s— !

XM(1;2,...5,Ep). 4.2

0(1)P(1,2,3E7)=M(1;2,3Ey) +M(1;2;E5) +M(1;3;E)
+M(1;Ey), 4.1

IV. DIAGRAMMATIC REPRESENTATION

Before presenting the diagrammatic representation wdNe average electric field is given by E@.5 as before.
note that the cluster integrals can be slightly simplified."Vith the above definition the two-particle cluster tef8all)
Since the inclusions are identical, we can single out label £2n be rewritten as
and consider in each of the terms the polarization induced in
that inclusion. Correspondingly, we define rooted cluster
functionsM(1;2,... s;Ep), defined successively as

6(1)P(1;E0) =M(1;E), XMIP(L(E))GoM (2:(E))]. (4.3

x2<<E>)=ffdld2[n<1,2>M<1;2;<E>>—n<1>n(2>

0(1)P(1,2;Eq)=M(1;2;Eq) +M(1;Ey), The three-particle ternB.12 can be rewritten as

X3((E)) = J d1d2d3{n(1,2,3M(1;2,3{E))—n(1,2n(3)MP(1;2E))GM(3;(E))

—n(1,3n(2)MY(1;3(E))GoM(2;(E)) —n(1)n(2,3 MY (1;(E))GoM(2,3}(E))
+n(1)n(2)n(3)MI(1;(E)) GM™P(2;(E)) GoM (3;(E)) +n(1)n(2)n(3)

XM (1(E))GoM™M(3;(E)) GoM (2:(E)) +n(1)n(2)n(3)MP(1;(E)):[GoM (2:(E))]
X[GoM(35(E))]+n(1)n(2)n(3)MP(1:(E)):[GoM(3;(E))I[GoM (2:(E)) 1} (4.4

The first term of the cluster expansion, given by Eg.the right in the fifth diagram in Fig. 3 is of the third genera-
(3.10, is associated with the diagram shown in Fig. 1. Thetion. At each box a numbédrof lines can issue to the right.
second-order term in Eq4.3) is associated with the two This corresponds to a factd") and is called the valency of
diagrams shown in Fig. 2. Each box contains the labels inthe box. Valency zero corresponds to a fadibrand indi-
volved and the line represents the fact®g. The three- cates the end of a branch. The symmetry number of a loaded
particle term in Eq.(4.4) is associated with the eight dia- tree equals the number of nontrivial permutations of labels
grams shown in Fig. 3. over the boxes. If the symmetry number is taken into ac-

It is evident from the above examples that the diagrams
have the structure of rooted trees or arborescetici¥ge
shall refer to the diagrams as loaded trees. The term
X({E)) is associated with a set of loaded trees of orgler
each tree having a total aflabels in the boxes and at most
s—1 branches. The location of a box, as counted from the
left, will be called its generation. For example, the box on

FIG. 1. Rooted loaded treg; with one label. FIG. 3. Rooted loaded tred% with three labels.
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count, then a labeling rule can be adopted, for example, thg «(Ts;(E)). For example, with the fourth diagram in Fig. 3
labels can be ordered from left to right and from top to bot-we associate the product

tom.
Each of the terms in the integrand of the cluster integral -
X, can be associated with a labeled loaded tres kfbels n ( 2,3 ) = n(l)n(2,3) (4.9

T,. With each treel we can associate a product of partial
distribution  functions n(T;) and a polarization and the polarization

M ([IH23J(E)) = MO(1(E)) Go M (2.3:(E)). 4.6

With this notation the cluster integral of ordercan be ex- each of which is absolutely convergent. For the first integral
pressed as one sees this by considering large distances and using a
multiple-scattering expansion of the polarizatidi1;2;E)).
_ We discuss the multiple-scattering expansion further below.
= _1\k-1 .
XS(<E>)_f di fds% (=D n(TYM(Ts (E)), For the second integral the absolute convergence follows
4.7y  from the factorizatiom(1,2)~n(1)n(2) at large distances.

] The three-particle cluster term in EG1.4) can be rear-
where the sum is over all labeled loaded trees labels and  anged as a sum of eight terms

k indicates the number of boxes. We shall show that this can
be rearranged to 8

X3(<E))=f d10|20|3_21 1;(1;2,3(E)). (5.2
XS((E) =2 X(Tsi(E)). 4.8 ‘

The first term reads

with the cluster integralX(Ts;(E)) corresponding to the o _ W
loaded treeTs. It is already evident from the two-particle 11(1;2,3(E)) =n(1,2,3{M(1;2,3 —-M™(1)GoM(2,3)

cluster term given by Eq4.3 that we cannot simply inter- —M®(1:2)GoM (3)— MV (1:3)GoM (2)
change summation and integration in £4.7) since in the ’ 0 ’ 0
thermodynamic limit the separate integrals depend on the +MD(1)GMP(2)GyM (3)
shape of the sample. In order to arrive at the f@¢a®) with D D
shape-independent integrals we must first rearrange the inte- +MP(1)GM™(3)GoM (2)
grand. +M2)(1):[GoM(2)][GoM(3)]

V. REARRANGEMENT +MP(1):[GeM(3)][GM(2)]}, (5.3

In the preceding section we have shown that each term iwhere for brevity we have omitted the argume¢gp on the
the cluster expansio(8.9) is a cluster integral with an inte- right-hand side. The second term in Ef.2) reads
grand that can be represented as a sum of loaded trees. In the
linear theory it was shown that the cluster integral of order 1,(1;2,3{E))=[n(1,2,3—n(1)n(2,3 MY (1)GoM(2,3)
s could be rearranged and expressed as a sum of integrals, W W
each corresponding to an ordered partition of $Habels. It ~MP(1)GMT(2)GeM(3)
was shown that each term in this sum is by itself absolutely — Mm(D) (1)
convergent. A similar rearrangement is possible in the non- ML) GoM™(3)GoM (2)]- 4
linear case. The cluster integral of ordecan be rearranged The third term reads
and expressed as a sum of integrals, each of which is abso-

lutely convergent. 13(1;2,3(E))=[n(1,2,3—n(1,2n(3) {M(1;2)G,
As in the linear case, the two-particle cluster term in Eq. L L L
(4.3) can be rearranged as a sum of two cluster integrals XMI(3)~MB(1)GM™P(2)GeM(3)

~MP(1):[GoM(2)][GoM(3)]

Xl (8= | dLdzna.2ML248) ~ME(1):[GM(3)[GM (2T} (5.9

_M(1>(1;<E>)GOM(2;<E))]+f d1d2[n(1,2 The fourth term is given by

~n(DN2)IMY(L(E)GM(2,(E)), (5.1 14(1;2,3(E)) =15(1;3,2(E)). (5.6
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FIG. 4. Lattice of rooted loaded treds with two labels.

The fifth term reads

15(1;2,3(E))=[n(1,2,3 - n(1,2n(3)—n(1)n(2,3
+n(1H)n(2)n(3) MM (1)GM P (2)

XGoM(3). (5.7
The sixth term is given by
l6(1;2,3{E))=15(1;3,2(E)). (5.9

The seventh term reads

1,(1;2,3(E))=[n(1,2,3 - n(1,2n(3)~n(1,3n(2)
+n(1)n(2)n(3)IM?)(1):[GeM (2)]

X[GoM(3)] (5.9
and the eighth is given by
1g(1;2,3{E))=1(1;3,2(E)). (5.10

Interchanging summation and integration in Eg2) we find
that X5((E)) can be written as a sum of eight integrals,

8
X3(<E))=zlfd1d2d3lj(1;2,3;<E>), (5.11)
=

some of which are equal by symmetry. It may be seen by

10331

The above rearrangement can be generalized to the
higher-order terms in the cluster expansion E39). The
rearrangement leads to the for@h.8) with the cluster inte-
gral X(Ts;(E)) given by

X(Toi()= [ a1 [ ds bT)CTLi(ED. (512

with so-called block distribution functiob(Ts) and chain
polarizationC(T;{E)). The names are coined in correspon-
dence with names for similar quantities in the linear thebry.

In order to define the block distributidn(T,) and chain
polarizationC(T;(E)) we introduce a partial ordering of
the loaded trees of labels. We writeT < T, if the treeT; is
either the same as the tré&g or can be obtained frofig by
removing one or more lines, with the convention that upon
removal of a line the box at the right end is merged with the
one on its left end. For example, for the trees of three labels
one has the ordering

> [1H23] > [ITH2H3]

1.23

and also

(1257 > [2+3) >

but no ordering exists between

2,3 and

inspection that each of the eight integrals is absolutely con-
vergent, either because of the distribution function factor or
because of the polarization factor. An example of ordered trees with four labels is

[1234] > [ 1,24 >

The block distribution functior(Ts) is defined by n(Ty)=n(B})---n(By,), (5.14

b(To)= > (—1)¥ " In(T.),

’
TSZTS

(5.13

whereB; denotes the labels in bgxon the treeTg, which
hask’ boxes. The chain polarizatio@(Ts;(E)) is defined
with the abbreviation by
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from the bottom |s(:::) the number of ways one can
select!”—I of thel”—I" lines that must be removed from
T to getT;. The sum is therefore

C(Te(E))= 2 (-1 KM(TL(E), (5.19

’
TSSTS

wherek is the number of boxes on trég,.

The proof of the identity4.8) follows by substitution of 1" /| 0, 1"#l’
the definitions(5.13 and(5.15 into Eq.(5.12. This yields >, | )(—1)'"':(1_1)"’“: L ey (5.19
=1 I
2 b(T¢)C(Ts;(E))= 2 E (—1)¥ ~In(T)) which is equivalent to Eq(5.18. The latter is identical to
Ts 1l=T( Eq. (5.17 since the number of boxes on a tfegin row | is
k=s—1+1.
% 2 1)k—k”M(Tn.<E>) A comparison of Eqs(5.3—(5.10 and the lattice fors
S

=3, shown in Fig. 5, clarifies the rules of the game. Each of
the integrands shown in Eg&.3)—(5.10 corresponds to a
o , particular tree on the lattice. The top tree corresponds to Eq.
- > (-1 N(TM(Ts(E)) (5.3 and the remaining trees in the order from left to right

Ti<T,

T T and from top to bottom correspond to E@5.4—(5.10), re-
spectively. Label 1 has been selected and plays a special role.
x 2 (mDk¥
To=Ts=T, VI. ABSOLUTE CONVERGENCE

. 2 (— Dk In(TM(T.:(E)). In this section we discuss the absolute convergence of the
s s cluster mtegrals{X(TS,(E))} occurring in Eq.(4.8). The
discussion is similar to that in the linear cdsBhe integrand
(516  jn Eq. (5.12 is the product of a block distribution function
In the last line we have used the identity b(Ts) and a chain polarizatio®@(Ts;(E)), each associated
with the loaded tre€ls. To demonstrate absolute conver-
gence of the integral we show that for widely separated con-
figurations the integrand vanishes sufficiently rapidly, be-
cause of the vanishing either b{T) or of C(Ts;(E)).
which is proved below. We assume that the distribution functiamM(1,...N) is
The collection of treeg§T} can be arranged in a lattice such that the partial distribution function$1,... s) have the
ordered according to the number of boxes, with the top rowproduct property: for a configuration withwidely separated
consisting of the single box witls labels, the second row groups, corresponding to a partition of the labels iktdis-
consisting of trees with two boxes, etc. The bottom line conqoint subsets3,, B,,...,By, then
sists of all rooted trees withiboxes, each containing a single
label. We link every tree to those trees in the row below, n(1,...8)~n(By)n(By)---n(By). (6.7)
from which it follows by removal of a line, as defined above

D (5.17)

Te<Te<T,

-~ . . 'If any line of the tre€T is cut, then thes labels are separated
;Tﬁcéngg::;esttshifm %V\?S dg;tes%;uﬁ.ir;rflllijg.’ ﬁﬁetTiticeinto tyvo groups: those attached to the part of the tree on the
for s=3 is shown in Fig 5 The ordering of trees corre- left side of the cut and thoge gttaphed to the part on_the right.
C e assert that the block distribution functib(T;) vanishes
sponds to the order qf rows for those trees that are connecte\%{r any configuration in which the coordinates associated
by dotted lines running upward. For any two tréEsand ity the labels of the first group are widely separated from
T such thafT(<T; one has those associated with labels in the second group. To see this
P we note that the sum E¢5.13 definingb(T,) is over the
0, Ti#T, . . . )
(—1))"'= s (5.18 trees in the Iattlc_e that can be obtained frégby removing
et.<T' 1, T4=Tg, lines. The trees in the sum can therefore be paired, the one
e having the line that is being cut, with the other in the row
where the sum is over the tre€g that can be obtained from ahove that is obtained by removing the line. For the sepa-
Ts by removing lines and from whiclig can be obtained by rated configuration the terms corresponding to each pair can-
removing lines, and whereand!” are, respectively, the row cel since they have opposite signs and, on account of the
numbers in whichTg and T¢ lie, the rows being counted product property6.1), the same product of partial distribu-
from the bottom. The proof of Eq5.18 follows from the  tion functions appears in each. As an illustration of this re-
fact that the number of trees in the sum that are intheow  sult,

b =n(1,2,3) — n(1,2)n(3) - n(1,3)n n 2 )
( ) ( ) —n(1,2)n(3) — n(1,3)n(2) + n(1)n(2)n(3) (6.2
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vanishes when 1 and 3 are near but far from 2; it does not We see therefore that for any configuration in which there
vanish, however, when 2 and 3 are near but far from 1. is a wide separation of inclusions corresponding to labels
We now show that the chain polarizati@{T,;(E)) van-  within a box of the tred, there must be at least two factors
ishes sufficiently rapidly for those configurations in which G, linking the separate inclusions. As a consequence, the
coordinates corresponding to labels within one of the boxeshain polarization will vanish as the inverse sixth power of
B,,...,By of the treeT are widely separated. To show this the separation, leading to absolute convergence. On the other
we study the multiple scattering expansion of the chain pohand, for configurations in which there are wide separations
larizationC(Tg;{E)). corresponding to the links between the boxes the chain po-
The multiple-scattering expansion of the polarizationlarization vanishes only as the inverse cube of the separation,
P(1,...s;Ep) of sinclusions placed in the fielfy(r) can be but for exactly these configurations the corresponding block
obtained by Taylor expansion abdbg of the argumeng| distribution function vanishes. Hence the product occurring
in the separate termB(j;E/(1,...5,Eo) in Eq. (2.6) and inthe integrand of Eq5.12) vanishes sufficiently rapidly for
iteration of Eq.(2.7), specialized tdN=s. Hence we obtain all configurations and the integral is absolutely convergent.
the multiple-scattering expansion of the polarization
M(1;2,...5;{E)) of inclusion 1 in the presence af—1 VII. DENSITY EXPANSION
other inclusions, all placed in the fiel@) and with terms

subtracted according to the cluster expansion @dl). In In this section we relate the cluster expansi8rd) to an
the multiple-scattering expansion this polarization is ex-€xPansion in powers of number densityand consider ex-

pressed in terms of the single-particle polarizationsplicm_y the term of Io_west order in density. Each of_the par-
{M(j;(E))}, their derivatives{M()(j (EN) fori=12,..., tial dlstnbut!on functionsi(1,...,8) can b.e e>_<panded in pow-
and the connecting Green’s functi@y. It may be repre- ers of density. The lowest-order term is simply

sented as a sum of rooted trees with label 1 at the root, a s

single label from 1..,s associated with each of the nodes, a S _

factor M()(j;(E)) corresponding to a node with labeland n(L...8)=n ,—1:[1 efy), .9
right-hand valency, a factorM(j;(E)) corresponding to an ) ) ] o ) o
end node with labej and with the conditions that the labels Where ¢({;) is the orientational distribution of inclusion

at each end of a line must differ and that each label musi? the low-density limit. As a consequence, the texmin
occur at least once. As an example, we show in Fig. 6 one dd.- (3.9 carries at least a facto®. In a density expansion of
the rooted trees fos=3. Each of such rooted trees sf X((E)) at fixed(E) only the single-particle terrs=1 con-
labels has an indetg. The polarizatiorM (1;2,...s;(E)) is  tributes to orden. _ o o
given by the sum of polarizations corresponding to all dif- TO lowest order in density the constitutive equation is
ferent rooted trees of labels, therefore approximated by

M(l;Z,---SKE)):tZ M(ts;(E)). (6.3 <P>*X1(<E>)=nf dR;dQ;0(Q1)M(1(E)). (7.2

The polarizatiorM (T;(E)) corresponds to a subset of these As noted at the end of Sec. Il it is of particular interest to
diagrams, namely, those for which the labels are divided inteonsider this relation for uniform Maxwell fiel¢E). For a
the boxesB,,...,By of the treeT and all allowed lines be- particular field point the integration over positioR; yields
tween labels within the boxes occur, but the different boxest value equal to the integral of the polarization over the
are connected only by a single propagator, corresponding timclusion for fixed orientatiorf); and with center at a fixed
a line of the tre€T. A factor (—1)' provides a sign corre- position, say, the origin, when it is placed in the same uni-
sponding to the numberof lines in treeT. form field (E). This is just the dipole moment

A tree tg is called reducible if it can be split into two
branches of two distinct subsets of labels by the cutting of a
single line. A tree that is not reducible will be called irre-
ducible. If the expression favi (T ;{E)) is put into the defi- ) ) , .
nition Eq. (5.15 for the chain polarizatio©(T,;(E)) there We denote the average over orientations of the inclusion as
is a cancellation of many terms. All terms corresponding to
trees{ts} that are reducible inside the box;} of the tree M(<E>):j dQ1e(Q1)p(Q4(E)). (7.4)
T, cancel out. Only those treé¢t;} remain that are reducible
at the lines joining the boxes of the trég. To demonstrate
this result we note first that with a given reducible ttge

With this notation, the average polarization is, to first order

s X X in density,
occurring inM(Tg;(E)) we can associate a unique trég
by identifying the sets of labels in the irreducible parts of (Py=nu((E)). (7.5
ts with the boxes of the tred;. The treets will occur
exactly once in each tregg in the sum in Eq.(5.19 for For example, for a spherical inclusion of radias cen-

which T¢<T{<Ts. By the identity(5.18 these terms pre- tered at the origin, and made of a material for which the
cisely cancel when the sum ové&t is carried out. induced polarization in a uniform inner fiel is
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FIG. 6. Typical multiple-scattering diagram for three inclusions.

analogy to the linear case. For these trees we limit the inte-
gration over 3-dimensional configuration space in Eg.

FIG. 5. Lattice of rooted loaded tre@s with three labels. (5.12 to the region in which the inclusions overlap sequen-
tially in successive generations. Thus, for the tree in the

o(E), r<a lower left-hand corner in Fig. 5, inclusion 2 must overlap

P(r)= 0 r>a (7.6 with 1 and inclusion 3 must overlap with 2, while for the tree
' ’ in the lower right-hand corner both inclusions 2 and 3 must
the total induced dipole moment is overlap with 1, but not necessarily with each other. For each

4 type of tree in the bottom line of the lattice there ame (

N —1)! trees differing only by a permutation of the labels

P1(Eo)= 75~ a°g(E). 7.0 2,...s over s—1 boxes. Their contributions to the sum in

Eq. (4.8 differ only by a relabeling of the variables of inte-
gration and therefore are all the same. We can therefore write
our approximation to the constitutive function in Eg.9) as

The inner fieldE; is related to the applied field, by

41
Ei:EO_S_Elg(Ei)- (7.9 .
This can be solved foE; as a function of,, X(<E>)’~VX°V(<E>):S§1 % XOV(T2’<E>)’ 8.0
E,=h(Ey). (7.9

where the sum is over the trees with standard labeling in the
Hence, in this case the functiqe(E,) to be used in Eq(7.5)  bottom line of the lattice and the integration volume for each
is of these trees is restricted to the overlap volume, as defined
above. In the overlap volume the block distribution function
A takes the simple form
M(Eq) = - a°g(h(Ey)). (7.10
b(T2)=(—1)>"*n® (overlap. (8.2
An interesting example of a material with strongly nonlinear
properties is CdS. An aqueous suspension of spherical par- The integral over the overlap volume for each ti€ecan
ticles of this material can show optical bistabilffy*° be performed sequentially, starting wiy, corresponding
The next-order term in the density expansion of the contg the labels in the lower right-hand corner of the labeled
This requires solution of the nonlinear response problem fop yniform field(E). The resulting induced fiel&;q(s;(E))

a pair of inclusions placed in a uniform field. acts on the neighboring inclusion labelgdconnected tcs
by the lower right-hand line of the tre‘i. It was shown in
VIIl. NONLINEAR CLAUSIUS-MOSSOTTI RELATION Ref. 28, Eq.(3.27), that when this induced field is evaluated

at a pointr within a sphere of radiua centered aR; and

In this section we specialize to spherical inclusions of : . . .
radiusa and show that for this case one can derive a nonlin:[hen integrated over all positiori; such that the inclusion

ear Clausius-Mossotti relatiofP) = Xycu({E)) by restrict- overlaps the sphere, one gets the result

ing the volume of integration of the cluster integrals in Eq. 4

(5.12 to the so-called virtual overlap volume and consider- f Eing(S;(E))dRs= — i u((E)),
ing a uniform field(E). In the linear case the same procedure |Rg—Rj|<2a 3e;

leads to the Clausius-Mossotti formula for the effective di-

electric constart’ The nonlinear Clausius-Mossotti relation 0<|r—Rj|<a, (8.3
(NCM) takes the form we have derived earlier on the basis of
a Lorentz local field argumen. where u((E)) is the dipole moment induced in sphese

The NCM relation contains only the single-particle re- The argument can be repeated for each of the remaining
sponse functiomu(E,), defined in Eq(7.4), and the number s—2 labels on the tre€® and shows that each of the Green'’s
densityn. For spheres there are no orientational variablegunctions gives a uniform field acting on the inclusion on the
and the cluster integrals are over positions of centers only. Ifeft end of the line. One can easily convince oneself that the
order to derive the NCM relation we limit the sum over treessum in Eq.(8.1) corresponds to the Taylor expansion of the
in Eqg. (4.9 to those in the bottom row of the lattice, in self-consistent equation
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A whereE; must be expressed in terms @) via Eq. (8.10.

Xnem((E)) =nu| (E)+ 73— XNCM(<E> (8.4  This expression for the effective dielectric constant was de-
rived by Levy and Bergmaf?. It may be regarded as a gen-

This is the nonlinear Clausius-Mossotti relation, which caneralization of the Maxwell-Garnett formula to the nonlinear

be found alternatively from a Lorentz local-field argumént. case. It is equivalent to the nonlinear Clausius-Mossotti re-

Note that in Eq(8.4) the field(E) is assumed to be uniform. |ation (8.4) for the case of uniform spheres. The latter rela-

We have investigated the consequences of (Bef) for the  tion is more general since it requires only the nonlinear di-

absorption line shape in a fluid of two-level atoms with polar polarizability.

intensity-dependent polarizability.

In the case of uniform spheres with nonlinear dielectric

constante,(E;) the induced polarization for uniform inner IX. DISCUSSION

field E; can be expressed as We have shown that the method of cluster expansion
yields a macroscopic constitutive equation of the form
9(E)= % E; . (8.5  (2.12, relating the average polarizatigR) to the Maxwell
am field (E) in a system of nonlinear dielectric inclusions im-
If we replace the applied fielfl, in Eq. (7.8 by the Lorentz mersed in a linear dielectric medium. The vector functional
local field (Py=X((E)) is given by a sum of cluster integrals, as shown

in Egs.(3.9), (4.8), and(5.12. In the calculation of the mac-

iy roscopic response the Maxwell fie{lf) may be assumed to
FL=(E)+ 3e. (P), (8.60  be uniform. The constitutive equation yields the correspond-
! ing value(P) of the uniform average polarization. The equa-
then this relation becomes tion involves the microstructure of the suspension via the

particle distribution functions.

E = e ((E) <p>) (8.7) The expression derived for the constitutive equation is

' €e(Ej)t26; formally exact, but explicit evaluation requires approxima-

tions since the calculation of cluster integrals is limited to the
simplest ones. For a suspension of spherical inclusions a par-

ticular class of integrals gives rise to a nonlinear Clausius-

2(E ) Mossotti relation involving only the number density and the

P)=¢p —F— Ei ; (8.8)  nonlinear single-particle dipolar response to an applied uni-

form field. The formalism shows how correlation corrections

where ¢=(4m/3)na® is the volume fraction. Substituting to this mean-field-type result can, in principle, be calculated.

Eq. (8.7) and solving forP) we obtain In practice, the calculation of correction terms cannot go

beyond the pair and triplet correlation functions. It is ex-

(P)= ﬁ b €2(Ei)— e (E). (8.9 pected that higher-order correlation functions provide only

4w " €(Ej)+2€1— P(€(E;) — €1)

small corrections.
From Eqs.(8.8) and (8.9) we find that the inner fielcE; is We have developed the formalism for a system of nonlin-
related to the average fiel) by

From Egs.(7.7) and(8.5) we find for the average polariza-
tion

ear dielectric inclusions immersed in a linear dielectric me-
dium, but clearly the theory applies to many other systems
1 with similar structure. The problem of electrical or thermal
(E)= 3c. [€2(Ej))+2€e,— p(ex(Ej)—€)]E;. (8.10 conductivity is mathematically identical to the dielectric one.
L The problem of an elastic system of nonlinear elastic inclu-
Substituting Eq(8.9) into Eq.(2.10 and defining the effec- sions imbedded in a linear matrix is very similar. We have

tive dielectric constant byD) = e,({E)){E), we find used the dipole character of the Green'’s function in the dis-
cussion of absolute convergence, but the formal rearrange-

o((E))= €1+ 3pe €2(E) — € ment holds independent of the nature of the propagator. In

© ! L ex(E)+2e,— dlex(E)— €]’ particular, we can apply the formalism to the calculation of

(8.11) local-field effects in nonlinear optics.
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