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Local-field effects in nonlinear dielectrics

M. A. Palenberg and B. U. Felderhof
Institut für Theoretische Physik A, RWTH Aachen, Templergraben 55, D-52056 Aachen, Germany

~Received 5 November 1996!

In a system of identical nonlinear dielectric inclusions immersed in a uniform linear dielectric medium the
mean polarization on a macroscopic length scale is related to the Maxwell field by a nonlocal and nonlinear
constitutive equation. The method of statistical averaging and cluster expansion is used to derive a formally
exact expression for the constitutive equation. The resulting cluster integrals are shown to be absolutely
convergent, i.e., independent of the shape of the macroscopic sample in the thermodynamic limit. For a
suspension of spherical inclusions a selection of terms leads to a nonlinear Clausius-Mossotti relation. Expres-
sions are derived for the correlation corrections to this mean-field result.@S0163-1829~97!05216-8#
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I. INTRODUCTION

The theory of the effective dielectric constant of a susp
sion of identical dielectric inclusions immersed in a mediu
with a linear dielectric constant has a long and distinguis
history,1,2 going back to contributions by Maxwell and Lo
entz. An intrinsic difficulty of the theory is that the relation
ship between the electric polarization and the applied elec
field is quite nonlocal. On the other hand, the existence o
effective dielectric constant implies that the relation betwe
the polarization and the average electric field is local. It is
task of a statistical theory to show how the effective diel
tric constant can be calculated from the microstructure of
suspension. Some years ago it was shown by Felde
et al.,3 following earlier work by Finkel’berg4,5 and
Jeffrey,6,7 how this task can be accomplished, in principle,
the method of cluster expansion. In the following we deve
a similar formalism for the macroscopic constitutive equ
tion of a nonlinear dielectric.8–10

We allow arbitrary nonlinearity of the dielectric inclu
sions. In earlier work the case of weak nonlinearity w
considered11 and compared with the results of comput
simulation.12 It turned out that for a system of spherical i
clusions the correlation corrections to the mean-field re
were larger than in the linear case. For strong nonlinea
the effect of local fluctuations in the microstructure will b
even more enhanced. It is known from computer simulati
on fractal aggregates that the electric response is chara
ized by hot spots on the microscopic scale.13 Hence the study
of correlation corrections is particularly relevant for strong
nonlinear systems. The cluster expansion developed in
following, in principle, provides the necessary tool. For
system of spherical inclusions we derive a nonline
Clausius-Mossotti relation.14,15 Explicit expressions are
found for the first few terms of the cluster expansion, invo
ing two-particle and three-particle correlation functions.
study of these terms would yield valuable insight into t
nature of the correlation corrections to the mean-field res

As is well known, the problem of electrical or therm
conduction in a composite is mathematically identical to
dielectric one. However, our study has relevance beyond
particular class of problems. The theory can be applied
other transport phenomena, for example, to nonlinear ela
550163-1829/97/55~16!/10326~11!/$10.00
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ity or to wave propagation in a system with nonlinear sc
terers. Harmonic generation can be taken into account. T
opens the way to the study of local-field effects in nonline
optics.16–19We have considered continuous systems in th
dimensions, but the formal expressions of the cluster exp
sion can be applied in other dimensions and in systems w
lattice structure.

II. FORMULATION OF THE PROBLEM

Our aim is to determine the effective properties of a no
linear disordered dielectric system on a macroscopic len
scale. On the microscopic length scale a particular confi
ration of the system consists of a large numberN of identi-
cal, nonoverlapping inclusions distributed approximate
uniformly in a large volumeV. The configuration is charac
terized by the positions of centers$R1 ,...,RN% and, if the
inclusions are not spherical, by a set of orientational va
ables$V1 ,...,VN%. The inclusions are immersed in an infi
nite uniform background with dielectric constante1 . The
dielectric response of a single inclusion, immersed in
background, to an applied electric field is assumed known
is specified as a nonlinear and nonlocal dependence of
induced polarizationP at the pointr on the applied field
E0(r 8). By definition the induced polarizationP(1;E0)
[P„1;r ;E0(r 8)… is nonvanishing only within the inclusion
labeled 1. The dependence on positionR1 and orientation
V1 is summarized in the symbol 1.

The basic equations for the electric fieldE and the dielec-
tric displacementD are Maxwell’s electrostatic equations

“•D54pr0 , “3E50, ~2.1!

wherer05r0(r ) is a fixed charge distribution, independe
of the inclusions. Maxwell’s equations~2.1! are assumed to
be valid on the microscopic level for each fixed configurati
(1,...,N) of inclusions. The dielectric displacement is give
by

D~1,...,N;E0!5e1E~1,...,N;E0!14pP~1,...,N;E0!,
~2.2!
10 326 © 1997 The American Physical Society
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55 10 327LOCAL-FIELD EFFECTS IN NONLINEAR DIELECTRICS
whereP(1,...,N;E0) is the induced polarization, to be dete
mined from the incident electric field on each of the inc
sions. The applied fieldE0(r ) is assumed to be a solution o
the equations

“•e1E054pr0 , “3E050. ~2.3!

The electric fieldE(1,...,N;E0) is the sum of the applied
field and the induced field,

E~1,...,N;E0!5E01G0•P~1,...,N;E0!, ~2.4!

whereG0 is the Green’s function for the electric field due
a given polarization in a uniform medium with a dielectr
constante1 . The explicit form forG0 acting on a given
vector fieldV~r ! is

@G0•V#~r !52
4p

3e1
V~r !1E

d
dr 8

3
3~r2r 8!•V~r 8!~r2r 8!2~r2r 8!2V~r 8!

e1ur2r 8u5
,

~2.5!

where the subscriptd on the integral indicates that the inte
gral is carried out with an infinitesimally small sphere ce
tered atr excluded. The polarizationP(1,...,N;E0) is the
sum of the polarizations induced in each of the spheres,

P~1,...,N;E0!5(
j51

N

P„j ;Ej8~1,...,N;E0!…, ~2.6!

whereEj8(1,...,N;E0) is the field incident on inclusionj ,
that is, the sum of the applied fieldE0 and the fields gener
ated by the other inclusions,

Ej8~1,...,N;E0!5E01G0•(
kÞ j

P„k;Ek8~1,...,N;E0!….

~2.7!

Since the single-particle responseP(1;E0) is assumed
known, Eq.~2.7! for j51,...,N provides a set of equation
from which the incident fields$Ej8(1,...,N;E0)% can, in prin-
ciple, be found. Hence, for any configuration (1,...,N) and
applied fieldE0 the induced polarizationP(1,...,N;E0) and
electric fieldE(1,...,N;E0) are, in principle, determined.

The macroscopic response of the system is obtained
statistical averaging procedure.20,21We assume that the dis
order of the system is described by a known probability d
tribution W(1,...,N). The distribution is assumed norma
ized to unity and symmetric in the labels 1,...,N. The
average electric field is

^E&5E •••E d1•••dN W~1,...,N!E~1,...,N;E0!

~2.8!

and the average polarization is

^P&5E •••E d1•••dN W~1,...,N!P~1,...,N;E0!.

~2.9!

These fields are related by the average of Eq.~2.2!
-

a

-

^D&5e1^E&14p^P&. ~2.10!

The averages satisfy Maxwell’s equations

“•^D&54pr0 , “3^E&50. ~2.11!

The problem is to find the constitutive equation relating t
average polarization̂P& to the Maxwell field^E&. The rela-
tion will be nonlinear and nonlocal. We write it in the abbr
viated form

^P&5X~^E&!. ~2.12!

In the following we derive a formally exact cluster expansi
for the vector functionalX~^E&!. The terms of the cluste
expansion are expressed in terms of the partial distribu
functions corresponding to the probability distributio
W(1,...,N).

The partial distribution function

n~1,...,s!5
N!

~N2s!! E •••E d~s11!•••dN W~1,...,N!

~2.13!

gives the probability of finding a configuration ofs inclu-
sions whatever the configuration of the remainingN2s in-
clusions. The integrations in Eq.~2.13! are over positions
$Rj% and orientational variables$V j%. We assume that the
system in volumeV on average is spatially uniform an
possesses a well-defined thermodynamic limitN→`, V→`
with uniform densityn(1) and translationally invariant par
tial distribution functionsn(1,...,s).

The constitutive equation Eq.~2.12! is derived in the ther-
modynamic limitN→`, V→` at constant ration5N/V.
Because in this limit the system becomes translationally
variant, the equation has the property that the average po
ization ^P~r !& at pointr depends on the mean field^E~r 8!& at
point r 8 only via the difference vectorr2r 8. Only pointsr 8
in the neighborhood ofr contribute, and we shall show tha
the dependence on the differencer2r 8 is short ranged. A
uniform mean field̂E& gives rise to a particular value of th
average polarization̂P&. The dependence of^P& on ^E& for
uniform ^E& is the constitutive relation of prime interest. It
determined by the nonlinear response of the individual inc
sions and by the microstructure of the suspension, as g
by the partial distribution functions.

III. CLUSTER EXPANSION

It is evident from Eqs.~2.8! and ~2.9! that both the aver-
age polarization̂P~r !& and the average electric field̂E~r !&
are functionals of the applied fieldE0(r 8). It is known from
Maxwell theory that for a finite macroscopic sample the
relations are highly nonlocal. We shall show that a relat
of the form Eq.~2.12!, which is independent of the shape
the sample, can be established by eliminating the app
field E0 in favor of the average field̂E& and then taking the
thermodynamic limit. We perform the elimination by th
method of cluster expansion.3

The polarizationP(1,...,N;E0) is found on the micro-
scopic level as the solution of theN-inclusion problem for
the given configuration, placed in the applied fieldE0(r 8).
The effect of adding a single inclusion is expressed con
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10 328 55M. A. PALENBERG AND B. U. FELDERHOF
niently in terms of cluster functions. These are defined s
cessively as

P~1;E0!5M ~1;E0!,

P~1,2;E0!5M ~1,2;E0!1M ~1;E0!1M ~2;E0!,

P~1,2,3;E0!5M ~1,2,3;E0!1M ~1,2;E0!1M ~1,3;E0!

1M ~2,3;E0!1M ~1;E0!1M ~2;E0!

1M ~3;E0!, ~3.1!

etc. The general rule is

P~N;E0!5 (
M#N

M ~M;E0!, ~3.2!

whereN is a set of inclusion labels and the sum is over
subsets ofN. The inverse of this rule is

M ~N;E0!5 (
M#N

~21!N2MP~M;E0!, ~3.3!

whereN andM are, respectively, the number of labels inN
andM. Inserting Eq.~3.2! in Eq. ~2.9!, remembering that the
number of subsets ofs objects out ofN objects isN!/ @(N
2s)!s! #, and using the definition Eq.~2.13! of the partial
distribution functions, we obtain

^P&5(
s51

N
1

s! E •••E d1•••ds n~1,...,s!M ~1,...,s;E0!.

~3.4!

From Eq.~2.4! we find for the average electric field

^E&5E01G0•(
s51

N
1

s!

3 E •••E d1•••ds n~1,...,s!M ~1,...,s;E0!. ~3.5!

We obtain the constitutive equation~2.12! by formally in-
verting Eq. ~3.5!, substituting the resulting expression f
E0 in terms of^E& into Eq. ~3.4!, and taking the thermody
namic limit.

In order to invert Eq.~3.5! we perform a Taylor expansio
of M (1,...,s;E0) about^E&. Thus we introduce the differenc
field

Y5E02^E& ~3.6!

and find the expansion22

M ~1,...,s;E0!5M ~1,...,s;^E&!1(
l51

`

M~ l !~1,...,s;^E&!:Y~ l !,

~3.7!

whereM( l ) is the l th-order functional derivative divided b
l ! andY( l ) stands for the direct product ofl vector fieldsY.
The double dot : indicates 3l -fold integration over spatia
coordinates and 3l -fold summation over vector indices. W
write Eq. ~3.5! in the form
c-

l

Y52G0•(
s51

N
1

s! E d1•••ds n~1,...,s!M ~1,...,s;^E&!

2G0•(
s51

N
1

s! E d1•••ds n~1,...,s!

3(
l51

`

M~ l !~1,...,s;^E&!:Y~ l ! ~3.8!

and solve this equation by iteration. This yieldsY expressed
formally in terms of^E&. The result is substituted into Eq
~3.7!, and this yieldsM (1,...,s;E0) expressed in terms o
^E&. Substituting this into Eq.~3.4!, we finally find the aver-
age polarization̂P& expressed in terms of̂E&. In the ther-
modynamic limit this provides a formally exact expressi
for the constitutive equation~2.12!. Practical results are de
rived by selection of terms involving particle correlatio
functions of low order, in the expectation that higher-ord
correlation functions make only small corrections.

In the iteration of Eq.~3.8! we use the fact that the
l th-order derivativeM( l ) is l linear, i.e., it is linear in each o
its l legs. Consequently, the integration over particle coor
nates and the summation over number of particles can
interchanged with the contraction over spatial coordina
and field components. The final expression forX~^E&! is a
sum of many terms involving integrals over products of t
partial distribution functions. The sum can be rearranged
ordered into classes of terms corresponding to the numbe
inclusion labels involved. This yields the cluster expansio

X~^E&!5(
s51

`
1

~s21!!
Xs~^E&!, ~3.9!

where the subscripts indicates the number of inclusion la
bels.

In order to see the structure of terms in the cluster exp
sion ~3.9!, it is instructive to consider first the terms of low
order. The first term of the cluster expansion is simply

X1~^E&!5E d1 n~1!M ~1;^E&!. ~3.10!

It can be evaluated from the response of a single inclus
The second term involves integration over the coordinate
two inclusions. It reads

X2~^E&!5 1
2 E d1E d2@n~1,2!M ~1,2;̂ E&!

22n~1!n~2!M~1!~1;^E&!G0M ~2;^E&!#.

~3.11!

Its explicit calculation involves the solution of the two
inclusion response problem. In the second term we have u
the symmetry in labels to simplify the expression. The th
term in the cluster expansion reads explicitly
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55 10 329LOCAL-FIELD EFFECTS IN NONLINEAR DIELECTRICS
X3~^E&!5 1
3 E E E d1 d2 d3$n~1,2,3!M ~1,2,3;̂ E&!

23n~1,2!n~3!M~1!~1,2;̂ E&!G0M ~3;^E&!

23n~1!n~2,3!M~1!~1;^E&!G0M ~2,3;̂ E&!

16n~1!n~2!n~3!M~1!~1;^E&!G0

3M~1!~2,̂ E&!G0M ~3;^E&!16n~1!n~2!n~3!

3M~2!~1;^E&!:@G0M ~2;̂ E&!#@G0M ~3;^E&!#%.

~3.12!

To discuss the higher-order terms it is convenient to int
duce a diagrammatic representation.

IV. DIAGRAMMATIC REPRESENTATION

Before presenting the diagrammatic representation
note that the cluster integrals can be slightly simplifie
Since the inclusions are identical, we can single out labe
and consider in each of the terms the polarization induce
that inclusion. Correspondingly, we define rooted clus
functionsM (1;2,...,s;E0), defined successively as

u~1!P~1;E0!5M ~1;E0!,

u~1!P~1,2;E0!5M ~1;2;E0!1M ~1;E0!,
q
h
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u~1!P~1,2,3;E0!5M ~1;2,3;E0!1M ~1;2;E0!1M ~1;3;E0!

1M ~1;E0!, ~4.1!

etc., whereu~1! is the characteristic function of inclusion 1
The average polarization can be written as

^P&5(
s51

N
1

~s21!! E •••E d1•••ds n~1,...,s!

3M ~1;2,...,s;E0!. ~4.2!

The average electric field is given by Eq.~3.5! as before.
With the above definition the two-particle cluster term~3.11!
can be rewritten as

X2~^E&!5E E d1 d2@n~1,2!M ~1;2;^E&!2n~1!n~2!

3M~1!~1;^E&!G0M ~2;^E&!#. ~4.3!

The three-particle term~3.12! can be rewritten as

FIG. 2. Rooted loaded treesT2 with two labels.
X3~^E&!5E d1 d2 d3$n~1,2,3!M ~1;2,3;̂ E&!2n~1,2!n~3!M~1!~1;2;^E&!G0M ~3;^E&!

2n~1,3!n~2!M~1!~1;3;^E&!G0M ~2;^E&!2n~1!n~2,3!M~1!~1;^E&!G0M ~2,3;̂ E&!

1n~1!n~2!n~3!M~1!~1;^E&!G0M
~1!~2;^E&!G0M ~3;^E&!1n~1!n~2!n~3!

3M~1!~1;^E&!G0M
~1!~3;^E&!G0M ~2;^E&!1n~1!n~2!n~3!M~2!~1;^E&!:@G0M ~2;^E&!#

3@G0M ~3;^E&!#1n~1!n~2!n~3!M~2!~1;^E&!:@G0M ~3;^E&!#@G0M ~2;^E&!#%. ~4.4!
a-
.
f

ded
els
ac-
The first term of the cluster expansion, given by E
~3.10!, is associated with the diagram shown in Fig. 1. T
second-order term in Eq.~4.3! is associated with the two
diagrams shown in Fig. 2. Each box contains the labels
volved and the line represents the factorG0 . The three-
particle term in Eq.~4.4! is associated with the eight dia
grams shown in Fig. 3.

It is evident from the above examples that the diagra
have the structure of rooted trees or arborescences.23 We
shall refer to the diagrams as loaded trees. The t
Xs(^E&) is associated with a set of loaded trees of ordes,
each tree having a total ofs labels in the boxes and at mo
s21 branches. The location of a box, as counted from
left, will be called its generation. For example, the box

FIG. 1. Rooted loaded treeT1 with one label.
.
e

-

s

m

e

the right in the fifth diagram in Fig. 3 is of the third gener
tion. At each box a numberl of lines can issue to the right
This corresponds to a factorM( l ) and is called the valency o
the box. Valency zero corresponds to a factorM and indi-
cates the end of a branch. The symmetry number of a loa
tree equals the number of nontrivial permutations of lab
over the boxes. If the symmetry number is taken into

FIG. 3. Rooted loaded treesT3 with three labels.
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count, then a labeling rule can be adopted, for example,
labels can be ordered from left to right and from top to b
tom.

Each of the terms in the integrand of the cluster integ
Xs can be associated with a labeled loaded tree ofs labels
Ts . With each treeTs we can associate a product of part
distribution functions n(Ts) and a polarization
ca

e
-

th

in

-
n
er
ra

te
on

bs

q

e
-

l

M s(Ts ;^E&). For example, with the fourth diagram in Fig.
we associate the product

~4.5!

and the polarization
~4.6!
ral
g a

ow.
ws
With this notation the cluster integral of orders can be ex-
pressed as

Xs~^E&!5E d1•••E ds(
Ts

~21!k21n~Ts!M ~Ts ;^E&!,

~4.7!

where the sum is over all labeled loaded trees ofs labels and
k indicates the number of boxes. We shall show that this
be rearranged to

Xs~^E&!5(
Ts

X~Ts ;^E&!, ~4.8!

with the cluster integralX(Ts ;^E&) corresponding to the
loaded treeTs . It is already evident from the two-particl
cluster term given by Eq.~4.3! that we cannot simply inter
change summation and integration in Eq.~4.7! since in the
thermodynamic limit the separate integrals depend on
shape of the sample. In order to arrive at the form~4.8! with
shape-independent integrals we must first rearrange the
grand.

V. REARRANGEMENT

In the preceding section we have shown that each term
the cluster expansion~3.9! is a cluster integral with an inte
grand that can be represented as a sum of loaded trees. I
linear theory3 it was shown that the cluster integral of ord
s could be rearranged and expressed as a sum of integ
each corresponding to an ordered partition of thes labels. It
was shown that each term in this sum is by itself absolu
convergent. A similar rearrangement is possible in the n
linear case. The cluster integral of orders can be rearranged
and expressed as a sum of integrals, each of which is a
lutely convergent.

As in the linear case, the two-particle cluster term in E
~4.3! can be rearranged as a sum of two cluster integrals

X2~^E&!5E d1 d2 n~1,2!@M ~1,2;̂ E&!

2M~1!~1;^E&!G0M ~2;^E&!#1E d1 d2@n~1,2!

2n~1!n~2!#M~1!~1;^E&!G0M ~2;^E&!, ~5.1!
n

e

te-

in

the

ls,

ly
-

o-

.

each of which is absolutely convergent. For the first integ
one sees this by considering large distances and usin
multiple-scattering expansion of the polarizationM ~1;2;̂ E&!.
We discuss the multiple-scattering expansion further bel
For the second integral the absolute convergence follo
from the factorizationn(1,2)'n(1)n(2) at large distances.

The three-particle cluster term in Eq.~4.4! can be rear-
ranged as a sum of eight terms

X3~^E&!5E d1 d2 d3(
j51

8

I j~1;2,3;̂ E&!. ~5.2!

The first term reads

I 1~1;2,3;̂ E&!5n~1,2,3!$M ~1;2,3!2M~1!~1!G0M ~2,3!

2M~1!~1;2!G0M ~3!2M~1!~1;3!G0M ~2!

1M~1!~1!G0M
~1!~2!G0M ~3!

1M~1!~1!G0M
~1!~3!G0M ~2!

1M~2!~1!:@G0M ~2!#@G0M ~3!#

1M~2!~1!:@G0M ~3!#@G0M ~2!#%, ~5.3!

where for brevity we have omitted the argument^E& on the
right-hand side. The second term in Eq.~5.2! reads

I 2~1;2,3;̂ E&!5@n~1,2,3!2n~1!n~2,3!#@M~1!~1!G0M ~2,3!

2M~1!~1!G0M
~1!~2!G0M ~3!

2M~1!~1!G0M
~1!~3!G0M ~2!#. ~5.4!

The third term reads

I 3~1;2,3;̂ E&!5@n~1,2,3!2n~1,2!n~3!#$M~1!~1;2!G0

3M ~1!~3!2M~1!~1!G0M
~1!~2!G0M ~3!

2M~2!~1!:@G0M ~2!#@G0M ~3!#

2M~2!~1!:@G0M ~3!#@G0M ~2!#%. ~5.5!

The fourth term is given by

I 4~1;2,3;̂ E&!5I 3~1;3,2;̂ E&!. ~5.6!
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55 10 331LOCAL-FIELD EFFECTS IN NONLINEAR DIELECTRICS
The fifth term reads

I 5~1;2,3;̂ E&!5@n~1,2,3!2n~1,2!n~3!2n~1!n~2,3!

1n~1!n~2!n~3!#M~1!~1!G0M
~1!~2!

3G0M ~3!. ~5.7!

The sixth term is given by

I 6~1;2,3;̂ E&!5I 5~1;3,2;̂ E&!. ~5.8!

The seventh term reads

I 7~1;2,3;̂ E&!5@n~1,2,3!2n~1,2!n~3!2n~1,3!n~2!

1n~1!n~2!n~3!#M~2!~1!:@G0M ~2!#

3@G0M ~3!# ~5.9!

and the eighth is given by

I 8~1;2,3;̂ E&!5I 7~1;3,2;̂ E&!. ~5.10!

Interchanging summation and integration in Eq.~5.2! we find
thatX3(^E&) can be written as a sum of eight integrals,

X3~^E&!5(
j51

8 E d1 d2 d3 I j~1;2,3;̂ E&!, ~5.11!

some of which are equal by symmetry. It may be seen
inspection that each of the eight integrals is absolutely c
vergent, either because of the distribution function factor
because of the polarization factor.

FIG. 4. Lattice of rooted loaded treesT2 with two labels.
y
-
r

The above rearrangement can be generalized to
higher-order terms in the cluster expansion Eq.~3.9!. The
rearrangement leads to the form~4.8! with the cluster inte-
gral X(Ts ;^E&) given by

X~Ts ;^E&!5E d1•••E ds b~Ts!C~Ts ;^E&!, ~5.12!

with so-called block distribution functionb(Ts) and chain
polarizationC(Ts ;^E&). The names are coined in correspo
dence with names for similar quantities in the linear theor3

In order to define the block distributionb(Ts) and chain
polarizationC(Ts ;^E&) we introduce a partial ordering o
the loaded trees ofs labels. We writeTs<Ts8 if the treeTs8 is
either the same as the treeTs or can be obtained fromTs by
removing one or more lines, with the convention that up
removal of a line the box at the right end is merged with t
one on its left end. For example, for the trees of three lab
one has the ordering

and also

but no ordering exists between

An example of ordered trees with four labels is
The block distribution functionb(Ts) is defined by

b~Ts!5 (
Ts8>Ts

~21!k821n~Ts8!, ~5.13!

with the abbreviation
n~Ts8!5n~B18!•••n~Bk8
8 !, ~5.14!

whereBj8 denotes the labels in boxj on the treeTs8 , which
hask8 boxes. The chain polarizationC(Ts ;^E&) is defined
by
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C~Ts ;^E&!5 (
Ts8<Ts

~21!k2k8M ~Ts8 ;^E&!, ~5.15!

wherek is the number of boxes on treeTs .
The proof of the identity~4.8! follows by substitution of

the definitions~5.13! and ~5.15! into Eq. ~5.12!. This yields

(
Ts

b~Ts!C~Ts ;^E&!5(
Ts

(
Ts8>Ts

~21!k821n~Ts8!

3 (
Ts9<Ts

~21!k2k9M ~Ts9 ;^E&!

5(
Ts8

(
Ts9

~21!k821n~Ts8!M ~Ts9 ;^E&!

3 (
Ts9<Ts<Ts8

~21!k2k9

5(
Ts

~21!k21n~Ts!M ~Ts ;^E&!.

~5.16!

In the last line we have used the identity

(
Ts9<Ts<Ts8

~21!k2k95dT
s9 ,Ts8

, ~5.17!

which is proved below.
The collection of trees$Ts% can be arranged in a lattic

ordered according to the number of boxes, with the top r
consisting of the single box withs labels, the second row
consisting of trees with two boxes, etc. The bottom line c
sists of all rooted trees withs boxes, each containing a sing
label. We link every tree to those trees in the row belo
from which it follows by removal of a line, as defined abov
and indicate the link by a dotted line. Thus, fors52 the
lattice consists of two rows, as shown in Fig. 4. The latt
for s53 is shown in Fig. 5. The ordering of trees corr
sponds to the order of rows for those trees that are conne
by dotted lines running upward. For any two treesTs9 and
Ts8 such thatTs9<Ts8 one has

(
Ts9<Ts<Ts8

~21! l 92 l5H 0, Ts9ÞTs8

1, Ts95Ts8 ,
~5.18!

where the sum is over the treesTs that can be obtained from
Ts9 by removing lines and from whichTs8 can be obtained by
removing lines, and wherel andl 9 are, respectively, the row
numbers in whichTs and Ts9 lie, the rows being counted
from the bottom. The proof of Eq.~5.18! follows from the
fact that the number of trees in the sum that are in thel th row
w

-

,
,

e

ed

from the bottom is( l 92 l
l 92 l 8) , the number of ways one ca

select l 92 l of the l 92 l 8 lines that must be removed from
Ts9 to getTs8 . The sum is therefore

(
l5 l 8

l 9 S l 92 l 8
l 92 l D ~21! l 92 l5~121! l 92 l 85H 0, l 9Þ l 8

1, l 95 l 8,
~5.19!

which is equivalent to Eq.~5.18!. The latter is identical to
Eq. ~5.17! since the number of boxes on a treeTs in row l is
k5s2 l11.

A comparison of Eqs.~5.3!–~5.10! and the lattice fors
53, shown in Fig. 5, clarifies the rules of the game. Each
the integrands shown in Eqs.~5.3!–~5.10! corresponds to a
particular tree on the lattice. The top tree corresponds to
~5.3! and the remaining trees in the order from left to rig
and from top to bottom correspond to Eqs.~5.4!–~5.10!, re-
spectively. Label 1 has been selected and plays a special

VI. ABSOLUTE CONVERGENCE

In this section we discuss the absolute convergence of
cluster integrals$X(Ts ;^E&)% occurring in Eq.~4.8!. The
discussion is similar to that in the linear case.3 The integrand
in Eq. ~5.12! is the product of a block distribution functio
b(Ts) and a chain polarizationC(Ts ;^E&), each associated
with the loaded treeTs . To demonstrate absolute conve
gence of the integral we show that for widely separated c
figurations the integrand vanishes sufficiently rapidly, b
cause of the vanishing either ofb(Ts) or of C(Ts ;^E&).

We assume that the distribution functionW(1,...,N) is
such that the partial distribution functionsn(1,...,s) have the
product property: for a configuration withk widely separated
groups, corresponding to a partition of the labels intok dis-
joint subsetsB1 , B2 ,...,Bk , then

n~1,...,s!;n~B1!n~B2!•••n~Bk!. ~6.1!

If any line of the treeTs is cut, then thes labels are separate
into two groups: those attached to the part of the tree on
left side of the cut and those attached to the part on the ri
We assert that the block distribution functionb(Ts) vanishes
for any configuration in which the coordinates associa
with the labels of the first group are widely separated fro
those associated with labels in the second group. To see
we note that the sum Eq.~5.13! definingb(Ts) is over the
trees in the lattice that can be obtained fromTs by removing
lines. The trees in the sum can therefore be paired, the
having the line that is being cut, with the other in the ro
above that is obtained by removing the line. For the se
rated configuration the terms corresponding to each pair c
cel since they have opposite signs and, on account of
product property~6.1!, the same product of partial distribu
tion functions appears in each. As an illustration of this
sult,
~6.2!



n

ch
xe
is
po

on

on

x
n

t,
, a

ls
u
e

if

se
int

xe
g
-

f
-

t

o

-

re
els
rs
the
of
ther
ons
po-
tion,
ock
ing

nt.

r-
-

f

is

to

he

ni-

as

er

he

55 10 333LOCAL-FIELD EFFECTS IN NONLINEAR DIELECTRICS
vanishes when 1 and 3 are near but far from 2; it does
vanish, however, when 2 and 3 are near but far from 1.

We now show that the chain polarizationC(Ts ;^E&) van-
ishes sufficiently rapidly for those configurations in whi
coordinates corresponding to labels within one of the bo
B1 ,...,Bk of the treeTs are widely separated. To show th
we study the multiple scattering expansion of the chain
larizationC(Ts ;^E&).

The multiple-scattering expansion of the polarizati
P(1,...,s;E0) of s inclusions placed in the fieldE0(r ) can be
obtained by Taylor expansion aboutE0 of the argumentEj8
in the separate termsP( j ;Ej8(1,...,s;E0) in Eq. ~2.6! and
iteration of Eq.~2.7!, specialized toN5s. Hence we obtain
the multiple-scattering expansion of the polarizati
M (1;2,...,s;^E&) of inclusion 1 in the presence ofs21
other inclusions, all placed in the field̂E& and with terms
subtracted according to the cluster expansion Eq.~4.1!. In
the multiple-scattering expansion this polarization is e
pressed in terms of the single-particle polarizatio
$M ( j ;^E&)%, their derivatives$M( i )( j ;^E&)% for i51,2,...,
and the connecting Green’s functionG0 . It may be repre-
sented as a sum of rooted trees with label 1 at the roo
single label from 1,...,s associated with each of the nodes
factorM( i )( j ;^E&) corresponding to a node with labelj and
right-hand valencyi , a factorM ( j ;^E&) corresponding to an
end node with labelj and with the conditions that the labe
at each end of a line must differ and that each label m
occur at least once. As an example, we show in Fig. 6 on
the rooted trees fors53. Each of such rooted trees ofs
labels has an indexts . The polarizationM (1;2,...,s;^E&) is
given by the sum of polarizations corresponding to all d
ferent rooted trees ofs labels,

M ~1;2,...,s;^E&!5(
ts

M ~ ts ;^E&!. ~6.3!

The polarizationM (Ts ;^E&) corresponds to a subset of the
diagrams, namely, those for which the labels are divided
the boxesB1 ,...,Bk of the treeTs and all allowed lines be-
tween labels within the boxes occur, but the different bo
are connected only by a single propagator, correspondin
a line of the treeTs . A factor (21)l provides a sign corre
sponding to the numberl of lines in treeTs .

A tree ts is called reducible if it can be split into two
branches of two distinct subsets of labels by the cutting o
single line. A treets that is not reducible will be called irre
ducible. If the expression forM (Ts8 ;^E&) is put into the defi-
nition Eq. ~5.15! for the chain polarizationC(Ts ;^E&) there
is a cancellation of many terms. All terms corresponding
trees$ts% that are reducible inside the boxes$Bj% of the tree
Ts cancel out. Only those trees$ts% remain that are reducible
at the lines joining the boxes of the treeTs . To demonstrate
this result we note first that with a given reducible treets
occurring inM (Ts ;^E&) we can associate a unique treeTs9
by identifying the sets of labels in the irreducible parts
ts with the boxes of the treeTs9 . The treets will occur
exactly once in each treeTs8 in the sum in Eq.~5.15! for
which Ts9<Ts8<Ts . By the identity~5.18! these terms pre
cisely cancel when the sum overTs8 is carried out.
ot
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We see therefore that for any configuration in which the
is a wide separation of inclusions corresponding to lab
within a box of the treeTs , there must be at least two facto
G0 linking the separate inclusions. As a consequence,
chain polarization will vanish as the inverse sixth power
the separation, leading to absolute convergence. On the o
hand, for configurations in which there are wide separati
corresponding to the links between the boxes the chain
larization vanishes only as the inverse cube of the separa
but for exactly these configurations the corresponding bl
distribution function vanishes. Hence the product occurr
in the integrand of Eq.~5.12! vanishes sufficiently rapidly for
all configurations and the integral is absolutely converge

VII. DENSITY EXPANSION

In this section we relate the cluster expansion~3.9! to an
expansion in powers of number densityn and consider ex-
plicitly the term of lowest order in density. Each of the pa
tial distribution functionsn(1,...,s) can be expanded in pow
ers of density. The lowest-order term is simply

n~1,...,s!'ns)
j51

s

w~V j !, ~7.1!

wherew(V j ) is the orientational distribution of inclusionj
in the low-density limit. As a consequence, the termXs in
Eq. ~3.9! carries at least a factorns. In a density expansion o
X~^E&! at fixed ^E& only the single-particle terms51 con-
tributes to ordern.

To lowest order in density the constitutive equation
therefore approximated by

^P&'X1~^E&!5nE dR1dV1w~V1!M ~1;̂ E&!. ~7.2!

As noted at the end of Sec. II it is of particular interest
consider this relation for uniform Maxwell field̂E&. For a
particular field pointr the integration over positionR1 yields
a value equal to the integral of the polarization over t
inclusion for fixed orientationV1 and with center at a fixed
position, say, the origin, when it is placed in the same u
form field ^E&. This is just the dipole moment

p1~V1 ;^E&!5E dr P~R150,V1 ;r ;^E&!. ~7.3!

We denote the average over orientations of the inclusion

m~^E&!5E dV1w~V1!p1~V1 ;^E&!. ~7.4!

With this notation, the average polarization is, to first ord
in density,

^P&5nm~^E&!. ~7.5!

For example, for a spherical inclusion of radiusa, cen-
tered at the origin, and made of a material for which t
induced polarization in a uniform inner fieldEi is
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P~r !5H g~Ei !, r,a

0, r.a,
~7.6!

the total induced dipole moment is

p1~E0!5
4p

3
a3g~Ei !. ~7.7!

The inner fieldEi is related to the applied fieldE0 by

Ei5E02
4p

3e1
g~Ei !. ~7.8!

This can be solved forEi as a function ofE0 ,

Ei5h~E0!. ~7.9!

Hence, in this case the functionm(E0) to be used in Eq.~7.5!
is

m~E0!5
4p

3
a3g„h~E0!…. ~7.10!

An interesting example of a material with strongly nonline
properties is CdS. An aqueous suspension of spherical
ticles of this material can show optical bistability.24–26

The next-order term in the density expansion of the c
stitutive relation involves the two-particle cluster termX2 .
This requires solution of the nonlinear response problem
a pair of inclusions placed in a uniform field.

VIII. NONLINEAR CLAUSIUS-MOSSOTTI RELATION

In this section we specialize to spherical inclusions
radiusa and show that for this case one can derive a non
ear Clausius-Mossotti relation̂P&5XNCM(^E&) by restrict-
ing the volume of integration of the cluster integrals in E
~5.12! to the so-called virtual overlap volume and consid
ing a uniform field^E&. In the linear case the same procedu
leads to the Clausius-Mossotti formula for the effective
electric constant.27 The nonlinear Clausius-Mossotti relatio
~NCM! takes the form we have derived earlier on the basis
a Lorentz local field argument.15

The NCM relation contains only the single-particle r
sponse functionm(E0), defined in Eq.~7.4!, and the number
densityn. For spheres there are no orientational variab
and the cluster integrals are over positions of centers only
order to derive the NCM relation we limit the sum over tre
in Eq. ~4.8! to those in the bottom row of the lattice, i

FIG. 5. Lattice of rooted loaded treesT3 with three labels.
r
ar-

-

r

f
-
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-

f

s
In

analogy to the linear case. For these trees we limit the in
gration over 3s-dimensional configuration space in E
~5.12! to the region in which the inclusions overlap seque
tially in successive generations. Thus, for the tree in
lower left-hand corner in Fig. 5, inclusion 2 must overla
with 1 and inclusion 3 must overlap with 2, while for the tre
in the lower right-hand corner both inclusions 2 and 3 m
overlap with 1, but not necessarily with each other. For e
type of tree in the bottom line of the lattice there ares
21)! trees differing only by a permutation of the labe
2,...,s over s21 boxes. Their contributions to the sum
Eq. ~4.8! differ only by a relabeling of the variables of inte
gration and therefore are all the same. We can therefore w
our approximation to the constitutive function in Eq.~3.9! as

X~^E&!'Xov~^E&!5(
s51

`

(
Ts
b
Xov~Ts

b ,^E&!, ~8.1!

where the sum is over the trees with standard labeling in
bottom line of the lattice and the integration volume for ea
of these trees is restricted to the overlap volume, as defi
above. In the overlap volume the block distribution functi
takes the simple form

b~Ts
b!5~21!s21ns ~overlap!. ~8.2!

The integral over the overlap volume for each treeTs
b can

be performed sequentially, starting withRs , corresponding
to the labels in the lower right-hand corner of the labele
tree. We imagine this inclusion placed with its center atRs in
a uniform field^E&. The resulting induced fieldEind(s;^E&)
acts on the neighboring inclusion labeledi , connected tos
by the lower right-hand line of the treeTs

b . It was shown in
Ref. 28, Eq.~3.27!, that when this induced field is evaluate
at a pointr within a sphere of radiusa centered atRi and
then integrated over all positionsRs such that the inclusion
overlaps the sphere, one gets the result

E
uRs2Ri u,2a

Eind~s;^E&!dRs52
4p

3e1
m~^E&!,

0,ur2Ri u,a, ~8.3!

wherem~^E&! is the dipole moment induced in spheres.
The argument can be repeated for each of the remain

s22 labels on the treeTs
b and shows that each of the Green

functions gives a uniform field acting on the inclusion on t
left end of the line. One can easily convince oneself that
sum in Eq.~8.1! corresponds to the Taylor expansion of t
self-consistent equation

FIG. 6. Typical multiple-scattering diagram for three inclusion
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XNCM~^E&!5nmS ^E&1
4p

3e1
XNCM~^E&! D . ~8.4!

This is the nonlinear Clausius-Mossotti relation, which c
be found alternatively from a Lorentz local-field argument15

Note that in Eq.~8.4! the field^E& is assumed to be uniform
We have investigated the consequences of Eq.~8.4! for the
absorption line shape in a fluid of two-level atoms w
intensity-dependent polarizability.15

In the case of uniform spheres with nonlinear dielect
constante2(Ei) the induced polarization for uniform inne
field Ei can be expressed as

g~Ei !5
e2~Ei !2e1

4p
Ei . ~8.5!

If we replace the applied fieldE0 in Eq. ~7.8! by the Lorentz
local field

FL5^E&1
4p

3e1
^P&, ~8.6!

then this relation becomes

Ei5
3e1

e2~Ei !12e1
S ^E&1

4p

3e1
^P& D . ~8.7!

From Eqs.~7.7! and ~8.5! we find for the average polariza
tion

^P&5f
e2~Ei !2e1

4p
Ei , ~8.8!

where f5(4p/3)na3 is the volume fraction. Substituting
Eq. ~8.7! and solving for̂ P& we obtain

^P&5
3e1
4p

f
e2~Ei !2e1

e2~Ei !12e12f~e2~Ei !2e1!
^E&. ~8.9!

From Eqs.~8.8! and ~8.9! we find that the inner fieldEi is
related to the average field̂E& by

^E&5
1

3e1
@e2~Ei !12e12f„e2~Ei !2e1…#Ei . ~8.10!

Substituting Eq.~8.9! into Eq. ~2.10! and defining the effec-
tive dielectric constant bŷD&5ee(^E&)^E&, we find

ee~^E&!5e113fe1
e2~Ei !2e1

e2~Ei !12e12f@e2~Ei !2e1#
,

~8.11!
f
-

ys
n

whereEi must be expressed in terms of^E& via Eq. ~8.10!.
This expression for the effective dielectric constant was
rived by Levy and Bergman.29 It may be regarded as a gen
eralization of the Maxwell-Garnett formula to the nonline
case. It is equivalent to the nonlinear Clausius-Mossotti
lation ~8.4! for the case of uniform spheres. The latter re
tion is more general since it requires only the nonlinear
polar polarizability.

IX. DISCUSSION

We have shown that the method of cluster expans
yields a macroscopic constitutive equation of the fo
~2.12!, relating the average polarization^P& to the Maxwell
field ^E& in a system of nonlinear dielectric inclusions im
mersed in a linear dielectric medium. The vector function
^P&5X~^E&! is given by a sum of cluster integrals, as show
in Eqs.~3.9!, ~4.8!, and~5.12!. In the calculation of the mac
roscopic response the Maxwell field^E& may be assumed to
be uniform. The constitutive equation yields the correspo
ing value^P& of the uniform average polarization. The equ
tion involves the microstructure of the suspension via
particle distribution functions.

The expression derived for the constitutive equation
formally exact, but explicit evaluation requires approxim
tions since the calculation of cluster integrals is limited to t
simplest ones. For a suspension of spherical inclusions a
ticular class of integrals gives rise to a nonlinear Clausi
Mossotti relation involving only the number density and t
nonlinear single-particle dipolar response to an applied u
form field. The formalism shows how correlation correctio
to this mean-field-type result can, in principle, be calculat
In practice, the calculation of correction terms cannot
beyond the pair and triplet correlation functions. It is e
pected that higher-order correlation functions provide o
small corrections.

We have developed the formalism for a system of non
ear dielectric inclusions immersed in a linear dielectric m
dium, but clearly the theory applies to many other syste
with similar structure. The problem of electrical or therm
conductivity is mathematically identical to the dielectric on
The problem of an elastic system of nonlinear elastic inc
sions imbedded in a linear matrix is very similar. We ha
used the dipole character of the Green’s function in the d
cussion of absolute convergence, but the formal rearran
ment holds independent of the nature of the propagator
particular, we can apply the formalism to the calculation
local-field effects in nonlinear optics.
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