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Two-site Hubbard model, the Bardeen-Cooper-Schrieffer model,
and the concept of correlation entropy
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Exactly solvable models~the two-electron two-site Hubbard model and the Bardeen-Cooper-Schrieffer
model! are revisited in terms of their natural occupation numbers~eigenvalues of the true, i.e., correlated,
one-particle density matrix!. Entropylike expressions that may serve as measures of the correlation strength are
related to possible reference states for the definition of correlation and discussed as functions of the system
parameters.@S0163-1829~97!03015-4#
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I. INTRODUCTION

Many-electron systems such as atoms, molecules, c
ters, solids, and models of it such as jellium, Hubbard, a
Bardeen-Cooper-Schrieffer~BCS! show the complex phe
nomenon of ‘‘electron correlation,’’ caused by the Coulom
interaction. Often weak and strong correlations are dis
guished. The question is obvious, whether these qualita
terms can be made quantitatively precise. Indeed there
recent attempts to define~in addition to the correlation en
ergy and the correlation and Coulomb hole, respective!
quantum-kinematic measures of the correlation strength1–11

To define such measures, in Refs. 1 and 2 fluctuations
Refs. 3 and 4 the coefficients of the configuration-interact
~CI! expansion, and in Ref. 5 the order of converged ma
body perturbation theory are used. In Refs. 4 and 6–11
studied to what extent the one-particle density ma
~1PDM! g(x,x8)5^Cuc1(x8)c(x)uC& of a stateuC& dis-
plays the correlation present in that state@c1,c are Fermi
operators andx5(r ,s)#. The idea is to use the eigenvalu
nk of the 1PDM for that purpose. The deviations of the
natural occupation numbers~NON’s! nk from 1 or 0 ~these
are the only values in the limit of ‘‘no correlation,’’ or, mor
precisely, in the case of only a single Slater determina!
describe the phenomenon correlation on the 1P level. So
q-order nonidempotencyC(q)5N2(k(nk)

q, the Tsallis en-
tropy S(q)5C(q)/(q21),12 and the correlation ‘‘entropy’’
S5S(1)5C8(1) or

S5(
k

nk~2 lnnk!, (
k

nk5N ~1.1!

are zero for no correlation and increase with increasing c
relation. Increasing correlation can be achieved~i! for the
state~e.g., the ground stateu0&) of a system with given pa
550163-1829/97/55~16!/10270~8!/$10.00
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rameters by going from a not as good description of
correlation to a better one~e.g., better basis set and mo
Slater determinants in the CI expansion! or ~ii ! for a ‘‘per-
fect’’ description of a correlated many-electron state
changing system parameters~e.g., geometry parameters an
coupling constants!. In Ref. 6 the entropylike expressionS is
conjectured to be proportional to the correlation energy.
courseS is not the only quantity that indicates correlatio
Other quantities obtained from the NON’snk ~with values
nk8 near and below 1 and a ‘‘jump’’ to valuesnk9 near and
above 0! are ~i! the difference between the lowest value
the nk8 and the highest value of thenk9 ~it generalizes the
renormalization constant or quasiparticle weightzF of the
electron-gas momentum distribution!; ~ii ! the sum of all
nk9 ~correlation tail!; and ~iii ! the second-order nonidempo
tencyC5C(2), which is simultaneously the normalizatio
of the Coulomb holeuC(x1 ;x2)5r(x1)r(x2)2ug(x1 ,x2)u2

2n(x1 ;x2), wherer(x)5g(x,x) and n(x1 ;x2) is the pair
distribution function. It may be that these quantities and o
ers~e.g., those obtained from the spin-traced 1PDM, see
low! behave differently when changing different system p
rameters. So not only a single quantity, but rather a cer
set of quantities@and for a given parameter valuel0 not only
S(l0), etc., but also the derivativesS8(l0), etc.# would be
necessary to characterize the correlation sufficiently p
cisely ~on a 1P level!.

The correlation entropy itself@with Eq. ~1.1! or modifica-
tions of it or with higher-order entropies obtained fro
higher-order reduced density matrices# is still in its infancy.
The ultimate applications are unknown, but may include te
of the quality of the approximate correlated many-electr
wave functions13–15and constructions of quantum states w
the maximum-entropy method.16,17 Obviously a reasonable
definition of a quantitative correlation measure@i.e., a pos-
10 270 © 1997 The American Physical Society
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55 10 271TWO-SITE HUBBARD MODEL, THE BARDEEN-COOPER- . . .
sible modification of Eq.~1.1!# depends on the choice of
reasonable reference state~which is not always a single
Slater determinant!. In the case a system has more than o
control parameter, one may not exclude that it is reason
to let each parameter have its own correlation strength.
these questions see the following remarks.

The correlation entropy~1.1! is based on the nonidempo
tency of the NON’snk and proves to be an appropriate me
sure of the correlation strength~on the 1P level! if the refer-
ence state defining correlation is a single Slater determin
The latter is not always the case. Indeed the situation is m
complicated when the symmetry of the problem~angular
momenta as conserved quantities, dissociation limit of a m
ecule, etc.! requires more than a single Slater determin
even in the absence of Coulomb repulsion~e.g., spin conser-
vation alone mixes Slater determinants in the noninterac
wave function10!. Then Eq.~1.1! would indicate a correla-
tion, although there is no correlation. So modifications
formula ~1.1! are necessary.

In addition to the eigenvaluesnk of the ‘‘full’’ ~spin-
dependent! 1PDM g(x,x8) it seems reasonable to consid
also the eigenvaluesnk of the spin-traced 1PDM
g(r ,r 8)5(sg(x,x8)us85s . These spatial NON’snk vary
between 0 and 2 and for the definition of the other corre
tion entropies the following nonidempotencies can be us
~i! Among all thenk there is a certain numberN0 (,N) of
NON’s nk0 with values between 1 and 2. Then the reduc

NON’s nk021 are between 0 and 1 and all the oth

N1 (5N2N0) NON’s nk1 also have values between 0 an

1. ~ii ! All the nk/2 have values between 0 and 1. So possi
measures of the correlation strength are

S152(
k0

~nk021!ln~nk021!2(
k1

nk1lnnk1, ~1.2!

S252(
k

nk
2
ln
nk
2
. ~1.3!

They have in common to measure deviations of the NO
from 0 and 2, but in particular NON’s with values approx
mately equal to 1 are treated differently: They almost do
contribute toS1, whereas each such NON contributes a
proximately1

2ln2 toS2. „Note thatS25
1
2S if nk5 1

2nk , where
k includess, and note that forN52 and for a singlet the
spatial wave function is a sum of permanents~a permanent is
defined like a determinant but with all plus signs!; nk0'1

and nk1'1 mean the dominance of that permanent wh
two different natural states are singly occupied.…

Application of Eqs.~1.2! and ~1.3! to the ground state
~singlet! of the molecule H2(R) shows,

10 that S1(R) has a
maximum wherenk0 passes through 1.5 and vanishes asym

totically for R→` ; it corresponds to a reference state th
shows a smooth transition from a Hartree-Fock~HF! descrip-
tion for small R to a Heitler-London~HL! description for
large R. ~Note that HF means a spatial permanent w
nk052 andnk150, from which follows a single Slater de
terminant of spin orbitals, and that HL means a spatial p
manent withnk05nk151, from which follow two Slater de-

terminants of spin orbitals.! S2(R), on the other hand
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approaches ln2 asymptotically forR→` and corresponds to
an understanding of the correlation with the HF approxim
tion as a reference state for all separationsR, although the
HF approximation~with a single determinant! fails in the
dissociation limit and hence must be strongly correc
~strong correlation!. So which correlation entropy (S1 or
S2) is more appropriate depends on the more or less rea
able reference state. Yet to be studied is the question whe
Eqs. ~1.2! or ~1.3! or even other constructions are more a
propriate to display the correlation for a fixed separationR
but varying, in particular, the increasing coupling consta
l of the electron-electron repulsionle2/r 12. An appropriate
correlation measure should increase withl. Also the ques-
tion is open whether ‘‘static and dynamic correlations’’18 can
be characterized by different correlation measures~e.g., in
cases where near degeneracies exist, Be as an examp
quires at least four Slater determinants of spin orbitals a
reasonable reference state or starting point!.

The concept of correlation entropy has been applied so
to the uniform electron gas with the density parameterr s ,

7 to
half-space jellium,8 to the isoelectronic series He(Z) and the
Hooke law model with the oscillator frequencyv,4,9 to the
molecule H2(R),

4,10 and to other atoms and molecules11

While Refs. 4 and 7–10 investigate howS,S1 ,S2 depend on
the system parametersr s ,Z,v,R, in Ref. 11 the basis se
dependence of the entropy expression2(knklnnk is consid-
ered and Collins’ conjecture6 is checked; note that this en
tropy is 2S22Nln2 for nk5 1

2nk and it consists of positive
and negative terms, so it is or can be totally negative an
nonzero (52Nln2) in the no-correlation case ofN/2 NON’s
nk052. In the present work exactly solvable models, name
the two-site two-electron Hubbard model~Sec. II! and the
BCS model~Sec. III!, are studied in terms of correlatio
entropies.

II. THE TWO-ELECTRON TWO-SITE HUBBARD MODEL

In the Hamiltonian

Ĥ52
t

2(
i ,s

cis
† c ī s12U(

i
n̂i↑n̂i↓ ~2.1!

the prefactors2t/2 and 2U are, contrary to the usual nota
tion t andU, chosen to make the following expressions
simple as possible. The first term (T̂) describes the hopping
between the two sitesi51 and 2 (1̄52, 2̄51), with
cis
† , cis the Fermi creation and annihilation operators~at site

i and with spins5↑,↓), and the second term (V̂) describes
the on-site interaction~repulsion forU.0, attraction for
U,0) between the two electrons with the spin-depend
site occupancy operatorn̂is5cis

† cis . Equation~2.1! may be
considered as a simplified version of a tight-binding desc
tion of the H2 molecule. For papers treating molecules with
the Hubbard model see Refs. 19 and 20 and for a rec
paper dealing with the attractive Hubbard model~with the
transition from the weak-coupling limit with BCS propertie
to the strong-coupling limit with Bose-Einstein condens
tion! see Ref. 21.

The eigenstates ofĤ are characterized by their energie
E, by the eigenvaluesS ~5 0 or 1! andMS ~5 0 or 0,61) of
the total spin, and by the eigenvaluesp ~5 6 1! of the site
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permutation operator. The four 1P statesu is&5cis
† uvac& with

cisuvac&50 form the basis set to construct (2
4)56 two-

particle ~or geminal! statesuE,S,MS ,p&, namely, three trip-
let states withp521, one singlet state withp521, and
two other singlet states withp511; see the following.

In the triplet three states (MS50,61) there is no interac-
tion ~because the spins are parallel! and no hopping~because
of the Pauli principle!, so they are~uninteresting! eigenstates
of T̂ and V̂ with the eigenvalues 0:u0,1,MS ,21&. The sin-
glet state

u 2U, 0, 0,21&5
1

A2
~c1↑

† c1↓
† 2c2↑

† c2↓
† !uvac& ~2.2!

does not depend ont andU and is an eigenstate ofT̂ and
V̂ with eigenvalues 0 and 2U, respectively; it is a purely
ionic state. The two other singlet states arise from the mix
of the ionic and nonionic geminals, respectively:

uA&5
1

A2
~c1↑

† c1↓
† 1c2↑

† c2↓
† !uvac&, ~2.3!

uB&5
1

A2
~c1↑

† c2↓
† 1c2↑

† c1↓
† !uvac&.

With uE, 0, 0,11&5auA&1buB& and

ĤuA&52UuA&2tuB&, ~2.4!

ĤuB&52tuA&,

the diagonalization ofĤ yields E*5At21U21U for the
excited stateuE* , 0, 0,11& and

E52At21U21U ~2.5!

for the ground state~GS! uE, 0, 0,11&[u0& ~see Fig. 1!.
The GS coefficients

a5
1

A2
A12

x

A11x2
, b5

1

A2
A11

x

A11x2

~2.6!

depend only on the dimensionless parameter combina
x5U/t. Note that 2ab51/A11x2.

Knowing the GSu0&, the following expectation value
can be constructed: the spin-dependent and spin-summe
occupanciesnis and ni5(snis , respectively, the spin
traced 1PDMg i i 85^0u(sci 8s

† cisu0&, the spin-summed pai
occupancyni j5ninj2d i j ni ~on-site for j5 i and off-site for
j5 ī ), and the hopping and interaction energiesT and V,
respectively.

For the 1PDM of the GS

g i i 85S 1 2ab

2ab 1 D ~2.7!

results. Thus the site occupancyni5g i i is ni51 and the
hopping energyT52(t/2)( ig i ī is T522abt or
g

n

site

T52
t

A11x2
, ~2.8!

with T52t for U50 andT→0 for U→6`. @The same
result ~2.8! arises from T5t]E/]t according to the
Hellmann-Feynman theorem.22# Diagonalization of g i i 8
yields the site NON’s

n6516
1

A11x2
~2.9!

~see Fig. 2! ~the site and spin NON’s aren6,s5nsn6 with
ns5 1

2! and the binding~1! and antibinding (2) molecular
natural orbitals~NO’s!, respectively,

u6s&5
1

A2
~ u 1s&6u 2s&)5

1

A2
~c1s

† 6c2s
† !u&[c6s

† u&.

~2.10!

Electron pairs are described by the on-site and off-site p
occupancies, respectively,

nii5
1

2 S 12
x

A11x2
D , ~2.11!

ni ī 5
1

2 S 11
x

A11x2
D

FIG. 1. Hubbard model~2.1!: GS energy~2.5! vs x5U/t. The
dashed lines are reasonable reference energies:EC52U @cf. Eq.
~2.2!# for x<21, EHF52t1U for uxu<1, andE HL50 for x>1.
Energy is in units oft.
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~see Fig. 3!. Thus the interaction energyV5U( inii is

V5S 12
x

A11x2
DU, ~2.12!

with V5U for x50, V→0 for x→1`, and V→2U for
x→2`. ~The same result arises fromV5U]E/]U due to
the Hellmann-Feynman theorem.! For n6 vs the scaled Hub-
bard parameterx see Fig. 1.

A comparison of Eqs.~2.6! and~2.11! showsnii5a2 and
ni ī5b2 or

u0&5Anii uA&1Ani ī uB&. ~2.13!

Thus on-site and off-site pair occupancies determine th
weight of the ionic geminaluA& and the nonionic geminal
uB& in the GS u0&. For x50 they are mixed with equal
weights; seeu0&5(1/A2)(uA&1uB&). The increasing Hub-
bard repulsionU (.0) suppresses the ionic contribution or
double occupancy of a single site and vanishes asympto
cally for x→1`; seeu0&→uB&. The increasing Hubbard at-
traction uUu suppresses the nonionic contribution or single
occupancy and vanishes asymptotically forx→2`; see
u0&→uA&.

The CI expression of the GSu0& in terms of the NO’s
~2.10! yields

u0&5An1

2
u11&2sgnUAn2

2
u22&, ~2.14!

FIG. 2. Hubbard model~2.1!: natural occupation numbersn6 of
the GSu0& ~cf. Eqs.~2.13! or ~2.14!#, vs x5U/t according to Eq.
~2.9!. n1 andn2 describe the occupation of the binding and anti-
binding natural orbitals~2.10!, respectively.
e

ti-

where the geminalsu66&5c6↑
† c6↓

† u& are introduced and
a1b5An1 anda2b52sgnUAn2 have been used. So th
NON’s n6 determine the weights of the geminalsu11& and
u22& in the GSu0&. For x50 it is u 0&5u11&. With the
increasing Hubbard repulsionU (.0) or attractionuUu the
weights ofu11& and u22& decrease and increase, respe
tively, and forx→6` they become equally weighted; se
u0&→(1/A2)(u11&7u22&). This discussion of the GS
u0& in terms of the NO’s~2.10! shows simultaneously tha
u0& is given forx50 by a single Slater determinant, where
u0& is given for x→6` by those mixings of two Slate
determinants in each case that asymptotically degene
with the triplet stateu0, 1, 0,21& and the singlet state
u 2U, 0, 0,21& of Eq. ~2.2!, respectively.

In the HF approximation the GS is given b
uHF&5u11& and EHF52t1U. This is a reasonable ap
proximation only for smalluxu(&1). For largeuxu the corre-
lation energyEcorr52At21U21t approaches2uUu1t; see
Fig. 4. This unreasonable diverging behavior results from
suppressing the ionic stateuA& in uHF&51/A2(uA&1uB&).

If one considers alternatively forx>1 the HL approxima-
tion uHL&[uB& of Eq. ~2.3! with EHL50 @see Eq.~2.4!# as a
reasonable reference state and forx<21 the state
uC&[u2U,0,0,21& of Eq. ~2.2! with EC52U as a reason-
able reference state, i.e., altogetheruC̃&5uC&uQ(2x21)
1uHF&Q(12uxu)1uHL&Q(x21) @with Q(x) a step func-
tion#, then the difference between the true energy~2.5! and
the reference energyẼ5ECQ(2x21)1EHFQ(12uxu)
1EHLQ(x21), i.e.,

DE5H 2AU21t22U for U,2t

2At21U21t for 2t,U,t

2AU21t21U for U.t

~2.15!

FIG. 3. Hubbard model~2.1!: on-site and off-site pair occu
pancy of the GSu0& vs x5U/t according to Eqs.~2.11!.
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vanishes forx→0 ~whereuHF& is good!, andx→1` ~where
uHL& is good!, andx→2` ~whereuC& is good!; see Fig. 4.
This procedure applied to the NON’sn6 and to the pair
occupancyni j , yield

ñ152Q~12uxu!1Q~ uxu21!, ~2.16!

ñ25Q~ uxu21!

and

ñi i5Q~2x21!1
1

2
Q~12uxu!, ~2.17!

ñi ī5
1

2
Q~12uxu!1Q~x21!.

These deviations ofẼ, ñ6 , andñi j from their corresponding
true GS valuesE, n6 , andni j , respectively, are largest fo
x'1 and vanish forx→0 and6`. Note that]T/]U and the
~reduced! interaction energyV22UQ(2x) have qualita-
tively the same behavior~with maxima atuxu'1).

How are these differences~of uHF& as well asuC̃& com-
pared withu0&) displayed by correlation entropies built u
from the site NON’sn6? While the entropy

S152~n121!ln~n121!2n2lnn2 ~2.18!

vanishes forx→0 and 6` and has a maximum nea
uxu51 ~like DE), the entropy

FIG. 4. Hubbard model~2.1!: energy differences of the GS
u0& vs x5U/t. The full line DE5E2Ẽ @cf. Eq. ~2.15!# and the
dashed lineEcorr5E2EHF . Energy is in units oft.
S252
n1

2
ln
n1

2
2
n2

2
ln
n2

2
~2.19!

vanishes for x→0 and increases monotonically~like
uEcorru) and approaches ln2 forx→6` @in contrast to
uEcorru, which diverges, but in qualitative agreement with
T(x)2T(0) andE(x)2E(0)22UQ(2x), which both satu-
rate at t#; see Fig. 5. It shows that the true GSu0& for
x→6` strongly deviates fromuHF&, whereas it weakly de-
viates fromuC̃&. Figure 6 presents energy differences vs cor
relation entropies~in the spirit of Collins’ conjecture6!.

Note that x→1` can be viewed ast→0 ~for fixed
U.0) or asU→1` ~for fixed t). The first case can be
understood as suppressing the hopping between the sites,
the sites decouple and the electrons are~similarly to the
stretched H2 molecule! well described by the HL wave func-
tion; the deviations of this reference state from the true G
u0& seem to be reasonably described byS1. The second case
can be understood as suppressing double occupancy at o
site due to the increasing Hubbard repulsion@similarly to
H2 if the coupling constantl of the Coulomb repulsion
l(e2/r 12) is turned on#; this seems to be described byS2.
The peculiarity of the simple Hubbard model~2.1! is that its
system energy parameterst andU scale mutually according
to their dimensionless ratiox, whereas in H2(R,l) the di-
mensionless quantitiesR/aB andl are independent of each
other, so that, as mentioned in the Introduction, the phenom

FIG. 5. Hubbard model~2.1!: correlation entropy of the GS
u0& vs x5U/t. The full line isS1 of Eq. ~2.18! and the dashed line
S2 of Eq. ~2.19!.
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enon correlation can be discussed in terms of different c
relation entropies separately forR→` ~and fixed l) or
l→` ~and fixedR).

III. CORRELATION ENTROPY
OF THE BCS GROUND STATE

Here we ask to what extent the electron correlation in
superconducting state can be measured on a 1P level.
appropriate quantity is again the 1PDM

g~x,x8!5^uc1~x8!c~x!u&, ~3.1!

where the angular brackets in Eq.~3.1! denote the BCS
ground state, which is the vacuum state of quasipartic
(n,s),

ansu&50. ~3.2!

The annihilation and creation operatorsans ,ans
† for a qua-

siparticle (n,s) are given by the Bogoliubov relation~see
e.g., Ref. 23!

c~r ,↑ !5(
n

@un~r !an↑2vn* ~r !an↓
† #, ~3.3!

c~r ,↓ !5(
n

@un~r !an↓1vn* ~r !an↑
† #;

c1~r ,↑ !5(
n

@un* ~r !an↑
† 2vn~r !an↓#,

c1~r ,↓ !5(
n

@un* ~r !an↓
† 1vn~r !an↑#.

The amplitudesun(r ),vn(r ) are the eigenfunctions of th
Bogoliubov–de Gennes Hamiltonian

H5S H0 D~r !

D* ~r ! 2H0*
D ~3.4!

FIG. 6. Hubbard model~2.1!: energy differences vs correlatio
entropies. The full line isuDEu vs S1 and the dashed lineuEcorru vs
S2. Energy is in units oft.
r-

e
he

s

with positive energiesjn.0, following from

HS un

vn
D 5jnS un

vn
D , ~3.5!

and the normalization

~un ,un!1~vn ,vn!51, ~3.6!

where (f ,g)5*d3r f * (r )g(r ). Using Eqs.~3.2! and~3.3! for
the 1PDM~3.1! results in

g~x,x8!5dss8(
n
vn* ~r !vn~r 8!. ~3.7!

In general, the amplitudesvn(r ) are not mutually orthogona
and the nonzero NON’snk must be calculated from the zero
of the determinant

det$nkdnm2~vn ,vm!%50. ~3.8!

In the following we consider only the case of a homogene
superconductor without a magnetic field. Then the am
tudesun ,vn are plane waves (V is the volume of normaliza-
tion!

un[Uk

eikr

AV
, vn[Vk

eikr

AV
, ~3.9!

with real coefficients Uk ,Vk and the normalization
Uk
21Vk

251. For the 1PDM in the (k,s) representation we
obtain

gks,k8s85dss8dkk8Vk
2 . ~3.10!

Therefore, the NON’s areVk
2 with 2(kVk

25N and the corre-
lation entropy per particle is

s52
2

N(
k
Vk
2lnVk

2 . ~3.11!

The coefficientsVk may be expressed by the gap functio
Dk ,

Vk
25

1

2 S 12
ek

Aek
21Dk

2D , ~3.12!

with

Dk5H D for ueku,d

0 otherwise.
~3.13!

The single-particle energiesek are measured from the Ferm
energy andd is of the order of magnitude of the Deby
frequency.

If there is no interaction (Dk50), then the NON’sVk
2 are

idempotent becauseVk
25Q(2ek). The interactionDkÞ0

makes the NON’s nonidempotent in a small regionueku,d at
the Fermi energy. Assuming that the density of states
electronr(e) is constant in the small interval 2d, the entropy
s is given by the relation

s52r~0!E
2d

1d
de
1

2 S 12
e

Ae21D2D
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lnH 12 S 12
e

Ae21D2D J . ~3.14!

The integration in Eq.~3.14! can be performed analyticall
@x5A11(D/d)2#

s5r~0!dS D

d
arctan

d

D
2
1

2 H ~12x!lnF12 S 12
1

xD G
1~11x!lnF12 S 11

1

xD G J D . ~3.15!

Figure 7 showss vsD. In the weak-coupling limitD!d we
obtain from Eq.~3.15!, for the correlation entropy,

s5
p

2
r~0!DH 11

D

2pd F2lnS D

2d D23G1•••J . ~3.16!

s vanishes withD and higher-order terms are proportional
D2lnD and D2. In the opposite limitD@d, i.e., Vk

2'1/2
within the shell 2d at the Fermi energy and the entropy p
particle approaches the limitr(0)d ln2.

This result may be compared with the interaction ene
of the BCS ground state. As it is well known, the shift
e, the ground-state energy per particle, againste(0), the en-
ergy per particle of the ideal Fermi gas, is given by

e2e~0!52
1

2
r~0!d2~x21!. ~3.17!

In the weak-coupling limit we obtain

FIG. 7. BCS model~3.4!: correlation entropys of the GS vs gap
parameterD according to Eq.~3.15!.
y

e2e~0!52
1

4
r~0!D2. ~3.18!

The interaction energy for the BCS ground state is prop
tional toD2 and changes slowly withD in comparison to the
correlation entropy, which is a sensitive measure of
change of the free-particle ground state due to the BCS
teraction. The energy shift vs the correlation entropy~Fig. 8!
shows a qualitatively similar behavior touEcorru vs S2 in the
two-site Hubbard model~Fig. 6!, see also Figs. 5 and 7.

IV. SUMMARY AND OUTLOOK

On the 1P level a correlation is displayed by the 1PD
the correlation makes the 1PDM nonidempotent.~For recent
papers studying the relations between the 1PDM and
correlation see Refs. 24 and 25.! From the nonidempotency
of the 1PDM a nonvanishing correlation entropy can be
rived, which thus provides a purely quantum-kinematic c
relation measure on the 1P level. These general conclus
are confirmed by the above studies of the two-electron tw
site Hubbard model~as an example of a finite system! and
the BCS model~as an example of an extended system!. The
Hubbard model shows forU→` that different reference
states~HF or HL! can be used for the discussion of the ph
nomenon of ‘‘correlation’’ and that to each reference stat
special correlation entropy corresponds. If one uses the
description ~two Slater determinants!, then the asymptoti-
cally vanishing coupling corresponds to the asymptotica
vanishing entropyS1 of Eqs.~1.2! or ~2.18! and Fig. 5. If one
uses the HF description~a single Slater determinant!, then
the strongly correlated hopping~to avoid double occupancy
at one site! corresponds to the asymptotically saturating e
tropy S2 of Eqs.~1.3! or ~2.19! and Fig. 5. Note the relation
of such a discussion to the distinction between a ‘‘static c
relation’’ ~with a multireference state to account properly f
the symmetry of the problem, e.g., dissociation limits
eigenstates of angular momenta, or for cases where nea
generacies exist! and a ‘‘dynamic correlation’’~manifested
in the correlation tail of the CI expansion!.18 The situation

FIG. 8. BCS model~3.4!: GS energy shifte2e(0) vs correlation
entropys according to Eqs.~3.15! and ~3.17!.
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for the BCS model is much more simple because the id
Fermi gas is the unique relevant reference state in this
and the entropy saturates at large energy shifts. As in
26, further work is called for before the importance of t
correlation entropy and other correlation measures~see Refs.
1–5! in the many-electron theory of atoms, molecules, a
solids can be assessed more deeply and comprehensive
t

ua
al
se
f.

d
.
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