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Exactly solvable modelgthe two-electron two-site Hubbard model and the Bardeen-Cooper-Schrieffer
mode) are revisited in terms of their natural occupation numkeigenvalues of the true, i.e., correlated,
one-particle density matrixEntropylike expressions that may serve as measures of the correlation strength are
related to possible reference states for the definition of correlation and discussed as functions of the system
parameters.S0163-18207)03015-4

I. INTRODUCTION rameters by going from a not as good description of the
correlation to a better onée.g., better basis set and more
Many-electron systems such as atoms, molecules, cluslater determinants in the CI expansian (ii) for a “per-
ters, solids, and models of it such as jellium, Hubbard, andect” description of a correlated many-electron state by
Bardeen-Cooper-SchrieffeiBCS) show the complex phe- changing system parameteisg., geometry parameters and
nomenon of “electron correlation,” caused by the Coulombcoupling constanisIn Ref. 6 the entropylike expressi@is
interaction. Often weak and strong correlations are distingonjectured to be proportional to the correlation energy. Of
guished. The question is obvious, whether these qualitativggrses is not the only quantity that indicates correlation.
terms can be made quantitatively precise. Indeed there ag§iyer quantities obtained from the NON, (with values
recent attempts to defingn addition to the correlation en- n. near and below 1 and a “jump” to values,. near and

ergy and t_he cor_relation and Coulomb hoI(_a, respect)velyabove 0 are (i) the difference between the lowest value of
quantum-kinematic measures of the correlation stretigth. . . _

. . . .the n,, and the highest value of the,» (it generalizes the
To define such measures, in Refs. 1 and 2 fluctuations, in

Refs. 3 and 4 the coefficients of the configurati0n-interactior{enorm"’1llzat|0n constant or quasiparticle weightof the

(Cl) expansion, and in Ref. 5 the order of converged many_electron-gas momentum distribution(ii) the sum of all
(correlation tail; and (iii ) the second-order nonidempo-

body perturbation theory are used. In Refs. 4 and 611 it i§«” » =
studied to what extent the one-particle density matrixttncy C=C(2), which is simultaneously the normalization
(IPDM) y(x,x")=(W|¢" (x)(x)|¥) of a state|W) dis- ©Of the Coulomb holaic(xy;Xz) = p(X1) p(X2) = | ¥(X1,%2)[?
plays the correlation present in that state”, ¢ are Fermi  —N(X1;Xz), where p(x) = y(x,x) and n(x;;X,) is the pair
operators and&=(r,o)]. The idea is to use the eigenvalues distribution function. It may be that these quantities and oth-
n, of the 1PDM for that purpose. The deviations of theseers(e.g., those obtained from the spin-traced 1PDM, see be-
natural occupation numbef8ION’s) n, from 1 or O(these low) behave differently when changing different system pa-
are the only values in the limit of “no correlation,” or, more rameters. So not only a single quantity, but rather a certain
precisely, in the case of only a single Slater determinantset of quantitie$and for a given parameter valdg not only
describe the phenomenon correlation on the 1P level. So th&(\), etc., but also the derivative® (\), etc] would be
g-order nonidempotendg(q)=N—-=,(n,)Y, the Tsallis en- necessary to characterize the correlation sufficiently pre-
tropy S(gq) =C(q)/(q—1),*? and the correlation “entropy” cisely (on a 1P level
S=5(1)=C'(1) or The correlation entropy itseffvith Eq. (1.1) or modifica-
tions of it or with higher-order entropies obtained from
higher-order reduced density matri¢és still in its infancy.
S= 2 n(=Inn,), 2 n.=N (1.1 The ultimate applications are unknown, but may include tests
of the quality of the approximate correlated many-electron
are zero for no correlation and increase with increasing corwave function$*>~**and constructions of quantum states with
relation. Increasing correlation can be achieddfor the  the maximum-entropy methd§:}’ Obviously a reasonable
state(e.g., the ground stat®)) of a system with given pa- definition of a quantitative correlation meastie., a pos-
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sible modification of Eq(1.1)] depends on the choice of a approaches In2 asymptotically f&— o and corresponds to
reasonable reference statehich is not always a single an understanding of the correlation with the HF approxima-
Slater determinaintIn the case a system has more than ongion as a reference state for all separati®ysalthough the
control parameter, one may not exclude that it is reasonableF approximation(with a single determinaptfails in the
to let each parameter have its own correlation strength. Fatissociation limit and hence must be strongly corrected
these questions see the following remarks. (strong correlation So which correlation entropyS; or

The correlation entropyl.1) is based on the nonidempo- S,) is more appropriate depends on the more or less reason-
tency of the NON'sn,. and proves to be an appropriate mea-able reference state. Yet to be studied is the question whether
sure of the correlation strengtbn the 1P levelif the refer-  Egs.(1.2) or (1.3) or even other constructions are more ap-
ence state defining correlation is a single Slater determinanpropriate to display the correlation for a fixed separafibn
The latter is not always the case. Indeed the situation is moreut varying, in particular, the increasing coupling constant
complicated when the symmetry of the problgangular ) of the electron-electron repulsiore?/r ;,. An appropriate
momenta as conserved quantities, dissociation limit of a moleorrelation measure should increase withAlso the ques-
ecule, eto. requires more than a single Slater determinantion is open whether “static and dynamic correlatioffstan
even in the absence of Coulomb repulsierg., spin conser- be characterized by different correlation measues., in
vation alone mixes Slater determinants in the noninteractingases where near degeneracies exist, Be as an example re-
wave function%. Then Eq.(1.1) would indicate a correla- quires at least four Slater determinants of spin orbitals as a
tion, although there is no correlation. So modifications ofreasonable reference state or starting point
formula (1.1) are necessary. The concept of correlation entropy has been applied so far

In addition to the eigenvalues, of the “full” (spin-  to the uniform electron gas with the density paramegef to
dependent1PDM y(x,x’) it seems reasonable to consider half-space jelliunf to the isoelectronic series H&Y and the
also the eigenvaluesn, of the spin-traced 1PDM Hooke law model with the oscillator frequenay*® to the
y(r,r")==,9(x,x")|, . These spatial NON'sn, vary  molecule B(R),*'° and to other atoms and molecufés.
between 0 and 2 and for the definition of the other correla\While Refs. 4 and 7—10 investigate h&S; ,S, depend on
tion entropies the following nonidempotencies can be usedhe system parameters,Z,w,R, in Ref. 11 the basis set
(i) Among all then, there is a certain numb&t, (<N) of  dependence of the entropy expressiol n,Inn, is consid-
NON's ny with values between 1 and 2. Then the reducecered and Collins’ conjectutds checked; note that this en-
NON's n, —1 are between 0 and 1 and all the othertropy is 25,—NIn2 for n.= 3Ny and it consists of positive

N:. (=N—N.) NON's n. also have values between 0 and and negative terms_, so it is or can k?e totally negative and is
1 o k1 nonzero & — NIn2) in the no-correlation case 62 NON's

%ko: 2. In the present work exactly solvable models, namely,

the two-site two-electron Hubbard mod@ec. I) and the
BCS model(Sec. lll), are studied in terms of correlation
Si=-2 (N, —Din(ng —1)—= > nInn,, (1.2 entropies.
Ko kg

Il. THE TWO-ELECTRON TWO-SITE HUBBARD MODEL
Nk, Nk o
S,=-2, ?lnf' (1.3 In the Hamiltonian
k

1. (ii) All the n,/2 have values between 0 and 1. So possibl
measures of the correlation strength are

N t ~ a

They have in common to measure deviations of the NON's H=- EE ¢l e+ ZUE N Niy (2.7)
from 0 and 2, but in particular NON’s with values approxi- Lo :
mately equal to 1 are treated differently: They almost do nothe prefactors-t/2 and 2J are, contrary to the usual nota-
contribute t(l)Sl, whereas each sucrl1 NON c?ntributes ap-tion t andU, chosen to make the following expressions as
proximately3In2 to S,. (Note thatS,=3Sif n,=3n, where  gimple as possible. The first terrif) describes the hopping
« includess, and note that foN=2 and for a singlet the . can the two sites=1 and 2 (_1:2 2_:1) with
spatial wave function is a sum of permane(ratqumanent IS ¢ ¢, the Fermi creation and annihilation operatassite
defined like a determinant but with all plus signa, ~1 Jlor o _ ~ .

dn ~1 the domi f that Ot h i and with spinc=1,]), and the second term/{ describes
an n_kl’“ mean the ommancg ot thal permanent WherG,q on-site interactior(repulsion forU>0, attraction for
two different natural states are singly occupjed. U<0) between the two electrons with the spin-dependent

Application of Egs.(1.2) and (1.3 }8 the ground state ;. occupancy operatde, =c' ¢, . Equation(2.1) may be

H o lo~lo* *
ﬁg‘g:ﬁz;fv\t,ﬂirgo'e‘;‘gseg(tﬁzojhﬂ"fé ;L‘Stvilrfg]ehsagsam considered as a simplified version of a tight-binding descrip-

_ ko p gh L. YMPtion of the H molecule. For papers treating molecules within
totically for R—c ; it corresponds to a reference state thatine Hubbard model see Refs. 19 and 20 and for a recent
shows a smooth transition from a Hartree-Fodk) descrip-  paper dealing with the attractive Hubbard modeith the
tion for smallR to a Heitler-London(HL) description for  {ransition from the weak-coupling limit with BCS properties
large R. (Note that HF means a spatial permanent withg the strong-coupling limit with Bose-Einstein condensa-
ng,=2 andny =0, from which follows a single Slater de- {jon) see Ref. 21.

terminant of spin orbitals, and that HL means a spatial per- The eigenstates dfi are characterized by their energies
manent Wlthnkoz N, =1, from which follow two Slater de- g, by the eigenvalueS (= 0 or 1) andMg (= 0 or 0+ 1) of
terminants of spin orbitals.S,(R), on the other hand, the total spin, and by the eigenvalugg= * 1) of the site
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permutation operator. The four 1P stalies)=c/ |vac) with ‘ w
Ci,/vag=0 form the basis set to construcg) €6 two-
particle (or gemina) states E,S,Mg,p), namely, three trip- 2t
let states withp=—1, one singlet state witpp=—1, and Egr,
two other singlet states with= +1; see the following.

In the triplet three statedMs=0,=1) there is no interac- t
tion (because the spins are parali@hd no hoppingbecause |

of tpe Pal;l|i principlg so they arduninteresting eigenstates 0 Eyrp I
of T andV with the eigenvalues 00,1,Mg,—1). The sin- )
glet state e
1 E =2 E |
|2U,0,0-1)= E(c%ch—c%c&)lvae} (2.2 C , E
does not depend onandU and is an eigenstate df and
V with eigenvalues 0 and 2, respectively; it is a purely al :
ionic state. The two other singlet states arise from the mixing
of the ionic and nonionic geminals, respectively:
|A)= \/_(cchli+CZTCZL)|vac) (2.3 Al 3
|
‘ ‘ ‘ ‘ |
|B)= \/_(cch21+CZTcll)|vac) 3 2 ! 0 ! 2 3

With |E, 0, 0,+1)=«|A)+ B|B) and
FIG. 1. Hubbard mode(2.1): GS energy(2.5) vs x=U/t. The

|:||A):2U|A>—t|B), (2.9 dashed lines are reasonable reference enerfigs:2U [cf. Eq.
(2.2)] for x<—1, Epg=—t+U for |[x|<1, andE ,, =0 for x=1.
|:||B>= —t|A), Energy is in units ot.
the diagonalization ofi yields E* = \t?+UZ+U for the t
excited statéE*, 0, 0,+ 1) and T=- N (2.8
= —JtZ+UZ+uU (25  with T=—t for U=0 andT—0 for U— *c. [The same

result (2.8) arises from T=tJE/dt according to the
Hellmann-Feynman theoreff] Diagonalization of v
yields the site NON's

_ )X L PO 1
=5 1 NEsvd ﬂ—\/i 1+m nizlim 2.9

(2.6
(see Fig. 2 (the site and spin NON'’s are.. ,=n,n. with
depend only on the dimensionless parameter comblnatloH 1) and the binding+) and antlblndmg ) molecular

x=U/t. Note that Zvf=1/y1+x". _ natural orbital¥NO’s), respectively,
Knowing the GS|0), the following expectation values

for the ground statéG9) |E, 0, 0,+1)=|0) (see Fig. L
The GS coefficients

can be constructed: the spin-dependent and spin-summed site 1 1
occupanciesn;, and n;= E JNi,, respectively, the spin- |i0>:ﬁ(| lo)*| 20))—\/—(C10_ng)|) ct ).
traced 1PDMy”, (O|E c ,Cio|0), the spin-summed pair (2.10
occupancyn;; = i (on—site forj=i and off-site for )
j=i), and the hopping and interaction energiesand V, Electron pairs are described by the on-site and off-site pair
respectively. occupancies, respectively,
For the 1PDM of the GS
1 X
1 2ap niizi(l_ — | (2.11
Yir = 2.7 1+x
2a8 1

resul;s. Thus the site occupaney= y;i is nj=1 and the nn——i 1+;
hopping energyl = — (t/2)2; yi7is T=—2aBt or 2 V1+x?
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FIG. 3. Hubbard mode(2.1): on-site and off-site pair occu-
pancy of the GS0) vs x=U/t according to Eqgs(2.11).

FIG. 2. Hubbard model2.1): natural occupation numbens. of ~ where the geminal$+ t>=c;cl |y are introduced and
the GS|0) (cf. Eqs.(2._13) or (2.14)], vs_x=U/t acc_ord'ing to Eq. Cat+p= Jn, anda— B=—sgrlJ/n_ have been used. So the
(2.9. n, andn_ describe the occupation of the binding and anti- NON’s n.. determine the weights of the gemingls+) and

binding natural orbital$2.10, respectively. |——) in the GS|0). Forx=0 it is | 0)=|+ +). With the
increasing Hubbard repulsidd (>0) or attraction/U| the
(see Fig. 3 Thus the interaction energy=UZX;n;; is weights of|+ +) and|— —) decrease and increase, respec-
tively, and forx— *=o they become equally weighted; see
vel1 x|, - |0)— (12)(|+ +)F|——)). This discussion of the GS
\/m; ' (212 |0) in terms of the NO's(2.10 shows simultaneously that

|0) is given forx=0 by a single Slater determinant, whereas
with V=U for x=0, V—0 for x—+, andV—2U for  |0) is given for x— = by those mixings of two Slater

x— —o. (The same result arises frobi=UJE/JU due to determinants in each case that asymptotically degenerate

the Hellmann-Feynman theorenfror n.. vs the scaled Hub- With the triplet state|0, 1, 0~1) and the singlet state

A comparison of Eqs(2.6) and(2.11) showsn;;=«? and In the HF approximation the GS is given by
ni= 2 or |[HF)=|++) and Eye=—t+U. This is a reasonable ap-
proximation only for smal|x|(=<1). For large|x| the corre-
10)= \/n_”|A)+ \/FﬁB)- (2.13 lation energyE o= — JtZr U2+t approaches- |U|+t; see

Fig. 4. This unreasonable diverging behavior results from not

Thus on-site and off-site pair occupancies determine th&UPPressing the ionic state) in [HF)=1/y2(|A)+B)).
weight of the ionic geminalA) and the nonionic geminal If one considers alternatively for=1 the HL approxima-
|B) in the GS|0). For x=0 they are mixed with equal tion[HL)=|B) of Eq. (2.3 with E,; =0 [see Eq(2.4]as a
weights; seel0)=(1/y2)(JA)+|B)). The increasing Hub- reasonable reference state and fa<-—1 the state
bard repulsiorJ (>0) suppresses the ionic contribution or |C)=|2U,0,0,—1) of Eq. (2.2 with Ec=2U as a reason-
double occupancy of a single site and vanishes asymptotRble reference state, i.e., altogethdr)=|C)|®(—x—1)
cally for x— +o0; see|0)—|B). The increasing Hubbard at- +|HF)®(1—|x|)+[HL)®(x—1) [with ©(x) a step func-
traction |U| suppresses the nonionic contribution or singletion], then the difference between the true ene(@y) and
occupancy and vanishes asymptotically fors —«; see the reference energyE=EcO(—x—1)+E40O(1—|x|)

|0)—|A). +Eq O(x—1), i.e,
The CI expression of the G®) in terms of the NO’s
(2.10 yields —JUZ+t2—U for U<—t

- \/n\ AE={ —JtZ+UZ+t for —t<U<t (2.15
|o>:\/7|++)—sgru 1= (214 —JUZ+t2+U  for U>t
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FIG. 4. Hubbard model2.1): energy differences of the GS z
|0) vs x=U/t. The full line AE=E—E [cf. Eqg. (2.19] and the
dashed lineE = E—Eye. Energy is in units of. FIG. 5. Hubbard model2.1): correlation entropy of the GS

|0) vs x=U/t. The full line isS,; of Eqg. (2.18 and the dashed line
vanishes fox— 0 (where|HF) is good, andx— + (where Sz of Eq.(2.19.
[HL) is good, andx— — (where|C) is good; see Fig. 4.
This procedure applied to the NONMs. and to the pair n_
occupancyn;; , yield S,=— —In———=In— (2.19

n,=20(1—|x)+06(|x|-1), (2.16

_ vanishes for x—0 and increases monotonicallylike
n_=0(x|-1) |Ecorl) and approaches In2 fork—+ [in contrast to
|Econl, Which diverges, but in qualitative agreement with
T(x)—T(0) andE(x) —E(0)—2U® (—Xx), which both satu-
rate att]; see Fig. 5. It shows that the true G8) for
Ni=0(—x— 1)+ @ —|x]), (2.17)  X— = strongly deviates froniHF), whereas it weakly de-
viates from|W). Figure 6 presents energy differences vs cor-
relation entropiesin the spirit of Collins’ conjectur®.

Note thatx— +o can be viewed agt—0 (for fixed
U>0) or asU— +x (for fixed t). The first case can be
understood as suppressing the hopping between the sites, so
These deviations df, .. , andn;; from their corresponding the sites decouple and the electrons &nilarly to the
true GS values&, n., andn;;, respectively, are largest for stretched H moleculg well described by the HL wave func-
x~1 and vanish fox—0 and=«. Note thatdT/9U and the tion; the deviations of this reference state from the true GS
(reduced interaction energyvV—2U®(—x) have qualita- |0) seem to be reasonably describedSjy The second case
tively the same behavidwith maxima afx|~1). _ can be understood as suppressing double occupancy at one

How are these differencesf |HF) as well ag¥) com-  site due to the increasing Hubbard repulsigmilarly to
pared with|0)) displayed by correlation entropies built up H if the coupling constant of the Coulomb repulsion

and

--:—®(1 [X)+O(x—1).

from the site NON’sn.? While the entropy M(€%Ir1,) is turned of; this seems to be described y.
The peculiarity of the simple Hubbard mod@l1) is that its
S;=—(n.—1)In(n,—1)—n_Inn_ (2.18 system energy parametdrandU scale mutually according

to their dimensionless ratig, whereas in H(R,\) the di-
vanishes forx—0 and o« and has a maximum near mensionless quantitie®/ag and\ are independent of each
|x|=1 (like AE), the entropy other, so that, as mentioned in the Introduction, the phenom-
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In?2 with positive energieg,>0, following from
l uV ul/
2.5 ' H =& ], (3.5
! v, v,
I
5 | and the normalization
|Ecorr| vs. S9 / _
// (uvvuv)+(vvavy)_lv (36)
1> / where ¢,g)=[d3rf*(r)g(r). Using Eqs(3.2 and(3.3) for
|AE| vs. 81 the 1PDM(3.1) results in

VXX )= 8y 2 VE(NUL(F). 3.7

In general, the amplitudes,(r) are not mutually orthogonal
and the nonzero NON's,. must be calculated from the zeros
of the determinant

det{n,s,,—(v,,v,)}=0. (3.8

FIG. 6. Hubbard mode(2.1): energy differences vs correlation | the following we consider only the case of a homogeneous
entropies. The full line I$AE| vs S, and the dashed liNEcor VS syperconductor without a magnetic field. Then the ampli-
S,. Energy is in units of. tudesu, ,v, are plane waves({ is the volume of normaliza-

enon correlation can be discussed in terms of different cort—lon)
relation entropies separately f®®—c (and fixed \) or elkr elkr
A— (and fixedR). u,=U—, v, =Vi—, 3.9
k\/ﬁ k\/a ( )
1. CORRELATION ENTROPY with real coefficients U,,V, and the normalization
OF THE BCS GROUND STATE UZ+VZ=1. For the 1PDM in theK,o) representation we
Here we ask to what extent the electron correlation in thé?Ptin
superconducting state can be measured on a 1P level. The _ 2
appropriate quantity is again the 1PDM Yo k'o’ = Oaot S Vic- (310
, L Therefore, the NON's ar¥'Z with 23,V2=N and the corre-
YOO =(g" (X)) (X)), (3.1 Jation entropy per particle is
where the angular brackets in E(.1) denote the BCS 5
ground state, which is the vacuum state of quasiparticles S=— NE V2InV2. (3.1
(v,0), K
a,])=0. (3.2 Zhe coefficientsvV, may be expressed by the gap function
ks
The annihilation and creation operator;,,alf, for a qua-
siparticle (v,o) are given by the Bogoliubov relatiofsee v2es| 1 € (312
e.g., Ref. 23 k=3 —,_2_26k+Ak ) .
p(r=2 [uNay—viDayl, (33 with
A for |g|<é a1
Y(r,1)=2 [u(Na, +vi(nal]; "0 otherwise. 313

The single-particle energieg are measured from the Fermi
energy andé$ is of the order of magnitude of the Debye
‘l/+(rvT):2V [ut(r)aIT_Uv(r)avl]v frequgeyncy' J Y
If there is no interaction4,=0), then the NON’A/& are
idempotent becausb’ﬁz@(— €. The interactionA,#0
g )= [ub(nael +u,(Na,l. makes the NON’s nonidempotent in a small regieg< & at
! the Fermi energy. Assuming that the density of states per
The amplitudesu,(r),v,(r) are the eigenfunctions of the electronp(e€) is constantin the small interval® the entropy

Bogoliubov—de Gennes Hamiltonian s is given by the relation
Ho  A(N) o 1 €
= 3.4 =— I
A*(r) —H3 (3.4 s p(O)Jiﬁdez 1~ ==
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FIG. 7. BCS mode(3.4): correlation entropy of the GS vs gap
parameteA according to Eq(3.15.

1 €
|n[§(1—\/ﬁ ] (3.14)

The integration in Eq(3.14) can be performed analytically

[x=1+(A/8)?]
1 1
5(17”

(3.15

s=p(0)d

A o 1 1 |
Earctan——z (1—x)In

A
Figure 7 shows vs A. In the weak-coupling limiA < 6 we
obtain from Eq.(3.15, for the correlation entropy,

+(1+x)I 1
( X)nz

1
1+=
X

1+—A 3|+
276

v
s=5p(0)A . (3.16

20n| >
" 25
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FIG. 8. BCS mode(3.4): GS energy shife—e(® vs correlation
entropys according to Egs(3.15 and(3.17).

1
e—e¥=— Zp(O)AZ. (3.18

The interaction energy for the BCS ground state is propor-
tional toA? and changes slowly with in comparison to the
correlation entropy, which is a sensitive measure of the
change of the free-particle ground state due to the BCS in-
teraction. The energy shift vs the correlation entréipig. 8
shows a qualitatively similar behavior t&.,,| vs S, in the
two-site Hubbard mod€(Fig. 6), see also Figs. 5 and 7.

IV. SUMMARY AND OUTLOOK

On the 1P level a correlation is displayed by the 1PDM:
the correlation makes the 1PDM nonidempotéRbr recent
papers studying the relations between the 1PDM and the
correlation see Refs. 24 and 25rom the nonidempotency
of the 1PDM a nonvanishing correlation entropy can be de-
rived, which thus provides a purely quantum-kinematic cor-
relation measure on the 1P level. These general conclusions
are confirmed by the above studies of the two-electron two-
site Hubbard modefas an example of a finite systerand
the BCS modelas an example of an extended syskefhe
Hubbard model shows fotJ—o that different reference
states(HF or HL) can be used for the discussion of the phe-
nomenon of “correlation” and that to each reference state a
special correlation entropy corresponds. If one uses the HL

s vanishes withA and higher-order terms are proportional to description (two Slater determinanktsthen the asymptoti-

A?InA and A?. In the opposite limitA> 4, i.e., Vi~1/2

cally vanishing coupling corresponds to the asymptotically

within the shell 25 at the Fermi energy and the entropy per vanishing entropys; of Eqs.(1.2) or (2.18 and Fig. 5. If one

particle approaches the limjit(0) In2.

uses the HF descriptiota single Slater determingntthen

This result may be compared with the interaction energythe strongly correlated hoppir@o avoid double occupancy
of the BCS ground state. As it is well known, the shift of at one sitg¢ corresponds to the asymptotically saturating en-

e, the ground-state energy per particle, aga@i%t, the en-
ergy per particle of the ideal Fermi gas, is given by

e—e<0)=—%p(0)52(x— 1). (3.1

In the weak-coupling limit we obtain

tropy S, of Egs.(1.3) or (2.19 and Fig. 5. Note the relation

of such a discussion to the distinction between a ‘“static cor-
relation” (with a multireference state to account properly for
the symmetry of the problem, e.g., dissociation limits or
eigenstates of angular momenta, or for cases where near de-
generacies existand a “dynamic correlation”’(manifested

in the correlation tail of the CI expansiptf The situation
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for the BCS model is much more simple because the ideal ACKNOWLEDGMENTS
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