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Numerical method to evaluate the dynamical critical exponent
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A finite-size scaling approach is used to show numerically that dynamical scaling occurs for short and long
times independently of the initial conditions. Its main idea is to construct particular quantities scalifignas
the thermodynamic limit. —, L being the linear size of the system. These are the quantities for which the
dynamic scaling occurs for short and long times. This approach is applied to obtain the critical dynamical
behavior of two- and three-dimensional ferromagnetic Ising models, subjected to Glauber dynamics.
[S0163-18207)00302-0

Although the static critical properties of classical spin sys- The short-time behavior obtained by the approach pre-
tems are well described by renormalization group theoriesented in this paper does not depend on the initial condition.
(theoretical framework and calculation procedifethe dy- It is based on the same ideas developed in a recently pro-
namic critical properti€sare not as well understood. In par- posed renormalization group calculation used to evaluate the
ticular, the value of the dynamic critical exponeris stillan  static properties of Ising systeriSWe analyze the relax-
open question even for the two-dimensional Ising mddel ation to the equilibrium of well-chosen variables which
when dynamics with local flips of spins are considered. Thescales a4.? (L is the linear size of the systémin order to
determination of the exponeatfor classical models in dif- show that the scaling occurs already for short times indepen-
ferent lattice dimensions has been done by using several agently of the initial conditions, we chose two different initial
proaches: field-theoretical dynamical renormalization grougonditions, both with zero correlation lengths. The first one
methods;’ Monte Carlo simulation§;!° renormalization consists of up and down spins, in such a way that the initial
group methodd!* damage spreadifg®>!® non-  magnetization and a chosen quantity of our schema both
equilibrium relaxatiort/'® and series expansidit® For the  have the value zero. In this case the characteristic time scale
Ising model the various methods obtain in two dimensionf the critical initial slip istq—0o°. The second initial condi-
2.10<z<2.52 and in three dimensions 1:8%<2.35. Usu- tion consists of all spins in the up direction. Nowy, and the
ally, some of these methods obtain thexponent fromlong-  chosen quantity of our approach have their maxima values,
time behavior This limit is hard to be reached because of thenamely, 1. In this case the time scale~1 is essentially
critical slowing down that always appears, except for clustersnicroscopic. The reasons for introducing this finite-size dy-
algorithms?® Besides, it is also very hard to obtain good namical scaling approach are the followin@) The weak
statistics in these procedures. Critical slowing down and poodependence of the procedure brimplies that the value of
statistics are among the reasons why different calculations is very good even for the smallest latticé€s) the critical
produce so many different values for temperature and the static exponents are easily obtained with

Our objective in this work is to present a finite-size dy- good accuracyiii ) the chosen variable relaxes exponentially
namical scaling approach which overcomes the usual diffiafter a transient behavior, thus allowing a good traditional
culties pointed out above. The method is then applied to twoway of calculation of the relaxation time; aniV) the dy-
and three-dimensional kinetic Ising models with single spinnamical scaling occurs for short times independently of the
flips. The method can also be applied to systems with morénitial condition, hence the evaluation of thexponent from
complex ordering behavior subjected to different dynamics.short-time simulations.

Recently, a method has been propd3ed evaluate the The finite-size dynamical scaling approa@eSDSA is
z exponent fronshort-time behaviarlt is based on the scal- based only on the finite-size dynamical scaling hypotResis
ing relation for the dynamics at early tim&slin this time  which, for a thermodynamic quantity and a finite system
regime the magnetization initially grows, characterizing aof linear dimensiorL, can be expressed as
new universal stage of the relaxation of the magnetization,
the so called “critical initial slip.” However, it turns out that
the initial condition(zero magnetization and very short cor-
relation lengthis essential to obtain the dynamical exponent.
This happens because the critical initial slip sets right in aftefor arbitrary values of the scaling factef. We are here
a microscopic time scale and eventually crosses over thadopting the ferromagnetic language wherés the external
long-time regime. The characteristic time associated with thdield, the reduced coupling constantds e=K—K_, where
critical initial slip isto=mg, ?*, wherem, is the initial mag- K, is the critical couplinge’=/""¢, H'=/YH, t'=/"*4,
netization andk is a new exponent. Ifn,=0, we have that andL’=/"1L. Here,», 1ly, andz are the correlation length
to— and the early time scaling overlaps with the expectedand magnetic and dynamical critical exponents, respectively.
long-time scaling. Equation(1) has its general validity fot —«~ and near the

P(e',H',t',L")=/"?P(e,H,t,L), (1)
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FIG. 1. Long-time behavior of(t) for two-dimensional lattices FIG. 2. Short-time behavior d&(t) for two-dimensional lattices

of sizesL=16, 8 (labelled by the open symboltgether with the  ©of sizesL =64, 32, 16(labeled by the open symbolwogether with

corresponding rescaled time of lattices with=L/2 (represented the corresponding rescaled time of lattices with=L/2 (repre-

by solid line3 at the equilibrium fixed points. In the initial condi- sented by solid lingsat the equilibrium fixed points. The initial

tion all spins are in the up directiorQ=1, my=1, £=0). The  condition consists of up and down spins in such a way R0,

statistical errors are smaller than the symbols. my=0, and¢=0. The statistical errors are smaller than the sym-
bols.

critical point (e~0, H~0, andt—«). The exponent) de- ) )
fines the critical behavior of the quantiB and is called its M~ €” is ¢=—B/v. In the present formalism, as we argued

anomalous dimension. Q~ €% and sop=0. These properties are extended to the
The basic idea of the FSDSA is to look for quantities Study of the dynamics. . S
ha\/ing zero anomalous dimensioa‘,:é O) Here we Study In general, the variables Wltdb:O are identified from the

the spin-1/2 Ising model defined by the reduced HamiltoniarPhysical order parameter of the system. For instance, for the
Potts model, which has many states, one chooses a privileged

state among possible spin orientations. For a given lattice
~BH=K2, oioj+H oy, oj==1, (20 spin configuration determine whether the majority of the
Y ' spins are in this privileged statset the counter equal tg 1
where=1/kgT, T is the temperature, arig, the Boltzmann ~ Or in any other statgset the counter equal te 1/(r —1)].
constant. The time evolution is driven by the GlauberDefineQ as the average of this countérin a similar fash-
dynamics?* which is defined by transition rate of flipping the ion the same procedure can be applied to other models, such
ith spin, as the Blume-Emery-Griffiths moddfor S=1, there are
three states

@ The other quantity havingg=0 is given by
wi(oi) = 5 [1-tanf(E;oy)], 3
~(sof =3 o |sorf o+ >
whereE;=KZ,a;, j are the neighbors df and 1k is the RIU={s9 M 7SN M, 71 ©

time scale. One of the quantities havigg=0 is given by o o
For a finite system consisting of a hypercube one has

1 N N=LY spins andM =LY%~ spins on its top and bottom hy-
Q(t)= < sgr( NE ai) > , (4) persurfaces. By considering further periodic boundary condi-
i=1 tions, due to this extra symmetry, the “top” and “bottom”
hypersurfaces in Eq5) can be considered those located at
the positiong andr +L/2, respectively, with. even. Then,
the two independent equations

where (---) means the nonequilibrium average and
sgnik)=—1(x<0), 0(x=0), +1(x>0).
Let us analyze the quantify(t=)={(q) first introduced

in Ref. 23. For the usual order parameter, the magnetization QU (K H .t =Q_(K,H,1) (6)
m=(u), the probability distribution(x) in the limit o T

" . .
N—o, T<T., H—0", reduces to a singlé function cen- RL/(K'H' t')=R_(K,H,1), @)

tered atu=m,. Herem, depends on the temperature. The

probability distribution’?(q) related to the quantitg also  define the FSDSA. In order to study the dynamical critical
reduces to a singlé function centered agy=1 in the same properties, we first evaluate the equilibrium fixed point for
limit. However, differently from the magnetizatiapy=1 for ~ each pair of latticesK'=K=K., H'=H=0). Then we
T<T, independently of the value &f. In other wordsQ is  look for the time evolution of these variables at the equilib-
constant forT<T.. According to the finite-size scaling hy- rium fixed point:(i) the Q variable from an initial nonequi-
pothesis, the anomalous dimension is given bylibrium state Q=1) to the equilibrium value Qq=0), (ii)
¢= —(critical exponent)?, which for the magnetization the R variable from an initial state witflR=1, and(iii) the
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FIG. 3. Short-time behavior d¥(t) for two-dimensional lattices FIG. 4. Short-time behavior dR(t) for three-dimensional lat-

of sizesL =64, 32, 16(labeled by the open symbotwgether with  tices of sizes =16, 8 (labeled by the open symbolmgether with
the corresponding rescaled time of lattices with=L/2 (repre-  the corresponding rescaled time of lattices with=8, 6 (repre-
sented by solid lingsat the equilibrium fixed points. The initial sented by solid lingsat the equilibrium fixed points. The initial
condition is given byR=m,=1. The statistical errors are smaller condition is given byR=my=1. The statistical errors are smaller
than the symbols. than the symbols.

R variable from an initial state witlR=0 and zero correla- . _ ,
tion length. Differently from methods which obtain short- L' =4 and similarly forL =16 andL’=8 are shown. Note
time scaling only for certain initial conditiofsuch as zero thatthe long-time behavior is reached sifzés approaching
magnetization we will show that the short time behavior of itS €quilibrium valueQ=0. The collapse of the two curves is
the quantitie® andR is independent of the initial condition. Very good in the beginning of the decay as well in the as-

By Monte Carlo simulations we have analyzed two-YMPtotic regime. This indicates that scaling occurs for both
dimensional lattices of sizds=4 up toL =64. The equilib- Short and long times and it is characterized by the same
rium values and their errors, for each lattice, were obtaine@*Ponent. In Fig. 2 the short-time behavior of the correlation
by 20 independent runs. In each run, after reaching equilibfunctionR at the equilibrium fixed point is shown. The sys-
rium, we have considered 10 000 configurations entering inté®™M i prepared with a sequence of spin up and down such
the average oR. Two sequential configurations were sepa-thatR(t=0)=0, m,=0, and the correlation length is zero.
rated by Monte Carlo steps, whereis the relaxation time This is the same initial condition used in Ref. 22 in order to
of R near the criticality. The critical valu&. and an esti- Nnave the early-time scaling extended. We present in this fig-
mate of the correlation length exponentfor two lattices  U'® the results of collapseq curves for the Iattlces>(64).,
were obtained by collapsing the two corresponding curve§32%16), and (16&8). In Fig. 3 we present the short-time
RL(K) X {K o+ /(K —K,)}. behavior of the correlation function for the same lattices de-

The decay ofQ(t) to the equilibrium at the critical value scribed above with a different initial condition. Here we pre-
K, andH=0 was evaluated with 100 000 samples. In Fig. 1Pare the system with all spins up such tRgt=0)=1 and
the time behavior of) for a square lattice with linear size Mo=1- The results presented in Figs. 2 and 3 were obtained
L=8 and the rescaled time for a lattice with linear sizeWith 300 000 samples for lattices smaller tHas 32 and for

the latticesL=32 andL=64 we use 200 000 and 60 000

TABLE 1. The values of the dynamical critical exponenbb-  Samples, respectively. It is worth mentioning that short-time
tained from Q(t) with Q(0)=1 and R(t) with R(0)=1 and  Scaling occurs for both initial conditions. We have also
R(0)=0 for several two-dimensional lattices. Also shown the re-checked the long-time behavior of the correlation function
duced critical couplindK, and the critical exponent obtained in
equilibrium. The equilibrium exact values ate.=0.4407 and

1 TABLE II. The values of the dynamical critical exponenbb-
v=.1.

tained from Q(t) with Q(0)=1 and R(t) with R(0)=1 and
R(0)=0 for three-dimensional lattices. Also shown the reduced

Exponentz critical couplingK. and the critical exponent obtained in equilib-
Latices Q(t) R(D)[R(0)=1] R(1)[R(0)=0] K. v rium. The equilibrium expected values ar€.=0.222 and
r=0.63.
6,4 2.105 1.960 1.930 0.4346 0.984
8,4 2.110 1.990 1.980 0.4361 0.993 Exponentz
8,6 2.115 2.020 2.050 0.4375 0.983 .
’ Latt t) R(t)[R(0)=1] R(t)[R(0)=0 K
16, 8 2.130 2.110 2.105 0.4400 1.007 atices Q( RMIR(O)=1] ROIR(0)=0] ¢ Y
32,16 2.160 2.150 2.155 0.4407 1.000 8, 6 2.07 2.08 2.04 0.2214 0.656

64,32 2.165 2.165 2.165 0.4407 1.000 16, 8 2.09 2.11 2.04 0.2220 0.630
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for the smallest lattices and the results for thexponent are  small and the surface effects are still relevant. We believe
the same as the ones obtained from the short time behaviahat an increase of the lattice sizes, which is beyond our
In Fig. 4 we show the short-time behavior of the correla-present computation power, will eventually lead to a com-
tion functionR with the initial conditionR(t=0)=1 for the  mon result.
three-dimensional latticed & 16 andL’=8) and (=8 and In conclusion, we have presented a method showing scal-
L'=6) at the equilibrium fixed points. Here we use 300 000ing for short-times and leading to the evaluation of the dy-
samples for lattices smaller than=16 and 50 000 samples namical exponent even for small lattices. This method can
for the lattice withL =16. The short-time scaling shows up easily be applied to others systems with more complex criti-

from lattices larger thah =6 for Q(t) and R(t) with two
different initial conditions.

Table | presents the reduced critical coupling,
critical exponenty, and the dynamical critical exponentor

the two-dimensional lattices. The errors were estimated b
the standard deviation of five independent runs and they a
fect the last digit of the numbers of the table. The results ar
quite good even for the smallest lattices. Our best result i

z=2.16+0.03 for the lattices with. =64 andL’=32.

cal behavior. For example, by using similar variab@@snd
R, the tricritical and tetracritical equilibrium behaviors of the

the statiGy)me_capel model for spis=1 andS=23/2, respectively,

have been studief. The dynamics of this system can be as
ell implemented straightforwardly following the same pre-

scription used here. Similar statements can be made for the

?otts modef® Moreover, dynamics other than Glauber’s can

as well be implemented. In particular, the nonequilibrium

Table Il shows the results for the three-dimensional lat-'SiNg model with  competitive Glauber and Kawasaki

tices. In this case the values for the exponenbbtained

§7,28

ynamic can be studied by the present method.

using different initial conditions have not yet reached a com-
mon value as in the two-dimensional case. This is because This was partially supported by the Brazilian Agencies
the lattice sizes used in the three-dimensional problem ar€NPq and FAPEMIG.
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