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Numerical method to evaluate the dynamical critical exponent

M. Silvério Soares,* J. Kamphorst Leal da Silva, and F. C. Sa´ Barreto
Departamento de Fı´sica, Instituto de Cieˆncias Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702,
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~Received 24 September 1996!

A finite-size scaling approach is used to show numerically that dynamical scaling occurs for short and long
times independently of the initial conditions. Its main idea is to construct particular quantities scaling asL0 in
the thermodynamic limitL→`, L being the linear size of the system. These are the quantities for which the
dynamic scaling occurs for short and long times. This approach is applied to obtain the critical dynamical
behavior of two- and three-dimensional ferromagnetic Ising models, subjected to Glauber dynamics.
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Although the static critical properties of classical spin s
tems are well described by renormalization group theo
~theoretical framework and calculation procedures!,1 the dy-
namic critical properties2 are not as well understood. In pa
ticular, the value of the dynamic critical exponentz is still an
open question even for the two-dimensional Ising mode3–6

when dynamics with local flips of spins are considered. T
determination of the exponentz for classical models in dif-
ferent lattice dimensions has been done by using severa
proaches: field-theoretical dynamical renormalization gro
methods,2,7 Monte Carlo simulations,8–10 renormalization
group methods,11–14 damage spreading,6,15,16 non-
equilibrium relaxation,17,18 and series expansion.4,19 For the
Ising model the various methods obtain in two dimensio
2.10,z,2.52 and in three dimensions 1.95,z,2.35. Usu-
ally, some of these methods obtain thez exponent fromlong-
time behavior. This limit is hard to be reached because of t
critical slowing down that always appears, except for clust
algorithms.20 Besides, it is also very hard to obtain goo
statistics in these procedures. Critical slowing down and p
statistics are among the reasons why different calculat
produce so many different values forz.

Our objective in this work is to present a finite-size d
namical scaling approach which overcomes the usual d
culties pointed out above. The method is then applied to t
and three-dimensional kinetic Ising models with single s
flips. The method can also be applied to systems with m
complex ordering behavior subjected to different dynami

Recently, a method has been proposed21 to evaluate the
z exponent fromshort-time behavior. It is based on the scal
ing relation for the dynamics at early times.22 In this time
regime the magnetization initially grows, characterizing
new universal stage of the relaxation of the magnetizat
the so called ‘‘critical initial slip.’’ However, it turns out tha
the initial condition~zero magnetization and very short co
relation length! is essential to obtain the dynamical expone
This happens because the critical initial slip sets right in a
a microscopic time scale and eventually crosses over
long-time regime. The characteristic time associated with
critical initial slip is t05m0

2z/x , wherem0 is the initial mag-
netization andx is a new exponent. Ifm050, we have that
t0→` and the early time scaling overlaps with the expec
long-time scaling.
550163-1829/97/55~2!/1021~4!/$10.00
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The short-time behavior obtained by the approach p
sented in this paper does not depend on the initial condit
It is based on the same ideas developed in a recently
posed renormalization group calculation used to evaluate
static properties of Ising systems.23 We analyze the relax-
ation to the equilibrium of well-chosen variables whic
scales asL0 (L is the linear size of the system!. In order to
show that the scaling occurs already for short times indep
dently of the initial conditions, we chose two different initia
conditions, both with zero correlation lengths. The first o
consists of up and down spins, in such a way that the ini
magnetization and a chosen quantity of our schema b
have the value zero. In this case the characteristic time s
of the critical initial slip ist0→`. The second initial condi-
tion consists of all spins in the up direction. Now,m0 and the
chosen quantity of our approach have their maxima valu
namely, 1. In this case the time scalet0;1 is essentially
microscopic. The reasons for introducing this finite-size d
namical scaling approach are the following:~i! The weak
dependence of the procedure onL implies that the value of
z is very good even for the smallest lattices;~ii ! the critical
temperature and the static exponents are easily obtained
good accuracy;~iii ! the chosen variable relaxes exponentia
after a transient behavior, thus allowing a good traditio
way of calculation of the relaxation time; and~iv! the dy-
namical scaling occurs for short times independently of
initial condition, hence the evaluation of thez exponent from
short-time simulations.

The finite-size dynamical scaling approach~FSDSA! is
based only on the finite-size dynamical scaling hypothe2

which, for a thermodynamic quantityP and a finite system
of linear dimensionL, can be expressed as

P~e8,H8,t8,L8!5l 2fP~e,H,t,L !, ~1!

for arbitrary values of the scaling factorl . We are here
adopting the ferromagnetic language whereH is the external
field, the reduced coupling constant isK, e5K2Kc , where
Kc is the critical coupling,e85l 1/ne, H85l yH, t85l 2zt,
andL85l 21L. Here,n, 1/y, andz are the correlation length
and magnetic and dynamical critical exponents, respectiv
Equation~1! has its general validity forL→` and near the
1021 © 1997 The American Physical Society
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critical point (e'0, H'0, andt→`). The exponentf de-
fines the critical behavior of the quantityP and is called its
anomalous dimension.

The basic idea of the FSDSA is to look for quantiti
having zero anomalous dimension (f50). Here we study
the spin-1/2 Ising model defined by the reduced Hamilton

2bH5K(
^ i , j &

s is j1H(
i

s i , s i561, ~2!

whereb51/kBT, T is the temperature, andkB the Boltzmann
constant. The time evolution is driven by the Glaub
dynamics,24 which is defined by transition rate of flipping th
i th spin,

wi~s i !5
a

2
@12tanh~Eis i !#, ~3!

whereEi5K( js j , j are the neighbors ofi and 1/a is the
time scale. One of the quantities havingf50 is given by

Q~ t !5K sgnS 1N(
i51

N

s i D L , ~4!

where ^•••& means the nonequilibrium average a
sgn(x)521(x,0), 0(x50), 11(x.0).

Let us analyze the quantityQ(t5`)5^q& first introduced
in Ref. 23. For the usual order parameter, the magnetiza
m5^m&, the probability distributionP(m) in the limit
N→`, T,Tc , H→01, reduces to a singled function cen-
tered atm5mp . Heremp depends on the temperature. T
probability distributionP(q) related to the quantityq also
reduces to a singled function centered atq051 in the same
limit. However, differently from the magnetizationq051 for
T,Tc independently of the value ofT. In other words,Q is
constant forT,Tc . According to the finite-size scaling hy
pothesis, the anomalous dimension is given
f52(critical exponent)/n, which for the magnetization

FIG. 1. Long-time behavior ofQ(t) for two-dimensional lattices
of sizesL516, 8 ~labelled by the open symbols! together with the
corresponding rescaled time of lattices withL85L/2 ~represented
by solid lines! at the equilibrium fixed points. In the initial condi
tion all spins are in the up direction (Q51, m051, j50). The
statistical errors are smaller than the symbols.
n
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m;eb is f52b/n. In the present formalism, as we argue
Q;e0, and sof50. These properties are extended to t
study of the dynamics.

In general, the variables withf50 are identified from the
physical order parameter of the system. For instance, for
Potts model, which has many states, one chooses a privile
state amongr possible spin orientations. For a given lattic
spin configuration determine whether the majority of t
spins are in this privileged state~set the counter equal to 1!
or in any other state@set the counter equal to21/(r21)].
DefineQ as the average of this counter.25 In a similar fash-
ion the same procedure can be applied to other models,
as the Blume-Emery-Griffiths model~for S51, there are
three states!.

The other quantity havingf50 is given by

R~ t !5K sgnS 1M(
top

s i D sgnS 1M (
bottom

s i D L . ~5!

For a finite system consisting of a hypercube one
N5Ld spins andM5Ld21 spins on its top and bottom hy
persurfaces. By considering further periodic boundary con
tions, due to this extra symmetry, the ‘‘top’’ and ‘‘bottom
hypersurfaces in Eq.~5! can be considered those located
the positionsr andr1L/2, respectively, withL even. Then,
the two independent equations

QL8~K8,H8,t8!5QL~K,H,t !, ~6!

RL8~K8,H8,t8!5RL~K,H,t !, ~7!

define the FSDSA. In order to study the dynamical critic
properties, we first evaluate the equilibrium fixed point f
each pair of lattices (K85K5Kc , H85H50). Then we
look for the time evolution of these variables at the equil
rium fixed point:~i! theQ variable from an initial nonequi-
librium state (Q51) to the equilibrium value (Qeq50), ~ii !
theR variable from an initial state withR51, and~iii ! the

FIG. 2. Short-time behavior ofR(t) for two-dimensional lattices
of sizesL564, 32, 16~labeled by the open symbols! together with
the corresponding rescaled time of lattices withL85L/2 ~repre-
sented by solid lines! at the equilibrium fixed points. The initia
condition consists of up and down spins in such a way thatR50,
m050, andj50. The statistical errors are smaller than the sy
bols.
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R variable from an initial state withR50 and zero correla-
tion length. Differently from methods which obtain shor
time scaling only for certain initial condition~such as zero
magnetization!, we will show that the short time behavior o
the quantitiesQ andR is independent of the initial condition

By Monte Carlo simulations we have analyzed tw
dimensional lattices of sizesL54 up toL564. The equilib-
rium values and their errors, for each lattice, were obtai
by 20 independent runs. In each run, after reaching equ
rium, we have considered 10 000 configurations entering
the average ofR. Two sequential configurations were sep
rated byt Monte Carlo steps, wheret is the relaxation time
of R near the criticality. The critical valueKc and an esti-
mate of the correlation length exponentn for two lattices
were obtained by collapsing the two corresponding cur
RL(K)3$Kc1l

1/n(K2Kc)%.
The decay ofQ(t) to the equilibrium at the critical value

Kc andH50 was evaluated with 100 000 samples. In Fig
the time behavior ofQ for a square lattice with linear siz
L58 and the rescaled time for a lattice with linear si

FIG. 3. Short-time behavior ofR(t) for two-dimensional lattices
of sizesL564, 32, 16~labeled by the open symbols! together with
the corresponding rescaled time of lattices withL85L/2 ~repre-
sented by solid lines! at the equilibrium fixed points. The initia
condition is given byR5m051. The statistical errors are smalle
than the symbols.

TABLE I. The values of the dynamical critical exponentz ob-
tained from Q(t) with Q(0)51 and R(t) with R(0)51 and
R(0)50 for several two-dimensional lattices. Also shown the
duced critical couplingKc and the critical exponentn obtained in
equilibrium. The equilibrium exact values areKc50.4407 and
n51.

Exponentz

Lattices Q(t) R(t)@R(0)51# R(t)@R(0)50# Kc n

6, 4 2.105 1.960 1.930 0.4346 0.98
8, 4 2.110 1.990 1.980 0.4361 0.99
8, 6 2.115 2.020 2.050 0.4375 0.98
16, 8 2.130 2.110 2.105 0.4400 1.00
32, 16 2.160 2.150 2.155 0.4407 1.00
64, 32 2.165 2.165 2.165 0.4407 1.00
d
-
to
-

s

L854 and similarly forL516 andL858 are shown. Note
that the long-time behavior is reached sinceQ is approaching
its equilibrium valueQ50. The collapse of the two curves i
very good in the beginning of the decay as well in the
ymptotic regime. This indicates that scaling occurs for bo
short and long times and it is characterized by the samz
exponent. In Fig. 2 the short-time behavior of the correlat
functionR at the equilibrium fixed point is shown. The sy
tem is prepared with a sequence of spin up and down s
thatR(t50)50, m050, and the correlation length is zero
This is the same initial condition used in Ref. 22 in order
have the early-time scaling extended. We present in this
ure the results of collapsed curves for the lattices (64332),
(32316), and (1638). In Fig. 3 we present the short-tim
behavior of the correlation function for the same lattices
scribed above with a different initial condition. Here we pr
pare the system with all spins up such thatR(t50)51 and
m051. The results presented in Figs. 2 and 3 were obtai
with 300 000 samples for lattices smaller thanL532 and for
the latticesL532 andL564 we use 200 000 and 60 00
samples, respectively. It is worth mentioning that short-ti
scaling occurs for both initial conditions. We have al
checked the long-time behavior of the correlation functi

FIG. 4. Short-time behavior ofR(t) for three-dimensional lat-
tices of sizesL516, 8 ~labeled by the open symbols! together with
the corresponding rescaled time of lattices withL858, 6 ~repre-
sented by solid lines! at the equilibrium fixed points. The initia
condition is given byR5m051. The statistical errors are smalle
than the symbols.

-

TABLE II. The values of the dynamical critical exponentz ob-
tained from Q(t) with Q(0)51 and R(t) with R(0)51 and
R(0)50 for three-dimensional lattices. Also shown the reduc
critical couplingKc and the critical exponentn obtained in equilib-
rium. The equilibrium expected values areKc50.222 and
n50.63.

Exponentz

Lattices Q(t) R(t)@R(0)51# R(t)@R(0)50# Kc n

8, 6 2.07 2.08 2.04 0.2214 0.65
16, 8 2.09 2.11 2.04 0.2220 0.63
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for the smallest lattices and the results for thez exponent are
the same as the ones obtained from the short time beha

In Fig. 4 we show the short-time behavior of the correl
tion functionR with the initial conditionR(t50)51 for the
three-dimensional lattices (L516 andL858) and (L58 and
L856) at the equilibrium fixed points. Here we use 300 0
samples for lattices smaller thanL516 and 50 000 samples
for the lattice withL516. The short-time scaling shows u
from lattices larger thanL56 for Q(t) andR(t) with two
different initial conditions.

Table I presents the reduced critical coupling, the sta
critical exponentn, and the dynamical critical exponentz for
the two-dimensional lattices. The errors were estimated
the standard deviation of five independent runs and they
fect the last digit of the numbers of the table. The results
quite good even for the smallest lattices. Our best resul
z52.1660.03 for the lattices withL564 andL8532.

Table II shows the results for the three-dimensional l
tices. In this case the values for the exponentz obtained
using different initial conditions have not yet reached a co
mon value as in the two-dimensional case. This is beca
the lattice sizes used in the three-dimensional problem
6
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small and the surface effects are still relevant. We belie
that an increase of the lattice sizes, which is beyond
present computation power, will eventually lead to a co
mon result.

In conclusion, we have presented a method showing s
ing for short-times and leading to the evaluation of the d
namical exponent even for small lattices. This method c
easily be applied to others systems with more complex cr
cal behavior. For example, by using similar variablesQ and
R, the tricritical and tetracritical equilibrium behaviors of th
Blume-Capel model for spinS51 andS53/2, respectively,
have been studied.26 The dynamics of this system can be a
well implemented straightforwardly following the same pr
scription used here. Similar statements can be made for
Potts model.25 Moreover, dynamics other than Glauber’s ca
as well be implemented. In particular, the nonequilibriu
Ising model with competitive Glauber and Kawasa
dynamics27,28 can be studied by the present method.
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