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Elastic constants of Mo/V superlattices
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Elastic moduli of Mo, V, and Mg/V,, superlattices witm=3 are calculated in the full-potential linear
muffin-tin orbital scheme. No modulation dependence is found for the bulk modulus of the superlattices.
Comparisons are made with predictions from continuum models for elastic moduli of layered materials and
surprising agreement is found between those and the calculated constants. In the context of elastic anomalies
frequently observed for metal superlattices, an estimation employing the Hashin-Shtrikman bounds for com-
posites gives that a softening of Young’'s modulus up to 30% would be obtained if the disorder at the interfaces
were extreme. This suggests that the frequently observed elastic anomalies for small-modulation superlattices
is intimately connected with the quality of the interfacE30163-1827)01915-2

[. INTRODUCTION terms of absolute values with respect to experiments. An
advantage of the full-potential methods is that they take non-
In the late 1970s to early 1980s, several experimental obspherical terms of the charge distribution into account, which
servations of greatly enhanced elastic moduli in metal supeiis crucial for the treatment of anisotropic distortions of lat-
lattices were announcéd* This phenomenon came to be tices. Current calculations of elastic properties of various sol-
known as the supermodulus effect. The existence of suciis With full-potential methods have been presefitedt that
effects in the investigated superlatticgu/Pd, Cu/Nj was show good agreement with experimental results. In this pa-
later questioned by Davist al® who examined their elastic Per, an attempt is made to calculate elastic moduli of a metal
properties with more accurate methods and found no greeﬁuperlattice system, Mo/V, within a self-consistent electronic
enhancements in the moduli. Nevertheless, elastic anomaliegiructure scheme—the full-potential linear muffin-tin orbital
in the sense of departure from expected average values, §fP-LMTO) method, developed by Methfess&The reason
the order of 30-50% for small superlattice modulationt® choose the Mo/V system is that it is extremely well char-
wavelengths are frequently reportsd® acterized experimentafl§?’ and that accurate elastic data
Explanations for these effects have been given in terms '€ under way® The calculations are restricted to small
coherency strain, electronic effects due to the folding of modulation wavelengths, i.e., superlattices consisting of at
the Brillouin zone in the superlattice growth directitfrmi- most three layers of each material. For these modulations,
crostructural properties such as changes in the interlaydtossible interface energetics are expected to be most promi-
distances? and effects of disordered interfacédt has been ~ nent. The calculated moduli are compared to results for lay-
demonstrated, within specific models for the shape of th&red structures from continuum theory and it is found that
Fermi surfacé? that the Brillouin-zone effects give no sig- the agreement is good. Allowing for disorder at the inter-
nificant contributions to the elastic moduli. The same conclufaces, the Hashin-Shtrikman bounds for random two-phase
sion was drawn in a first-principles calculation of elasticCOmPposites give a possible maximum softening of 30% of
properties of Au/Cr superlattices with respect to modulationY©oung's modulus in these materials.
wavelengtht® Furthermore, it is found within continuum  This paper is organized as follows: in Sec. II, a presenta-
elasticity theory’ that coherency strains in Cu/Ni superlat- tion is made of how the elastic constants are calculated from
tices only change the biaxial moduli by a few percent andotal energies of the crystals under different distortions. The
thus also cannot account for the observed magnitudes of tHeontinuum theory results for effective moduli of composites
elastic anomalies. It is questionable, however, if continuunre also presented, to which the calculated results are com-
theory can give reliable predictions in Super'attices Withpal’ed. In Sec. “l, a d|SCUSS|On Of the I’eSU|tS for the mOdu|I Of
small modulation wavelengths where the interface energeticdie constituent metals and the Mo/V superlattices is made. A
have a prominent rol® Computer simulations employing Summary is given at the end.
embedded-atom-methd&AM) potential$****°have found
anomalies of the order of 50%, primarily connected with the Il. CALCULATIONAL PROCEDURE
influence of the interfaces—either structural disottier
interface-driven distortions in the interlayer spacifigSimi-
lar simulation® have also showmo anomalies. The situa- The FP-LMTO schenfe is used for the calculation of
tion is thus that, experimentally, elastic anomalies are a reabtal energies of the materials under different distortions of
effect in metal superlattices but no consensus exists about tlike lattices. The total energies were calculated in the local
driving mechanism behind them. density approximatiofiLDA) based on the von Barth-Hedin
Recent developments of full-potential methods in elecparametrizatiori® Since the smallest total energy differences
tronic structure calculations of solids have opened up thdor the lattice distortions are of the order of 10 meV, a rela-
way for reliable extractions of material elastic constants, intively large number ok points in the irreducible Brillouin

A. Total-energy calculations
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whereu;=r/ —r; and we have that; andr; are the coordi-
nates of the atoms before and after the deformation of the
crystal, respectively. At most, there are 21 independent com-
ponents of the elastic modulus ten3qy,,, , but crystal sym-
metries reduce the number of independent components. For
cubic symmetry, there are only three independent moduli.
Equation(1) reduces in this situation to

FIG. 1. The unit cell of the MgV 5 superlattice is shown. The
superlattice is coherently grown, i.e., a common lattice constant E — Eo=
is adopted by both Mo and V. There is also a common dista/ze
between layers. The growth direction is along thaxis.

Vo

> C1(U3+ U3+ u3) +VoCi(UgUp+ UyUg+ Usug)

+ % Cas(U5+ U+ U3), (3)
zones(IBZ) has been used in the calculations. For instance,

220 k points are required in the M8/, IBZ in order to  where the standard two-index notatigr=1, yy=2, zz=3,
ensure an accuracy of 0.5 meV in the total energies. Whery=4, xz=5, yz=6 is used. TheC’s here are thésecond-
the crystal lattice is deformed, the numberkopoints in the  ordep elastic stiffness constants. The different elastic moduli
IBZ is recalculated for the new symmetry so that the densityof interest—the bulk moduluB, the tetragonal shear modu-
of k points remains the same. No frozen core approximatiortus C’, and Young's modulu¥ for extension alon001]—
was done; all calculations were scalar relativistic inspal  are directly related to the stiffness constants as

basis for the valence electrons where three envelope energies

_1
are used. The muffin-tin radii are chosen equally large for B=3(C1112Cy)),
each constituent and so as to minimize the interstitial region
; iaal i ; C'=3(C11—Cyy) (4)
and the associated numerical inaccuracies. 2111 ~12)

The lattice symmetries for the equilibrium configurations 9BC/
in the calculations are cubic for Mo, V, and M¥,, and -
tetragonal for the MgV, and Mag/V, superlattices. The 3B+C

growth direction is taken to be alorjg01]. The growth of = e moquliB, C’, andC,, are extracted for the cubic crys-
these superlattices is coherent up to 32 lagei®., Mo and (5 by calculating total energies of the crystals for several

V adopt a common lattice constant parallel to the interfacesice distortions. The other constants and moduli are then
There might though be an expansion or contraction of they ,nd from the relations in Eq4).

interlayer lattice constants in the growth direction. EXperi- |, order to extracC’ andC,,, the same lattice distortions

mentally, measurements of lattice parameters of individuaks in Alouani. Albers. and Methfes€ivere made. Making

P 7
Iaygrs have been performed fqr MO/ 15 superllatt|ce§, a (volume-conserving to linear order in strabetragonal dis-
which show that the average lattice parameter in the growthy, +ion as U, =2Uy= — Uz=U; U;=Ug=Ug=0, whereus is

direction differs betvyeen Mo and V. In light of thg above, along the growth direction of M@V, it is obtained from Eq.
total-energy calculations were performed for a variety of te—(3)’
tragonal distortions in MgV, and a variety of tetragonal
distortions in Mg/V, where also the interlayer distances o
were varied between different layers. None of the tried dis- AB(U)=E-Eo=—~ u*(Cy1—Cyo), )
tortions resulted in lower total energy than the structure de-
picted in Fig. 1, indicating that such deviations cannot befrom which (C,;—C;,) =2C’ is extracted by making a poly-
large in the small-modulation superlattices considered herenomial fit to AE(u). (Alternatively, one may use Andersen’s
force theorer® and express the total energy difference under
deformation in order to obtain the shear modulus of
crystals®*39 A distortion u,=u will, in a similar fashion,
The elastic energy of a crystal under a small deformatiorgive C44. Energy differences\E(u) have been calculated
can be written a% for u’s in the range*=0.02—-0.06. The odd powers in the
polynomial fits are kept in order to ensure that pressure terms
due to possible deviations from the equilibrium configuration
Vo . : . :
E—Eo=7 NirmUiUim (1)  are not neglected. It is noticed that the linear term is very
small, indicating that we indeed are close to one equilibrium
configuration.
where E, and V, are the energy and the volume, respec- There exists different methods to give error estimates for
tively, of the equilibrium configurationy;, is the strain ten- the extracted elastic constants from polynomial fits. They can
sor, and\;,, is the elastic modulus tensor. The indices runbe based on the change of the extracted values with polyno-
over the three coordinate directions,y, andz, and summa- mial ordef*?? or statistical goodness-of-fit analysésThe
tion over repeated indices is understood. The strain tangor latter procedure is followed here in order to judge which
is to linear order given as polynomial fit is more appropriate. The error estimate€in

B. Elastic constants
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andC,, are then given by a?(N) analysis, wherd\ is the ; ZC'iﬂfC\lll

polynomial order. The error estimates of the relafzd and wa,
C, constants indicate the maximum deviation of these con- 1 =1
stants given the errors i@’.

Only the bulk modulus for the “larger” superlattices is chiotcy,
calculated. It is expected that electronic and interface effects C§g=T,
on the elastic constants would show in any modulus. Some
precaution is needed when speaking about an overall bulk
modulus for superlattice® is calculated by applying a uni- checl,+cY,cly
form strain in all directions and in all layers, which corre- §5‘= cMo ¢V )
sponds to a volume change under preserved lattice symme- o (8)
try. A uniform strain will, in the case of an inhomogeneous
structure, not generally correspond to a uniform stress field. 2chocy,

This has the consequence that, if we want to meagure iZ:W’
define an overall bulk modulus from the energy change as- 44 7 a4

sociated with a uniform pressure, we will find that the crystal

may change its shape. The definition Bfas the second cMoycY, (cY,—cM)?
Y . off 11 11 12 12

derivative of the total energy upon symmetry-preserving Cii= 5 > CM v

compression is here nevertheless retained. It is exact for the (C1y 11

cubic lattices and an upper boufidor the bulk modulus of

the tetragonal superlattices. The bulk moduRiss hence cMorcY, (cY,—cMoy2
given by ceff— 712 12 127 “12
o 2 2(CP+CY)’
F*(E~Ep) | _
Vo yz (6) Here,CM° andCV denote the respective elastic constants of

the constituent metals. It is recalled that the=3) direction
whereV is the volume of the crystal under a uniform and IS @ways along the growth axis.

isotropic deformation. The energy differencés—E,) are The effective bulk modulus of the superlattice may be
calculated for six or seven different crystal volumes and fit-8xpressed in terms of its effective elastic constants. For a
ted to the equation of stafé, material with tetragonal symmetry and under a constant-
strain condition, this relation is
EM: ( Vv ) (ZIST
E(V)—Eo=2, a, 1| : 7 off
MRS, ? Beffzg csi+cs+2Ccii+ % : 9

whereE, is the equilibrium total energy of the crystal. The

order, M, of the polynomial is determined as before by aThe expressions for the effective elastic constants from Eq.
x(N) analysis. The bulk modulus is then found from differ- (g) are inserted into Eq9). In order to obtain a manageable

entiation of Eq.(7). relation in terms of the constituent bulk moduli, the resulting
expression is reformulated in terms B"® and BY. These
C. Moduli from continuum elasticity considerations moduli are, as before, given §=3(Cy;,+2C,,) and, fi-

Within linear continuum elasticity theory, it is possible to nally, the following is obtained:

derive expressions for the elastic response of composite ma-
terials. Results are here listed for bounds for the overall elas-
tic moduli of a two-phase composite and exact expressions
for elastic constants of laminates, or superlattices, which is a

special case of a two-phase composite. The calculated results ) ) o ) )
will be compared to the continuum predictions. There also exisboundsderived within continuum elastic-

In order to relate the calculated values of effective elastidty theory for multiphase materials. Such bounds will be used

constants in Mo/V with results from continuum elasticity here, expressed for a two-phase composite of Mo and V with
theory, we will follow Grimsditch and Nizzoli and Kim 50-50 composition, in connection with discussions of effects

et al%¥%0 and give the expressions for the effective elasticOf disorder at the interfaces. The Hashin-Shtrikman botinds
constants and moduli in terms of the constituent’s elastidor bulk and shear modu{B and ) of multiphase materials
constants. These expressions do not take coherency strai@& derived from variational principles of the elastic energy.
into account, for which higher-order elastic stiffness con-For @ two-phase composite that is macroscopically quasi-
stants would be needed. Such effects are shown to paomogeneous and quasiisotropic, they regaken from
small1718 Laws®)

In the present special case of superlattices composed of
equally thick layers of cubic materials, the superlattice has 1 (Bu—Bu)(Bu+B
tetragonal symmetry and will be characterized by the follow- B,,=By+ — (Buo™Bv)(By+By) ,
ing six independent elastic constants: Bmo+Bi— 3 (Byo—By)

(BV— BMO)2

— . (10
2(CiP+CY;

1
Beff:E (BMO+ BV) _
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TABLE I. Elastic moduli in Mbar and equilibrium lattice constant in a.u. of bcc Mo calculated in the
present work are presented and compared to experiments and other theoretical calculations. The FP-LMTO
calculations are by Alouani, Albers, and Methfesgéf. 22 and the LMTO-ASA calculations are by Tang,
Zhang, and Xi(Ref. 32 and Dacorogna, Ashkenazi, and Pefeef. 34. The experimental values for the
elastic moduli are from Katahara, Manghnani, and FigRaf. 45, and the equilibrium lattice constant is
taken from Ashcroft and MermitRef. 49.

Mo ag Bo c’ Cu Ci2 Cus
Present work 5.83 2.640.03 1.86:0.03 5.0%0.07 1.4%0.05 1.02£0.03
FP-LMTO (Ref. 22 5.97 2.55 1.39 4.40 1.62 1.39
LMTO-ASA (Ref. 32 5.86 2.92 2.045 5.6 151
LMTO-ASA (Ref. 39 2.47
Expt. (Ref. 49 5.95
Expt. (Ref. 45 2.63 1.52 4.65 1.62 1.09
L (Byo—By)(By+Bp) example, the.bounds for the average shear modulus of Mo in
Bmax=Bv+ a polycrystalline sample are given as

Bumot Bn— % (Byo—By)

5 -1
. fimin=Clig +3 W_4:81) : (13
7 (o= ) (v + wy) 44
Mmin= v T 1 ! 11 -1
Mnmot 1= 3 (Mmo— Mv) Mo Mo 5
1 Mmax=C""+2 Clo_cro 682 .
2 (Umo— mv) (v + mn) h
Mmax= My T I , where
Umot mh— 2 (Umo— Mv) 3(BM04 20M)
_ 44
where B1= 5CYO(3BY0+ 4CT0) »
BII%/*”OW’ 8 3(BMO+3C'MO)
2= = ™ M 7Moy *
Bh= 3 ihigh 12 5C"M(3BM°+4C"M)

1 By calculating minimum and maximum values for the re-
_§ 1 T 10 spective representative shear moduli of Mo and V, the high-
M= 2 9B 18 ’ . . .
Miow lowT 8 Liow est and lowest values obtained can be inserted into Edp.
and(12) in order to obtain upper and lower bounds, respec-
3( 1 10 )1 tively, for a two-phase composite of Mo and V.

Mh=> +
h Z(Mhigh 9Bhight 8 &high

The subscripts high and low refer to the greater and lesser,
respectively, of the constituent’'s moduli. The question is
how to choose a representative shear modulufor each Three independent elastic moduli of bcc Mo and V have
phase. For cubic materials, there are two shear mo@ili: been calculated, the bulk modulig the tetragonal shear
and Cyy. If phases in the composite are randomly orientedmodulusC’, and the trigonal shear modul@,, following

we will have a representative shear modyluis each phase, the procedure described in Sec. Il. From these modiyli,
which is some average betwe&l and C,,. Hashin and andC,, are derived according to E¢).

Shtrikmart* have given expressions for bounds of the aver- The elastic moduli and equilibrium lattice constants of
agepu in polycrystalline materials of cubic symmetry. As an Mo and V are shown in Tables | and Il, separately. It is

IIl. RESULTS AND DISCUSSION
A. Elastic moduli of Mo and V

TABLE II. Listed are elastic moduli in Mbar and equilibrium lattice constant in a.u. of bcc V calculated
in the present work. Comparisons are made to experiments and other theoretical calculations. The FP-LMTO
calculations are by Paxton, Methfessel, and Polatogitef. 4§ and the LMTO-ASA calculations are by
Dacorogna, Ashkenazi, and Pet&ef. 39.

\Y ap Bo c’ Cu Ci Cus
Present work 5.48 1.920.03 0.90-0.01 3.12:0.04 1.32:0.03 0.3G3:0.03
FP-LMTO (Ref. 49 5.60 2.00
LMTO-ASA (Ref. 39 0.44
Expt. (Ref. 49 5.71

Expt. (Ref. 45 1.57 0.55 231 1.20 0.43
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found that the calculated equilibrium lattice constants of Moequilibrium lattice constant of the M6/,, with superlattice
and V area;=5.83 a.u. and;=5.48 a.u., respectively. This periodicity A is noticed. This may be connected with the
represents an underestimation of 2% and 4%, correspon@dmount of charge transfer across the Mo/V interface, which
ingly, compared to the experimental values. These values aiie also manifested in the Fermi energy increase whtin
also lower than the values obtained from nonrelativisticthese material$’ The bulk modulus of the M@V, superlat-
calculations’>*3 which is not unexpected, since it has beentices withn=1-3 is stable at-2.25 Mbar and seems unaf-
demonstrated that scalar-relativistic effects tend to “shrink” fected by the(small) volume variation of the crystals. It is
the core radiué? The calculated bulk modulus of bcc Mo also in good agreement with the continuum theory result,
agrees with the experimental results of Ref. 45 and also witfB,=2.23+0.03 Mbar.

the FP-LMTO calculations of Alouani, Albers, and Elastic anomalies in metal superlattices have been mani-
Methfessef? The bulk modulus for V is overestimated with fested, e.g., in Young’s modulé. The calculated Young’s
respect to experiments with about 20% but is in agreemennhodulus will here be compared to the one obtained from
with FP-LMTO calculations of Paxton, Methfessel, andcontinuum theory for laminates and to a hypothetical situa-
Polatoglou*® This larger discrepancy for V in the bulk and tion of a two-phase composite of Mo and V with randomly
subsequent moduli is believed to be due to the neglect ofriented phases. The latter will serve as a crude estimate of
magnetic effects and the larger underestimation of the vol- the effect of disorder at the interfaces. Young’s modulus is
ume with respect to experiments. Comparing the calculatediven by Y=9Bw/(3B+u). For Mo/V,, u=C' gives
constants of Mo and V to experiments, we notice that, forYoung’s modulus for extension of the lattice in the growth
both materials, good agreement is obtained Gqj but C’ direction. From the calculated values for Mg,, it is ob-
differs with ~18% in Mo and as much as60% in V. Com-  tainedY=3.46+:0.03 Mbar, as can be seen in Table V. The
paring with other calculations &' of Mo, performed within  corresponding values from continuum theory for laminates is
the LMTO-ASA (atomic sphere approximatiprschemée?®  calculated from Eqgs(8) and (10). For Mo,/V,, which has
and the Ewald corrected LMTO-ASA scherifdt is noticed  cubic symmetry, we have the restriction that the strain
that the FP-LMTO scheme gives results closer to experishould be uniform, corresponding @ =C$!, which is the

ments. value used to obtairy from Egs. (8) and (10). There is
agreement between the calculatédand Young's modulus
B. Elastic moduli of Mo, /V/, from continuum th_eory of Iaminat_es. The Has_hin-_Shtrikman
. . . . bounds(11)—(14) give asofter Y with ~30% primarily due
The elastic moduli of MgV, are displayed in Table lll.  tg the smaller value of the representative shear modulus. A

No eXperimental results have been found for this materialconsequence Of the present f|nd|ng W0u|d be that the more
The calculated results are compared to continuum theorgnisotropic the materials ar@e., the larger the difference
predictions obtained from EC{B), for the elastic stiffness betweenC’ andCAA), the |arger would be the elastic anoma-
constants of M/V,,. It is recalled that the®" are derived  jies due to disordered interfaces. Recent experirfiéatem

for the tetragonal symmetry of M8/, In the special case o confirm the close connection between interface quality

n=1 here, the symmetry is cubic and imposes the restrictionnd elastic anomalies for metallic superlattices of small
that the strain should be uniform. The analytic effective elasmodulation wavelength.

tic moduli for the laminate that reflect such conditions are
csf cef andCgl. The notatiorC¢M, in Table Il is used to
refer toCST, C$1, andCE!l in Eq. (8). The remaining effec-
tive elastic constants from E(B) are also displayed, denoted ~ The FP-LMTO scheme has been employed in order to
as CS$5,, which refers toCS5, C$5, and C§} in Eq. (8.  calculate all elastic moduli of Mo, V, and of the MV,
Agreement is noted between the calculated elastic constangsiperlattice. In addition, the equilibrium volumes and bulk
for Mo,/V; and theC$fs—the corresponding effective elastic moduli of Mo,/V,, superlattices, grown in thf001] direc-
constants from continuum results for layered materials. Th&on, with n=1,2,3 are calculated. The aim has been to in-
exception isC,,, which agrees with the constant-strain resultvestigate the effective elastic moduli of the superlattice for-
Cifj in Eg. (8). There is also very good agreement betweemmation and the influence of the interfaces upon their values.
the calculated bulk modulus and the result By from Eq.  Satisfactory agreement is achieved with respect to experi-
(10). mental results for the constituent metals, especially for the
The equilibrium lattice constants and bulk moduli of the bulk moduli, within the uncertainties of the calculations and
Mo,/V,, superlattices are shown in Table IV. An increase inthe procedure of extraction of the elastic moduli from total-

IV. SUMMARY AND CONCLUSIONS

TABLE lll. Elastic moduli in Mbar of Ma/V, in the CsClI structure, calculated in the present work are
presented and compared to continuum theory predictions for laminated media, according (8).Efjse
notationsC$hs and C$h, refer to effective moduli under the condition of uniform strain and uniform stress,
respectively. The relevant ones for comparison with the calculations al@iﬂge

Mo,/Vy Bo o Cu Ciz Cus
Present work 2.250.01 1.39:0.01 4.10:0.03 1.32:0.01 0.48-0.1
Continuum theorycﬁga 2.23+0.03 1.35:0.04 4.06-0.05 1.36:0.04 0.66-0.03

Continuum theoryCSH, 1.16+0.04  3.85:0.04  1.35-0.04  0.46:0.04
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TABLE V. Tabulated are bulk moduliBy in Mbar, and equi- TABLE V. Shown are results for Young’'s moduls Mbar)
librium lattice constantsa, in a.u., of Mg,/V, superlattices. The obtained from bulk and shear moduli of M¥,. The calculated

continuum theory value is obtained from EGO). value is compared to continuum theory results for laminates and to
Hashin-Shtrikman bounds of the equally composed Mo/V two-

Bg ao phase random composite. The laminate value is obtained from Egs.
(8) and(10) with C’ given by3 (C$i—C$H). The Hashin-Shtrikman
Moy/V, 2.25+0.01 5.615 bounds are obtained from Eqd.1)—(14).
Mo,/V, 2.26+0.02 5.63
Mos/V 3 2.24+0.04 5.64 Mo,/V, Bo n Y
Continuum elasticity 2.230.03 )
This work 2.25-0.03 1.39:0.01 3.46-0.03
Laminate 2.230.03 1.36:0.04 3.39-0.09

Hashin-Shtrikman bounds 2.07 0.89-0.93 2.34-2.43

energy differences. The agreement is best for Mo, not as
good for V, which most probably is due to neglect of ferro-

magnetism. We find that continuum elasticity theory gives 8anomalies in metal superlattices underlines the need for full-
surprisingly good account for the values of the effective elasscale electronic structure calculations whise¢han accurate

tic moduli in small-modulation Mo/V superlattices. This in- gescription of the electronic propertiesid structural relax-
dicates that the energetics of the Mo/V interfaces do not havgiions in the materials, especially at the interfaces, are ad-
any dramatic influence on the overall elastic properties. Theressed. This may, however, not be feasible in the near fu-
equilibrium lattice constant of the M/, lattices is found to  ;re.
depend onn, but this dependence did not show up in the
bulk modulus, inferring that electronic BZ effects are not
prominent for these materials for a modulation wavelength
A<9 A. An estimate of the effects of disorder at the inter- | am indebted to Sergey Rashkeev for instructions on the
faces on Young’s modulus, employing the Hashin-Shtrikmarusage of the FP-LMTO codes and for several valuable dis-
bounds for polycrystalline two-phase composites, gives thatussions. Michael Methfessel is gratefully acknowledged for
Young’s modulus can soften with up to 30%. This suggestgiving permission to use his code and Mats Persson is
that the precise interfacial structure has important impacthanked for comments and suggestions on the manuscript.
upon the measured elastic moduli. The still existing confuFinancial support from NSC for the use of the CRAY X-MP
sion about elastic, modulation-wavelength-dependentand from STU and NFR is hereby acknowledged.
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