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Elastic constants of Mo/V superlattices

S. Papadia-Einarsson*
Department of Applied Physics, Chalmers University of Technology, S-412 96 Go¨teborg, Sweden

~Received 12 August 1996!

Elastic moduli of Mo, V, and Mon /Vn superlattices withn<3 are calculated in the full-potential linear
muffin-tin orbital scheme. No modulation dependence is found for the bulk modulus of the superlattices.
Comparisons are made with predictions from continuum models for elastic moduli of layered materials and
surprising agreement is found between those and the calculated constants. In the context of elastic anomalies
frequently observed for metal superlattices, an estimation employing the Hashin-Shtrikman bounds for com-
posites gives that a softening of Young’s modulus up to 30% would be obtained if the disorder at the interfaces
were extreme. This suggests that the frequently observed elastic anomalies for small-modulation superlattices
is intimately connected with the quality of the interfaces.@S0163-1829~97!01915-2#
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I. INTRODUCTION

In the late 1970s to early 1980s, several experimental
servations of greatly enhanced elastic moduli in metal su
lattices were announced.1–4 This phenomenon came to b
known as the supermodulus effect. The existence of s
effects in the investigated superlattices~Cu/Pd, Cu/Ni! was
later questioned by Daviset al.5 who examined their elastic
properties with more accurate methods and found no g
enhancements in the moduli. Nevertheless, elastic anoma
in the sense of departure from expected average value
the order of 30–50 % for small superlattice modulati
wavelengths are frequently reported.6–10

Explanations for these effects have been given in term
coherency strains,11 electronic effects due to the folding o
the Brillouin zone in the superlattice growth direction,12 mi-
crostructural properties such as changes in the interla
distances,13 and effects of disordered interfaces.14 It has been
demonstrated, within specific models for the shape of
Fermi surface,15 that the Brillouin-zone effects give no sig
nificant contributions to the elastic moduli. The same conc
sion was drawn in a first-principles calculation of elas
properties of Au/Cr superlattices with respect to modulat
wavelength.16 Furthermore, it is found within continuum
elasticity theory17 that coherency strains in Cu/Ni superla
tices only change the biaxial moduli by a few percent a
thus also cannot account for the observed magnitudes o
elastic anomalies. It is questionable, however, if continu
theory can give reliable predictions in superlattices w
small modulation wavelengths where the interface energe
have a prominent role.18 Computer simulations employin
embedded-atom-method~EAM! potentials13,14,19have found
anomalies of the order of 50%, primarily connected with t
influence of the interfaces—either structural disorder14 or
interface-driven distortions in the interlayer spacings.13 Simi-
lar simulations20 have also shownno anomalies. The situa
tion is thus that, experimentally, elastic anomalies are a
effect in metal superlattices but no consensus exists abou
driving mechanism behind them.

Recent developments of full-potential methods in el
tronic structure calculations of solids have opened up
way for reliable extractions of material elastic constants
550163-1829/97/55~15!/10057~7!/$10.00
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terms of absolute values with respect to experiments.
advantage of the full-potential methods is that they take n
spherical terms of the charge distribution into account, wh
is crucial for the treatment of anisotropic distortions of la
tices. Current calculations of elastic properties of various s
ids with full-potential methods have been presented21–24 that
show good agreement with experimental results. In this
per, an attempt is made to calculate elastic moduli of a m
superlattice system, Mo/V, within a self-consistent electro
structure scheme—the full-potential linear muffin-tin orbit
~FP-LMTO! method, developed by Methfessel.25 The reason
to choose the Mo/V system is that it is extremely well ch
acterized experimentally26,27 and that accurate elastic da
are under way.28 The calculations are restricted to sma
modulation wavelengths, i.e., superlattices consisting o
most three layers of each material. For these modulatio
possible interface energetics are expected to be most pr
nent. The calculated moduli are compared to results for l
ered structures from continuum theory and it is found t
the agreement is good. Allowing for disorder at the inte
faces, the Hashin-Shtrikman bounds for random two-ph
composites give a possible maximum softening of 30%
Young’s modulus in these materials.

This paper is organized as follows: in Sec. II, a presen
tion is made of how the elastic constants are calculated f
total energies of the crystals under different distortions. T
continuum theory results for effective moduli of composit
are also presented, to which the calculated results are c
pared. In Sec. III, a discussion of the results for the modul
the constituent metals and the Mo/V superlattices is made
summary is given at the end.

II. CALCULATIONAL PROCEDURE

A. Total-energy calculations

The FP-LMTO scheme25 is used for the calculation o
total energies of the materials under different distortions
the lattices. The total energies were calculated in the lo
density approximation~LDA ! based on the von Barth-Hedi
parametrization.30 Since the smallest total energy differenc
for the lattice distortions are of the order of 10 meV, a re
tively large number ofk points in the irreducible Brillouin
10 057 © 1997 The American Physical Society
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10 058 55S. PAPADIA-EINARSSON
zones~IBZ! has been used in the calculations. For instanc
220 k points are required in the Mo2/V2 IBZ in order to
ensure an accuracy of 0.5 meV in the total energies. Whe
the crystal lattice is deformed, the number ofk points in the
IBZ is recalculated for the new symmetry so that the densit
of k points remains the same. No frozen core approximatio
was done; all calculations were scalar relativistic in anspd
basis for the valence electrons where three envelope energ
are used. The muffin-tin radii are chosen equally large fo
each constituent and so as to minimize the interstitial regio
and the associated numerical inaccuracies.

The lattice symmetries for the equilibrium configurations
in the calculations are cubic for Mo, V, and Mo1/V1, and
tetragonal for the Mo2/V2 and Mo3/V3 superlattices. The
growth direction is taken to be along@001#. The growth of
these superlattices is coherent up to 32 layers,29 i.e., Mo and
V adopt a common lattice constant parallel to the interface
There might though be an expansion or contraction of th
interlayer lattice constants in the growth direction. Experi
mentally, measurements of lattice parameters of individu
layers have been performed for Mo10/V18 superlattices,27

which show that the average lattice parameter in the grow
direction differs between Mo and V. In light of the above,
total-energy calculations were performed for a variety of te
tragonal distortions in Mo1/V1 and a variety of tetragonal
distortions in Mo2/V2 where also the interlayer distances
were varied between different layers. None of the tried dis
tortions resulted in lower total energy than the structure de
picted in Fig. 1, indicating that such deviations cannot b
large in the small-modulation superlattices considered here

B. Elastic constants

The elastic energy of a crystal under a small deformatio
can be written as31

E2E05
V0

2
l iklmuikulm , ~1!

whereE0 and V0 are the energy and the volume, respec
tively, of the equilibrium configuration,uik is the strain ten-
sor, andliklm is the elastic modulus tensor. The indices run
over the three coordinate directions,x, y, andz, and summa-
tion over repeated indices is understood. The strain tensoruik
is to linear order given as

FIG. 1. The unit cell of the Mo3/V3 superlattice is shown. The
superlattice is coherently grown, i.e., a common lattice constanta,
is adopted by both Mo and V. There is also a common distancea/2
between layers. The growth direction is along thez axis.
e,
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uik5
1

2 S ]ui
]xk

1
]uk
]xi

D , ~2!

whereui5r i82r i and we have thatr i andr i8 are the coordi-
nates of the atoms before and after the deformation of
crystal, respectively. At most, there are 21 independent c
ponents of the elastic modulus tensorliklm , but crystal sym-
metries reduce the number of independent components.
cubic symmetry, there are only three independent mod
Equation~1! reduces in this situation to

E2E05
V0

2
C11~u1

21u2
21u3

2!1V0C12~u1u21u1u31u2u3!

1
V0

2
C44~u4

21u5
21u6

2!, ~3!

where the standard two-index notationxx51, yy52, zz53,
xy54, xz55, yz56 is used. TheC’s here are the~second-
order! elastic stiffness constants. The different elastic mod
of interest—the bulk modulusB, the tetragonal shear modu
lusC8, and Young’s modulusY for extension along@001#—
are directly related to the stiffness constants as

B5 1
3 ~C1112C12!,

C85 1
2 ~C112C12!, ~4!

Y5
9BC8

3B1C8
.

The moduliB, C8, andC44 are extracted for the cubic crys
tals by calculating total energies of the crystals for seve
lattice distortions. The other constants and moduli are t
found from the relations in Eq.~4!.

In order to extractC8 andC44, the same lattice distortion
as in Alouani, Albers, and Methfessel22 were made. Making
a ~volume-conserving to linear order in strain! tetragonal dis-
tortion as 2u152u252u35u; u45u55u650, whereu3 is
along the growth direction of Mo1/V1, it is obtained from Eq.
~3!,

DE~u!5E2E05
3V0

4
u2~C112C12!, ~5!

from which (C112C12)52C8 is extracted by making a poly
nomial fit toDE(u). ~Alternatively, one may use Andersen
force theorem33 and express the total energy difference und
deformation in order to obtain the shear modulus
crystals.34,35! A distortion u45u will, in a similar fashion,
give C44. Energy differencesDE(u) have been calculated
for u’s in the range60.02–0.06. The odd powers in th
polynomial fits are kept in order to ensure that pressure te
due to possible deviations from the equilibrium configurati
are not neglected. It is noticed that the linear term is v
small, indicating that we indeed are close to one equilibri
configuration.

There exists different methods to give error estimates
the extracted elastic constants from polynomial fits. They
be based on the change of the extracted values with poly
mial order21,22 or statistical goodness-of-fit analyses.24 The
latter procedure is followed here in order to judge whi
polynomial fit is more appropriate. The error estimates inC8
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55 10 059ELASTIC CONSTANTS OF Mo/V SUPERLATTICES
andC44 are then given by ax2(N) analysis, whereN is the
polynomial order. The error estimates of the relatedC11 and
C12 constants indicate the maximum deviation of these c
stants given the errors inC8.

Only the bulk modulus for the ‘‘larger’’ superlattices
calculated. It is expected that electronic and interface effe
on the elastic constants would show in any modulus. So
precaution is needed when speaking about an overall
modulus for superlattices.B is calculated by applying a uni
form strain in all directions and in all layers, which corr
sponds to a volume change under preserved lattice sym
try. A uniform strain will, in the case of an inhomogeneo
structure, not generally correspond to a uniform stress fi
This has the consequence that, if we want to measure~or
define! an overall bulk modulus from the energy change
sociated with a uniform pressure, we will find that the crys
may change its shape. The definition ofB as the second
derivative of the total energy upon symmetry-preserv
compression is here nevertheless retained. It is exact for
cubic lattices and an upper bound36 for the bulk modulus of
the tetragonal superlattices. The bulk modulusB is hence
given by

B5V0

]2~E2E0!

]V2 , ~6!

whereV is the volume of the crystal under a uniform an
isotropic deformation. The energy differences~E2E0! are
calculated for six or seven different crystal volumes and
ted to the equation of state,37

E~V!2E05 (
n52

M

anF12S VV0
D 2~2/3!Gn, ~7!

whereE0 is the equilibrium total energy of the crystal. Th
order,M , of the polynomial is determined as before by
x2(N) analysis. The bulk modulus is then found from diffe
entiation of Eq.~7!.

C. Moduli from continuum elasticity considerations

Within linear continuum elasticity theory, it is possible
derive expressions for the elastic response of composite
terials. Results are here listed for bounds for the overall e
tic moduli of a two-phase composite and exact express
for elastic constants of laminates, or superlattices, which
special case of a two-phase composite. The calculated re
will be compared to the continuum predictions.

In order to relate the calculated values of effective ela
constants in Mo/V with results from continuum elastici
theory, we will follow Grimsditch and Nizzoli and Kim
et al.38–40 and give the expressions for the effective elas
constants and moduli in terms of the constituent’s ela
constants. These expressions do not take coherency st
into account, for which higher-order elastic stiffness co
stants would be needed. Such effects are shown to
small.17,18

In the present special case of superlattices compose
equally thick layers of cubic materials, the superlattice h
tetragonal symmetry and will be characterized by the follo
ing six independent elastic constants:
-
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C33
eff5

2C11
MoC11

V

C11
Mo1C11

V ,

C66
eff5

C44
Mo1C44

V

2
,

C13
eff5

C11
MoC12

V 1C11
V C12

Mo

C11
Mo1C11

V ,

~8!

C44
eff5

2C44
MoC44

V

C44
Mo1C44

V ,

C11
eff5

C11
Mo1C11

V

2
2

~C12
V 2C12

Mo!2

2~C11
Mo1C11

V !
,

C12
eff5

C12
Mo1C12

V

2
2

~C12
V 2C12

Mo!2

2~C11
Mo1C11

V !
,

Here,CMo andCV denote the respective elastic constants
the constituent metals. It is recalled that thez ~53! direction
is always along the growth axis.

The effective bulk modulus of the superlattice may
expressed in terms of its effective elastic constants. Fo
material with tetragonal symmetry and under a consta
strain condition, this relation is

Beff5
2

9 SC11
eff1C12

eff12C13
eff1

C33
eff

2 D . ~9!

The expressions for the effective elastic constants from
~8! are inserted into Eq.~9!. In order to obtain a manageab
relation in terms of the constituent bulk moduli, the resulti
expression is reformulated in terms ofBMo andBV. These
moduli are, as before, given byB5 1

3 (C1112C12) and, fi-
nally, the following is obtained:

Beff5
1

2
~BMo1BV!2

~BV2BMo!2

2~C11
Mo1C11

V !
. ~10!

There also existboundsderived within continuum elastic
ity theory for multiphase materials. Such bounds will be us
here, expressed for a two-phase composite of Mo and V w
50-50 composition, in connection with discussions of effe
of disorder at the interfaces. The Hashin-Shtrikman bound41

for bulk and shear moduli~B andm! of multiphase materials
are derived from variational principles of the elastic ener
For a two-phase composite that is macroscopically qu
homogeneous and quasiisotropic, they read~taken from
Laws42!

Bmin5BV1

1
2 ~BMo2BV!~BV1Bl !

BMo1Bl2
1
2 ~BMo2BV!

,
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TABLE I. Elastic moduli in Mbar and equilibrium lattice constant in a.u. of bcc Mo calculated in
present work are presented and compared to experiments and other theoretical calculations. The FP
calculations are by Alouani, Albers, and Methfessel~Ref. 22! and the LMTO-ASA calculations are by Tang
Zhang, and Xi~Ref. 32! and Dacorogna, Ashkenazi, and Peter~Ref. 34!. The experimental values for th
elastic moduli are from Katahara, Manghnani, and Fisher~Ref. 45!, and the equilibrium lattice constant i
taken from Ashcroft and Mermin~Ref. 49!.

Mo a0 B0 C8 C11 C12 C44

Present work 5.83 2.6160.03 1.8060.03 5.0160.07 1.4160.05 1.0260.03
FP-LMTO ~Ref. 22! 5.97 2.55 1.39 4.40 1.62 1.39
LMTO-ASA ~Ref. 32! 5.86 2.92 2.045 5.6 1.51
LMTO-ASA ~Ref. 34! 2.47
Expt. ~Ref. 49! 5.95
Expt. ~Ref. 45! 2.63 1.52 4.65 1.62 1.09
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Bmax5BV1

1
2 ~BMo2BV!~BV1Bh!

BMo1Bh2
1
2 ~BMo2BV!

,

mmin5mV1

1
2 ~mMo2mV!~mV1m l !

mMo1m l2
1
2 ~mMo2mV!

, ~11!

mmax5mV1

1
2 ~mMo2mV!~mV1mh!

mMo1mh2
1
2 ~mMo2mV!

,

where

Bl5
4
3m low ,

Bh5
4
3mhigh,

~12!

m l5
3

2 S 1

m low
1

10

9Blow18m low
D 21

,

mh5
3

2 S 1

mhigh
1

10

9Bhigh18mhigh
D 21

.

The subscripts high and low refer to the greater and les
respectively, of the constituent’s moduli. The question
how to choose a representative shear modulusm for each
phase. For cubic materials, there are two shear moduli:C8
andC44. If phases in the composite are randomly orient
we will have a representative shear modulusm in each phase
which is some average betweenC8 and C44. Hashin and
Shtrikman41 have given expressions for bounds of the av
agem in polycrystalline materials of cubic symmetry. As a
r,
s

,

-

example, the bounds for the average shear modulus of M
a polycrystalline sample are given as

mmin
Mo5C44

Mo13S 5

C8Mo2C44
Mo24b1D 21

, ~13!

mmax
Mo 5C8Mo12S 5

C44
Mo2C8Mo

26b2D 21

,

where

b152
3~BMo12C44

Mo!

5C44
Mo~3BMo14C44

Mo!
,

~14!

b252
3~BMo13C8Mo!

5C8Mo~3BMo14C8Mo!
.

By calculating minimum and maximum values for the r
spective representative shear moduli of Mo and V, the hi
est and lowest values obtained can be inserted into Eqs.~11!
and ~12! in order to obtain upper and lower bounds, resp
tively, for a two-phase composite of Mo and V.

III. RESULTS AND DISCUSSION

A. Elastic moduli of Mo and V

Three independent elastic moduli of bcc Mo and V ha
been calculated, the bulk modulusB, the tetragonal shea
modulusC8, and the trigonal shear modulusC44 following
the procedure described in Sec. II. From these moduli,C11
andC12 are derived according to Eq.~4!.

The elastic moduli and equilibrium lattice constants
Mo and V are shown in Tables I and II, separately. It
ated
-LMTO
TABLE II. Listed are elastic moduli in Mbar and equilibrium lattice constant in a.u. of bcc V calcul
in the present work. Comparisons are made to experiments and other theoretical calculations. The FP
calculations are by Paxton, Methfessel, and Polatoglou~Ref. 46! and the LMTO-ASA calculations are by
Dacorogna, Ashkenazi, and Peter~Ref. 34!.

V a0 B0 C8 C11 C12 C44

Present work 5.48 1.9260.03 0.9060.01 3.1260.04 1.3260.03 0.3060.03
FP-LMTO ~Ref. 46! 5.60 2.00
LMTO-ASA ~Ref. 34! 0.44
Expt. ~Ref. 49! 5.71
Expt. ~Ref. 45! 1.57 0.55 2.31 1.20 0.43
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55 10 061ELASTIC CONSTANTS OF Mo/V SUPERLATTICES
found that the calculated equilibrium lattice constants of M
and V area055.83 a.u. anda055.48 a.u., respectively. Thi
represents an underestimation of 2% and 4%, corresp
ingly, compared to the experimental values. These values
also lower than the values obtained from nonrelativis
calculations,22,43 which is not unexpected, since it has be
demonstrated that scalar-relativistic effects tend to ‘‘shrin
the core radius.44 The calculated bulk modulus of bcc M
agrees with the experimental results of Ref. 45 and also w
the FP-LMTO calculations of Alouani, Albers, an
Methfessel.22 The bulk modulus for V is overestimated wit
respect to experiments with about 20% but is in agreem
with FP-LMTO calculations of Paxton, Methfessel, a
Polatoglou.46 This larger discrepancy for V in the bulk an
subsequent moduli is believed to be due to the neglec
magnetic effects23 and the larger underestimation of the vo
ume with respect to experiments. Comparing the calcula
constants of Mo and V to experiments, we notice that,
both materials, good agreement is obtained forC44 but C8
differs with;18% in Mo and as much as;60% in V. Com-
paring with other calculations ofC8 of Mo, performed within
the LMTO-ASA ~atomic sphere approximation! scheme,34

and the Ewald corrected LMTO-ASA scheme,32 it is noticed
that the FP-LMTO scheme gives results closer to exp
ments.

B. Elastic moduli of Mon/Vn

The elastic moduli of Mo1/V1 are displayed in Table III.
No experimental results have been found for this mater
The calculated results are compared to continuum the
predictions obtained from Eq.~8!, for the elastic stiffness
constants of Mon/Vn . It is recalled that theCeff are derived
for the tetragonal symmetry of Mon/Vn . In the special case
n51 here, the symmetry is cubic and imposes the restric
that the strain should be uniform. The analytic effective el
tic moduli for the laminate that reflect such conditions a
C11
eff , C12

eff , andC66
eff . The notationC126

eff in Table III is used to
refer toC11

eff , C12
eff , andC66

eff in Eq. ~8!. The remaining effec-
tive elastic constants from Eq.~8! are also displayed, denote
as C134

eff , which refers toC33
eff , C13

eff , and C44
eff in Eq. ~8!.

Agreement is noted between the calculated elastic cons
for Mo1/V1 and theC126

eff —the corresponding effective elast
constants from continuum results for layered materials. T
exception isC44, which agrees with the constant-strain res
C44
eff in Eq. ~8!. There is also very good agreement betwe

the calculated bulk modulus and the result forB0 from Eq.
~10!.

The equilibrium lattice constants and bulk moduli of t
Mon/Vn superlattices are shown in Table IV. An increase
d-
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equilibrium lattice constant of the Mon/Vn with superlattice
periodicity L is noticed. This may be connected with th
amount of charge transfer across the Mo/V interface, wh
is also manifested in the Fermi energy increase withL in
these materials.47 The bulk modulus of the Mon/Vn superlat-
tices withn51–3 is stable at;2.25 Mbar and seems una
fected by the~small! volume variation of the crystals. It is
also in good agreement with the continuum theory res
B052.2360.03 Mbar.

Elastic anomalies in metal superlattices have been m
fested, e.g., in Young’s modulusY. The calculated Young’s
modulus will here be compared to the one obtained fr
continuum theory for laminates and to a hypothetical sit
tion of a two-phase composite of Mo and V with random
oriented phases. The latter will serve as a crude estimat
the effect of disorder at the interfaces. Young’s modulus
given by Y59Bm/(3B1m). For Mo1/V1, m5C8 gives
Young’s modulus for extension of the lattice in the grow
direction. From the calculated values for Mo1/V1, it is ob-
tainedY53.4660.03 Mbar, as can be seen in Table V. T
corresponding values from continuum theory for laminate
calculated from Eqs.~8! and ~10!. For Mo1/V1, which has
cubic symmetry, we have the restriction that the str
should be uniform, corresponding toC85C12

eff , which is the
value used to obtainY from Eqs. ~8! and ~10!. There is
agreement between the calculatedY and Young’s modulus
from continuum theory of laminates. The Hashin-Shtrikm
bounds~11!–~14! give asofter Ywith ;30% primarily due
to the smaller value of the representative shear modulus
consequence of the present finding would be that the m
anisotropic the materials are~i.e., the larger the difference
betweenC8 andC44!, the larger would be the elastic anom
lies due to disordered interfaces. Recent experiments48 seem
to confirm the close connection between interface qua
and elastic anomalies for metallic superlattices of sm
modulation wavelength.

IV. SUMMARY AND CONCLUSIONS

The FP-LMTO scheme has been employed in order
calculate all elastic moduli of Mo, V, and of the Mo1/V1
superlattice. In addition, the equilibrium volumes and bu
moduli of Mon/Vn superlattices, grown in the@001# direc-
tion, with n51,2,3 are calculated. The aim has been to
vestigate the effective elastic moduli of the superlattice f
mation and the influence of the interfaces upon their valu
Satisfactory agreement is achieved with respect to exp
mental results for the constituent metals, especially for
bulk moduli, within the uncertainties of the calculations a
the procedure of extraction of the elastic moduli from tot
are

ss,
TABLE III. Elastic moduli in Mbar of Mo1/V1 in the CsCl structure, calculated in the present work
presented and compared to continuum theory predictions for laminated media, according to Eqs.~8!. The
notationsC126

eff andC134
eff refer to effective moduli under the condition of uniform strain and uniform stre

respectively. The relevant ones for comparison with the calculations are theC126
eff .

Mo1/V1 B0 C8 C11 C12 C44

Present work 2.2560.01 1.3960.01 4.1060.03 1.3260.01 0.4860.1
Continuum theory,C126

eff 2.2360.03 1.3560.04 4.0660.05 1.3660.04 0.6660.03
Continuum theory,C134

eff 1.1660.04 3.8560.04 1.3560.04 0.4660.04
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10 062 55S. PAPADIA-EINARSSON
energy differences. The agreement is best for Mo, not
good for V, which most probably is due to neglect of ferr
magnetism. We find that continuum elasticity theory give
surprisingly good account for the values of the effective el
tic moduli in small-modulation Mo/V superlattices. This in
dicates that the energetics of the Mo/V interfaces do not h
any dramatic influence on the overall elastic properties. T
equilibrium lattice constant of the Mon/Vn lattices is found to
depend onn, but this dependence did not show up in th
bulk modulus, inferring that electronic BZ effects are n
prominent for these materials for a modulation wavelen
L<9 Å. An estimate of the effects of disorder at the inte
faces on Young’s modulus, employing the Hashin-Shtrikm
bounds for polycrystalline two-phase composites, gives t
Young’s modulus can soften with up to 30%. This sugge
that the precise interfacial structure has important imp
upon the measured elastic moduli. The still existing con
sion about elastic, modulation-wavelength-depende

TABLE IV. Tabulated are bulk moduli,B0 in Mbar, and equi-
librium lattice constants,a0 in a.u., of Mon/Vn superlattices. The
continuum theory value is obtained from Eq.~10!.

B0 a0

Mo1/V1 2.2560.01 5.615
Mo2/V2 2.2660.02 5.63
Mo3/V3 2.2460.04 5.64
Continuum elasticity 2.2360.03
e

S

tt

,

A

d

c

y

E

s

a
-

e
e

t
h
-
n
at
ts
ct
-
t,

anomalies in metal superlattices underlines the need for
scale electronic structure calculations wherebothan accurate
description of the electronic propertiesand structural relax-
ations in the materials, especially at the interfaces, are
dressed. This may, however, not be feasible in the near
ture.
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TABLE V. Shown are results for Young’s modulus~in Mbar!
obtained from bulk and shear moduli of Mo1/V1. The calculated
value is compared to continuum theory results for laminates an
Hashin-Shtrikman bounds of the equally composed Mo/V tw
phase random composite. The laminate value is obtained from
~8! and~10! with C8 given by 1

2 ~C11
eff2C12

eff!. The Hashin-Shtrikman
bounds are obtained from Eqs.~11!–~14!.

Mo1/V1 B0 m Y

This work 2.2560.03 1.3960.01 3.4660.03
Laminate 2.2360.03 1.3660.04 3.3960.09
Hashin-Shtrikman bounds 2.07 0.89–0.93 2.34–2.
. B

. M.

.
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