⁶³Cu nuclear relaxation in the spin-Peierls compound CuGeO₃

Masayuki Itoh and Masaru Sugahara

Department of Physics, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 263, Japan

Touru Yamauchi and Yutaka Ueda

Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan

(Received 22 July 1996)

We have measured the temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ and the nuclear spin-spin relaxation rate $1/T_{2G}$ due to indirect nuclear coupling for 63 Cu NQR in the spin-Peierls (SP) compound CuGeO₃, which undergoes the SP transition at $T_{SP} \sim 14$ K, using a single crystal. We perform a combined analysis of $1/T_1$ and $1/T_{2G}$ on the basis of theoretical results recently obtained for the S=1/2 one-dimensional Heisenberg antiferromagnet (1DHAF) model to clarify the spin dynamics. Consequently we find that the spin dynamics above T_{SP} in CuGeO₃ is not described by the pure S=1/2 1DHAF model. [S0163-1829(96)52138-7]

Nuclear relaxation measurements¹⁻⁴ in high- T_c superconducting copper oxides and related compounds have been shown to be powerful techniques in studying the low-energy spin dynamics of a two-dimensional quantum magnet. In particular, the nuclear spin-lattice relaxation rate $1/T_1$ and the nuclear spin-spin relaxation rate $1/T_{2G}$ due to the indirect coupling enable us to study the wave-vector q dependence of the dynamical susceptibility $\chi(q,\omega)$. Recently, Sachdev⁵ analytically derived in the low-temperature region of $T \ll J$ (intrachain exchange interaction) the temperature T dependence of $1/T_1$ and $1/T_{2G}$ for a one-dimensional Heisenberg antiferromagnet (1DHAF) with a half-integer spin, using the analytical expression of $\chi(q,\omega)$ at $q \sim \pi$ obtained by Schulz.⁶ Subsequently, Sandvik calculated the *T* dependence of $1/T_1$ and $1/T_{2G}$ up to $T \sim J$ for the S = 1/2 1DHAF model using quantum Monte Carlo (QMC) and maximum-entropy analytic continuation.⁷ He showed the low-T behavior predicted by Sachdev persists up to a high temperature $T \sim 0.5J$, if the nuclear hyperfine form factor A(q) is peaked around $q = \pi$. On the other hand, the q = 0 contribution becomes important even at low temperatures, if A(q) has significant weight for $q \sim 0$. Experimentally, the nuclear relaxation measurements were recently reported for a typical S = 1/2 1DHAF Sr₂CuO₃ with a large J of ~2200 K⁸ and the experimental results were well reproduced by the analytical study⁵ for $T \leq J$.

Hase, Terasaki, and Uchinokura recently found a new inorganic spin-Peierls (SP) compound CuGeO₃ which undergoes the SP transition at $T_{\rm SP} \sim 14$ K.⁹ There are in a unit cell two elongated CuO₆ octahedra which form linear chains along the *c* axis. This compound above $T_{\rm SP}$ can be treated as a pseudo-1DHAF of S = 1/2. The intrachain exchange constant *J* along the *c* axis in the form of $\sum_{ij}JS_iS_j$ was reported to be 160 K (Ref. 10) and 150 K (Ref. 11) by theoretical analyses of the magnetic susceptibility, 120 K by the inelastic neutron-scattering measurement,¹² and 183 K by the magnetization study in ultra-high magnetic fields.¹³ Previously, it was pointed out that the overall-*T* dependence of $1/T_1$ measured above $T_{\rm SP}$ up to 80 K for ⁶³Cu nuclear quadrupole resonance (NQR) in CuGeO₃ may be understood by the 1DHAF model.^{14,15} However, this has not been confirmed up to now. In the present study, we have measured the *T* dependence of $1/T_{2G}$ for ⁶³Cu NQR to further clarify the spin dynamics in CuGeO₃, using a single crystal. Also we have measured the *T* dependence of $1/T_1$ up to 300 K. We will perform the combined analysis of $1/T_1$ and $1/T_{2G}$ based on the theoretical results for 1DHAF of S = 1/2 by Sachdev and Sandvik, and discuss the spin dynamics in CuGeO₃.

A single crystal of CuGeO₃ was prepared by the floating zone method. The sample was confirmed to be a single phase by x-ray analysis. The $1/T_1$ and $1/T_{2G}$ measurements were performed for ⁶³Cu NQR by using a coherent pulsed spectrometer. The rate $1/T_1$ was measured by the saturation recovery method, whereas $1/T_{2G}$ was measured by changing the interval between focusing and refocusing rf pulses. A typical width of a π pulse was 1.5 μ sec, that is, the strength of the rf pulse H_1 is 295 kHz which is comparable to the full width at half maximum of the ⁶³Cu NQR spectrum 300 ± 20 kHz, at 4.2 K. Therefore, the obtained $1/T_{2G}$ value may provide a slight underestimating of the indirect coupling.

In general, the spin-echo amplitude $M(2\tau)$ as a function of the time interval τ between focusing and refocusing rf pulses is expressed as

$$M(2\tau) = M_0 \exp\left[-\frac{2\tau}{T_{2R}} - \frac{1}{2} \left(\frac{2\tau}{T_{2G}}\right)^2\right],$$
 (1)

where M_0 is a value at $\tau=0$ of $M(2\tau)$ and $1/T_{2R}$ is the spin-echo decay rate due to the nuclear spin-lattice relaxation process. The value of $1/T_{2R}$ can be estimated from the $1/T_1$ data using the relation $1/T_{2R}=(2+r)(1/T_1)$ for NQR by the Redfield theory.³ In CuGeO₃, the anisotropy of $1/T_1$, *r*, was estimated to be $\sim 1/37$ from the anisotropy of the hyperfine coupling constant as will be discussed later. Based on the T_1 data for ⁶³Cu NQR in CuGeO₃ which will be presented below, the T_{2R} process is concluded to have a negligible contribution to the spin-echo decay in CuGeO₃.

R9631

FIG. 1. Temperature dependence of (a) the Gaussian rate of the nuclear spin-spin relaxation $1/T_{2G}$ and the nuclear spin-lattice relaxation rate $1/T_1$ below 50 K, and (b) $1/T_1$ up to 300 K measured for ⁶³Cu NQR in CuGeO₃.

We measured $M(2\tau)$ for ⁶³Cu NQR in the T range of 4.2-50 K. We clearly observed the Gaussian decay above ~ 12 K, whereas below ~ 12 K the deviation from the Gaussian decay, which may be due to the modulation effect,¹ appeared in the long-time range. Therefore T_{2G} was determined by the least-squares fitting of the data to Eq. (1) without including the T_{2R} term. Particularly below 12 K the fitting was done only for the initial decay. Thus we found the T dependence of $1/T_{2G}$ as is presented in Fig. 1(a). The rate $1/T_{2G}$ gradually increases with decreasing T, and after a peak at T_{SP} decreases with further decreasing T. On the other hand, $1/T_1$ above T_{SP} increases with increasing T up to 300 K as is seen in Fig. 1(b). Below T_{SP} , $1/T_1$ rapidly decreases due to the opening of the gap in the magnetic excitation spectrum, and the T dependence of $1/T_1$ is well traced by $T^{5.73\pm0.3}$ s⁻¹ as the same as the previous report.¹⁴

The contribution of the nuclear dipole-dipole interaction to $1/T_{2G}$ in CuGeO₃ is smaller than $\sim 1.3 \times 10^3 \text{ s}^{-1}$, which is evaluated by assuming that all Cu sites are equivalent. Therefore $1/T_{2G}$ in CuGeO₃ is predominantly ascribed to the indirect nuclear spin-spin coupling. In this case, $(1/T_{2G})^2$ is expressed for NQR as

$$(1/T_{2G})^{2} = \frac{p}{4\hbar^{2}(g\mu_{B})^{4}} \sum_{q} \{|A_{z}(q)|^{4}\chi^{2}(q) - [|A_{z}(q)|^{2}\chi(q)]^{2}\},$$
(2)

where p (=0.69 for ⁶³Cu) is the natural abundance of the nuclear spin, \hbar is the Planck's constant, g is the electron g value, μ_B is the Bohr magneton, and $\chi(q)$ is the static susceptibility.^{1,16} In a 1DHAF, the form factor of the hyperfine interaction is expressed as $A_{\alpha}(q) = A_{\alpha}^{(0)} + 2A^{(1)}\cos(q)$ ($\alpha = x$, y, and z) where $A_{\alpha}^{(0)}$ and $A^{(1)}$ are anisotropic on-site and isotropic nearest-neighbor coupling constants, respectively. On the other hand, $1/T_1$ is expressed as

FIG. 2. Temperature dependence of $T_{2G}/(T_1\sqrt{T})$ measured for ⁶³Cu NQR in CuGeO₃. The solid curve with open circles represents the QMC result of the hyperfine ratio $R_{\mu}=0$ for the S=1/2 1DHAF model (after Ref. 7).

$$\frac{1}{T_1} = \frac{2k_B T}{(\hbar g \mu_B)^2} \sum_q A_\perp^2(q) \frac{\mathrm{Im}\chi(q,\omega_n)}{\omega_n},$$
(3)

where $A_{\perp}^2(q) = [A_x^2(q) + A_y^2(q)]/2$, and ω_n is the nuclear Larmor frequency.¹⁷

We will discuss $1/T_1$ and $1/T_{2G}$ above T_{SP} in CuGeO₃ based on the S=1/2 1DHAF model. In half-integer spin chains, both q=0 and π components of $\chi(q,\omega)$ contribute to the nuclear relaxation. However, the $q=\pi$ contribution is predominant for $T \ll J$. In this case, Sachdev derived the following expressions for $1/T_1$ and $1/T_{2G}$ by neglecting the q=0 component:

$$\frac{1}{T_1} = A_\perp^2(\pi) \frac{\pi D}{\hbar c} \tag{4}$$

and

$$\frac{1}{T_{2G}} = A_{\parallel}^2(\pi) \frac{DI}{4\hbar} \sqrt{\frac{p}{ck_B T}},$$
(5)

where $A_{\parallel}(\pi) = A_z(\pi)$, *D* is an unknown parameter, I = 8.4425..., and $c \ (=\pi J/2)$ is the spinon velocity at T = 0 K.^{5,8} If the ratio of $1/T_1$ to \sqrt{T}/T_{2G} is taken, the parameter *D* is canceled out as

$$\frac{T_{2G}}{T_1\sqrt{T}} = \frac{A_{\perp}^2(\pi)}{A_{\parallel}^2(\pi)} \frac{4\pi}{I} \sqrt{\frac{k_B}{pc}}.$$
 (6)

Thus the ratio $T_{2G}/(T_1\sqrt{T})$ is independent of T at low temperatures. Figure 2 shows the T dependence of $T_{2G}/(T_1\sqrt{T})$ in CuGeO₃. If the SP transition is removed down to T=0 K, a finite value of $\sim 1.7 \times 10^{-3}$ K^{-1/2} is extrapolated at T=0 K and should be compared with a value calculated from Eq. (6). For this calculation, we must know a value of $A_{\perp}^2(\pi)/A_{\parallel}^2(\pi)$. As was previously discussed from the analysis of the hyperfine interaction, ^{16,17} $A^{(1)}$ is very small in CuGeO₃. Thus reasonably assuming $A^{(1)}=0$, we

FIG. 3. T/T_{2G}^2 vs ln(J/T) plot for the Gaussian nuclear spin-spin relaxation rate $1/T_{2G}$ measured for ⁶³Cu NQR in CuGeO₃. The solid curves with several kinds of symbols represent QMC results of various values of the hyperfine ratio R_{\parallel} for the S = 1/2 1DHAF model (after Ref. 7). The right vertical axis can be referred for the experimental data (solid circles), if $A^{(1)} = 0$.

obtain $A_{\perp}(\pi)/(2\gamma_n\hbar) = A_{\perp}(0)/(2\gamma_n\hbar) = -24.4$ kOe/ μ_B and $A_{\parallel}(\pi)/(2\gamma_n\hbar) = A_{\parallel}(0)/(2\gamma_n\hbar) = -209 \text{ kOe}/\mu_B$ (Refs. 18 and 19), where γ_n is the nuclear gyromagnetic ratio, $2\pi \times 1.1285 \times 10^3$ Hz/Oe for ⁶³Cu. Using J=150 K for CuGeO₃, $T_{2G}/(T_1\sqrt{T})$ is evaluated to be 1.6×10⁻³ K^{-1/2}, which agrees with the extrapolated value at T=0 K. In the finite T region above T_{SP} , the QMC results⁷ are available to compare the experimental data of $T_{2G}/(T_1\sqrt{T})$ with theoretical results for the S = 1/2 1DHAF model. The solid curve with the open circles represents the QMC result of $R_{\mu} = A^{(1)} / A^{(0)}_{\mu} = 0$ ($\mu = \parallel$ and \perp) after correction for p, NQR, hyperfine coupling constants, and a normalization factor. It should be noted that the QMC results for p = 1, NMR, and isotropic $A^{(0)}$ are presented in Ref. 7. The T dependence of the ratio in the QMC simulation seems to reproduce the experimental results, because the QMC result provides a larger value than the Sachdev's prediction of Eq. (6) as was pointed out in Ref. 7. However, only from these discussions of $T_{2G}/(T_1\sqrt{T})$ we cannot conclude that the spin dynamics in CuGeO₃ is described by the S = 1/2 1DHAF model.

Next, we will discuss each *T* dependence of $1/T_1$ and $1/T_{2G}$ above T_{SP} . By considering the marginally irrelevant operator, Sachdev⁵ predicted the correction of a multiplicative prefactor $\ln^{1/2}(\Lambda/J)$, where Λ ($\sim J$) is an ultraviolet cutoff, for both Eq. (4) of $1/T_1$ and Eq. (5) of $1/T_{2G}$. Thus T/T_{2G}^2 is expected to be a linear function of $\ln(J/T)$ at low temperatures. Figure 3 shows the T/T_{2G}^2 vs $\ln(J/T)$ plot with QMC results⁷ of various R_{\parallel} values for comparison. The right vertical axis can be referred for the experimental data, if $A^{(1)}=0$ which corresponds to $R_{\parallel}=0$. The data above T_{SP} show the *T* dependence different from the QMC result of $R_{\parallel}=0$ and qualitatively similar to that of a positive R_{\parallel} value. However, if $A^{(1)}$ is present, the R_{\parallel} value seems not to be positive, because $A^{(1)}$ should be positive in the supertransferred mechanism through the hybridization between $Cu(3d_{x^2-y^2}) - O(2p)$ and Cu(4s).²⁰ Even if R_{\parallel} is positive, we cannot at the same time explain the following $1/T_1$ data

FIG. 4. $1/T_1$ vs T/J plot for the nuclear spin-lattice relaxation rate $1/T_1$ taken for ⁶³Cu NQR in CuGeO₃. The solid curves with several kinds of symbols represent QMC results of various values of the hyperfine ratio R_{\perp} for the S = 1/2 1DHAF model (after Ref. 7). The right vertical axis can be referred for the experimental data (solid circles), if $A^{(1)} = 0$.

by the QMC result with $A^{(1)}$ which may qualitatively reproduce the $1/T_{2G}$ data. Figure 4 shows the $1/T_1$ vs T/J plot with QMC results⁷ with various R_{\perp} values for comparison. The QMC result of $R_{\perp} = 0$ cannot reproduce the experimental data of $1/T_1$. Also the T dependence due to the prefactor $\ln^{1/2}(\Lambda/J)$ which is seen in the QMC results below $T/J \sim 0.4$ conflicts with the experimental data. Thus we cannot obtain R_{μ} values which reproduce the experimental data of both $1/T_1$ and $1/T_{2G}$. This fact indicates that other relaxation mechanisms are present in the ⁶³Cu nuclear relaxation of CuGeO₃ and modify the pure S = 1/2 1DHAF dynamics. One of them seems to come from a second nearest-neighbor exchange interaction J_2 in the chain introduced independently by Riera and Dobry¹⁰ ($J_2 \sim 0.36J$, $J \sim 160$ K) and by Castilla *et al.*¹¹ ($J_2 \leq 0.24J$, $J \sim 150$ K) to explain the magnetic susceptibility. Other origins may be interchain exchange interactions which were estimated to be $J_{b} \sim 0.1J$ and $J_a \sim -0.01J$ by the inelastic neutron-scattering study.¹² A theoretical study including such effects on the nuclear relaxation of the S = 1/2 1DHAF is desired to understand the nuclear magnetic relaxation in the uniform phase of CuGeO₃.

Below $T_{\rm SP}$ we have no available theories to describe $1/T_{2G}$ in the dimerized phase of SP compounds. Also $1/T_1$, which shows the characteristic *T* dependence of $T^{5.73\pm0.03}$ just below $T_{\rm SP}$, cannot be explained at present, although there is a theoretical study of the T_1 mechanism including three pseudofermion excitations in the dimerized phase by Ehrenfreund and Smith.²¹ Further theories are desired to understand the present $1/T_{2G}$ result with the $1/T_1$ data in the dimerized phase of CuGeO₃.

In summary, we measured the *T* dependence of $1/T_1$ and $1/T_{2G}$ to understand the spin dynamics in the spin-Peierls compound CuGeO₃. Based on recent theoretical results for the S = 1/2 1DHAF model by Sachdev and Sandvik, we have performed the combined analysis of $1/T_1$ and $1/T_{2G}$ above T_{SP} . We have found that the spin dynamics in CuGeO₃ is

not described by the pure S = 1/2 1DHAF model. It has been pointed out that the second-nearest and/or the interchain exchange interactions may provide contributions to the nuclear relaxation in CuGeO₃.

We would like to thank Dr. M. Takigawa and Dr. Y. Itoh for fruitful discussions. This study was supported by a Grantin-Aid for Scientific Research from the Ministry of Education, Science, and Culture, Japan.

- ¹ C. H. Pennington, D. J. Durand, C. P. Slichter, J. P. Rice, E. D. Bukowski, and D. M. Ginsberg, Phys. Rev. B **39**, 274 (1989).
- ² Y. Itoh, H. Yasuoka, Y. Fujiwara, Y. Ueda, T. Machi, I. Tomeno, K. Tai, N. Koshizuka, and S. Tanaka, J. Phys. Soc. Jpn. **61**, 1287 (1992).
- ³ T. Imai, C. P. Slichter, K. Yoshimura, M. Katoh, and K. Kosuge, Phys. Rev. Lett. **71**, 1254 (1993).
- ⁴ M. Takigawa, Phys. Rev. B 49, 4158 (1994).
- ⁵ S. Sachdev, Phys. Rev. B **50**, 13 006 (1994).
- ⁶ H. J. Schulz, Phys. Rev. B **34**, 6372 (1986).
- ⁷ A. W. Sandvik, Phys. Rev. B **52**, R9831 (1995).
- ⁸M. Takigawa, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. **76**, 4612 (1996).
- ⁹ M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. **70**, 3651 (1993).
- ¹⁰ J. Riera, and A. Dobry, Phys. Rev. B **51**, 16 098 (1995).
- ¹¹ G. Castilla, S. Chakravarty, and V. J. Emery, Phys. Rev. Lett. **75**, 1823 (1995).

- ¹² M. Nishi, O. Fujita, and J. Akimitsu, Phys. Rev. B 50, 6508 (1994).
- ¹³ H. Nojiri, Y. Shimamoto, N. Miura, M. Hase, K. Uchinokura, H. Kojima, I. Tanaka, and Y. Shibuya, Phys. Rev. B **52**, 12749 (1995).
- ¹⁴ M. Itoh, S. Hirashima, and K. Motoya, Phys. Rev. B **52**, 3410 (1995).
- ¹⁵ J. Kikuchi, H. Yasuoka, M. Hase, Y. Sasago, and K. Uchinokura, J. Phys. Soc. Jpn. 63, 872 (1994).
- ¹⁶ D. Thelen and D. Pines, Phys. Rev. B **49**, 3528 (1994).
- ¹⁷ T. Moriya, J. Phys. Soc. Jpn. 18, 516 (1963).
- ¹⁸M. Itoh, M. Sugahara, S. Hirashima, T. Yamauchi, and Y. Ueda, Physica C 263, 486 (1996).
- ¹⁹ M. Itoh, M. Sugahara, T. Yamauchi, and Y. Ueda, Phys. Rev. B 53, 11 606 (1996).
- ²⁰ F. Mila and T. M. Rice, Physica C 157, 561 (1989).
- ²¹ E. Ehrenfreund and L. S. Smith, Phys. Rev. B 16, 1870 (1977).