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We address the issue of universality in two-dimensional disordered Ising systems, by considering long,
finite-width strips of ferromagnetic Ising spins with randomly distributed couplings. We calculate the free
energy and spin-spin correlation functions~from which averaged correlation lengths,jav, are computed! by
transfer-matrix methods. An ansatz for the size dependence of logarithmic corrections tojav is proposed. Data
for both random-bond and site-diluted systems show that pure system behavior~with n51) is recovered if
these corrections are incorporated, discarding the weak-universality scenario.@S0163-1829~96!52938-3#

It is well known that the Harris criterion,1 for the rel-
evance or irrelevance of weak disorder upon critical behavior
at a phase transition, is inconclusive for the two-dimensional
Ising model where the specific heat of the pure system di-
verges logarithmically at the critical point. A great deal of
effort has been dedicated to elucidating the properties of dis-
ordered versions of this model.2 Both weak and strong dis-
order have been considered. Early proposals implying strong
deviations from pure system behavior, such as a peculiar
exponential decay of critical correlations with distance and a
magnetization exponentb50 ~Ref. 3! have been ruled out
by extensive numerical simulations.2 Though nowadays there
seems to be general agreement that no such drastic changes
are expected to arise from disorder in this case, two main
pictures have taken hold recently, which seem to be mutually
excludent. The first, typically represented by the work of
Heuer4 and of Talapov and Shchur5 maintains that the criti-
cal behavior is unaffected by disorder~apart from possible
logarithmic corrections, which though not explicitly consid-
ered in Refs. 4 and 5, fit in with similar overall
conclusions2!; this view agrees with early numerical work on
magnetization moments.6 According to the second view,7,8

critical quantities such as the zero-field susceptibility and
correlation length display power-law singularities, with
the corresponding exponentsg and n changing continu-
ously with disorder; however, this variation is such that the
ratio g/n is kept constant at the pure system’s value~the
so-calledweak universalityscenario9!.

The present work aims at shedding light into this contro-
versy, by means of strip calculations which, since the work
of Nightingale10,11 connecting finite-size scaling12,13 and
renormalization group ideas, have proved to be among the
most accurate techniques to extract critical points and expo-
nents for nonrandom systems in two dimensions. Extensions
of this approach to random systems require an appreciation
of the subtleties involved in the corresponding averaging
process;14,15 early efforts in this direction16 have since been
extended and put into a wider perspective.17–19We consider
a two-dimensional, square-lattice, random-bond Ising model
with a binary distribution of ferromagnetic interaction
strengths, each occurring with equal probability. For this
specific model, the transition temperature is exactly known
from duality,20,21 so one can be sure that numerical errors
due to imprecise knowledge of the critical point~such as

what may happen, e.g., for site-diluted cases! are absent. The
only sources of such errors will then be the finite strip width
and those arising from the averaging process. However, the
former can be controlled by finite-size scaling theory,11,13

while the effects of the latter are reduced by studying large
enough samples~though this is a subtle point when correla-
tion functions are concerned, as seen below!. A previous
strip calculation for this model19 concentrated on testing
for random systems, the well-known relation22 between
the critical exponenth and the correlation length on a strip
at the critical temperature of the two-dimensional system,
as well as on extracting the conformal anomalyc ~pro-
portional to the leading finite-width correction to the bulk
free energy23,24!. The conclusion was that, within error bars,
h51

4 and c5 1
2 ~the pure Ising values! for wide ranges of

disorder. Sinceh522g/n, those results could not be used
to test any disorder dependence ofg andn separately. Here,
instead, we resort to numerical derivatives to obtainn.

We have used long strips of a square lattice, of width
4<L<12 sites with periodic boundary conditions. In order
to provide samples that are sufficiently representative of dis-
order, we iterated the transfer matrix11 typically along 107

lattice spacings, meaning much longer strips than those used
in Ref. 19.

At each step, the respective vertical and horizontal bonds
between first-neighbor spinsi and j were drawn from a prob-
ability distribution

P~Ji j !5 1
2 „d~Ji j2J0!1d~Ji j2rJ0!…, 0<r<1, ~1!

which ensures20,21 that the critical temperaturebc51/kBTc
of the corresponding two-dimensional system is given by

sinh~2bcJ0!sinh~2bcrJ0!51. ~2!

We have used three values ofr in calculations:r50.5,
0.25, and 0.1; the two smallest values have been chosen for
the purpose of comparing with recent Monte-Carlo simula-
tions wheren andg are evaluated.25 A wide range of disor-
der is thus covered.

The procedure for evaluation of the largest Lyapunov ex-
ponentLL

0 for a strip of widthL and lengthN@1 is well
known.16,26 The average free energy per site is then
f L
av(T)52 (1/L) LL

0 in units of kBT.
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From finite-size scaling, the initial susceptibility of a strip
at the critical temperature of the corresponding infinite sys-
tem,xL(Tc) must vary as

13

xL~Tc!5
]2f L

av~Tc!

]h2
U
h50

5Lg/nQ~0!, ~3!

whereh is a uniform external field andQ(0) is a constant.12

As f L
av(T) is expected to have a normal distribution,15,26 so

will xL . Thus the fluctuations are Gaussian, and relative er-
rors must die down with sample size~strip length! N as
1/AN. The intervals~of external field values, in this case!
used in obtaining finite differences for the calculation of nu-
merical derivatives must be strictly controlled, so as not to be
an important additional source of errors. We have managed
to minimize these latter effects by usingdh typically of order
1024 in units of J when estimatingf L

av(Tc ;h50,6dh) for
the derivative in Eq.~3!.

A succession of estimates, (g/n)L , for the ratiog/n is
then obtained from Eq.~3! as follows:

S g

n D
L

5
ln@xL~Tc!/xL21~Tc!#

ln@L/~L21!#
. ~4!

Least-squares fits for plots of (g/n)L against 1/L
2 ~see, e.g.,

Ref. 19 for a discussion of suitable powers of 1/L for
extrapolation! provide the following results: g/n
51.74860.012, 1.74960.008, and 1.74660.013, respec-
tively for r50.50, 0.25, and 0.10; the latter two estimates
agree with 1.7460.03, 1.7360.05, obtained in Ref. 25.

The overall picture is thus consistent withg/n57
4 for all

degrees of disorder. Taken together with the results of Ref.
19, and using the scaling relationg/n522h, this confirms
the view that ~1! the conformal invariance relation22

h5L/pjL(Tc) still holds for disordered systems, provided
that an averaged correlation length is used; and that~2! the
appropriate correlation length to be used is that coming from
the slope of semilog plots of correlation functions against
distance.19

We now present results for the exponentn. The first dif-
ference to the free energy calculation described above is that
the correlation functions are expected to have alog-normal
distribution14,15 rather than a normal one. Thus self-
averaging is not present, and fluctuations for a given sample
do not die down with increasing sample size. However, we
have seen that overall averages~i.e., central estimates! from
different samples do get closer to each other as the various
samples’ sizes increase. Accordingly, in what follows the
error bars quoted arise from fluctuations among four central
estimates, each obtained from a different impurity distribu-
tion. Similar procedures seem to have been followed in
Monte-Carlo calculations of correlation functions in finite
(L3L) systems.5

The direct calculation of correlation functions,^s0sR&,
follows the lines of Section 1.4 of Ref. 11, with standard
adaptations for an inhomogeneous system.19 For fixed dis-
tances up toR5100, and for strips with the same length as
those used for averaging the free energy, the correlation
functions are averaged over an ensemble of 104–105 differ-
ent estimates to yield̂s0sR&.

The average correlation length,jav, is in turn defined by

^s0sR&;exp~2R/jav!, ~5!

and is calculated from least-squares fits of straight lines to
semilog plots of the average correlation function as a func-
tion of distance, in the range 10<R<100.

We can then apply the usual finite-size scaling~FSS!
arguments12,13 to obtain estimatesnL of the exponentn. As-
suming a simple power-law divergence—i.e., ignoring, for
the time being, less-divergent terms such as power-law or
logarithmic corrections—of the correlation length in the
form j;t2n, with t being some reduced distance to the criti-
cal point, its FSS ansatz becomes

jL
av5LF~z!, ~6!

wherez5tL1/n andF is a scaling function. Sincen does not
appear explicitly in the expression forjL

av(Tc)/L, one resorts
to the temperature derivative of the correlation length, which
can also be cast in a similar scaling form,

mL[
djL

av

dt
5L11 ~1/n!G~z!, ~7!

with G[dF/dz. mL at Tc @see Eq.~2!# is calculated numeri-
cally from values of jL

av evaluated at Tc6dT, with
dT/Tc51023. For systems of sizesL andL21, one obtains
the estimates

1

nL
5
ln~mL /mL21!T5Tc

ln~L/L21!
21. ~8!

Note that this is slightly different from the usual fixed-
point calculation,10,11 and is more convenient in the present
case where the exact critical temperature is known. Our data
for each pair of (L,L21) strips are shown in Table I, to-
gether with results of extrapolations against 1/L2 for each
separate sequence corresponding to different values ofr .
Taken at face value, the data show a systematic trend to-
wards values ofn slightly larger than the pure-system value
of 1, though the variation is smaller than that shown in Ref.
25.

Before accepting this trend as an indication of the weak-
universality scenario, we must test for corrections caused by
less-divergent terms as being responsible for the observed

TABLE I. Critical exponentn from Eq. ~8!.

L r50.50 0.25 0.10

5 0.92860.004 0.99360.015 1.1360.11
6 0.96260.010 1.02960.024 1.1560.06
7 0.98160.020 1.04060.036 1.1460.06
8 0.99760.025 1.05360.040 1.1560.06
9 1.00060.030 1.05260.026 1.1360.06
10 1.00960.033 1.06360.016 1.1560.07
11 1.01260.032 1.06260.017 1.1560.08
12 1.01660.039 1.06460.032 1.1460.11
Extrap. 1.03760.016 1.08360.014 1.1460.06
Ref. 25 1.0960.01 1.2360.02
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disorder dependence ofn. We first recall that logarithmic
corrections have already been proposed for the bulk correla-
tion length in the form3

j;t2n@11Cln~1/t !# ñ , ~9!

with n51 and ñ5 1
2, andC is a ~disorder-dependent! con-

stant. For the same reasons as above, estimates forn can
only be consistently tested through the temperature deriva-
tive of j:

m[
dj

dt
;t2~11n!@11Cln~1/t !# ñ , ~10!

plus less-divergent terms.
For finite systems, logarithmic corrections are expected to

show on scales larger than a disorder-dependent characteris-
tic lengthLC;exp(1/C).3 A finite-size scaling ansatz for the
behavior atTc can be obtained by a suitable generalization of
the standard procedures for pure power-law singularities
~see, e.g., Ref.13!. Assumingn51 and ñ5 1

2 one then has,
to dominant order

mL

L2
;~12blnL !1/2, ~11!

whereb;1/lnLC . Figure 1 shows the results for (mL /L
2)2 as

a function of lnL, for different values ofr . In each case,
log-corrected behavior sets in for suitably largeL, exactly in
the manner predicted by theory: the data stabilize onto a
straight line only forL*LC , which decreases with increas-
ing disorder.3

This crossover effect is similar to that found by Wang
et al.27 in their fitting of specific heat data to the double
logarithmic divergence predicted by theory.3 However, the
increasing broadening of the specific heat maximum with
disorder in finite-sized systems has been interpreted as evi-
dence against double-logarithmic corrections.7,28 Here, in-
stead, we deal with a case of single-log corrections to a di-
vergence much stronger than that of the specific heat. It is
thus easier to separate between corrections and the dominant
power-law behavior, as made evident by the consistent fits
displayed in Fig. 1. ThoughjL(T) and the susceptibility

xL(T) were calculated through Monte Carlo simulations in
Refs. 7 and 25, no attempt seems to have been made to fit the
corresponding data to a form similar to Eq.~11!. It must be
recalled that by examining the behavior at the exactTc , only
finite-size effects play any role in tuning the crossover; by
contrast, whenTc is not known exactly, one cannot be sure
whether the~thermal! crossover towards critical behavior has
already occurred. As a final check of our data, we have also
tried less-divergent power-law corrections, but the fittings
were always much poorer than those assuming logarithmic
corrections. In view of these facts, the estimates provided by
Eq. ~8! should then be regarded aseffectiveexponents, since
strong universality still holds.

We have also applied the ideas behind Eq.~11! to the
two-dimensional site-diluted Ising model, using the calcula-
tional scheme proposed in Ref. 18. Results for the pure and
diluted cases~for concentrations of magnetic sites in the
rangep50.65 – 0.95! andL5327 are depicted in Fig. 2. It
can be seen that the qualitative trend clearly changes towards
a lnL dependence similar to that found in the random-bond
case as soon as dilution is introduced. The small curvature in
the plots must be at least partly attributed to imprecise
knowledge of the exact critical line@and to the approximate
nature of that calculational scheme itself, which is asymptoti-
cally exact only asT→0 ~Ref. 18!#. Again, pure-system ex-
ponents with logarithmic corrections~as opposed to dilution-
dependent ones7,8! seem to describe the behavior of site-
diluted Ising magnets in two dimensions.

In conclusion, our data independently confirm that the
conformal invariance resultjav5L/ph is still valid for the
two-dimensional random–bond Ising model, withh5 1

4 as in
the pure case. The apparent dependence ofn with disorder
was found to be due to logarithmic corrections, which be-
come more important the farther one moves away from the
pure ~i.e., r51) system. The weak-universality scenario,
though quite appealing for the possibility of demanding new
underlying concepts to be explained, does not seem to hold
in the two-dimensional random-bond Ising model. A similar
picture most likely holds for the site-diluted model as well.
The results presented here do not necessarily imply, how-
ever, that conformal invariance or strong universality should
be valid foranytype of disorder. In the problems treated here

FIG. 1. Finite-size scaling plots of logarithmic corrections@Eq.
~11!#. Straight lines are least-squares fits of data, respectively, for
L59212 (r50.5); 7212 (r50.25); and 4212 (r50.1). For data
in this figure,mL5djL /dK, with K[J/T.

FIG. 2. Finite-size scaling plots of logarithmic corrections@Eq.
~11!# for site-diluted Ising model. Top to bottom: concentration of
magnetic sites5 1.0, 0.95, 0.90, 0.80, 0.70, 0.65. See Ref. 18 for
details on the calculation ofjL .
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correlations can still freely propagate, unlike cases where,
e.g., frustration is allowed; we are currently investigating
these issues for spin-glass-like systems.

We thank Laborato´rio Nacional de Computac¸ão Cientı́-
fica ~LNCC! for use of their computational facilities, and
Brazilian agencies CNPq and FINEP, for financial support.

S.L.A.dQ thanks the Department of Theoretical Physics at
Oxford, where part of this work was done, for the hospitality,
and the cooperation agreement between Academia Brasileira
de Ciências and the Royal Society for funding his visit. Spe-
cial thanks are due to R. B. Stinchcombe for invaluable dis-
cussions, and to D. Stauffer for useful suggestions.

1A. B. Harris, J. Phys. C7, 1671~1974!.
2For a recent review, see, W. Selkeet al., in Annual Reviews of
Computational Physics, edited by D. Stauffer~World Scientific,
Singapore, 1994!, Vol. 1.

3Vik.S. Dotsenko and Vl.S. Dotsenko, J. Phys. C.15, 495 ~1982!;
B. N. Shalaev, Phys. Rep.237, 129 ~1994!.

4H.-O. Heuer, Europhys. Lett.16, 503 ~1991!.
5A. L. Talapov and L. N. Shchur, Europhys. Lett.27, 193 ~1994!.
6B. Derridaet al., J. Phys.~France! 48, 335 ~1987!.
7J.-K. Kim and A. Patrascioiu, Phys. Rev. Lett.72, 2785~1994!.
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