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Weak versus strong universality in the two-dimensional random-bond Ising ferromagnet
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We address the issue of universality in two-dimensional disordered Ising systems, by considering long,
finite-width strips of ferromagnetic Ising spins with randomly distributed couplings. We calculate the free
energy and spin-spin correlation functioffeom which averaged correlation length€Y, are computedby
transfer-matrix methods. An ansatz for the size dependence of logarithmic correctitisstproposed. Data
for both random-bond and site-diluted systems show that pure system bebaiiow=1) is recovered if
these corrections are incorporated, discarding the weak-universality scé8&163-18206)52938-3

It is well known that the Harris criterioh,for the rel-  what may happen, e.g., for site-diluted casee absent. The
evance or irrelevance of weak disorder upon critical behaviopnly sources of such errors will then be the finite strip width
at a phase transition, is inconclusive for the two-dimensionafind those arising from the averaging process. However, the
Ising model where the specific heat of the pure system diformer can be controlled by finite-size scaling thebry>
verges logarithmically at the critical point. A great deal of While the effects of the latter are reduced by studying large
effort has been dedicated to elucidating the properties of disgnough sample@hough this is a subtle point when correla-
ordered versions of this modeBoth weak and strong dis- tion functions are concerned, as seen bglotv previous
order have been considered. Early proposals implying strongtrip calculation for this mod&l concentrated on testing
deviations from pure system behavior, such as a peculider random systems, the well-known relatfénbetween
exponential decay of critical correlations with distance and dhe critical exponent; and the correlation length on a strip
magnetization exponem®=0 (Ref. 3 have been ruled out at the critical temperature of the two-dimensional system,
by extensive numerical simulatioAghough nowadays there as well as on extracting the conformal anomaly(pro-
seems to be genera| agreement that no such drastic Chang:@ggtional to the Ieading finite-width correction to the bulk
are expected to arise from disorder in this case, two maiee energy>*). The conclusion was that, within error bars,
pictures have taken hold recently, which seem to be mutually7=3 and c=3 (the pure Ising valugsfor wide ranges of
excludent. The first, typically represented by the work ofdisorder. Sincen=2—y/v, those results could not be used
Heuef and of Talapov and Shchumaintains that the criti-  to test any disorder dependencejoéind v separately. Here,
cal behavior is unaffected by disord@part from possible instead, we resort to numerical derivatives to obtain
logarithmic corrections, which though not explicitly consid- We have used long strips of a square lattice, of width
ered in Refs. 4 and 5, fit in with similar overall 4<L=<12 sites with periodic boundary conditions. In order
conclusion$); this view agrees with early numerical work on to provide samples that are sufficiently representative of dis-
magnetization momenfsAccording to the second viel®  order, we iterated the transfer matrixypically along 10
critical quantities such as the zero-field susceptibility andattice spacings, meaning much longer strips than those used
correlation length display power-law singularities, with in Ref. 19.
the corresponding exponentg and v changing continu- At each step, the respective vertical and horizontal bonds
ously with disorder; however, this variation is such that thebetween first-neighbor spimsandj were drawn from a prob-
ratio y/v is kept constant at the pure system’s valtlee  ability distribution
so-calledweak universalityscenarid).

The present work ai_ms at shedding Iight intp this contro- P(Jj)= %(5(3” —Jo)+8(Jij—1dp), Osr<1, (1)
versy, by means of strip calculations which, since the work
of Nightingald®!! connecting finite-size scalifg®® and  which ensure®? that the critical temperatur@,=1/kgT,
renormalization group ideas, have proved to be among thef the corresponding two-dimensional system is given by
most accurate techniques to extract critical points and expo-
nents for nonrandom systems in two dimensions. Extensions sinh(28.Jg)sinh(2B.rJg)=1. 2
of this approach to random systems require an appreciation
of the subtleties involved in the corresponding averagingVVe have used three values ofin calculations:r=0.5,
process1® early efforts in this directiolf have since been 0.25, and 0.1; the two smallest values have been chosen for
extended and put into a wider perspecti{et®We consider the purpose of comparing with recent Monte-Carlo simula-
a two-dimensional, square-lattice, random-bond Ising modelions wherev and y are evaluated A wide range of disor-
with a binary distribution of ferromagnetic interaction der is thus covered.
strengths, each occurring with equal probability. For this The procedure for evaluation of the largest Lyapunov ex-
specific model, the transition temperature is exactly knowrponentA? for a strip of widthL and lengthN>1 is well
from duality?®?! so one can be sure that numerical errorsknown!®?® The average free energy per site is then
due to imprecise knowledge of the critical poifsuch as f2(T)=— (1/L) A in units ofkgT.
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From finite-size scaling, the initial susceptibility of a strip TABLE |. Critical exponentv from Eq. (8).

at the critical temperature of the corresponding infinite sys

tem, . (T,) must vary a&’ L r=0.50 0.25 0.10
&szV(Tc) 5 0.928+0.004 0.9930.015 1.130.11
(To=—m—| = LY*Q(0), (3 6 0.962£0.010 1.02%:0.024 1.15:0.06
h=0 7 0.981-0.020 1.046:0.036 1.14-0.06
whereh is a uniform external field an@(0) is a constant? 8 0.997£0.025 1.053-0.040 1.1>0.06
As f2(T) is expected to have a normal distributit®so  ° 1.00G-0.030 1.052-:0.026 1.13-0.06
will y, . Thus the fluctuations are Gaussian, and relative ert 1.009-0.033 1.063-0.016 1.150.07
rors must die down with sample sizstrip length N as 1.012£0.032 1.062-0.017 1.1>0.08
1/{N. The intervals(of external field values, in this case 1.016-0.039 1.064:0.032 1.14:0.11
used in obtaining finite differences for the calculation of nu-EXtrap. 1.03%0.016 1.083-0.014 1.14-0.06
merical derivatives must be strictly controlled, so as not to bef. 25 1.09-0.01 1.23-0.02
an important additional source of errors. We have managed
to minimize these latter effects by usiay typically of order
10~* in units of J when estimating®(T,;h=0,* sh) for (ooor)~exp —R/EY), )

the derivative in Eq(3).
A succession of estimatesy/v), , for the ratioy/v is
then obtained from Eq.3) as follows:

(Z) CInDx (T x-1(Te) ]
. In[L/(L-1)]

and is calculated from least-squares fits of straight lines to
semilog plots of the average correlation function as a func-
tion of distance, in the range ¥R=<100.

We can then apply the usual finite-size scalifi€s9
(4)  argument¥*to obtain estimates, of the exponenv. As-

suming a simple power-law divergence—i.e., ignoring, for
Least-squares fits for plots of(v), against 1.2 (see, e.g., the time being, less-divergent terms such as power-law or
Ref. 19 for a discussion of suitable powers oL 1for logarithmic corrections—of the correlation length in the
extrapolatiom provide the fo”owing results: ’}//V form f""t_v, with t being some reduced distance to the criti-
=1.748+0.012, 1.749:0.008, and 1.7460.013, respec- cal point, its FSS ansatz becomes
tively for r=0.50, 0.25, and 0.10; the latter two estimates
agree with 1.740.03, 1.73:0.05, obtained in Ref. 25.

The overall picture is thus consistent wigtiv=1 for all
degrees of disorder. Taken together with the results of Refvherez=tL*” and 7 is a scaling function. Since does not
19, and using the scaling relatioyiv=2— 17, this confirms appear explicitly in the expression féf'(T.)/L, one resorts
the view that (1) the conformal invariance relatiéh to the temperature derivative of the correlation length, which
n=LIm& (T,) still holds for disordered systems, provided can also be cast in a similar scaling form,
that an averaged correlation length is used; and @athe
appropriate correlation length to be used is that coming from
the slope of semilog plots of correlation functions against
distancet®

We now present results for the exponenfThe first dif-  \ith g=dF/dz u, at T, [see Eq(2)] is calculated numeri-
ference to the free energy calculation described above is thakly from values of £ evaluated atT.=dT, with

the correlation functions are expected to havegnormal  s1/T =103, For systems of sizels andL — 1, one obtains
distribution**!® rather than a normal one. Thus self- e estimates '
averaging is not present, and fluctuations for a given sample
do not die down with increasing sample size. However, we
have seen that overall averages., central estimategrom -
different samples do get closer to each other as the various 121
samples’ sizes increase. Accordingly, in what follows the
error bars quoted arise from fluctuations among four central Note that this is slightly different from the usual fixed-
estimates, each obtained from a different impurity distribu-point calculation®! and is more convenient in the present
tion. Similar procedures seem to have been followed ircase where the exact critical temperature is known. Our data
Monte-Carlo calculations of correlation functions in finite for each pair of [,L—1) strips are shown in Table I, to-
(LXL) systems. gether with results of extrapolations against?for each
The direct calculation of correlation functionésoor),  separate sequence corresponding to different values. of
follows the lines of Section 1.4 of Ref. 11, with standard Taken at face value, the data show a systematic trend to-
adaptations for an inhomogeneous systérfior fixed dis-  wards values o¥ slightly larger than the pure-system value
tances up tdR= 100, and for strips with the same length asof 1, though the variation is smaller than that shown in Ref.
those used for averaging the free energy, the correlatiops.

functions are averaged over an ensemble d-10° differ- Before accepting this trend as an indication of the weak-
ent estimates to yieldogog). universality scenario, we must test for corrections caused by
The average correlation lengtéf”, is in turn defined by  less-divergent terms as being responsible for the observed

14

L=LA2), (6)

av

dép
= —1 1+ (1)
ML= L G(2), (7)

1 INCaer /g —1)7=1,
In(L/L—1)
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FIG. 1. Finite-size scaling plots of logarithmic correctigis). FIG. 2. Finite-size scaling plots of logarithmic correctidfs.

(12)]. Straight lines are least-squares fits of data, respectively, fof11)] for site-diluted Ising model. Top to bottom: concentration of
L=9-12 (r=0.5); 7-12 (r=0.25); and 412 (r=0.1). For data magnetic sites= 1.0, 0.95, 0.90, 0.80, 0.70, 0.65. See Ref. 18 for
in this figure,u =d&, /dK, with K=J/T. details on the calculation of_ .

disorder dependence of. We first recall that logarithmic x.(T) were calculated through Monte Carlo simulations in
corrections have already been proposed for the bulk correldRefs. 7 and 25, no attempt seems to have been made to fit the

tion length in the form corresponding data to a form similar to Eq1). It must be
5 recalled that by examining the behavior at the exactonly
E~t7'[1+CIn(1h)]", (9) finite-size effects play any role in tuning the crossover; by

contrast, wherT is not known exactly, one cannot be sure
whether thgtherma) crossover towards critical behavior has
already occurred. As a final check of our data, we have also
&ried less-divergent power-law corrections, but the fittings

with v=1 andv=3, andC is a (disorder-dependenton-
stant. For the same reasons as above, estimates f@n
only be consistently tested through the temperature deriv

tive of & were always much poorer than those assuming logarithmic
dé ~ corrections. In view of these facts, the estimates provided by
u=—~t" [ 1+ CIn(11)], (10) Eq. (8) should then be regarded afectiveexponents, since
dt strong universality still holds.
plus less-divergent terms. We have also applied the ideas behind Ehl) to the

For finite systems, logarithmic corrections are expected t§o-dimensional site-diluted Ising model, using the calcula-
show on scales larger than a disorder-dependent characterfi2na! scheme proposed in Ref. 18. Results for the pure and
tic lengthL c~exp(1C).3 A finite-size scaling ansatz for the diluted casegfor concentrations of magnetlc _S|te_s in the
behavior aff, can be obtained by a suitable generalization of @"9€p=0.65 — 0.93andL =3—7 are depicted in Fig. 2. It

the standard procedures for pure power-law singularitie§a" be seen that the qualitative trend clearly changes towards
(see, e.g., Ref.13Assumingr=1 and7=1% one then has a InL dependence similar to that found in the random-bond

to dominant order ? case as soon as dilution is introduced. The small curvature in
the plots must be at least partly attributed to imprecise
i knowledge of the exact critical lingand to the approximate
T2 ~(1=binL)*2, (1) nature of that calculational scheme itself, which is asymptoti-
LZ ( ' ymp
cally exact only ad—0 (Ref. 18]. Again, pure-system ex-
whereb~ 1/InL¢. Figure 1 shows the results for( /L?)2as  ponents with logarithmic correctiorias opposed to dilution-
a function of IrL, for different values ofr. In each case, dependent onéd) seem to describe the behavior of site-
log-corrected behavior sets in for suitably latgeexactly in  diluted Ising magnets in two dimensions.
the manner predicted by theory: the data stabilize onto a In conclusion, our data independently confirm that the
straight line only forL=L., which decreases with increas- conformal invariance resuf®'=L/ 7 is still valid for the
ing disorder’ two-dimensional random—bond Ising model, wiji  as in
This crossover effect is similar to that found by Wangthe pure case. The apparent dependence with disorder
et al?’ in their fitting of specific heat data to the double was found to be due to logarithmic corrections, which be-
logarithmic divergence predicted by thedr{However, the come more important the farther one moves away from the
increasing broadening of the specific heat maximum withpure (i.e., r=1) system. The weak-universality scenario,
disorder in finite-sized systems has been interpreted as evirough quite appealing for the possibility of demanding new
dence against double-logarithmic correctidi®.Here, in-  underlying concepts to be explained, does not seem to hold
stead, we deal with a case of single-log corrections to a diin the two-dimensional random-bond Ising model. A similar
vergence much stronger than that of the specific heat. It ipicture most likely holds for the site-diluted model as well.
thus easier to separate between corrections and the dominartte results presented here do not necessarily imply, how-
power-law behavior, as made evident by the consistent fitever, that conformal invariance or strong universality should
displayed in Fig. 1. Thougt, (T) and the susceptibility be valid foranytype of disorder. In the problems treated here



54 WEAK VERSUS STRONG UNIVERSALITY IN THE TWQO. .. R9619
correlations can still freely propagate, unlike cases where$.L.A.dQ thanks the Department of Theoretical Physics at
e.g., frustration is allowed; we are currently investigatingOxford, where part of this work was done, for the hospitality,
these issues for spin-glass-like systems. and the cooperation agreement between Academia Brasileira

We thank Laboratdo Nacional de Comput@o Cient de Cimcias and the Royal Society for funding his visit. Spe-
fica (LNCC) for use of their computational facilities, and cial thanks are due to R. B. Stinchcombe for invaluable dis-

Brazilian agencies CNPq and FINEP, for financial supportcussions, and to D. Stauffer for useful suggestions.

1A. B. Harris, J. Phys. @, 1671(1974. 14B. Derrida and H. Hilhorst, J. Phys. ©4, L539 (1981).
2For a recent review, see, W. Selkéal, in Annual Reviews of 15B, Derrida, Phys. Refdl03 29 (1984).
Computational Physicsdited by D. Stauffe(World Scientific, 16y, Glaus, J. Phys. R0, L595 (1987).

Singapore, 1994 Vol. 1. 1A, Crisantiet al, J. Phys. A23, 3083(1990.
3Vik.S. Dotsenko and VI.S. Dotsenko, J. Phys.16, 495(1982; 185 | A. de Queiroz and R. B. Stinchcombe, Phys. Revi3
\ B. N. Shalaev, Phys. Re@37, 129(1994). 6635(1992; 50, 9976(1994.
5H"O' Heuer, Europhys. Letll6, 503 (1991). 195, L. A. de Queiroz, Phys. Rev. &1, 1030(1995.
6A. L. Tz?llapov and L. N. Shchur, Europhys. Le2Z, 193(1994. 20R . Fisch, J. Stat. Phy48, 111 (1978.
B. Derridaet aI., J. Phys.(France) 48, 335 (1987) 21W. Kinzel and E. Domany, Phys Rev. B, 3421(198])

7J.-K. Kim and A. Patrascioiu, Phys. Rev. Let@, 2785(1994).

8R. Kihn, Phys. Rev. Let73, 2268(1994.

M. Suzuki, Prog. Theor. Phy$&1, 1992(1974.

0\, P. Nightingale, J. Appl. Phy$3, 7927(1982.

IM.P. Nightingale, inFinite Size Scaling and Numerical Simula-
tions of Statistical Systemedited by V. PrivmarfWorld Scien-
tific, Singapore, 1990

223, L. Cardy, inPhase Transitions and Critical Phenomeealited
by C. Domb and J.L. Lebowitz(Academic, New York,
1987,Vol. 11.

23H. J. Blcte et al, Phys. Rev. Lett56, 742 (1986

241, Affleck, Phys. Rev. Lett56, 746 (1986.

253 -K. Kim (unpublishegl

12\1. E. Fisher, inCritical PhenomenaProceedings of the Interna- 28, Crisantiet al, in Products of Random Matrices in Statistical
tional School of Physics “Enrico Fermi,” Course LI, Varenna, ~ Physics edited by Helmut K. Lotsch, Springer Series in Solid
1970, edited by M. S. Greefhcademic, New York, 1971 State Sciences Vol. 10&pringer, Berlin, 1998

13\, N. Barber, inPhase Transitions and Critical Phenomereal- -/ J.-S. Wanget al, Physica A164, 221 (1990.

ited by C. Domb and J. L. LebowitéAcademic, New York, - W. Selke, Phys. Rev. LetfZ3, 3487(1994; J.-K. Kim and A.
1983, Vol. 8. Patrascioiujbid. 73, 3489(1994.



