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Numerical evidence for multiplicative logarithmic corrections from marginal operators
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Field theory calculations predict multiplicative logarithmic corrections to correlation functions from mar-
ginally irrelevant operators. However, for the numerically most suitable model, the%s;ln'ﬂ'm, these correc-
tions have been controversial. In this paper, the spin-spin correlation function of the antiferromagneiic spin-
chain is calculated numerically in the presence of a next-nearest-neighbor calipfimgchains of up to 32
sites. By varying the coupling strengh we can control the effect of the marginal operator, and our results
unambiguously confirm the field theory predictions. The critical value at which the marginal operator vanishes
has been determined to beBt/J=0.241167-0.000005[S0163-182(106)52538-5

The spins chain has attracted much attention in theoreti-In the long-wavelength, low-energy limit this model is well
cal physics since the early days of quantum mechanics asunderstood in terms of the Wess-Zumino-Witt&VzZW)
simple model for many-body effects. However, correlationnonlinear o model with a topological coupling constant
functions in the antiferromagnetic chain could only be pre-k=1.1°In the continuum limit, the spig-operatorS, at each
dicted with the help of field theory calculatiohgnd it was lattice sitex can then be expressed in terms of a WZ\WSU
only a few years ago when a prediction ofvaultiplicative  matrix gg and (related chiral SU2) currentsd, r
logarithmic correction to the asymptotic spin-spin correlation
functions was made coming from a marginally irrelevant op- S.=(J_+Jg) +consti(— 1)t go]. )
erator in the field theory descriptidri. At first sight this

result seems surprising, since it indicates that the effect of a Strictly speaking this theory is only valid up to correcting

marginally irrelevant operator effectivelyicreasesin the  higher-order operators in the Hamiltonian which we have
long-distance limit, while on the other hand, its effect onneglected so far. In particular, we want to consider the effect
other quantitiegenergy spectrurf,susceptibility) vanishes  of the leading irrelevant marginal operator which can be

as lengthL —c and temperaturg —0. written in terms of the current operators with some coupling
However, the underlying calculation which predicted thecgnstant\

multiplicative correction from a marginal operator is quite

genera and of great importance in other models as well SH=—2m\J_ - Jr. 3
(e.g., thep* mode). Since the spirk-chain is accessible by a

number of numerical methods, it represents an ideal testinfor periodic boundary condition the next “leading” irrel-
model for this important result. Therefore, considerable efevant operator in the Hamiltonian has scaling dimension 4,
fort has been made to verify the logarithmic correctibrfs, which can be neglected even for modest lengths of order
but often different or no multiplicative corrections were L=10 and temperatures of ord€=0.13%*

found. The effect of the marginal operator on the unifotne.,

In the present paper we choose to numerically diagonalizeurrent-current part of the spin-spin correlation function is
the model Hamiltonian of up to 32 sites exactly. While thiswell understood in terms of a simple additive logarithmic
method is limited by relatively small system sizes, it allowscorrection. This leads to interesting predictions for the as-
us to introduce a next-nearest neighbor couplisgquite  ymptotic behavior of the susceptibilifywhich were well
easily and, moreover, the results are very accurate. It isonfirmed by Bethe ansatz and also experimental refults.
known that by adjusting, we can change the bare coupling The situation is quite different, however, for the alternating
strength of the marginal operator and even set it to zer@art of the spin-spin correlation functio@(r) which is
without destroying the validity of the field theory continuum given in terms of the WZW field)
limit.® Since we are able to probe the system with a reduced
marginal coupling, the range of validity for the perturbative G(r)<(tr[go](0)tr[ga](r)). (4)
field theory calculations is increased exponentially. More- . ] )
over, we will use an approach to analyze the data which doeisOr the primary fieldg we have to take into account the
not depend on any extrapolation to an infinite system size fogffect of the marginal operator on the anomalous scaling di-
the field theory calculations to be valid, so that 32 sites turdnensiony(\) of t{ga] as well (while the scaling dimen-
out to be very sufficient to confirm the effect unambiguously.sion of the currents is fixgd The correlation function then

Our model Hamiltonian is the antiferromagnetic spin- also depends on the marginal coupling constantand

chain (J>0) with a next-nearest neighbor couplidg G(r,\) obeys the renormalization equation
] ]
H=32 S S1t322 SeSera (1) —— B\ —+2y(\) | G(r\) =0, )
X X dlnr 2N
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TABLE I|. The spin-spin correlation functiofS,(0)S,(r)) for various values of =L/2 andJ,. In some

cases the last digit is uncertain.

r=_L/2 J,=—0.25] J,=0 J,=0.1J 3,=0.2] J,= 5
4 0.0572167 0.0497077 0.0459760 0.0417541 0.0398672
5 -0.0545609 -0.0469513 -0.0433261 -0.0390852 -0.0370562
6 0.0423313 0.0356626 0.0325190 0.0288716 0.0271334
7 -0.0403820 -0.0340938 -0.0311410 -0.0276488 -0.0259367
8 0.0336161 0.0279325 0.0252780 0.0221537 0.0206302
9 -0.0322537 -0.0269130 -0.0244137 -0.0214326 -0.0199523
10 0.0279427 0.0230233 0.0207281 0.0179995 0.0166504
11 -0.0269492 -0.0223039 -0.0201300 -0.0175197 -0.0162116
12 0.0239555 0.0196206 0.0175960 0.0151709 0.0139598
13 -0.0232004 -0.0190837 -0.0171551 -0.0148271 -0.0136519
14 0.0209966 0.0171185 0.0153044 0.0131186 0.0120183
15 -0.0204030 -0.0167013 -0.0149649 -0.0128595 -0.0117902
16 0.0187105 0.0151987 0.0135530 0.0115605 0.0105511

where B(\) is the beta function of the marginal operator In the asymptotic limit we findGe/Inr/r as already pre-

OH. Equation(5) is then solved by introducing a scale de-

pendent coupling constan{(r) which obeys

N
dlnr

B(\) (6)

and writing (up to a prefactor which may contain additive
corrections in\)

G(r)ocexp( —Zflm y(x)d(lnx))
Inrq
_ M)
—exp( 2 N —B()\)d)\),

wherer is an ultraviolet cut-off of the order of the lattice
spacing and\, is the unrenormalized(bare coupling

(@)

dicted in Ref. 2 unlesk, is infinitesimally small. Therefore,
very close to the critical point the predicted asymptotic limit
will never be reached although the perturbative expansions
in Eq. (8) are very accurate. Sinag is a nonuniversal con-
stant, it is essential to keep the full expression in @§) to

test that resultas opposed to just assuming the asymptotic
limit).

It is important to note that Ed5) is only valid if r is the
only length scale in the system, but all previous studies as-
sumed that this would require the infinite length limit
L—oo which is numerically very difficult to achieve. How-
ever, it is perfectly feasible to study the system at finite, but
varying lengthd. and keeping the rati®@=r/L fixed. Since
r=RL is no longer independent &f, there is only one vari-
able parameter in the problem and therefore expregdion
holds forG(r=RL) (for eachR separately, i.e., the overall
proportionality constant will depend on the choiceR)f To

strength at that energy scale. The beta function and thgyt the field theory predictions it is therefore much easier
anomalous dimension are known as perturbative expansions\ 4 more accurate to select the fixed ratio tdBel, and in

in A (Ref. 2

BN)=—N2+0O(\3),

_1M o
Y= 5 -7 +O0). ®)

Integrating Eq.(6), we obtain an expression for up to
Ol In(Inr)/(Inr)?]

o 1

M)~ 1+ NgIn(r/ry) - In(r/rg)’

9

and together with Eq(7) we can determine the correlation
function up to higher orders iN

—1/2
—O\n‘f) [1+O\)]~

VAglnr/rg
, .

G(r)x (10

From Eq.(9) we see that the constang is simply given by

rozrlexq_l/)\o). (11)

what follows we will hence set

r=_L/2. (12

It is then straightforward to determine the correlation func-
tion G(r =L/2) numerically for different lengths <32 and
coupling constants), (as opposed to selecting=0 and
having to choose some controverSiakxtrapolation to the
L—oo limit as in all previous studigs

The correlation functions of the ground state were found
by exact diagonalization using the modified Lanczos method
on periodic spin chains of up to 32 sitassing ca. 4.7 mil-
lion basis states Table | shows the results for the spin-spin
correlation functions(S,(0)S,(r)) for different distances
r=L/2 and for various values of the next-nearest-neighbor
coupling J,.

By adjustingJ, we can change the bare coupling and
even set it to zero at some critical valu§".® To lowest
order,\ increases linearly with the difference from the criti-
cal point AJ,=J5"—J,. The critical valueJ5" was deter-
mined to be
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FIG. 1. The multiplicative correctionG(r) as a function ofr
for various values 0, according to the numerical data in Table I.

FIG. 2. The fitting curves toG(r) according to Eq(14) with

Jgrit~0.241167‘t 0.000003, (13 the parameters given in Table II.

which we believe to be the most accurate estimate to datdive magnitude a3, is changedthis explains why the first-
This result was obtained by examining the energy differenc@rder calculation already gives such good results ,

A between the first two excited states of total spin0 and For the special,=0 case we find general agreement with
S=1 in the periodic chain spectrum as a function of lengthR€f- 6 where a similar fit was made, however with much
L andJ,. Those two states are nearly degenerate and thelprger deviations, and, more importantly, their data does not
energy difference is only due to the marginal operator an@PProach the predicted form asymptotically as it mdst.
higher-order terms in the field theory Hamiltonian. We ﬁndf[hat reference an extrapolation scheme with additional ad-
the critical point by determining the value & at which the Justable parameters was used as well as a less accurate nu-
energy difference is exactly proportional to 18, because Merical method. o

at that point the correctiod comes only from the higher-  AS the critical point is approached, we require simulta-
order terms and therefore the marginal operator is ad3ent."€0USIyro—0 andXo—0 in such a way that the correlation
This approach proves to be more accurate than the conveflnctionG(r) remains finite. In particular we know from Eq.
tional method of extrapolating the value df(A=0) as (11 t_hatro and_)\o_are relatedto lowest o_rder the correlatlpn
L— (which, of course gives the same value, although withfunction G(r) is independent of the size of the marginal

less accuracy). coupling at the ultraviolet cutoff,] i.e., for all J,<JS™ we

As we approack$™ the value of the effective length scale Must have

ro becomes exponentially smalj=r,exp(—1/\y), and the

expansions in 1/lm(ry) in Egs.(9) and(10) give very accu- Noln(ry/ro)=1. (15

rate results even for moderate lengths. However, we require

the marginal operator to remain theadingcorrection(com- ~ As can be seen in Fig. 3 this relation holds very accurately

pared to the 1/2 corrections from higher-order operatprs for the parameters in Table Il for all values &f with the

so it is not always useful to examine the system arbitrarilyconstant in Eq(14) given bya=0.0296. Equatiori15) also

close toJS™. fixes the ultraviolet cutoff,=0.85 at which the bare cou-
To extract the multiplicative correction we perform a cu- Pling constant is defined. Becauseandr; are fixed\, and

bic spline interpolation of (S,(0)S,(r)) from the data in To are related by Eq15), and there remains really only one

Table | for even and odd separately. The difference be- free parameter for each of the curves in Fig. 2, which makes

tween the two curves then gives the multiplicative correctiorthe quality of the fits even more impressive.

rG(r) to the alternating part of the correlation function as

shown in Fig. 1 for different values af,. TABLE Il. The fitting parameters according to E{.4) for se-
Figure 2 shows the excellent asymptotic fit to the pre-lécted values of,.

dicted form of the multiplicative corrections

NPYN| Inrg akg
rG(r)=+aglnr/rg (149 -0.25 -1.4976 0.021601
-0.1 -2.1683 0.014864
with the fitting parameters given in Table Il wheaeis a 0 -2.9501 0.010696
normalization constant which must be independentofln .05 -3.6111 0.008626
all cases the data approaches the asymptotic curve vegy1 -4.6883 0.006546
quickly. The small deviations are positive for small values ofg 15 -6.9080 0.004383
AJ,=J35"-1J, and negative for largekJ,, which indicatesa ¢ -14.393 0.002080

partial cancellation of higher-order terms with varying rela-
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FIG. 3. The logarithm Iry vs 1A\, from Table Il shows an FIG. 4. The parametek, vs AJ,=J5"~J, from Table Il is

excellent fit to Img=Inr;—1/\ o with r;=0.85 anda=0.0296, con- fitted to Eq.(16).
firming Eq. (15). In conclusion, we have unambiguously shown that the
. " . field theory calculations for multiplicative corrections to the
Moreover, analyzing the fitting parameters in Table II, WE correlation functions in the spihi-chain are valid. The con-
can determine the functional behavior of the bare coupling, .- r1, andc, were determined, and we were able to
. . . . . . ) 1 I . 1
Ao in form (C)rfta serles expansion in the microscopic ParaMimprove the estimate afs™. The basic result carries over to
eterAd,=J; —J; other models with marginal operatdane-dimensional Hub-
bard model, other half-integer spin chaigé, model3 where
p— 2 3 ’ y
No=C14J5+CoAJ5+C5A 3. (16 e also expect that the corresponding field theory calculation
As shown in Fig. 4, this relatiofl6) seems to hold even for 91Ves accurate predictions to multiplicative corrections to

relatively large values of AJ with c,~1.7230, Correlation functions.

c,~—1.35[0%, and c3~1.76/J%. Therefore, once the con- The author is very grateful for a number of extremely
stantsa, r;, andc; are known, the shape and overall mag- helpful communications with lan Affleck. Special thanks go
nitude ofG(r) can be predicted accurately for a large rangeto Henrik Johannesson and Stefan Rommer for comments on
of valuesJ, andr=5, which is a clear success of the field the manuscript. This research was supported in part by the

theory calculation. Swedish Natural Science Research Council.
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