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Field theory calculations predict multiplicative logarithmic corrections to correlation functions from mar-
ginally irrelevant operators. However, for the numerically most suitable model, the spin-1

2 chain, these correc-
tions have been controversial. In this paper, the spin-spin correlation function of the antiferromagnetic spin-1

2

chain is calculated numerically in the presence of a next-nearest-neighbor couplingJ2 for chains of up to 32
sites. By varying the coupling strengthJ2 we can control the effect of the marginal operator, and our results
unambiguously confirm the field theory predictions. The critical value at which the marginal operator vanishes
has been determined to be atJ2 /J50.24116760.000005.@S0163-1829~96!52538-5#

The spin-12 chain has attracted much attention in theoreti-
cal physics since the early days of quantum mechanics as a
simple model for many-body effects. However, correlation
functions in the antiferromagnetic chain could only be pre-
dicted with the help of field theory calculations,1 and it was
only a few years ago when a prediction of amultiplicative
logarithmic correction to the asymptotic spin-spin correlation
functions was made coming from a marginally irrelevant op-
erator in the field theory description.2,3 At first sight this
result seems surprising, since it indicates that the effect of a
marginally irrelevant operator effectivelyincreasesin the
long-distance limit, while on the other hand, its effect on
other quantities~energy spectrum,2 susceptibility4! vanishes
as lengthL→` and temperatureT→0.

However, the underlying calculation which predicted the
multiplicative correction from a marginal operator is quite
general5 and of great importance in other models as well
~e.g., thef4 model!. Since the spin-12 chain is accessible by a
number of numerical methods, it represents an ideal testing
model for this important result. Therefore, considerable ef-
fort has been made to verify the logarithmic corrections,6–8

but often different or no multiplicative corrections were
found.

In the present paper we choose to numerically diagonalize
the model Hamiltonian of up to 32 sites exactly. While this
method is limited by relatively small system sizes, it allows
us to introduce a next-nearest neighbor couplingJ2 quite
easily and, moreover, the results are very accurate. It is
known that by adjustingJ2 we can change the bare coupling
strength of the marginal operator and even set it to zero
without destroying the validity of the field theory continuum
limit.9 Since we are able to probe the system with a reduced
marginal coupling, the range of validity for the perturbative
field theory calculations is increased exponentially. More-
over, we will use an approach to analyze the data which does
not depend on any extrapolation to an infinite system size for
the field theory calculations to be valid, so that 32 sites turn
out to be very sufficient to confirm the effect unambiguously.

Our model Hamiltonian is the antiferromagnetic spin-1
2

chain (J.0) with a next-nearest neighbor couplingJ2

H5J(
x
Sx•Sx111J2(

x
Sx•Sx12 . ~1!

In the long-wavelength, low-energy limit this model is well
understood in terms of the Wess-Zumino-Witten~WZW!
nonlinear s model with a topological coupling constant
k51.10 In the continuum limit, the spin-12 operatorSx at each
lattice sitex can then be expressed in terms of a WZW SU~2!
matrix ga

b and ~related! chiral SU~2! currentsJL,R

Sx5~JL1JR!1consti ~21!xtr@gs#. ~2!

Strictly speaking this theory is only valid up to correcting
higher-order operators in the Hamiltonian which we have
neglected so far. In particular, we want to consider the effect
of the leading irrelevant marginal operator which can be
written in terms of the current operators with some coupling
constantl

dH522plJL•JR . ~3!

For periodic boundary condition the next ‘‘leading’’ irrel-
evant operator in the Hamiltonian has scaling dimension 4,
which can be neglected even for modest lengths of order
L*10 and temperatures of orderT&0.1J11

The effect of the marginal operator on the uniform~i.e.,
current-current! part of the spin-spin correlation function is
well understood in terms of a simple additive logarithmic
correction. This leads to interesting predictions for the as-
ymptotic behavior of the susceptibility,4 which were well
confirmed by Bethe ansatz and also experimental results.12

The situation is quite different, however, for the alternating
part of the spin-spin correlation functionG(r ) which is
given in terms of the WZW fieldg

G~r !}^tr@gs#~0!tr@gs#~r !&. ~4!

For the primary fieldg we have to take into account the
effect of the marginal operator on the anomalous scaling di-
mensiong(l) of tr@gs# as well ~while the scaling dimen-
sion of the currents is fixed!. The correlation function then
also depends on the marginal coupling constantl, and
G(r ,l) obeys the renormalization equation

S ]

] lnr
1b~l!

]

]l
12g~l! DG~r ,l!50 , ~5!
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whereb(l) is the beta function of the marginal operator
dH. Equation~5! is then solved by introducing a scale de-
pendent coupling constantl(r ) which obeys

]l

] lnr
5b~l! ~6!

and writing ~up to a prefactor which may contain additive
corrections inl)

G~r !}expS 22E
lnr1

lnr

g~x!d~ lnx! D
5expS 22E

l0

l~r !g~l!

b~l!
dl D , ~7!

wherer 1 is an ultraviolet cut-off of the order of the lattice
spacing andl0 is the unrenormalized~bare! coupling
strength at that energy scale. The beta function and the
anomalous dimension are known as perturbative expansions
in l ~Ref. 2!

b~l!52l21O~l3!,

g~l!5
1

2
2

l

4
1O~l2!. ~8!

Integrating Eq.~6!, we obtain an expression forl up to
O@ ln(lnr)/(lnr)2#

l~r !'
l0

11l0ln~r /r 1!
5

1

ln~r /r 0!
, ~9!

and together with Eq.~7! we can determine the correlation
function up to higher orders inl

G~r !}
~l/l0!

21/2

r
@11O~l!#'

Al0lnr /r 0
r

. ~10!

From Eq.~9! we see that the constantr 0 is simply given by

r 05r 1exp~21/l0!. ~11!

In the asymptotic limit we findG}Alnr/r as already pre-
dicted in Ref. 2 unlessl0 is infinitesimally small. Therefore,
very close to the critical point the predicted asymptotic limit
will never be reached although the perturbative expansions
in Eq. ~8! are very accurate. Sincer 0 is a nonuniversal con-
stant, it is essential to keep the full expression in Eq.~10! to
test that result~as opposed to just assuming the asymptotic
limit !.

It is important to note that Eq.~5! is only valid if r is the
only length scale in the system, but all previous studies as-
sumed that this would require the infinite length limit
L→` which is numerically very difficult to achieve. How-
ever, it is perfectly feasible to study the system at finite, but
varying lengthsL and keeping the ratioR5r /L fixed. Since
r5RL is no longer independent ofL, there is only one vari-
able parameter in the problem and therefore expression~10!
holds forG(r5RL) ~for eachR separately, i.e., the overall
proportionality constant will depend on the choice ofR). To
test the field theory predictions it is therefore much easier
and more accurate to select the fixed ratio to beR5 1

2, and in
what follows we will hence set

r[L/2. ~12!

It is then straightforward to determine the correlation func-
tion G(r5L/2) numerically for different lengthsL<32 and
coupling constantsJ2 ~as opposed to selectingR50 and
having to choose some controversial6,7 extrapolation to the
L→` limit as in all previous studies!.

The correlation functions of the ground state were found
by exact diagonalization using the modified Lanczos method
on periodic spin chains of up to 32 sites~using ca. 4.7 mil-
lion basis states!. Table I shows the results for the spin-spin
correlation functions^Sz(0)Sz(r )& for different distances
r5L/2 and for various values of the next-nearest-neighbor
couplingJ2.

By adjustingJ2 we can change the bare couplingl0 and
even set it to zero at some critical valueJ2

crit .9 To lowest
order,l0 increases linearly with the difference from the criti-
cal point DJ2[J2

crit2J2. The critical valueJ2
crit was deter-

mined to be

TABLE I. The spin-spin correlation function̂Sz(0)Sz(r )& for various values ofr5L/2 andJ2. In some
cases the last digit is uncertain.

r5L/2 J2520.25J J250 J250.1J J250.2J J25J2
crit

4 0.0572167 0.0497077 0.0459760 0.0417541 0.0398672
5 -0.0545609 -0.0469513 -0.0433261 -0.0390852 -0.0370562
6 0.0423313 0.0356626 0.0325190 0.0288716 0.0271334
7 -0.0403820 -0.0340938 -0.0311410 -0.0276488 -0.0259367
8 0.0336161 0.0279325 0.0252780 0.0221537 0.0206302
9 -0.0322537 -0.0269130 -0.0244137 -0.0214326 -0.0199523
10 0.0279427 0.0230233 0.0207281 0.0179995 0.0166504
11 -0.0269492 -0.0223039 -0.0201300 -0.0175197 -0.0162116
12 0.0239555 0.0196206 0.0175960 0.0151709 0.0139598
13 -0.0232004 -0.0190837 -0.0171551 -0.0148271 -0.0136519
14 0.0209966 0.0171185 0.0153044 0.0131186 0.0120183
15 -0.0204030 -0.0167013 -0.0149649 -0.0128595 -0.0117902
16 0.0187105 0.0151987 0.0135530 0.0115605 0.0105511
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J2
crit'0.24116760.000005J, ~13!

which we believe to be the most accurate estimate to date.
This result was obtained by examining the energy difference
D between the first two excited states of total spinS50 and
S51 in the periodic chain spectrum as a function of length
L and J2. Those two states are nearly degenerate and their
energy difference is only due to the marginal operator and
higher-order terms in the field theory Hamiltonian. We find
the critical point by determining the value ofJ2 at which the
energy differenceD is exactly proportional to 1/L3, because
at that point the correctionD comes only from the higher-
order terms and therefore the marginal operator is absent.11

This approach proves to be more accurate than the conven-
tional method of extrapolating the value ofJ2(D50) as
L→` ~which, of course gives the same value, although with
less accuracy13!.

As we approachJ2
crit the value of the effective length scale

r 0 becomes exponentially smallr 05r 1exp(21/l0), and the
expansions in 1/ln(r/r0) in Eqs.~9! and ~10! give very accu-
rate results even for moderate lengths. However, we require
the marginal operator to remain theleadingcorrection~com-
pared to the 1/L2 corrections from higher-order operators!,
so it is not always useful to examine the system arbitrarily
close toJ2

crit .
To extract the multiplicative correction we perform a cu-

bic spline interpolation ofr ^Sz(0)Sz(r )& from the data in
Table I for even and oddr separately. The difference be-
tween the two curves then gives the multiplicative correction
rG(r ) to the alternating part of the correlation function as
shown in Fig. 1 for different values ofJ2.

Figure 2 shows the excellent asymptotic fit to the pre-
dicted form of the multiplicative corrections

rG~r !5Aal0lnr /r 0 ~14!

with the fitting parameters given in Table II wherea is a
normalization constant which must be independent ofl0. In
all cases the data approaches the asymptotic curve very
quickly. The small deviations are positive for small values of
DJ2[J2

crit2J2 and negative for largerDJ2, which indicates a
partial cancellation of higher-order terms with varying rela-

tive magnitude asl0 is changed~this explains why the first-
order calculation already gives such good results!.

For the specialJ250 case we find general agreement with
Ref. 6 where a similar fit was made, however with much
larger deviations, and, more importantly, their data does not
approach the predicted form asymptotically as it must.~In
that reference an extrapolation scheme with additional ad-
justable parameters was used as well as a less accurate nu-
merical method.!

As the critical point is approached, we require simulta-
neouslyr 0→0 andl0→0 in such a way that the correlation
functionG(r ) remains finite. In particular we know from Eq.
~11! thatr 0 andl0 are related@to lowest order the correlation
function G(r ) is independent of the size of the marginal
coupling at the ultraviolet cutoffr 1] i.e., for all J2<J2

crit we
must have

l0ln~r 1 /r 0!51. ~15!

As can be seen in Fig. 3 this relation holds very accurately
for the parameters in Table II for all values ofJ2 with the
constant in Eq.~14! given bya50.0296. Equation~15! also
fixes the ultraviolet cutoffr 150.85 at which the bare cou-
pling constant is defined. Becausea andr 1 are fixed,l0 and
r 0 are related by Eq.~15!, and there remains really only one
free parameter for each of the curves in Fig. 2, which makes
the quality of the fits even more impressive.

FIG. 1. The multiplicative correctionrG(r ) as a function ofr
for various values ofJ2 according to the numerical data in Table I.

FIG. 2. The fitting curves torG(r ) according to Eq.~14! with
the parameters given in Table II.

TABLE II. The fitting parameters according to Eq.~14! for se-
lected values ofJ2.

J2 /J lnr0 al0

-0.25 -1.4976 0.021601
-0.1 -2.1683 0.014864
0 -2.9501 0.010696
0.05 -3.6111 0.008626
0.1 -4.6883 0.006546
0.15 -6.9080 0.004383
0.2 -14.393 0.002080
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Moreover, analyzing the fitting parameters in Table II, we
can determine the functional behavior of the bare coupling
l0 in form of a series expansion in the microscopic param-
eterDJ25J2

crit2J2

l05c1DJ21c2DJ2
21c3DJ2

3 . ~16!

As shown in Fig. 4, this relation~16! seems to hold even for
relatively large values of DJ with c1'1.723/J,
c2'21.35/J2, and c3'1.76/J3. Therefore, once the con-
stantsa, r 1 , andci are known, the shape and overall mag-
nitude ofG(r ) can be predicted accurately for a large range
of valuesJ2 and r*5, which is a clear success of the field
theory calculation.

In conclusion, we have unambiguously shown that the
field theory calculations for multiplicative corrections to the
correlation functions in the spin-12 chain are valid. The con-
stantsa, r 1 , andci were determined, and we were able to
improve the estimate ofJ2

crit . The basic result carries over to
other models with marginal operators~one-dimensional Hub-
bard model, other half-integer spin chains,f4 models! where
we also expect that the corresponding field theory calculation
gives accurate predictions to multiplicative corrections to
correlation functions.
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