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The density response functionN(q,v) of the two-dimensionalt-J model is studied starting from a mixed-
gauge formulation of the slave-boson approach. Our results forN(q,v) are in remarkable agreement with
exact diagonalization studies, and provide a natural explanation of the anomalous features in the density
response in terms of the spin-polaron nature of the charge carriers. In particular, we have identified unex-
plained low-energy structures in the diagonalization data as arising from the coherent polaron motion of holes
in a spin liquid.@S0163-1829~96!53038-9#

Recent exact diagonalization studies1,2 of the dynamical
density responseN(q,v) at large momentum transfer have
revealed several features unexpected from the point of view
of weakly correlated fermion systems:~i! a strong suppres-
sion of low-energy 2kF scattering in the density response,
~ii ! a broad incoherent peak, whose shape is rather insensi-
tive to hole concentration and exchange interactionJ, ~iii !
the very different form ofN(q,v) compared to the spin re-
sponse functionS(q,v), which share common features in
usual fermionic systems.

While considerable analytical work has been done to ex-
plain the spin response of thet-J model,3 only few authors
analyzedN(q,v). Wanget al.4 studied collective excitations
in the density channel and found sharp peaks at large mo-
menta corresponding to free bosons. Similar results were ob-
tained by Gehlhoff and Zeyher5 using theX-operator formal-
ism. Leeet al.6 considered a model of bosons in a fluctuating
gauge field and found a broad incoherent density fluctuation
spectrum at finite temperature, due to the coupling of bosons
to a quasistatic disordered gauge field.

The aim of our paper is to show that the essential features
observed in the numerical studies can be obtained in the
framework of the Fermi-liquid phase of thet-J model at zero
temperature. Our main findings are~i! at low momenta, the
main effect of strong correlations is to transfer spectral
weight from particle-hole excitations into a pronounced col-
lective mode. Because of the strong damping of this mode
~linear in q) due to the coupling to the spinon particle-hole
continuum, this collective excitation is qualitatively different
from a sound mode.~ii ! At large momenta, we find a strict
similarity of N(q,v) with the spectral function of a single
hole moving in a uniform resonating-valence-bond~RVB!
spinon background. In this regime,N(q,v) consists of a
broad peak at high energy whose origin is the fast, incoher-
ent motion of bare holes. The polaronic nature of dressed
holes leads to the formation of a second peak at lower en-
ergy, which is more pronounced in (p,0) direction in agree-
ment with diagonalization studies.1,2 For the static structure
factor, we find good agreement with numerical results.7,8

Following Kotliar and Liu9 and Wanget al.,4 we start
from theN-component generalization of the slave-bosont-
J Hamiltonian,HtJ5Ht1HJ :
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wheres51,...,N is the fermionic channel index, andhi de-
notes the bosonic holes. The number of auxiliary particles
must obey the constraint(s f is

† f is1hi
†hi5N/2. The original

t-J model is recovered forN52.
The slave-boson parametrization provides a straightfor-

ward description of the strong suppression of density fluc-
tuations of constrained electrons through the representation
of the density response in terms of a dilute gas of bosons. A
common treatment of model~1! is the density-phase repre-
sentation ~‘‘radial’’ gauge10! of the bosonic operator
hi5r iexp(iui) with the subsequent 1/N expansion around the
Fermi-liquid saddle point. While this gauge is particularly
useful to study the low-energy and momentum properties, it
is not very convenient for the study of the density response
in the full v andq space. Formally the latter follows in the
radial gauge from the fluctuations ofr i

2 . If one considers, for
example, convolution type bubble diagrams, one realizes that
their contribution to the static structure factor is correctly of
order 1/N, but is not proportional to the density of holesd as
it should be. According to Arrigoniet al.,11 such unphysical
results originate from a large negative pole contribution in
the ^r2qr q&v Green’s function of the real fieldr , which is
hard to control by a perturbative treatment of phase fluctua-
tions. We follow, therefore, Popov12 using the density-phase
treatment only for small momentaq,q0, while keeping the
original particle-hole representation of the density operator,
b†b, at large momenta. More precisely,hi5r iexp(iui)1bi ,
wherebi5( uqu.q0

hqexp(iq–Ri). The cutoffq0 is introduced

dividing ‘‘slow’’ ~collective! variables represented byr and
u from ‘‘fast’’ ~single-particle! degrees of freedom. As ex-
plained by Popov12 this ‘‘mixed’’ gauge is particularly useful
for finite temperature studies to control infrared divergences.
We start formally with ‘‘mixed’’ gauge and keep only terms
of orderd and 1/N in the bosonic self-energies. In this ap-
proximation our zero-temperature calculations become quite
straightforward: The cutoffq0,d actually does not enter
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into the results and we arrive finally at the Bogoliubov
theory for a dilute gas of bosons moving in a fluctuating
spinon background.

The Lagrangian corresponding to model~1! then is given
by ~the summation overs is implied!
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Here thel field is introduced to enforce the constraint, and
m f ,mb are fixed by the particle number equations
^nf&5 (N/2) (12d) and ^r i

21bi
†bi&5 (N/2) d, respectively.

The uniform mean field solutionr i5r 0AN/2 leads in the
largeN limit to the renormalized narrow fermionic spectrum
jk52zt̃gk2m f , with t̃5Jx1td, gk5

1
2(coskx1cosky),

x5(s^ f is
† f js&/N, and z54 the number of nearest neigh-

bors. Distinct from the finite-temperature gauge-field theory
of Nagaosa and Lee,13 the bond-order phase fluctuations ac-
quire a characteristic energy scale in this approach,4 and the
fermionic ~‘‘spinon’’ ! excitations can be identified with
Fermi-liquid quasiparticles. The mean field spectrum of
bosons isvq52zxt(12gq). Thus, the effective mass of
holesmh

0}1/t is much smaller than that of the spinons.
Due to the diluteness of the bosonic subsystem,d!1, the

density correlation function is mainly given by the conden-
sate induced part which is represented by the Green’s func-
tion ^(bq

†1b2q)(bq1b2q
† )&v for q.q0, and 2̂ r2qr q&v for

q,q0, respectively. The 1/N self-energy corrections to these
functions are calculated in a conventional way10,9 expanding
r i5@r 0AN1(dr ) i #/A2 and considering Gaussian fluctua-
tions around the mean field solution. Neglecting all terms of
orderd/N andq0

2/N, only one relevant 1/N contribution re-
mains which corresponds to the dressing of the slave-boson
Green’s function by spinon particle-hole excitations. Within
this approximation and at zero temperature, no divergences
occur at low momenta, thus one can take the limitq0→0.
The final result for the dynamic stucture factor~normalized
by the hole density! is

Nq,v5
2

p
Im@~vqa1Sq,v

~1/N!2mb!/Dq,v#, ~3!

whereDq,v is given by

Dq,v5~vqa1Sq,v
~1/N!2mb!~vq1Sq,v

~1! 1Sq,v
~1/N!2mb!

2~va2Aq,v
~1/N!!2. ~4!

The origin of the contribution
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is the indirect interaction of bosons via the spinon band due
to the hopping term@which givesP3 in ~5!# and due to the
coupling to spinons via the constraint fieldl. The latter
channel provides a repulsion between bosons, making
S(1)(v50) positive and, therefore, ensuring the stability of
the uniform mean-field solution. The 1/N self-energies
S(1/N) and A(1/N) are essentially a single-boson property.
They are given by the symmetric and antisymmetric combi-
nations ~with respect tov1 i01→2v2 i01) of the self-
energy

Sq,v
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HereGq
0(v)5(v2vq2Sq,v

(1/N)1mb)
21 is the Green’s func-

tion for a single slave boson moving in a uniform RVB back-
ground. Although in the context of 1/N theory, theG0 func-
tion in Eq.~6! should be considered as a free propagator, we
shall use here the self-consistent polaron picture for a single
hole.14 This is important when comparing the theory for
N52 with diagonalization studies. Finally, the constantsa
and mb in Eqs. ~3! and ~4! are given by (12tr 0

2/ t̃) and
S(1/N)(v50,q50), respectively.

In the smallv,q limit N(q,v) Eq. ~3! is mainly con-
trolled by the interaction of bosons represented by theS(1)

term, while the internal polaron structure of the boson deter-
mined byS(1/N) is less important even forN52, as expected
on physical grounds. In this limit, our results are essentially
similar to those obtained earlier.4,5 N(q,v) consists of a
weak spinon particle-hole continuum with cutoff}vFq, and
a very pronounced collective mode which nearly exhausts
the sum rule. We find that the velocity of this mode is always
somewhat smaller than the Fermi velocity,vs<vF.zt̃, and,
therefore, in a strict sense there is no well-defined sound.
Since the spinon-boson coupling does not vanish in the limit
q→0, the imaginary part of the collective excitation pole is
linear in v ~or q), thus the damping is only numerically
small compared with the excitation energy.

The density responseN(q,v) at large momenta,q.d,
which we can compare with diagonalization results, is domi-

FIG. 1. Momentum distributionñq normalized by d, for
d50.25 andJ/t50.4. Inset: Condensate fractionr 0

2/d versus J for
d50.25. Comparison of calculation with~solid line! and without
~dash-dotted! inclusion of polaron effects.
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nated by the properties of a single boson dressed by spinon
excitations. For the numerical calculation ofN(q,v) given
by Eqs. ~3!–~6! we evaluate in a first step the single hole
self-energySq,v

(1/N) in a self-consistent way. Then the param-
eterr 0

2 in Eq. ~5!, which corresponds formally to the conden-
sate fraction in our theory, is found self-consistently from
r 0
25d2(qÞ0ñq . The momentum distributionñq5^bq

†bq& is
calculated using the corresponding bosonic Green’s function
for finite hole density:

Gq,v52Fva2Aq,v
~1/N!1vqS 12

tr 0
2

2t̃ D
1
1

2
Sq,v

~1! 1Sq,v
~1/N!2mbG Y Dq,v . ~7!

While the 1/q behavior of ñq ~Fig. 1! at small momenta,
q<d, is provided by the presence of the condensate, the
momentum distribution in the rest of the Brillouin zone is

determined by the polaron effect, i.e., by the renormalization
of the slave-boson wave function due to the strong local
scattering from spinons. The latter leads to a strong reduction
of the condensate fractionr 0

2, as shown in the inset of Fig. 1.
The v dependence of the dynamic structure factorN(q,v)
given by Eq.~3! is shown in Fig. 2 for momenta along the
direction (p,0). Results for some selected momenta are pre-
sented in Fig. 3 together with the exact diagonalization data.1

We note that the overall energy scale forN(q,v) at large
momenta is insensitive to the ratioJ/t, whereas the value of
the spinon bond-order parameterx, which enters in Eqs.~3!
and ~4! via the free bosonic dispersionvq , is important. In
theN5` limit, x`.2/p2 is given by that of free fermions,
while for the originalt-J model, its value should be larger15

due to Gutzwiller projection. For our comparison of
N(q,v) @Eq. ~3!# with the exact results of Ref. 1, we con-
siderx as a free parameter chosingx5 3

2x` .
The calculated density response function of thet-J model

has quite rich structure showing pronounced features on dif-
ferent energy scales. The main spectral weight of the excita-
tions at large momenta is located in an energy region of
order of severalt. This high-energy peak is very broad and
incoherent as a result of the strong coupling of bosons to
low-energy spin excitations. We find that the position of this
peak and its shape are rather insensitive to the ratioJ/t<1 in
agreement with conclusions of Refs. 1 and 2. This is simply
due to the fact that the high-energy properties of thet-J
model are controlled byt. The theory predicts also a second
peak at lower energy~Figs. 2 and 3! which is more pro-
nounced in the direction (p,0), while its weight is strongly
suppressed forq near (p,p), due to the large slave-boson
energyvq at this momentum. The physical origin of this
excitation is due to the formation of a narrow polaronlike
band of dressed bosons. The dispersion and the relative
weight of the low-energy peak increases withJ as a result of
the increasing spinon bandwidth. Since the broadening due
to coupling to the spinon particle-hole continuum is propor-

FIG. 2. Density response functionN(q,v) for J/t50.4 and
d50.25 along the (p,0) direction.

FIG. 3. Comparison ofN(q,v) for large momenta with data
obtained by exact diagonalization~Ref. 1! for a 434 periodic clus-
ter with J/t50.4 andd50.25. The dashed line in the (p,p) spec-
trum indicates thed-function peak obtained if polaron effects are
neglected, i.e., ifS (1/N)50 .

FIG. 4. Comparison of static structure factorN(q) ~solid line!
calculated forJ50.4 with the result for the Gutzwiller wave func-
tion of Gros and Valenti~Ref. 8! ~squares! for a hole concentration
d50.213. For comparison, the results for spinless fermions~dash-
dotted line! and fermions with spin~dashed line! are shown. The
latter comparison shows the large reduction of the density response
due to the constraint.
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tional to v, this low-energy excitation is rather sharp. As
noted above, the density response for smallq is mainly given
by the collective excitation with energyeq5vsq. The veloc-
ity vs is an increasing function of the hole densityd as ex-
pected. Distinct from the one-dimensional model here, the
collective density~‘‘holon’’ ! excitations always overlap with
the spinon particle-hole spectrum leading to a strong damp-
ing, which is also linear inq, i.e.,gq5aeq . Numerically, at
d50.25 andJ50.4t for instance, we foundvs.0.4t and
a.0.5.

Finally, we discuss our results for the static structure fac-
tor N(q)5d*dvN(q,v), where the factord appears be-
causeN(q,v) denotes the normalized density response. Fig-
ure 4 shows how effectively the theory presented accounts
for the strong suppression of density fluctuations in the vi-
cinity of the Mott transition. The calculatedN(q) is a linear
function ofq for small momenta as a result of the interaction
between bosons, and it saturates at a valueN(q).d for large
q as it should. Our result forN(q) is very close to that by
Gros and Valenti,8 who used the Gutzwiller projected wave
function for constrained fermions. It is worth noticing that
our results fulfill the sum rule(N(q)5d(12d) for con-
strained electrons within a few percent accuracy.

In conclusion, we have studied the density fluctuation
spectrum of thet-J model at moderate doping and zero tem-
perature. Our theory based on the assumption of a Fermi-
liquid ground state of this model captures all essential fea-
tures observed in exact diagonalization studies.1,2,16

Concerning the high-Tc materials, we predict in the density
response at large momentum transfer, a low-energy peak
with energy of the order ofzt̃5z(Jx1td) arising from the
coherent polaron motion of holes, while the linear collective
mode will be changed into a plasmon mode due to the Cou-
lomb interaction. The latter has been investigated already by
electron-energy loss techniques;17 however, the scalezt̃ re-
quired to see the low-energy structure inN(q,v) has not
been reached yet in these experiments.
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