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Theory of the density fluctuation spectrum of strongly correlated electrons
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The density response functidf(q, ) of the two-dimensional-J model is studied starting from a mixed-
gauge formulation of the slave-boson approach. Our resultNfg;w) are in remarkable agreement with
exact diagonalization studies, and provide a natural explanation of the anomalous features in the density
response in terms of the spin-polaron nature of the charge carriers. In particular, we have identified unex-
plained low-energy structures in the diagonalization data as arising from the coherent polaron motion of holes
in a spin liquid.[S0163-182@6)53038-9

Recent exact diagonalization studiéof the dynamical 2t
density respons@l(q,w) at large momentum transfer have Hi=— N
revealed several features unexpected from the point of view

of weakly correlated fermion system@) a strong suppres-

sion of low-energy R scattering in the density response, H :i E A 1)
(it) a broad incoherent peak, whose shape is rather insensi- VNG T e e

tive to hole concentration and exchange interactioriii )

the very different form oN(q,w) compared to the spin re- wherec=1,... N is the fermionic channel index, arig de-
sponse functiorS(q,w), which share common features in notes the bosonic holes. The number of auxiliary particles

%(, (fl,hIhif;,+H.c),

usual fermionic systems. must obey the constrairitaf;rgfi(,+ hiThiz N/2. The original
While considerable analytical work has been done to ext-J model is recovered foN=2.
plain the spin response of thel model® only few authors The slave-boson parametrization provides a straightfor-

analyzed\(q, »). Wanget al? studied collective excitations ward description of the strong suppression of density fluc-
in the density channel and found sharp peaks at large mduations of constrained electrons through the representation
menta corresponding to free bosons. Similar results were ot®f the density response in terms of a dilute gas of bosons. A
tained by Gehlhoff and Zeyh®using theX-operator formal- common treatment of modél) is the density-phase repre-
ism. Leeet al® considered a model of bosons in a fluctuatingSentation (‘radial” gauge') of the bosonic operator
gauge field and found a broad incoherent density fluctuatiofi="i€XP( ) with the subsequent i/ expansion around the
spectrum at finite temperature, due to the coupling of boson§&Mi-liquid saddle point. While this gauge is particularly
to a quasistatic disordered gauge field. pseful to study the'low—energy and momentum properties, it
The aim of our paper is to show that the essential feature¥ hot very convenient for the study of the density response

observed in the numerical studies can be obtained in th& t_he full @ andq space. Formally the latter foIIc_)ws in the
framework of the Fermi-liquid phase of the) model at zero radial gauge from the fluctuations [ff If one considers, for

temperature. Our main findings afi¢ at low momenta, the example, convolution type bubble diagrams, one realizes that

. . : their contribution to the static structure factor is correctly of
main effect of strong correlations is to transfer spectral

weight from particle-hole excitations into a pronounced coI-Order 1N, but s not proportional to the density of holéss

. . . . 11 -
lective mode. Because of the strong damping of this mod It should be. According to Arrigonét al, = such unphysical

. . . , : Fesults originate from a large negative pole contribution in
(linear inq) due to the coupling to the spinon particle-hole o (r_qf ) Green's function of the real field, which is

continuum, this collective excitation is qualitatively different a4 to control by a perturbative treatment of phase fluctua-
from a sound mode(ii) At large momenta, we find a strict jons. We follow, therefore, Pop&Yusing the density-phase
similarity of N(q,w) with the spectral function of a single treatment only for small momenta<q,, while keeping the
hole moving in a uniform resonating-valence-bofRVB)  original particle-hole representation of the density operator,
spinon background. In this regimé&l(q,w) consists of a p'b, at large momenta. More precisely,=r;exp(4)+b;,
broad peak at high energy whose origin is the fast, inCOherwherebi=2‘q‘>qohqexp6q~Ri). The cutoffqy is introduced
ent motion of bare holes. The polaronic nature of dresse@ividing “slow” (collective) variables represented yand
holes leads to the formation of a second peak at lower eng from “fast” (single-particle degrees of freedom. As ex-
ergy, which is more pronounced inr(0) direction in agree-  pjained by Popo¥ this “mixed” gauge is particularly useful
ment with diagonalization studiés. For the static structure ~for finite temperature studies to control infrared divergences.
factor, we find good agreement with numerical res(fts. We start formally with “mixed” gauge and keep only terms
Following Kotliar and Li§ and Wanget al,* we start  of order 8 and 1N in the bosonic self-energies. In this ap-
from the N-component generalization of the slave-bosen proximation our zero-temperature calculations become quite
J Hamiltonian,H;=H;+Hj: straightforward: The cutoffjo<é actually does not enter
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into the results and we arrive finally at the Bogoliubov is the indirect interaction of bosons via the spinon band due
theory for a dilute gas of bosons moving in a fluctuatingto the hopping ternfiwhich givesIl; in (5)] and due to the

spinon background. coupling to spinons via the constraint fiekd The latter
The Lagrangian corresponding to mod#l then is given channel provides a repulsion between bosons, making
by (the summation oves is implied SY(w=0) positive and, therefore, ensuring the stability of

the uniform mean-field solution. The N/ self-energies
SN and AN are essentially a single-boson property.
They are given by the symmetric and antisymmetric combi-
nations (with respect tow+i0*——w—i0") of the self-

d
o M figtbf S Ho|bi|HHHH,

L=2i {fiﬁ,

+\/I_NEI )\i<fi1-a'fi(r+(ri+br)(ri+bi) _g>' (2) energy4
Eﬂ’,\'):ﬁ 2 (Ztyk’-q)ZGg+k—kr(w+§k—§kr)- (6)

2t [kl <kg<[K’|
Ht: — —2 fiJro_ij(biji‘*'rirj+rjbi+bjrri)+H.C.

N Here GY(w) = (w— wa— S0+ up) ~* is the Green's func-
Here the field is introduced to enforce the constraint, andtion for a single slave boson moving in a uniform RVB back-
wi.u, are fixed by the particle number equationsground. Although in the context of l/theory, theG™ func-
(ne)= (N/2) (1- 9) and(riz+ bini>: (N/2) 8, respectively. tion in Eq.(6) should be con_sldered as a fre_e propagator, we
The uniform mean field solutiomi=r0\/N_/2 leads in the shall use here the self-consistent polaron picture for a single

14 Thic ic i :
largeN limit to the renormalized narrow fermionic spectrum hole: 'I_'h|s 1S |mpc_)rta_nt When_ comparing the theory for
Eo=—Zty— e, With T=Jy+15, y.=23(cok +cosk,) N=2 with diagonalization studies. Finally, the constaats

’ ’ 2 X 1

x=32,(fl . .)IN, and z=4 the number of nearest neigh- and y;, in Eqs. (3) and (4) are given by (¥-trg/t) and

ic'jo 1N — _ H
bors. Distinct from the finite-temperature gauge-field theorys( )(@=04=0), respectively. , _
In the smallw,q limit N(g,®) Eq. (3) is mainly con-

of Nagaosa and Le¥ the bond-order phase fluctuations ac- ' !
trolled by the interaction of bosons represented by $fe

quire a characteristic energy scale in this apprdaahd the 4 )
fermionic (“spinon”) excitations can be identified with term, while the internal polaron structure of the boson deter-

Fermi-liquid quasiparticles. The mean field spectrum ofmined b)/S(UN) is less important even fa¥=2, as expected
bosons iswq=2zxt(1—v,). Thus, the effective mass of on physwal grounds. !n this Ilmlt, our results are essentially
holesm@o L1t is much smaller than that of the spinons, ~ Similar to those obtained earlié?. N(q,w) consists of a
Due to the diluteness of the bosonic subsystéral, the ~Weak spinon particle-hole continuum with cutefbq, and
density correlation function is mainly given by the conden-& Very pronounced collective mode which nearly exhausts
sate induced part which is represented by the Green’s fundl® Sum rule. We find that the velocity of this mode is always
tion <(bg+ b—q)(bq+biq)>w for g>do, and Zr_qr ), for somewhat smaller than the Fermi velocity<vg=zt, and,

<o, respectively. The N self-energy corrections to these therefore, in a strict sense there is no well-defined sound.
functions are calculated in a conventional Waexpanding iln%e 'f[?]g isrlgllggi?lggsggrfg??glggcgltl):csticgtg;?tl:tr;clz tptl)ele“riglt
- ) -0,
r_i=[r0\/N+(5r)i]/\/§ and considering Gaussian fluctua- ooy (or q), thus the damping is only numerically
tions around the mean field solution. Neglecting all terms 01! " oo
2 S small compared with the excitation energy.

order 6/N andqg/N, only one relevant N contribution re- he densi I P
mains which corresponds to the dressing of the slave-bos T e density responsbl'(q,w') at arge'momentaq.> L

, : . : o DOSQRhich we can compare with diagonalization results, is domi-
Green'’s function by spinon particle-hole excitations. Within
this approximation and at zero temperature, no divergences

occur at low momenta, thus one can take the ligyt-0. 2.0
The final result for the dynamic stucture fac{oormalized
by the hole densityis - S
S 15 8
2 E] w
Ngo = Iml(0ga+S35"— 15)/Dg 0], ® 2 8
i qi 8 1.0 2
whereDg, ,, is given by g - 5
, g §
c
Dgw=(@qa+Sia" = mo) (@q+ Sho,+ S — p) »
—(wa—AIN)?, @ =
The origin of the contribution
5 0.0
(1+115)
s el S| ®
e FIG. 1. Momentum distributionﬁq normalized by &, for

6=0.25 andJ/t=0.4. Inset: Condensate fractio§/ 5 versus J for
6=0.25. Comparison of calculation wittsolid line) and without
(dash-dotteginclusion of polaron effects.

B N(&x) —N(Ek+q) me
Hm_z’[; kg~ E—0—i0" (et Yierd)™
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FIG. 2. Density response functioN(qg,w) for J/t=0.4 and 0.0
5=0.25 along the 4,0) direction. )

nated by the properties of a single boson dressed by spinon G, 4. comparison of static structure factéq) (solid line)
excitations. For the numerical calculation B{q,w) given  calculated ford= 0.4 with the result for the Gutzwiller wave func-

by Egs.(3)—(6) we evaluate in a first step the single hole tion of Gros and ValentiRef. 8 (squaresfor a hole concentration
self-energy> (") in a self-consistent way. Then the param- 6=0.213. For comparison, the results for spinless fermigiash-
eterr2 in Eq. (5), which corresponds formally to the conden- dotted ling and fermions with spiridashed ling are shown. The
sate fraction in our theory, is found self-consistently from/latter comparison §hows the large reduction of the density response
r§=6—3q.oMg. The momentum distribution,=(blb,) is ~ due to the constraint.

calculated using the corresponding bosonic Green'’s function

for finite hole density: determined by the polaron effect, i.e., by the renormalization
of the slave-boson wave function due to the strong local
trg scattering from spinons. The latter leads to a strong reduction
Ggo=—|wa— AN + o 1- E?) of the condensate fractiai, as shown in the inset of Fig. 1.
The w dependence of the dynamic structure fadti§g, )
1 given by Eq.(3) is shown in Fig. 2 for momenta along the
+ ES&LL'F Sy — / Do (7)  direction (m,0). Results for some selected momenta are pre-

sented in Fig. 3 together with the exact diagonalization Hata.
While the 1¢ behavior offi, (Fig. 1) at small momenta, W€ note that the overall energy scale 19(q,«) at large

g<s, is provided by the presence of the condensate, thg'omenta is insensitive to the ratét, whereas the value of
momentum distribution in the rest of the Brillouin zone is te spinon bond-order paramefgrwhich enters in Eqs3)
and(4) via the free bosonic dispersian,, is important. In

the N=o limit, x..=2/#? is given by that of free fermions,

' o while for the originalt-J model, its value should be larder
04 | 1 due to Gutzwiller projection. For our comparison of
N(g,w) [Eg. (3)] with the exact results of Ref. 1, we con-
. 00 . sider y as a free parameter chosing 3x...
g-_ 04 F D | The calculated density response function of ttlemodel
> has quite rich structure showing pronounced features on dif-
0.0 - ferent energy scales. The main spectral weight of the excita-
04 F (o2 ] tions at large momenta is located in an energy region of
order of severat. This high-energy peak is very broad and
0.0 t incoherent as a result of the strong coupling of bosons to
04 b 0 1 low-energy spin excitations. We find that the position of this
peak and its shape are rather insensitive to the ddtie 1 in
0.0 | agreement with conclusions of Refs. 1 and 2. This is simply
oa b w20) ] due to the fact that the high-energy properties of thk
' model are controlled by. The theory predicts also a second
0.0 peak at lower energyFigs. 2 and B which is more pro-
0.0 4.0 8.0 nounced in the direction#,0), while its weight is strongly
o/t suppressed foq near (r,7), due to the large slave-boson

energy oy at this momentum. The physical origin of this
FIG. 3. Comparison oN(q,®) for large momenta with data €Xcitation is due to the formation of a narrow polaronlike
obtained by exact diagonalizatiéRef. 1) for a 4x 4 periodic clus- band of dressed bosons. The dispersion and the relative
ter with J/t=0.4 andé=0.25. The dashed line in ther(w) spec- ~ weight of the low-energy peak increases withs a result of
trum indicates thes-function peak obtained if polaron effects are the increasing spinon bandwidth. Since the broadening due
neglected, i.e., £ =0 . to coupling to the spinon particle-hole continuum is propor-
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tional to w, this low-energy excitation is rather sharp. As In conclusion, we have studied the density fluctuation
noted above, the density response for smadl mainly given  spectrum of thé-J model at moderate doping and zero tem-
by the collective excitation with energy,=v<q. The veloc-  perature. Our theory based on the assumption of a Fermi-
ity vg is an increasing function of the hole densityas ex-  liquid ground state of this model captures all essential fea-
pected. Distinct from the one-dimensional model here, theyres observed in exact diagonalization studip¥®
collective density(“holon™ ) excitations always overlap with  Concerning the high-, materials, we predict in the density
the spinon particle-hole spectrum leading to a strong dampresponse at large momentum transfer, a low-energy peak
ing, which is also linear im, i.e., yq= a€q. Numerically, at  with energy of the order oft=z(Jy+16) arising from the
6=0.25 andJ=0.4 for instance, we founds=0.4t and  coherent polaron motion of holes, while the linear collective
a=0.5. mode will be changed into a plasmon mode due to the Cou-
Finally, we discuss our results for the static structure faciomb interaction. The latter has been investigated already by
tor N(q) =6fdwN(q,w), where the factord appears be- electron-energy loss techniquEshowever, the scalet re-
causeN(q,w) denotes the normalized density response. Figquired to see the low-energy structure N{q,») has not
ure 4 shows how effectively the theory presented accountseen reached yet in these experiments.
for the strong suppression of density fluctuations in the vi-
cinity of the Mott transition. The calculated(q) is a linear
function ofq for small momenta as a result of the interaction ~We acknowledge useful discussions with P. Pregtyg .
between bosons, and it saturates at a vBl(g) = & for large ~ Tohyama, A.M. Olésand R. Zeyher, and thank C. Gros for
g as it should. Our result foN(q) is very close to that by providing their Gutzwiller data. One of u&s.Kh.) would
Gros and Valentf, who used the Gutzwiller projected wave like to thank L. Hedin and the Max-Planck-Institut FKF for
function for constrained fermions. It is worth noticing that the hospitality extended to him during his stay. This work
our results fulfill the sum rul&EN(q)=48(1—6) for con- was supported in part by E.U. Grant No. ERBCHRX
strained electrons within a few percent accuracy. CT94.0438.
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