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By making use of known exact results and symmetry properties for the one-band Hubbard model, we show
in a somewhat exact manner that there is no phase separation on a square lattice at arbitrary fillings at finite
temperature for both attractive and repulsive on-site Coulomb interaction. This result is consistent with the
quantum Monto Carlo calculation.@S0163-1829~96!51236-1#

Considerable experimental evidence shows that
La2CuO41d has a regime in which phase separation occurs.1

Such a separation appears between a phase very close to
La2CuO4 ~i.e., an oxygen-poor phase! and an oxygen-rich
phase that becomes superconducting atTc;38 K. Later on,
this phenomenon was actively investigated and confirmed in
many other highTc superconductors.

2 People therefore be-
lieve that the presence of phase separation is of essential
importance for understanding the physics of the cuprate
superconductors.3 Apart from the experimental works, there
are also some theoretical investigations devoted to this sub-
ject, see Refs. 2 and 4 for excellent reviews. As most theo-
retical studies, being based on the planart-J and Hubbard
models, are numerical or approximate, the obtained results
still remain controversial.4,2 Quite recently, Auet al.,5 using
the symmetry properties and known exact results obtained by
Lieb,6 Kubo and Kishi7 for the Hubbard model, got an exact
result on phase separation in the Hubbard model on bipartite
lattices. They asserted that there is no phase separation atlow
dopings at any temperature for the repulsive Hubbard model.
This exact consequence clarifies, to some extent, the existing
controversy in the Hubbard model and in thet-J model with
small values ofJ/t. However, several issues concerning this
problem still remain to be addressed in the sense that the
exact results are sparse. For instance, the evidence as to
whether phase separation exactly occurs in the cases with
moderate or even high dopings or in the attractive~negative-
U! Hubbard model on symmetric bipartite lattices~e.g., on
square lattices or cubic lattices!, is still inconclusive. Since
there have been numerical results indicating no phase sepa-

ration for the one-band Hubbard model on square lattices at
any fillings,8,4 it would be quite interesting to seek more
exact evidence supporting this observation.

In this paper, making use of known exact results obtained
by Ghosh9 and symmetry properties for the one-band Hub-
bard model on a square lattice, we shall show that there is no
phase separation at any fillings at finite temperature for both
attractive and repulsive on-site Coulomb interaction. This
statement, being exact, is consistent with the quantum Monto
Carlo calculation.8,4

We start from the one-band Hubbard model in an external
field h on a square lattice withM sites. The Hamiltonian
reads

H52t (
^ i , j &s

~cis
† cjs1H.c.!1U(

i
ni↑ni↓

2m(
i

~ni↑1ni↓!2
h

2(i ~ni↑2ni↓!, ~1!

where the notations are standard. The foregoing discussion is
independent of the sign ofU, and is only valid for finite
temperatures and for the finite chemical potential. In the fol-
lowing, we shall first investigate the phase separation near
half-filling, and then discuss the problem away from half-
filling. The advantage of our method is the fact that we can
treat the problem in a unifying way for bothU.0 and
U,0.

The method which we shall adopt for the case near half-
filling, being based on the well-known particle-hole transfor-
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mation, is very similar to that exploited in Ref. 5, but we do
not invoke anya priori assumption. For the Hamiltonian~1!
defined on a square lattice, Ghosh9 obtained, for smallh, an
exact upper bound

um~h,T!u<
const

T1/2
1

zlnuhuz1/2 , ~2!

wherem(h,T)5 (1/M ) ( i^Si
z&, the magnetization per site,

and ^•••& is the thermal average over a grand canonical
ensemble. Ash→0, um(h,T)u→0 means the absence of
spontaneous magnetic long-range order, implying that the
system could exhibit paramagnetic behaviors at temperature
T.0. For small h, inequality ~2! ensures the analyticity
~only in the sense that the first derivative exists! of
m(h,T). Therefore, we can conclude thatm(h,T.0) is con-
tinuous and analytic in the neighborhood ofh50.

We now apply the unitary particle-hole transformation,

ci↑→ci↑ , ci↓→e~ i !ci↓
† , ~3!

with e( i )521 for iP the one sublattice and21 for iP the
other sublattice, to the Hamiltonian~1!, and obtain

H852t (
^ i , j &s

~cis
† cjs1H.c.!1U8(

i
ni↑ni↓

2m8(
i

~ni↑1ni↓!2
h8

2 (
i

~ni↑2ni↓!, ~4!

with

U852U, m85
h2U

2
, h852m2U, ~5!

where a constant term is dropped. Equation~2! is trans-
formed into

12
const

T1/2
1

zlnuU822m8uz1/2
<r~m8,T!

<11
const

T1/2
1

zlnuU822m8uz1/2

~6!

for small uU822m8u, where r5 (1/M ) ( i^ni↑1ni↓&, the
electron density per site. Inequality~6! is of basic impor-
tance. For the system described by the one-band Hubbard
model @Eq. ~4!# on the square lattice, the density
r(m8,T.0) is thus the continuous function of the chemical
potentialm8 nearU8/2, i.e., at small doping~note that at
half-filling, m85U8/2). This can be justified by noting the
fact that limd→0r(m85U8/21d,T.0)5 limd→0r(m8
5U8/22d,T.0). An alternative criterion for phase separa-
tion is based on this fact:4 if a discontinuity is found in
r(m8,T) as a function ofm8, then the densities inside the
gap are unstable, giving rise to a phase-separated state, and if
it is not found, then no phase separation occurs. Actually,
phase separation falls into the class of the first-order phase
transition, as the first-order phase transition into two phases
with different densities is featured by the discontinuity of
r(m8,T). Thus the continuity ofr(m8,T.0) nearU8/2 sug-
gests that the one-band Hubbard model on the square lattice

at T.0 does not exhibit phase separation atsmall doping
~near half-filling!, which is consistent with the quantum
Monto Carlo calculation8,4 and with the result of high-
temperature expansion for the two-dimensionalt-J model
with small values ofJ/t ~Ref. 10! which can be viewed as
the strongly coupling limit of the Hubbard model. As in the
beginning we do not fix the sign ofU, this exactresult re-
mains true for both negative and positiveU8 as well as the
vanishing external field (h850). If the system is indeed
paramagnetic, as plausibly expected, then this result could be
extended to moderate dopings. One may observe that this
approach only works for the two dimensions~or the one
dimension! but not for the three dimensions, as Ghosh’s re-
sults were obtained only for the low-dimensional cases.

Now let us look at this problem when the system is doped
away from half-filling. We introduce theh pairing ~or pseu-
dospin! operators6,11 ash15( ie( i )ci↑

† ci↓
† , h25(h1)†, and

hz5 1
2(N2M ) with N5( i(ni↑1ni↓). They obey the usual

SU(2) Lie algebra. We from now on seth50 in Eq.~1!. As
a matter of fact,@h2,H#52(mc2m)h2, wheremc5 U/2.
Using this commutator and the cyclicity under the trace we
obtain12

F~m,T!$12exp@2b~mc2m!#%5r~m,T!21, ~7!

with F(m,T)5 (1/M ) ^h1h2&, andb the inverse tempera-
ture. Since the right-hand side of Eq.~7! is an intensive
quantity,F(m,T), being obviously non-negative, should also
be intensive. Furthermore, it is well known13 that, based on
the particle-hole transformation,r(m,T)51 ~half-filling! as
m5mc and vice versa. Consequently, combining this result
and Eq.~7! we get the following relation:

r~m,T!.1 as m.mc , r~m,T!51 as m5mc ,

and

r~m,T!,1 as m,mc . ~8!

This exactconstraint may have some implications. First, a
direct consequence isF(m,T).0 for mÞmc . Second, since
r(m,T) is analytic in the neighborhood ofm5mc @ensured
by Eq.~6!#, at small doping, we can expandr(m,T) in pow-
ers of (m2mc), obtaining

r~m,T!511
]r~m,T!

]m U
m5mc

~m2mc!1O@~m2mc!
2#,

~9!

where we have usedr(m5mc ,T)51. Up to the second or-
der in (m2mc), we see that @]r(m,T)/]m# um5mc

5finite.0 @otherwise it contradicts Eqs.~6! and ~8!#.
Since the functionsr(m,T) and F(m,T) are closely re-

lated, let us now study the properties of the latter. From Eq.
~7! we know thatF(m,T) is finite, and comply as follows:

0,F~m,T!<
1

u12exp@2b~mc2m!#u
~10!

for mÞmc . Furthermore, in accordance with the definition
of F(m,T), we have
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F~m,T![
1

M

Tr@e2b~H02mN!h1h2#

Tre2b~H02mN! , ~11!

where we have denoted Eq.~1! by H5H02mN ~recall that
h50). Employing the following symmetric particle-hole
transformation,

ci↑
†→e~ i !ci↑ , ci↓

†→e~ i !ci↓ , ~12!

we find H→H̃5H02(U2m)N1(U22m)M , and
h1h2→h2h1. By applying the unitary transformation, Eq.
~12!, to F(m,T), we obtain

F~m,T!5
1

M

Tr$e2b@H02~U2m!N#h2h1%

Tre2b@H02~U2m!N#

5F~2mc2m,T!e2b~m2mc!, ~13!

where we have usedh2h15h1h222hz, the definition of
F(m,T), as well as Eq.~7!. Equation~13! completely deter-
mines the form ofF(m,T). As m85mc2m, it becomes
F(mc2m,T)5F(mc1m,T)exp(22bm), which reflects the
symmetry ofF(m,T) as a function ofm. Similarly, we can
obtain, after operating transformation~12! to r(m,T), the
following equation

r~m,T!522r~2mc2m,T!. ~14!

One may verify that Eqs.~7!, ~13!, and ~14! are self-
consistent.

By differentiating Eq.~11! with respect tom, and using
the unitary particle-hole transformation~12! to the thermal
averages involved, and then noting Eqs.~7! and~13!, one can
prove exactly the following expression:

]F~m,T!

]m
2

]F~2mc2m,T!

]m
5

b

M
~^N2&2^N&2!2mc2m,T ,

~15!

where^•••&m,T means the thermal average with the chemical
potentialm at temperatureT. Considering^N2&2^N&2>0,
we get

]F~m,T!

]m
>

]F~2mc2m,T!

]m
.

By Eqs.~14! and ~10!, we obtain the inequality

]F~m,T!

]m
<

2be2b~mc2m!

~e2b~mc2m!21!2
~16!

for m,mc .
Up to this point we have already had some basic knowl-

edge about the functionF(m,T), i.e., it should satisfy Eqs.
~7!, ~10!, ~13!, ~15!, and ~16! simultaneously. Under these
conditions, we can solve Eq.~13! exactly, and the solution,
being surprisingly simple, is given by

F~m,T!5
C~T!

11e2b~mc2m! , ~17!

whereC(T) is a positive, finite constant at temperatureT,
satisfying

0,C~T!<1. ~18!

We would like to mention here that we cannot obtain the
closed form ofC(T) for the time being, but such a form is
enough for our purpose. Consequently, by Eq.~7!, we have

r~m,T!511C~T!tanh@b~m2mc!#. ~19!

One may check that the solutions given by Eqs.~17! and~19!
satisfy all aforementioned properties of functionsF(m,T)
andr(m,T).

With these facts, we are ready to address the problem of
phase separation away from half-filling. As we have obtained
an exact, explicit expression forr(m,T), say, Eq.~19!, it is
obvious thatr(m,T) as a function ofm is continuous at any
fillings. This result shows that there is no occurrence of the
first-order phase transition, which in turn leads to the conclu-
sion that the one-band Hubbard model cannot exhibit the
phenomenon of phase separation on a square lattice at finite
temperature, consistent with the numerical calculations.8,4

A few remarks concerning Eqs.~17! and~19! are in order.
~i! As one may note, Eq.~19! looks to be reasonable, as it
comes directly from the symmetry of the Hubbard model,
and is well in agreement with inequality~6!. Moreover,
r(m,T), given by Eq.~19!, has the qualitatively similar be-
haviors compared with numerical results on square lattices
with small sizes, though a quantitative comparison is impos-
sible due to uncertainty ofC(T) as well as the lack of accu-
rate data. Clearly, Eq.~19! remains valid in the thermody-
namic limit. We would like to mention here that we cannot
prove the uniqueness of the solution Eq.~17!, but the other
solutions, if they exist, might have forms similar to Eq.
~17!,14 which would not affect our conclusion.~ii ! As indi-
cated in Eq.~19!, r(m,T) might have different behaviors for
positive and negativeU because of possiblemc dependence
of C(T). ~iii ! We emphasize once again that Eqs.~17! and
~19! work only for finite temperatures and finite chemical
potentials. One cannot extract any useful information for the
zero-temperature case from this study. Based upon the
present result, however, we could say that it may be inappro-
priate to use the one-band Hubbard model as a model to
explain the phenomena of phase separation observed in high-
Tc superconductors, at least at finite temperatures.

In summary, we show in a somewhat exact way that, us-
ing the known exact results and symmetry properties for the
one-band Hubbard model, there is no phase separation at any
fillings on a square lattice at finite temperature for both nega-
tive and positiveU. This result is consistent with the quan-
tum Monto Carlo calculation and some analytic results, and
is also compatible with the recent exact result obtained in
Ref. 5. Nevertheless, we would like to mention that our re-
sult does not cover the case at zero temperature. As there is
also strong numerical evidence showing no occurrence of
phase separation at zero temperature, how to obtain an exact
proof for bothU.0 andU,0 is still a fascinating topic.
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fessor B.H. Zhao for various discussions. He is also grateful
to Professor J. Zittartz and ITP of Universita¨t zu Köln for the
warm hospitality, and to the Alexander von Humboldt Stif-
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