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The orbital and spin magnetic moment and the magnetic dipole term of 3d transition metals are no longer
collinear when the electron spins are forced out of the easy direction by an external magnetic field. This effect
provides a simple way to measure with magnetic x-ray dichroism the anisotropy of the orbital magnetic
moment and the magnetic dipole term in a geometry where the contribution of the spin magnetic moment
disappears, i.e., with the photon helicity vector perpendicular to the magnetization direction.
@S0163-1829~96!50526-6#

Recent experimental and theoretical advances have made
magnetic circular x-ray dichroism~MCXD! a powerful tool
to separate the spin and orbital contributions to the magneti-
zation. Sum rules relate the difference in absorption between
left and right circularly polarized x rays, at, say, theL2,3
absorption edges of 3d transition metals to ground state
magnetic moments.1,2 Its element specificity makes MCXD
the only technique to date for studying the magnetic mo-
ments of the individual elements in thin films and multilayers
composed of different magnetic materials.3 Such systems are
of increasing importance in magneto-optical recording indus-
try due to the variety of novel magnetic properties, such as
perpendicular magnetic anisotropy~PMA!, enhanced mag-
netic moments, and giant magnetoresistance. Exchange bias-
ing of a magnetic layer by a ferromagnetic or antiferromag-
netic substrate is used to improve device homogeneity
required for further miniaturization.4 Strong exchange cou-
pling between overlayer and substrate can force the overlayer
spins out of their easy magnetization direction. A similar
situation occurs during measurement of the magnetocrystal-
line anisotropy~MCA! where the spins are forced out of the
easy direction by a strong external magnetic field. In this
paper we show that spin alignment along nonsymmetry di-
rections is characterized by noncollinear ground state mo-
ments. This requires a far more judicious application of the
sum rules to experimental results and leads to interesting
new applications which have not been considered in the
analysis of MCXD experiments up to now.5 When the elec-
tron spins are forced out of their easy magnetization direc-
tion spin-orbit coupling tries to adjust the electron orbitals
with respect to the spins. This is partially counteracted by the
strong crystalline field in 3d transition metals causing a
small noncollinear component for the orbital moment and a
larger one for the magnetic dipole term, which is the anisot-
ropy of the spin distribution due to the crystalline field. We
will propose experiments which allow the determination of
the anisotropy in the orbital magnetic moment and the mag-
netic dipole term using a transverse geometry, with the pho-
ton helicity vector perpendicular to the magnetization direc-
tion.

The ground state of a magnetic material can be character-
ized by its moments, such as the spin and orbital magnetic
moment, the quadrupole moment, and the magnetic dipole

term. These moments have expectation valuesS, L , Q, and
T, which can be obtained for the spin quantization axis along
any chosen unit vectorŜ. We stress thatS, L , and T are
vector quantities6 whereasQ is a traceless tensor of rank 2.
In a one-electron picture, the spin moment is determined by
the occupation numbersni

↑(↓) of majority ~minority! bands as
S5 1

2( i(ni
↑2ni

↓)Ŝ and its magnitude is constant for all direc-
tions Ŝ. The values ofni

↑(↓) depend on the material and band
filling and can be estimated from, e.g., a band structure cal-
culation. We limit the following analysis to the case of 3d
transition metals where the anisotropy of the total energyE
and the presence of an orbital magnetic moment are both due
to the small 3d spin-orbit interaction. The two quantitiesT
and the anisotropyLA of the orbital moment, i.e., the angular
variation of L , play a major role in the MCA. When the
majority band is full we have approximately

EMCA52 1
2 jŜ•LA1 7

4 j2Ŝ•T
1

Eexch, ~1!

wherej is the spin-orbit parameter andEexch the effective
exchange splitting between majority and minority bands.
Equation~1! is equivalent to the one given by Bruno.7 The
relationship of the second term to the quadrupole moment
was indicated by Wanget al.8 The quadrupole momentQ,
i.e., the anisotropy of the charge distribution of the 3d elec-
trons around the atom, is dominated by the crystalline field
and we can neglect any spin-orbit induced contributions to
T, so that

T5 1
2 ~Q↓2Q↑!Ŝ. ~2!

Thus T describes the anisotropy in the spin distribution of
the 3d electrons, and is given by a traceless tensor times
Ŝ.5 As implicitly given by, e.g., Bruno,7 the orbital moment
of 3d ferromagnets in perturbation theory is9

L5RŜ, ~3!

whereR is a ~second rank! tensor. In general the trace ofR
does not vanish. ForC2v and higher symmetry,R is diagonal

PHYSICAL REVIEW B 1 JULY 1996-IIVOLUME 54, NUMBER 2

540163-1829/96/54~2!/760~4!/$10.00 R760 © 1996 The American Physical Society



and it is formally possible to make a separation into an iso-
tropic partRI5 1

3Tr(R)I , where I is the unit matrix, and a
traceless matrixRA which corresponds to the anisotropy of
the orbital moment in Eq.~1!, i.e.,LA5RAŜ.10

So, for MCA studies it is important to knowS, L , Q, and
T, especially for thin magnetic films and multilayers where
interface effects lead to a strong enhancement of the MCA of
one or two orders of magnitude compared to bulk materials.
A large class of systems studied are epitaxial face-centered-
or body-centered-cubic magnetic films with~100! surface
orientations. In the following we will discuss the ground
state moments for such a magnetic film which hasC4v sym-
metry and displays PMA. A generalization of the results is
straightforward and will be presented elsewhere.11 From Eqs.
~2! and ~3! we see thatT andL are completely determined
once we know the components of the tensorsQ↑2Q↓ andR.
For the symmetry considered here both tensors are diagonal.
We can use the one-electron quadrupole momentsqi listed in
Table I for the different 3d orbitals to obtain
Q↑(↓)5( ini

↑(↓)qi . For convenience thez axis is chosen
along the surface normal. Even without detailed knowledge
of ni

↑(↓) we can draw some important conclusions based on
symmetry arguments. InC2v symmetry thed(x22y2) and
d(xy) orbitals are degenerate and the tracelessQ↑(↓) has two
independent components. InC4v symmetryx and y belong
to the same representation makingd(xz) andd(yz) degen-
erate.qi is then averaged overx andy axes, so that

2 1
2 Qzz

↑~↓ !5Qyy
↑~↓ !5Qxx

↑~↓ ! , ~4!

which leaves us with one independent component for
Q↑2Q↓. A similar relation as Eq.~4! holds for RA, and
since our system has PMA we getRzz

A .Rxx
A . For a more than

half filled 3d band the spin-orbit coupling causes a positive
value ofRI, which is usually larger thanRxx

A .
We will discuss the implications by simulating an MCA

measurement. An external magnetic fieldHiŜ strong enough
to saturate the sample12 is used to reorient the electron spins
along Ŝ in the xz plane. By varying the directionŜ from
perpendicular to completely in plane, the spin moment vector
S moves along the circle depicted in Fig. 1. According to
Eqs. ~2! and ~3! it follows that L andT must move on el-
lipses given byR and 1

2(Q
↓2Q↑), as shown in Fig. 1. If we

normalizeS, L , andT along thex axis then theirx compo-
nents must be the same for any arbitrary direction ofŜ. This
is indicated in Fig. 1 by drawing a~dashed! line parallel to
thez axis through the end point ofS. The intersections with
theR and 1

2(Q
↓2Q↑) ellipses gives then thez components

of L andT. Since the spin-orbit interaction makesL x posi-
tive, L will have the same sense of rotation asS. Due to Eq.

~4! the two components ofT have opposite sign and this
vector will, therefore, rotate in opposite sense toS and L .
This means that for one particular choice ofŜ, the two vec-
tors can even be orthogonal. The physical reason for the
occurrence of components ofL andT transversal toS is the
influence of the crystalline field on both quantities. When the
electron spins are rotated out of the easy axis, the crystalline
field does not follow and causes, throughQ, the large trans-
versal component ofT in Fig. 1. The effect is smaller forL
since it is partially aligned withS by spin-orbit coupling as
described by the isotropic partL I5RIŜ. However, the elec-
tron orbits also have the tendency to stay aligned with the
crystal lattice which causes the anisotropic partLA. Note that
in systems with large spin-orbit coupling such as lanthanides
and actinidesL andT are always collinear withS.

An MCXD measurement ofL , S, andT comprises taking
the difference in absorption of circularly polarized x rays at
the 3d metal L2,3 edges with the photon helicity aligned
parallel and antiparallel to the components of the moments.
The projections of the ground state moments onto the direc-
tion of the incident lightP̂ are obtained from the intensities
of differenceDA2,3 and sumA2,3 spectra integrated over the
corresponding edges according to the sum rules1,2 as

P̂•L52
4

3

DA31DA2

A31A2
nh , ~5!

FIG. 1. Construction ofL5RŜ andT5
1
2(Q

↓2Q↑)Ŝ for given
Ŝ. We assume that the tensors have their main values along the
coordinate axes. In, e.g., thexz plane, the tensors are represented by
ellipses with the lengths of the main axes given by the correspond-
ing eigenvalues. The abscissae have been normalized to unity. Ro-
tating the external magnetic field movesŜ on a circle. Its end point
is projected, parallel to thez axis, onto the ellipses. Because thex
andz eigenvalues of12(Q

↓2Q↑) have opposite signs,T is obtained
by subsequent reflection with respect to thex axis. This causesT to
move in a sense opposite toŜ.

TABLE I. Components of the quadrupole moments7
2qi for the

one-electron 3d orbitals along the Cartesian coordinates.

d orbital x y z

x22y2;xy 1 1 22
xz 1 22 1
yz 22 1 1
z2 21 21 2
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P̂•Seff[P̂•S1 7
2 P̂•T52

DA322DA2

A31A2
nh , ~6!

where nh is the number of 3d holes in the ground state.
Experimentally, the simplest way is to maintain the angle
betweenP̂ andH fixed and to vary the anglea betweenH
and the sample normal by rotating the sample. For clarity we
will discuss only two experimental geometries, i.e.,P̂ paral-
lel and perpendicular toH. Using theoretically predicted val-
ues ofS andT ~Ref. 13! and an estimate ofR ~Refs. 7 and
13! for an ultrathin Fe film grown epitaxially on a Ag~100!
surface we obtain the curves in Fig. 2 for the photon inci-
dence directionP̂ parallel~dashed and dotted lines! and per-
pendicular~solid lines! to the applied magnetic fieldH. The
componentsL i andSi

eff parallel toH show a sinusoidal varia-
tion with the anglea superimposed on a higher constant
offset. ForSeff the variation is caused by the dipole term,T,
rotating opposite toS, while for L it is due to LA. The
constant offsets are due toS andL I projected ontoP̂. It is
obvious that in this geometry MCXD measurements at two
different anglesa should be performed to obtain all compo-
nents ofL , S, andT. If one is only interested in an indepen-
dent determination ofS, however, which is desirable in order

to establish possible enhancements of the spin moment with
increasing film thickness,14 a single MCXD measurement
performed at the ‘‘magic’’ angle ofa554.7° would be suf-
ficient. In this geometry theTi andL i

A components are zero
because of Eq.~4! ~cf. Fig. 2!. The implications of the ge-
ometry withP̂ parallel toH have been partially discussed by
Stöhr and König5 and first MCXD measurements were re-
ported by Welleret al.15 T andLA can be obtained from the
difference inSi

eff and L i measured at two different angles
a. This induces additional errors due to the subtraction of
two values of comparable magnitude, since the MCXD sig-
nals at theL3 edge differ typically by;30%.15 However,
this problem does not occur in the geometry whereP̂ is per-
pendicular toH. Here, one directly measures the anisotropy
of L andSeff. Since the spin moment is always perpendicular
to P̂ in this geometry, we haveS'

eff5 7
2T' . Similarly we ob-

tain L'5L'
A . The maximum effect occurs at an angle

a545° and it is possible to obtain in one single measure-
ment the two main variables in the MCA given by Eq.~1!. It
is important to note that the angular variation of the magnetic
moments shown in Fig. 2 is a consequence of the symmetry
of the system and does not depend on the actual magnitude
of the moments, i.e., the material properties. In the experi-
ments this will allow an independent determination of the
moments, for example as functions of temperature, film
thickness, or other parameters, at the ‘‘magic’’ angle in a
fixed geometry, where the magnetization is perpendicular to
the incident photon direction. For systems withC2v symme-
try all moment components can be obtained from two trans-
versal measurements in perpendicular planes.11

On the basis of Eqs.~2! and ~3! we can speculate that
noncollinear magnetic moments might be very common at
the surfaces of crystalline magnetic materials which usually
have a different symmetry than the bulk. This causes en-
hanced values of the orbital moment as predicted by band
structure calculations.16 But it can also lead to different easy
magnetization directions at the surface. A strong exchange
interaction between bulk and surface layers, orienting the
surface spins can then result in noncollinear surface mo-
ments. Experimentally, a separation of surface and bulk sig-
nal is difficult and has certainly not been done routinely. A
transversal MCXD experiment will provide a more straight-
forward measurement of the surface magnetic signal when
performed in a ‘‘forbidden’’ geometry. WithP̂'S the bulk
signal is zero since, there, the moments are still collinear.

In conclusion, we have shown a way to extend the sum
rule analysis of magnetic ground state moments in magnetic
circular x-ray dichroism to systems where the electron spins
are not aligned along a high-symmetry crystal direction.
Since the ground state momentsL andT have tensor prop-
erties, they are then no longer collinear with the spins and
can enclose large angles. From symmetry arguments we have
shown that there is an optimum experimental geometry
which is material independent and allows a separation of
these moments.

We thank B. T. Thole and G. Y. Guo for many fruitful
discussions.

FIG. 2. ~a! Orbital L and ~b! spin S and effective spinSeff

magnetic moments (mB) for an ultrathin Fe film grown on a
Ag~100! surface (C4v symmetry!. Shown are the values as they
would be obtained by applying the sum rules of Eqs.~5! and~6! to
MCXD data measured for two experimental geometries. In one, the
photon incidence directionP̂ is parallel to the applied magnetic field
H ~subscriptsi ; dashed and dotted lines!. The other geometry is
characterized byP̂ being perpendicular toH ~subscripts'; solid
lines!. All vectors are assumed to be in thexz plane.a is defined in
Fig. 1 as the angle between the sample normal and the applied
magnetic field. Note thatSi

eff5Si andL i5L i
I at a5654.7°.
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