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For decagonal Al-Cu-Co, a tiling model is presented which is based on a deflated version of Burkov’s model
@S.E. Burkov, Phys. Rev. B47, 12 325~1993!# and which instead of 34 atoms requires at most two atoms per
basic tile. The model allows the realization of flips that involve the motion of only two atoms. Two such
correlated flips in the deflated tiling mimic such a flip in an inflated tiling with a collective jump of ten atoms
forming a ring. Thus for a real quasicrystal the kinetic features of phasons can be represented through a
geometrical algorithm. Atomic surfaces and motion of the ten-rings agree with experimental observations.
@S0163-1829~96!50426-1#

Even before quasicrystals had been discovered in 1984,1

structural models were available in the form of aperiodic
tilings. Prototype for decagonal quasicrystals was the planar
Penrose tiling,2 consisting of acute and obtuse rhombs. Later,
a decagonal partner tiling was established, the Tu¨bingen tri-
angle tiling. Its cells are isosceles golden triangles, an acute
one of angle 2p/10, and an obtuse one of angle 6p/10.3

Tilings allow one to depict a fundamental property of quasi-
crystalline systems directly, namely the phason distortion. It
appears in the form of ‘‘simpleton flips’’ of vertices, where a
simpleton is the vertex configuration that has the smallest
number of neighbors in the Penrose pattern within a hexago-
nal subpattern, in the triangle tiling within a rhombohedral
one. Through consecutive flips it is possible to transform a
quasiperiodic tiling into a rational approximant,4 to perform
a random tiling transition,5 or to transport vertices through
arbitrary distances in a mode of self-diffusion.6–8

Imposing a tiling structure to a point atom model has been
possible in the form of the planar binary tiling, containing
two species of atoms.9 One type of binary tiling arises from
the Tübingen triangle tiling, if small atoms are placed to the
vertices, and large ones into the acute triangles.10 Due to
steric constraints it is possible to draw tiles within a binary
tiling by connecting vertices of differing atoms, even after
Monte Carlo flips or molecular dynamics motions have oc-
curred. Binary tilings have been applied to test the entropic
stabilization hypothesis for quasicrystals,12,11 to calculate
phasonic elastic constants,13 or to observe motion of
dislocations.10

Up to date, however, it has not been possible to arrange
the atoms ofreal quasicrystalline compounds into cells of a
quasiperiodic tiling in a fully satisfying way. First, the lack
of translational symmetry has prevented a reliable structure
analysis of most of the over 200 existing quasicrystals, and
Per Bak’s outcry ‘‘Where are the atoms?’’~Ref. 14! is still
being echoed in the literature. The most detailed structure
determination has been performed for the decagonalT
phases Al-Cu-Co and Al-Ni-Co. It is possible to grow these
phases from the melt up to centimeter-sized, thermodynami-
cally stable single crystals. They have been studied by high
resolution electron microscopy15 and scanning tunneling
microscopy.16 Steurer17,18has evaluated the intensity of 3000
sharp Bragg peaks of Al-Cu-Co, has established an electron

density profile by Patterson analysis and the positions for a
patch of about 20000 atoms. Accordingly, Al-Cu-Co and the
isostructural Al-Ni-Co consist of two plane decagonal quasi-
crystalline layers, which are alternatively stacked along a
perpendicular tenfold screw axis with a stacking period of
4.18 Å .19,20

Motivated by Steurer’s data Burkov has proposed a tiling
model for Al-Cu-Co, first based on a cluster decoration of a
Penrose tiling,21 later on a decoration of the Tu¨bingen tri-
angle tiling.22 A single tile, however, contains up to 34 at-
oms. A flip then requires correlated jumps of large clusters in
combination with changes of the chemical species. Such pro-
cesses as addressed, e.g., in Ref. 23 are very unlikely to
occur.

Further detailed x-ray investigations of bothT phases by
Steurer and by Frey,24 however, displayed an appreciable
diffuse background and indicated a large amount of disorder.
Also, Fettweiset al.25 recently detected transitions from the
quasicrystalline state to coherently twinned microcrystalline
domains. Thus the structure does not resemble the determin-
istic model of Burkov by far and it appears necessary to find
mechanisms of atomic motion by which disorder can be in-
troduced.

In this article, we start from one of Burkov’s

FIG. 1. The two decorated fundamental arrowed golden tri-
angles. Symbols denote:h Co, n Cu, ands Al. Filled symbols
mark layer one, empty symbols mark layer two.
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decorations,22 slightly modify it and prove that it is
equivalent to a deflated triangle tiling consisting of two
basic triangles, each containing at most two atoms. In the
deflated tiling, simpleton flips are possible involving
jumps of only two atoms by distances of a maximum of 2.75
Å . Two correlated jumps in adjacent layers imitate rigid
motions of atomic ten-rings, which are characteristic features
of the Al-Cu-Co structure. Thus we have shown that a tiling
model and its phason kinetics can describe a real
quasicrystal.

The Tübingen triangle tiling can be obtained by the pro-
jection method26 or by a deflation procedure,27 and it pos-
sesses matching rules expressed by arrows.

For Burkov’s model two basic triangles must be decorated

~Fig. 1!. The decoration contains atoms for both layers, 34
atoms for the acute and 21 atoms for the obtuse triangle. The
rules to transfer the decoration to the other triangles of the
tiling are the following:~i! Merely translated copies of one
of the fundamental triangles show the translated decoration.
~ii ! If a triangle is rotated then the decoration is rotated with
it, but if the rotating angle is an odd multiple of 2p/10 ad-
ditionally the layers must be exchanged.~iii ! For a triangle
resulting from a reflection of a fundamental triangle at the
axis of symmetry also the decoration is reflected and then Cu
and Co atoms are exchanged. The right side of Fig. 2 shows
the decorated arrowed patch of the triangle tiling on the left
side.

The peculiar decoration allows to express the coordinates
of each atom as an integer linear combination of the vectors
of a regular pentagonal star. Hence the atomic coordinates of
the superposed two layers can be established by the method
of atomic surfaces in five dimensions. The atomic surfaces
are depicted in Fig. 3. They are identical to those proposed
by Burkov.22 @The corresponding decoration as calculated by
us and displayed in Fig. 1 disagrees, however, with Fig. 2~a!
in Burkov’s article.22#

The atomic coordinate quintuplesnPZ5 can be arranged
into five translation classesT5( i51

5 nimod5. There are four
atomic surfaces: two regular pentagonal stars and two deca-
gons, each labeled by a different translation classT
P$1,2,3,4% ~Fig. 3!. Each layer of the decagonal quasicrystal
contains only atoms of two different translation classes~and
hence surfaces!. Layer one~marked with filled symbols! con-
sists of Cu and Co atoms of translation classT53 and Al
atoms ofT51,3. Layer two~marked with empty symbols!
contains Co and Cu atoms ofT52 and Al atoms of
T52,4. With the polar calculus28 the composition of the
model quasicrystal becomes 61.8% (t21) Al atoms and

FIG. 2. Left: Patch of a triangle tiling. Right: Decoration of the
patch and deflation in three parts~shaded!.

FIG. 3. ~a!–~d! Atomic surfaces of the atoms for different trans-
lation classesT and the two layers.

FIG. 4. Patch of ad-Al-Cu-Co quasicrystal. Upper part: Section
of the binary tiling for layer one. Lower part: Section of the binary
tiling for layer two.

FIG. 5. ~a! Simpleton flip.~b! Trapezoid flip.
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19.1% Co and Cu atoms. There is an amazing consequence
of the symmetry of the atomic surfaces: One can deflate the
tiling by factors of t consecutively, obtaining smaller tri-
angles with fewer atoms as shown in Fig. 2. At each defla-
tion step two basic triangles can be chosen, from which the
entire tiling is restored by Burkov’s decoration rules~i! to
~iii !. In the first deflation step the vertices are centers of
rings, consisting of ten atoms~Fig. 2!. These rings are strik-
ing features of Al-Cu-Co in transmission electron micros-
copy exposures.15

The triangles of deflation step three (t3) are the
smallest tiles for the model. There is an acute triangle con-
taining one Al atom and one Cu or Co atom, depending on
the arrow of the triangle, and an obtuse triangle hosting one
Al atom.

The deflation steps are also visible in the atomic
surfaces. As Fig. 3 shows, they are subdivided into a hierar-
chy of congruent triangles of ratios 1:t:t2:t3. The smallest
triangles are atomic surfaces of the undeflated tiling,
and their number is that large, because for each atom
in the decoration there is a translate of the atomic
surface of its host tile. The deflation procedure is possible
only due to the simplicity and symmetry of the atomic sur-
faces.

On the scale of the smallest triangles of the tiling
simpleton flips appear now possible, as they require only
hopping motions of few atoms along small distances.
However, these triangles are arrowed, and the
arrows determine whether the triangle contains a Cu
or a Co atom. Flips may require an unphysical
simultaneous change of the atomic species~‘‘chemical
phason’’!.

Reasonable flips, however, seem to be possible, if one
considers the two layers separately and interprets the
atomic positions of each of them with the help of a
binary tiling.

The atomic surfaces of a binary tiling are a regular deca-
gon @as in Fig. 3~c!# and two regular pentagonal stars@as in
Figs. 3~a! and 3~d!#.10 The atoms corresponding to the deca-
gon are placed on the vertices of a triangle tiling. Those
belonging to a pentagonal star of type Fig. 3~a! are placed

into the circumcenters of those acute triangles, which result
from a basic acute triangle by a rotation of an odd multiple
of angle 2p/10. The atoms corresponding to the other pen-
tagonal star@of type Fig. 3~d!# fill the centers of the remain-
ing acute triangles.

Thus each of the layers forms a binary tiling with one
atomic surface~in the form of a regular pentagonal star!
missing. The vertices are occupied by all three types of at-
oms, half of the acute triangles are filled with Al atoms.

The triangle tilings are illustrated for both layers in Fig. 4.
The upper part shows the triangle tiling describing layer one,
the lower part the one for layer two.

Within this description we are able to perform
phason flips involving only a few atoms. The simplest el-
ementary flips are the simpleton flip and a following trap-
ezoid flip.29 The simpleton flip causes a jump of two atoms;
the trapezoid flip rearranges the bonds and does not move
any atom~Fig. 5!. Depending on their type the atoms move
over distances of 2.75 Å~atoms inside the acute triangle!,
1.79 Å ~vertex atom!, or 0.87 Å~if the inside atom moves to
a vertex and vice versa!. At the beginning of the randomiza-
tion process only Al atoms are able to jump in simpleton
flips. Subsequent trapezoid flips bring Co and Cu atoms also
into flip positions.

Thus we have presented a mechanism for an uncorrelated
randomization of the layers on the highest level of
deflation. Two correlated basic flips, one in each layer, how-
ever, can mimic simpleton flips of entire clusters, namely the
characteristic ten rings, in the first level of deflation. We call
such a process ‘‘double flip.’’ For a description we
have to introduce the notion of ‘‘atomic five-ring’’ and of a
‘‘regular simpleton flip.’’ An atomic five-ring is a vertex
configuration which contains a sequence of an obtuse, an
acute, and again an obtuse triangle. A regular simpleton flip
is one which leads to a vertex configuration with one five-
ring more than initially. A double flip consists of two regular
simpleton flips, one in each layer, which are separated by
less than 6 Å , andwhich are followed by a trapezoid flip in
each layer.

In Fig. 6 the double flip is depicted by dashed lines in the

FIG. 6. Tiling of deflation step 1~full lines! and some tiles of deflation step 3~dashed lines!. Left: Initial state. Right: Two double flips
have occurred, each of them involving four atoms within the small tiling. They mimic the motion of entire atomic ten-rings, whose center
perform a simpleton flip within the large tiling.
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small scale tiling. Although it requires the motion of four
atoms only, it seems as if an entire ring of ten atoms has
been displaced. The midpoint of the atomic ten-ring before
and after the double flip describes a simpleton flip in a tiling
of deflation step one. This larger scaled tiling is drawn in full
lines.

The tiling and its kinetics are consistent with
experimental results: Within the error bars the calculated
shapes of the atomic surfaces agree with those found by
Steurer.30 Steurer also observes the rearrangements of
decagonal rings of atoms,31 which we interpret as double
flips. The flips of the centers of these decagonal rings

are simpleton flips in the triangle tiling of the first level of
deflation.

Now a tiling model of Al-Cu-Co of a most simple deco-
ration is available which in a straightforward geometrical
way allows to construct transitions to an approximant phase
or to a random tiling and to realize the phason induced self-
diffusion.
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discussion and to D. Joseph for software support. We are
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